
Family Name: SOLUTIONS First Name: Student ID:

Final Exam

Computer Architecture (263-2210-00L)

ETH Zürich, Fall 2018
Prof. Onur Mutlu

Problem 1 (40 Points): Emerging Memory Technologies

Problem 2 (70 Points): Memory Scheduling

Problem 3 (80 Points): Asymmetric Multicore

Problem 4 (55 Points): Multicore Cache Partitioning

Problem 5 (40 Points): Cache Coherence

Problem 6 (45 Points): Memory Consistency

Problem 7 (65 Points): Processing-in-Memory

Problem 8 (BONUS: 50 Points): GPU Programming

Total (445 (395 + 50 bonus) Points):

Examination Rules:

1. Written exam, 180 minutes in total.

2. No books, no calculators, no computers or communication devices. 6 pages of handwritten notes are
allowed.

3. Write all your answers on this document, space is reserved for your answers after each question. Blank
pages are available at the end of the exam.

4. Clearly indicate your final answer for each problem. Answers will only be evaluated if they are readable.

5. Put your Student ID card visible on the desk during the exam.

6. If you feel disturbed, immediately call an assistant.

7. Write with a black or blue pen (no pencil, no green or red color).

8. Show all your work. For some questions, you may get partial credit even if the end result is wrong due
to a calculation mistake. If you make assumptions, state your assumptions clearly and precisely.

9. Please write your initials at the top of every page.

Tips:

• Be cognizant of time. Do not spend too much time on one question.
• Be concise. You may be penalized for verbosity.
• Show work when needed. You will receive partial credit at the instructors’ discretion.
• Write legibly. Show your final answer.

i

Initials: Solutions Computer Architecture December 20th, 2018

This page intentionally left blank

Final Exam Page 1 of 21

Initials: Solutions Computer Architecture December 20th, 2018

1 Emerging Memory Technologies [40 points]

Researchers at Lindtel developed a new memory technology, L-RAM, which is non-volatile. The access
latency of L-RAM is close to that of DRAM while it provides higher density compared to the latest
DRAM technologies. L-RAM has one shortcoming, however: it has limited endurance, i.e., a memory
cell stops functioning after 106 writes are performed to the cell (known as cell wear-out).

(a) [15 points] Lindtel markets a new computer system with L-RAM to have a lifetime of 2 years and
the following specifications:

• 4GBs of L-RAM as main memory with a perfect wear-leveling mechanism, i.e., writes are
equally distributed over all the cells of L-RAM.

• The processor is in-order and there is no memory-level parallelism.

• It takes 4 ns to send a memory request from the processor to the memory controller and it takes
20 ns to send the request from the memory controller to L-RAM. The write latency of L-RAM
is 40 ns.

• L-RAM is word-addressable. Thus, each write request writes 8 bytes to memory.

A student at ETH tests the lifetime of the system and finds that this new computer system cannot
guarantee a lifetime of 2 years. She writes a program to wear out the entire L-RAM device as quickly
as possible. How fast is she able to wear out the device? Show all work.

twear_out =
232

23 × 106 × (40 + 4 + 20)
twear_out = 235 × 106 ns
twear_out ≈ 397.68 days

Explanation:
• Each memory cell should receive 106 writes.
• Since ETH-RAM is word addressable, the required number of writes is equal to 232

23 ×
106.

• The processor is in-order and there is no memory-level parallelism, so the total latency
of each memory access is equal to 40 + 4 + 20.

Final Exam Page 2 of 21

Initials: Solutions Computer Architecture December 20th, 2018

(b) [15 points] L-RAM works in the multi-level cell (MLC) mode in which each memory cell stores 2
bits. The student decides to improve the lifetime of L-RAM cells by using the single-level cell (SLC)
mode. When L-RAM is used in SLC mode, the lifetime of each cell improves by a factor of 10 and
the write latency decreases by 75%. What is the lifetime of the system using the SLC mode, if
we repeat the experiment in part (a), with all else remaining the same in the system? Show your
work.

twear_out =
231

23 × 107 × (10 + 4 + 20)× 10−9

twear_out = 91268055.04s ≈ 1056.34 days

Explanation:
• Each memory cell should receive 10× 106 = 107 writes.
• The memory capacity is reduced by 50% since we are using SLC: Capacity = 232/2 =
231

• The required number of writes is equal to 231

23 × 107.
• The SLC write latency is 0.25× twrite_MLC : twrite_SLC = 0.25× 40 = 10 ns

(c) [10 points] Provide a mechanism that would increase the guaranteed lifetime of the computer system
without changing the physical circuitry of L-RAM. From the baseline computer system in part
(a), describe the changes required to guarantee a computer system lifetime of 2 years, with your
mechanism. Be concrete and precise.

Artificially increase the time to either (1) send a memory request from the memory
controller to L-RAM or (2) send a request from the processor to the memory controller
by 54 ns. 730 ∗ 3600 ∗ 24 < 232

23 × 106 × (40 + 4 + 20 + x)
x > 53.4ns

Final Exam Page 3 of 21

Initials: Solutions Computer Architecture December 20th, 2018

2 Memory Scheduling [70 points]

In lectures, we introduced a variety of ways to tackle memory interference. In this problem, we will look
at the Blacklisting Memory Scheduler (BLISS) to reduce unfairness. There are two key aspects of BLISS
that you need to know.

• When the memory controller services η consecutive requests from a particular application, this
application is blacklisted. We name this non-negative integer η the Blacklisting Threshold.

• The blacklist is cleared periodically every 10000 cycles starting at t = 0.

To reduce unfairness, memory requests in BLISS are prioritized in the following order:

• Non-blacklisted applications’ requests

• Row buffer hit requests

• Older requests

The memory system for this problem consists of 2 channels with 2 banks each. Tables 1 and 2 show the
memory request stream in the same bank for both applications at different times (t = 0 and t = 10). For
both tables, a request on the left-hand side is older than a request on the right-hand side in the same
table. The applications do not generate more requests than those shown in Tables 1 and 2. The memory
requests are labeled with numbers that represent the row position of the data within the accessed bank.
Assume the following for all questions:

• A row buffer hit takes 100 cycles.

• A row buffer miss (i.e., opening a row in a bank with a closed row buffer) takes 200 cycles.

• A row buffer conflict (i.e., closing the currently open row and opening another one) takes 250
cycles.

• All row buffers are closed at time t = 0

Application A (Channel 0, Bank 0)
Application B (Channel 0, Bank 0) Row 2 Row 2 Row 2 Row 2 Row 2 Row 3 Row 3 Row 4

Table 1: Memory requests of the two applications at t = 0

Application A (Channel 0, Bank 0) Row 3 Row 7 Row 2 Row 0 Row 5 Row 3 Row 8 Row 9
Application B (Channel 0, Bank 0) Row 2 Row 2 Row 2 Row 2 Row 2 Row 3 Row 3 Row 4

Table 2: Memory requests of the two applications at t = 10. Note that none of the Application B’s
existing requests are serviced yet.

(a) [15 points] Compute the slowdown of each application using the FR-FCFS scheduling policy after
both threads ran to completion. We define:

slowdown = memory latency of the application when run together with other applications
memory latency of the application when run alone

Show your work.

Final Exam Page 4 of 21

Initials: Solutions Computer Architecture December 20th, 2018

slowdownA =∼ 1.53
slowdownB = 1.25

Explanation:
For both applications, the first request will incur row buffer miss penalty, and the rest of
the requests will either be hits or conflicts.
Application A (alone) = 200 + 100 + 250 ∗ 6 = 1800 cycles
Application B (alone) = 200 + 100 ∗ 4 + 250 + 100 + 250 = 1200 cycles

Applications A (with B, FR-FCFS) = 200+100∗4+100+250+100+100∗2+250+250∗5 =
2750 cycles
Applications B (with A, FR-FCFS) = 200 + 100 ∗ 4 + 100 + 250 + 100 + 100 ∗ 2 + 250 =
1500 cycles

From the two tables above we know that all requests of application B were issued before
any of the application A’s requests were issued. Thus, all requests of B are prioritized
unless there is a row hit for A’s requests.
slowdownA = 2750

1800 =∼ 1.53

slowdownB = 1500
1200 = 1.25

(b) [15 points] If we use the BLISS scheduler, for what value(s) of η (the Blacklisting Threshold) will
the slowdowns of both applications be equal to those obtained with FR-FCFS?

For η ≥ 6 or η = 0.

Explanation:
We want both A and B to complete without blacklisting or to complete both blacklisted,
thus η ≥ 6 and η = 0, respectively.

Final Exam Page 5 of 21

Initials: Solutions Computer Architecture December 20th, 2018

(c) [15 points] For what value(s) of η (the Blacklisting Threshold) will the slowdown of A be < 1.5?

Impossible. Slowdown for A will always be ≥ 1.5

Explanation: For the give memory requests, it is not possible to find η that blacklists
B but not A. Thus, the smallest slowdown for A is the case explained in the solution of
part (b).

(d) [15 points] For what value(s) of η (the Blacklisting Threshold) will B experience the maximum
slowdown it can possibly experience with the Blacklisting Scheduler?

For η = 5.

Explanation: We already know that the slowdowns will be equal to the slowdown with
FR-FCFS when η ≥ 6 or η = 0. If we execute the memory requests for the rest of possible
η values, we find that η = 5 causes application B to complete after 2150 cycles, which is
the largest.

(e) [10 points] What is a simple mechanism (that we discussed in lectures) that we can use instead of
BLISS to make the slowdowns of both A and B equal to 1.00?

Memory Channel Partitioning (MCP)

Explanation: With MCP, each application will operate on an independent channel, with-
out any interference with the other application.

Final Exam Page 6 of 21

Initials: Solutions Computer Architecture December 20th, 2018

3 Asymmetric Multicore [80 points]

A microprocessor manufacturer asks you to design an asymmetric multicore processor for modern work-
loads. You should optimize it assuming a workload with 80% of its work in the parallel portion. Your
design contains one large core and several small cores, which share the same die. Assume the total die
area is 32 units.

• Large core: For a large core that is n times faster than a single small core, you will need n3 units
of die area (n is a positive integer). The dynamic power of this core is 6× n Watts and the static
power is n Watts.

• Small cores: You will fit as many small cores as possible, after placing the large core. A small core
occupies 1 unit of die area. Its dynamic power is 1 Watt and its static power is 0.5 Watts.

The parallel portion executes only on the small cores, while the serial portion executes only on the large
core.

Please answer the following questions. Show your work. Express your equations and solve them. You
can approximate some computations, and get partial or full credit.

(a) [15 points] What configuration (i.e., number of small cores and size of the large core) results in the
best performance?

One large core and 24 small cores. The large core will occupy 8 units of die area.

Explanation:
Given that the large core occupies n3 units, the number of small cores will be 32 − n3.
Thus, the speedup can be calculated as:
Speedup = 1

0.2
n + 0.8

32−n3
.

Without loss of generality, we assume that the total execution time is:
ttotal = tserial + tparallel =

0.2
n + 0.8

32−n3 seconds.

n #small tserial tparallel ttotal
1 31 0.20 0.03 0.23
2 24 0.10 0.03 0.13
3 5 0.07 0.16 0.23

These calculations can be approximated without a calculator:
n #small tserial tparallel ttotal
1 31 0.20 / 1 = 0.20 0.02 < 0.80 / 31 < 0.03 > 0.22
2 24 0.20 / 2 = 0.10 0.03 < 0.80 / 24 < 0.04 < 0.14
3 5 0.20 / 3 = 0.07 0.80 / 5 = 0.16 > 0.22

Final Exam Page 7 of 21

Initials: Solutions Computer Architecture December 20th, 2018

(b) [10 points] The energy consumption should also be a metric of reference in your design. Compute
the energy consumption for the best configuration in part (a).

Etotal = 26× tserial + 38× tparallel = 3.74 Joules.

Explanation:
We can calculate the energy consumption as:
Etotal = Elarge + Esmall =
(Plarge_dynamic + Plarge_static)× tserial + Plarge_static × tparallel
+ (Psmall_static × tserial + (Psmall_dynamic + Psmall_static)× tparallel)× (32− n3) =
7× n× tserial + n× tparallel + (0.5× tserial + 1.5× tparallel)× (32− n3) =
14× tserial + 2× tparallel + 12× tserial + 36× tparallel =
26× tserial + 38× tparallel = 3.74 Joules.

This result can be approximated without a calculator:
Etotal < 26× 0.10 + 38× 0.04 = 2.6 + 1.52 = 4.12 Joules.

(c) For the best configuration obtained in part (a), you are considering to use the large core to collaborate
with the small cores on the execution of the parallel portion.

(i) [10 points] What is the overall performance improvement, compared to the performance ob-
tained in part (a), if the large core collaborates on the parallel portion?

If the large core collaborates with the small cores in the parallel portion, the best-case
speedup can be calculated as:
Speedup = 1

0.2
n + 0.8

32−n3+n

.

Without loss of generality, we assume that the total execution time is:
ttotal = tserial + tparallel =

0.2
n + 0.8

32−n3+n seconds.

The execution time of the serial part tserial, which takes significantly longer than
the parallel part (about 3 times longer), does not change. By using the large core
to collaborate in the parallel portion, the execution time of the parallel part tparallel
decreases from 0.8

24 to 0.8
24+2 , i.e., a speedup of 13

12 , which is less than 10%. Thus, the
overall performance improvement from using the large core to collaborate in the
parallel portion is negligible.

Final Exam Page 8 of 21

Initials: Solutions Computer Architecture December 20th, 2018

(ii) [10 points] What is the overall energy change, compared to the energy obtained in part (b), if
the large core collaborates on the parallel portion?

If the large core collaborates in the parallel portion, we calculate the energy
consumption as:
Etotal = Elarge + Esmall =
(Plarge_dynamic + Plarge_static)× tserial + (Plarge_dynamic + Plarge_static)× tparallel
+ (Psmall_static × tserial + (Psmall_dynamic + Psmall_static)× tparallel)× (32− n3) =
7× n× tserial + 7× n× tparallel + (0.5× tserial + 1.5× tparallel)× (32− n3) =
14× tserial + 14× tparallel + 12× tserial + 36× tparallel =
26× tserial + 50× tparallel ' 2.6 + 2.0 = 4.6 Joules.

We assume that tparallel has a very small change, as discussed above. If we compare
this equation to the energy equation in part (b), we observe that the energy consump-
tion increases by Plarge_dynamic × tparallel = 6 × n × tparallel = 12 × tparallel Joules.
Since the energy consumption of the parallel portion is 38 × tparallel Joules in part
(b), there is an energy increase in the parallel portion of more than 30% (i.e., 12

38).
The overall energy increase is more than 11%.

(iii) [5 points] Discuss whether it is worth using the large core to collaborate with the small cores
on the execution of the parallel portion.

It is not really worth using the large core in the parallel part. While the performance
improvement is negligible, the overall energy consumption increases by more than
11%.

Final Exam Page 9 of 21

Initials: Solutions Computer Architecture December 20th, 2018

(d) [15 points] Now assume that the serial portion can be optimized, i.e., the serial portion becomes
smaller. This gives you the possibility of reducing the size of the large core, and still improving
performance. For a large core with an area of (n − 1)3, where n is the value obtained in part (a),
what should be the fraction of serial portion that would lead to better performance than in part (a)?

10%.

Explanation:
We call ttotal the total execution time with a large core with n = 2, as obtained in part
(a), and t′total for a smaller core with n = 1. We can obtain the new parallel fraction p
from the following equation:

ttotal > t′total;

0.13 > 1−p
n−1 + p

32−(n−1)3 ;

0.13 > 1−p
1 + p

31 ;

p > 0.90.

The serial portion should be at most 10%.

(e) [15 points] Your design is so successful for desktop processors that the company wants to produce a
similar design for mobile devices. The power budget becomes a constraint. For a maximum of total
power of 20W, how much would you need to reduce the dynamic power consumption of the large
core, if at all, for the best configuration obtained in part (a)? Assume again that the parallel fraction
is 80% of the workload. (Hint: Express the dynamic power of the large core as D × n Watts, where
D is a constant).

We have to reduce the dynamic power consumption of the large core by at least 20×.

Explanation:
We calculate the total power as the total energy divided by the total execution time:
Ptotal =

Etotal

ttotal
Watts;

Ptotal =
Elarge+Esmall

ttotal
≤ 20 Watts;

We express the dynamic power of the large core as D × n. From part (a) we know n,
tserial, tparallel and ttotal, from part (b) we know Esmall:

(D+1)×n×tserial+n×tparallel+Esmall

ttotal
= (D+1)×2×0.10+n×0.03+2.00

0.13 ≤ 20 Watts;

D ≤ 0.3.

In mobile devices, the dynamic power of the large core has to be ≤ 0.3 × n Watts (given
the assumptions in the question). Since the dynamic power of the large core is 6×nWatts
in the desktop processor, we have to reduce the dynamic power consumption of the large
core by at least 20× for mobile devices.

Final Exam Page 10 of 21

Initials: Solutions Computer Architecture December 20th, 2018

4 Multicore Cache Partitioning [55 points]

Suppose we have a system with 32 cores that share a physical second-level cache. Assume each core
is running a single single-threaded application, and all 32 cores are concurrently running applications.
Assume that the page size of the architecture is 8KB, the block size of the cache is 128 bytes, and
the cache uses LRU replacement. We would like to ensure each application gets a dedicated space in
this shared cache without any interference from other cores. We would like to enforce this using the
OS-based page coloring mechanism to partition the cache, as we discussed in lecture. Recall that with
page coloring, the operating system ensures, using virtual memory mechanisms, that the applications do
not contend for the same space in the cache.

(a) [10 points] What is the minimum size the L2 cache needs to be such that each application is allocated
its dedicated space in the cache via page coloring? Show your work.

256KB.

Explanation:
For OS based page coloring to work in this case, we need at least 32 colors. This means
we need at least 5 bits of the cache index to intersect with the physical page number.

Cache line Tag Cache Index Bytes in Block

 5 bits

Physical Page Number Page Offset

So, with associativity A, page size P, the minimum cache size is given by,
C ≥ A × 25 × P = A × 32 × P

C ≥ A × 32 × 8KB = A × 256KB
Minimum cache size (associativity = 1) is 256KB

(b) [10 points] Assume the cache is 4MB, 32-way associative. Can the operating system ensure that the
cache is partitioned such that no two applications interfere for cache space? Show your work.

No.

Explanation:
For a given associativity, minimum cache size = A × 256KB (from part a). Therefore, for
a 32-way associative cache, minimum cache size required for the OS to ensure partitioning
without interference is 32 × 256KB = 8MB. Since the cache size is only 4MB, the OS, in
this case, cannot ensure partitioning without interference.

(c) Assume you would like to design a 32MB shared cache such that the operating system has the ability
to ensure that the cache is partitioned such that no two applications interfere for cache space.

(i) [5 points] What is the minimum associativity of the cache such that this is possible? Show your
work.

Minimum associativity = 1.

Explanation:
From part a),
C ≥ A × 256KB
32000KB ≥ A × 256KB
Therefore, minimum associativity = 1

Final Exam Page 11 of 21

Initials: Solutions Computer Architecture December 20th, 2018

(ii) [10 points] What is the maximum associativity of the 32MB cache such that this is possible?
Show your work.

Maximum associativity = 128.

Explanation:
From part a),
C ≥ A × 256KB; A ≤ C / 256KB; A ≤ 32MB / 256KB
A ≤ 128
Therefore, maximum associativity is 128.

(d) [5 points] Suppose we decide to change the cache design and use utility based cache partitioning
(UCP) to partition the cache, instead of OS-based page coloring. Assume we would like to design
a 4MB cache with a 128-byte block size. What is the minimum associativity of the cache such that
each application is guaranteed a minimum amount of space without interference? Recall that UCP
aims to minimize the cache miss rate by allocating more cache ways to applications that obtain the
most benefit from more ways, as we discussed in lecture.

Minimum associativity = 32.

Explanation:
Utility based cache partitioning needs to give at least one way for each application. Oth-
erwise, the application will receive no cache space. Hence, the minimum associativity is
32.

(e) [5 points] Is it desirable to implement UCP on a cache with this minimum associativity? Why, why
not? Explain.

No, it is not desirable to implement UCP.

Explanation:
There will be no benefit gained from UCP since UCP guarantees at least one way per
application. This means all applications will be allocated exactly one way of the cache, i.e.
the cache is equally and statically partitioned regardless of applications’ utility for caching.

(f) [5 points] What is the maximum associativity of a 4MB cache that uses UCP such that each appli-
cation is guaranteed a minimum amount of space without interference?

32k ways.

Explanation:
The maximum associativity corresponds to a fully associative design. For the given con-
figuration, it is 4 MB / 128 bytes = 222 / 27 = 215 = 32k ways.

(g) [5 points] Is it desirable to implement UCP on a cache with this maximum associativity? Why, why
not? Explain.

No.

Explanation:
It is not desirable to implement UCP with this maximum associativity because the overhead
of UCP for 32 applications on this cache will likely outweigh its benefits. UCP will only
work with LRU replacement policy. But implementing LRU on top of a 32k-way cache is
impractical. Also the number of counters needed by UCP and the partitioning solution
space for UCP are very large for such a cache.

Final Exam Page 12 of 21

Initials: Solutions Computer Architecture December 20th, 2018

5 Cache Coherence [40 points]

We have a system with 4 byte-addressable processors {P0, P1, P2, P3}. Each processor has a private
256-byte, direct-mapped, write-back L1 cache with a block size of 64 bytes. All caches are connected
to and actively snoop a global bus, and cache coherence is maintained using the MESI protocol, as we
discussed in class. Note that on a write to a cache block in the S state, the block will transition directly
to the M state. Accessible memory addresses range from 0x00000 − 0xfffff.

Each processor executes the following instructions in a sequentially consistent manner:

P0
0 st r0, 0x1ff40
-
-

P1
1 st r0, 0x110c0
2 st r1, 0x11080
3 ld r2, 0x1ff00

P2
4 ld r0, 0x1ff40
5 ld r1, 0x110f0
-

P3
-
-
-

After executing the above 6 memory instructions, the final tag store state of each cache is as follows:

Final Tag Store States

Cache for P0
Tag MESI state

Set 0 0x1ff S
Set 1 0x1ff S
Set 2 0x110 I
Set 3 0x110 I

Cache for P1
Tag MESI state

Set 0 0x1ff S
Set 1 0x1ff I
Set 2 0x110 M
Set 3 0x110 M

Cache for P2
Tag MESI state

Set 0 0x10f I
Set 1 0x1ff S
Set 2 0x10f M
Set 3 0x110 I

Cache for P3
Tag MESI state

Set 0 0x133 E
Set 1 0x000 I
Set 2 0x000 I
Set 3 0x10f I

(a) [30 points] Fill in the following tables with the initial tag store states (i.e., Tag and MESI state)
before having executed the six memory instructions shown above. Answer X if a tag value is unknown,
and for the MESI states, write in all possible values (i.e., M, E, S, and/or I).

Initial Tag Store States

Cache for P0
Tag MESI state

Set 0 0x1ff M, E, S
Set 1 X M, E, S, I
Set 2 0x110 M, E, S, I
Set 3 0x110 M, E, S, I

Cache for P1
Tag MESI state

Set 0 X M, E, S, I
Set 1 0x1ff M, E, S, I
Set 2 X M, E, S, I
Set 3 X M, E, S, I

Cache for P2
Tag MESI state

Set 0 0x10f I
Set 1 X M, E, S, I
Set 2 0x10f M
Set 3 X M, E, S, I

Cache for P3
Tag MESI state

Set 0 0x133 E
Set 1 0x000 I
Set 2 0x000 I
Set 3 0x10f I

(b) [10 points] In what order did the memory operations enter the coherence bus?

time →
0 4 5 1 2 3

Final Exam Page 13 of 21

Initials: Solutions Computer Architecture December 20th, 2018

6 Memory Consistency [45 points]

A programmer writes the following two C code segments. She wants to run them concurrently on a
multicore processor, called SC, using two different threads, each of which will run on a different core.
The processor implements sequential consistency, as we discussed in the lecture.

Thread T0
Instr. T0.0 X[0] = 1;
Instr. T0.1 X[0] += 1;
Instr. T0.2 while(flag[0] == 0);
Instr. T0.3 a = X[0];
Instr. T0.4 X[0] = a * 2;

Thread T1
Instr. T1.0 X[0] = 0;
Instr. T1.1 flag[0] = 1;
Instr. T1.2 b = X[0];

X and flag have been allocated in main memory, while a and b are contained in processor registers.
A read or write to any of these variables generates a single memory request. The initial values of all
memory locations and variables are 0. Assume each line of the C code segment of a thread is a single
instruction.

(a) [10 points] What could be possible final values of a in the SC processor, after both threads finish
execution? Explain your answer. Provide all possible values.

0, 1, or 2.

Explanation:
The sequential consistency model ensures that the operations of each individual thread
are executed in the order specified by its program. Across threads, the ordering is enforced
by the use of flag[0]. Thread 0 will remain in instruction T0.2 until flag is set by
T1.1. There are at least three possible sequentially-consistent orderings that lead to at
most three different values of a at the end:
Ordering 1: T1.0 → T0.0 → T0.1 → T0.3 - Final value: a = 2.
Ordering 2: T0.0 → T1.0 → T0.1 → T0.3 - Final value: a = 1.
Ordering 3: T0.0 → T0.1 → T1.0 → T0.3 - Final value: a = 0.

(b) [10 points] What could be possible final values of X[0] in the SC processor, after both threads finish
execution? Explain your answer. Provide all possible values.

0, 2, or 4.

Explanation:
The value of X[0] is twice the value of a:
Ordering 1: T1.0 → T0.0 → T0.1 → T0.3 → T0.4 - Final value: X[0] = 4.
Ordering 2: T0.0 → T1.0 → T0.1 → T0.3 → T0.4 - Final value: X[0] = 2.
Ordering 3: T0.0 → T0.1 → T1.0 → T0.3 → T0.4 - Final value: X[0] = 0.

Final Exam Page 14 of 21

Initials: Solutions Computer Architecture December 20th, 2018

(c) [10 points] What could be possible final values of b in the SC processor, after both threads finish
execution? Explain your answer. Provide all possible values.

0, 1, 2, or 4.

Explanation:
Because there are no specific instructions to enforce the execution ordering of T1.2, b can
have any of the values that X[0] can have during the execution of the two threads.

(d) [15 points] The programmer wants a and b to have the same value at the end of the execution of both
threads. The final value of a and b should be the same value as in the original program (i.e., the
possible final values of a that you found in part (a)). What minimal changes should the programmer
make to the program?
(Hint: You can use more flags if necessary.)

She needs two more flags to enforce ordering.

Explanation:
Since the final value should be the same as in the original program, we have to maintain
the flag[0] in T1.1 and T0.2. Then, b should not be updated until X[0] has the
value that will be stored in a. Thus, either before or after T0.3, we need to set a new
flag (flag[1]) that will be checked by Thread 1 before updating b. Finally, we cannot
update X[0] until b has its final value. Thread 1 will set flag[2] only after b is
updated. The modified code will be as follows:

Thread T0
Instr. T0.0 X[0] = 1;
Instr. T0.1 X[0] += 1;
Instr. T0.2 while(flag[0] == 0);
Instr. T0.3 a = X[0];
Instr. T0.4 flag[1] = 1;
Instr. T0.5 while(flag[2] == 0);
Instr. T0.6 X[0] = a * 2;

Thread T1
Instr. T1.0 X[0] = 0;
Instr. T1.1 flag[0] = 1;
Instr. T1.2 while(flag[1] == 0);
Instr. T1.3 b = X[0];
Instr. T1.4 flag[2] = 1;

Final Exam Page 15 of 21

Initials: Solutions Computer Architecture December 20th, 2018

7 Processing-in-Memory [65 points]

You have been hired to accelerate ETH’s student database. After profiling the system for a while, you
found out that one of the most executed queries is to "select the hometown of the students that are from
Switzerland and speak German". The attributes hometown, country, and language are encoded using
a four-byte binary representation. The database has 32768 (215) entries, and each attribute is stored
contiguously in memory. The database management system executes the following query:

1 bool position_hometown[entries];
2 for(int i = 0; i < entries; i++){
3 if(students.country[i] == "Switzerland" && students.language[i] == "German"){
4 position_hometown[i] = true;
5 }
6 else{
7 position_hometown[i] = false;
8 }
9 }

(a) [25 points] You are running the above code on a single-core processor. Assume that:

• Your processor has an 8 MB direct-mapped cache, with a cache line of 64 bytes.

• A hit in this cache takes one cycle and a miss takes 100 cycles for both load and store operations.

• All load/store operations are serialized, i.e., the latency of multiple memory requests cannot be
overlapped.

• The starting addresses of students.country, students.language, and position_hometown are 0x05000000,
0x06000000, 0x07000000 respectively.

• The execution time of a non-memory instruction is zero (i.e., we ignore its execution time).

How many cycles are required to run the query? Show your work.

Cycles = cache_hits×1 + cache_misses×100 = 0×1 + (3×32×1024)×100

Explanation:
Since the cache size is 8 MB (223), direct-mapped, and the block size is 64 bytes (26), the
address is divided as:

• block = address[5:0]
• index = address[22:6]
• tag = address[31:23]

The loop repeats for the total number of entries in the database (32×1024 times). In
each iteration, the code loads addresses 0x05000000 and 0x06000000. It also stores the
computation at address 0x07000000 (three memory accesses in total per cycle). All three
addresses have the same index bits, but different tags. The cache hit rate is 0% since every
memory access causes the eviction of the cache line that was just loaded into the cache.

Final Exam Page 16 of 21

Initials: Solutions Computer Architecture December 20th, 2018

(b) Recall that in class we discussed AMBIT, which is a DRAM design that can greatly accelerate
Bulk Bitwise Operations by providing the ability to perform bitwise AND/OR/XOR of two rows
in a subarray. AMBIT works by issuing back-to-back ACTIVATE (A) and PRECHARGE (P)
operations. For example, to compute AND, OR, and XOR operations, AMBIT issues the sequence
of commands described in the table below (e.g., AAP (X,Y) represents double row activation of rows
X and Y followed by a precharge operation, AAAP (X,Y, Z) represents triple row activation of rows
X, Y, and Z followed by a precharge operation).

In those instructions, AMBIT copies the source rows Di and Dj to auxiliary rows (Bi). Control rows
Ci dictate which operation (AND/OR) AMBIT executes. The DRAM rows with dual-contact cells
(i.e., rows DCCi) are used to perform the bitwise NOT operation on the data stored in the row.
Basically, copying a source row to DCCi flips all bits in the source row and stores the result in both
the source row and DCCi. Assume that:

• The DRAM row size is 8 Kbytes.

• An ACTIVATE command takes 50 cycles to execute.

• A PRECHARGE command takes 20 cycles to execute.

• DRAM has a single memory bank.

• The syntax of an AMBIT operation is: bbop_[and/or/xor] destination, source_1, source_2.

• Addresses 0x08000000 and 0x09000000 are used to store partial results.

• The rows at addresses 0x0A000000 and 0x0B00000 store the codes for "Switzerland" and "Ger-
man", respectively, in each four bytes throughout the entire row.

Dk = Di AND Dj Dk = Di OR Dj Dk = Di XOR Dj

AAP (Di, B0)
AAP (Dj , B1)
AAP (C0, B2)
AAAP (B0, B1, B2)
AAP B0, Dk

AAP (Di, B0)
AAP (Dj , B1)
AAP (C1, B2)
AAAP (B0, B1, B2)
AAP B0, Dk

AAP (Di, B0)
AAP (Dj , B1)
AAP (Di, DCC0)
AAP (Dj , DCC1)
AAP (C0, B2)
AAAP (B0, DCC1, B2)
AAP (C0, B2)
AAAP (B1, DCC0, B2)
AAP (C1, B2)
AAAP (B0, B1, B2)
AAP (B0, Dk)

i) [20 points] The following code aims to execute the query "select the hometown of the students
that are from Switzerland and speak German" in terms of Boolean operations to make use of
AMBIT. Fill in the blank boxes such that the algorithm produces the correct result. Show your
work.

1 for(int i = 0; i < ; i++){
2

3 bbop_ 0x08000000, 0x05000000 + i*8192, 0x0A000000;
4

5 bbop_ 0x09000000, 0x06000000 + i*8192, 0x0B000000;
6

7 bbop_ 0x07000000, 0x08000000, 0x09000000;
8 }

Final Exam Page 17 of 21

Initials: Solutions Computer Architecture December 20th, 2018

1st box = Number of iterations = database_size
row_buffer_size = 32∗1024∗4 bytes

8∗1024 bytes = 16
2nd box = bbop_xor
3rd box = bbop_xor
4th box = bbop_or

Explanation:
AMBIT can execute the query as follows:
T1 = country XOR "Switzerland"
T2 = language XOR "German"
hometown = T1 OR T2

T1 and T2 are auxiliary rows used to store partial results.

ii) [20 points] How much speedup does AMBIT provide over the baseline processor when executing
the same query? Show your work.

Speedup = 3×100×32×1024
16×2×(25×50+11×20)+16×(11×50+5×20)

Explanation:
To compute an XOR operation, AMBIT emits 25 ACTIVATE and 11 PRECHARGE
commands. To compute an OR operation, it sends 11 ACTIVATE and 5
PRECHARGE commands.

Final Exam Page 18 of 21

Initials: Solutions Computer Architecture December 20th, 2018

8 BONUS: GPU Programming [50 points]

An inexperienced CUDA programmer is trying to optimize her first GPU kernel for performance. After
writing the first version of the kernel, she wants to find the best execution configuration (i.e., grid size
and block size1).

As she assigns one thread per input element, calculating the grid size (i.e., total number of blocks) is
trivial. For N input elements, the grid size is d N

block_sizee, where block_size is the number of threads
per block. So, the challenging part will be to figure out what is the block size that produces the best
performance. She will try 5 different block sizes (64, 128, 256, 512, and 1024 threads).

She has learned that a general recommendation for kernel optimization is to maximize the occupancy
of the GPU cores, i.e., Streaming Multiprocessors (SMs). Occupancy is defined as the ratio of active
threads to the maximum possible number of active threads per SM.

In order to calculate the occupancy, it is necessary to take the available SM resources into account. She
knows that in each SM of her GPU:

• The total scratchpad memory or shared memory is 16 KB.

• The total number of 4-byte registers is 16384.

In her first version of the kernel code, each thread needs 2 4-byte elements in shared memory for its
private use. In addition, each block needs 10 4-byte elements in shared memory for communication
across threads.

She has also learned that she can obtain the number of registers that each thread needs by using a special
compiler flag. This way, she finds that each thread in the first version of the kernel uses 9 registers.

(a) [15 points] After reasoning some time about the amount of shared memory that her code needs, she
decides to first test a block size of 128 threads. Why do you think she chose that number? Show
your work.

She calculated the maximum number of threads that an SM can hold according to the
shared memory usage. 128 threads per block results in that maximum.

Explanation:
Given the shared memory needs of her code, each block uses 2 × block_size + 10 4-byte
elements, that is, 4× (2× block_size+ 10) bytes.
Since the shared memory available per SM is 16 KB, the number of blocks and the number
of threads that each SM can allocate is as follows:

block_size Blocks/SM Threads/SM
64 29 1856
128 15 1920
256 7 1792
512 3 1536
1024 1 1024

She decides to test a block size of 128 threads because this achieves the highest number of
active threads per SM (i.e., the highest occupancy).

1We use NVIDIA terminology in this question.

Final Exam Page 19 of 21

Initials: Solutions Computer Architecture December 20th, 2018

However, after testing other block sizes, she finds out that using 256 threads per block provides
higher performance than using 128. She does not understand why, so she looks for some information
in the documentation of her GPU that can lead her to an explanation. There, she finds two more
SM hardware constraints. In each SM:

• The maximum number of blocks is 8.

• The maximum number of threads is 2048.

Take into account these new constraints when answering parts (b), (c), and (d).

(b) [10 points] Can you explain why using 256 threads per block perform better than 128? Show your
work.

The limitation in the maximum number of blocks per SM makes that the configuration
with the highest occupancy is 256 threads per block.

Explanation:
This is the corrected table after taking the limitation in the maximum number of blocks
into account:

block_size Blocks/SM Threads/SM
64 8 512
128 8 1024
256 7 1792
512 3 1536
1024 1 1024

(c) [15 points] What is the occupancy limitation due to register usage, if any? Explain and show your
work.

There is no occupancy limitation due to the register usage.

Explanation:
The register usage depends on the block size. As she knows the number of registers per
thread (9), she can calculate the total register needs:

block_size Blocks/SM Threads/SM Registers/block Registers/SM
64 8 512 576 4608
128 8 1024 1152 9216
256 7 1792 2304 16128
512 3 1536 4608 13824
1024 1 1024 9216 9216

In all cases, the total register usage is lower than 16384. (NOTE: The solution is correct
if only calculated for 256 threads.)

Final Exam Page 20 of 21

Initials: Solutions Computer Architecture December 20th, 2018

(d) [10 points] The performance obtained by the first kernel version does not fulfill the acceleration
needs. Thus, the programmer writes a second kernel version that reduces the number of instructions
at the expense of using one more register per thread. What would be the highest occupancy for the
second kernel? For what block size(s)?

The highest occupancy will be 1536
2048 = 0.75. It can be obtained with blocks of 256 or 512

threads.

Explanation:
The number of registers per thread is 10 in the second kernel. The configuration with 256
threads per block for the second kernel version will be able to allocate one less block per
SM (6) than for the first kernel version (7):

block_size Blocks/SM Threads/SM Registers/block Registers/SM
64 8 512 640 5120
128 8 1024 1280 10240
256 6 1536 2560 15360
512 3 1536 5120 15360
1024 1 1024 10240 10240

Final Exam Page 21 of 21

