
Flash Memory for Ubiquitous Hardware Security Functions: True Random
Number Generation and Device Fingerprints

Yinglei Wang, Wing-kei Yu, Shuo Wu, Greg Malysa, G. Edward Suh, and Edwin C. Kan

School of Electrical and Computer Engineering
Cornell University
Ithaca, NY, USA

{yw437, wsy5, sw626, gjm76, gs272, eck5}@cornell.edu

Abstract— We demonstrate that unmodified commercial Flash
memory can provide two important security functions: true
random number generation and digital fingerprinting. Taking
advantage of random telegraph noise (a type of quantum noise
source in highly scaled Flash memory cells) enables high
quality true random number generation at a rate up to
10Kbits / second. A scheme based on partial programming
exploits process variation in threshold voltages to allow quick
generation of many unique fingerprints that can be used for
identification and authentication. Both schemes require no
change to Flash chips or interfaces, and do not require
additional hardware.

Keywords - security; flash memory; true random number
generation; hardware fingerprints; device authentication

I. INTRODUCTION
Flash memory has gained a ubiquitous place in the

computing landscape today. Virtually all mobile devices
such as smartphones and tablets rely on Flash memory as
their non-volatile storage. Flash memory is also moving into
laptop and desktop computers, intending to replace the
mechanical hard drive. Floating-gate non-volatile memory is
even more broadly used in electronic applications with a
small amount of non-volatile memory. For example, even 8-
bit or 16-bit microcontrollers for embedded systems
commonly have on-chip EEPROMs to store instructions and
data. Many people also carry Flash memory as standalone
storage medium as in USB memory sticks and SD cards.

In this paper, we propose to utilize analog behaviors of
off-the-shelf Flash memory to enable hardware-based
security functions in a wide range of electronic devices
without requiring custom hardware. More specifically, we
show that a standard Flash memory interface can be used to
generate true random numbers from quantum and thermal
noises and to produce device fingerprints based on
manufacturing variations. The techniques can be applied to
any floating-gate non-volatile memory in general, and does
not require any hardware modifications to today’s Flash
memory chips, allowing them to be widely deployed.

Both hardware random number generators (RNGs) and
device fingerprints provide important foundations in building
secure systems. For example, true randomness is a critical
ingredient in many cryptographic primitives and security
protocols; random numbers are often required to generate
secret keys or prevent replays in communications. While
pseudo-random number generators are often used in today’s
systems, they cannot provide true randomness if a seed is

reused or predictable. As an example, a recent study showed
that reuse of virtual machine (VM) snapshots can break the
Transport Level Security (TLS) protocol due to predictable
random numbers [1]. Given the importance of a good source
of randomness, high security systems typically rely on
hardware RNGs.

Instead of requiring custom hardware modules for RNGs,
we found that analog noise in Flash memory bits can be used
to reliably generate true random numbers. An interesting
finding is that the standard Flash chip interface can be used
to put a memory bit in partially programmed state so that the
internal noise can be observed through the digital interface.
There exist two sources of true randomness in Flash bits,
Random Telegraph Noise (RTN) and thermal noise. While
both sources can be leveraged for RNGs, our scheme focuses
on RTN, which is quantum noise. Unlike thermal noise,
which can be reduced significantly at extremely low
temperatures, RTN behavior continues at all temperature
ranges. Moreover, the quantum uncertainty nature of RTN
provides a better entropy source than system level noises
which rely on the difficulty of modeling complex yet
deterministic systems. Our algorithm automatically selects
bits with RTN behavior and converts RTN into random
binary bits.

Experimental results demonstrate that the RTN behavior
exists in Flash memory and can be converted into random
numbers through the standard Flash interface. The Flash-
based RNG is tested using the NIST test suite [2] and is
shown to pass all tests successfully. Moreover, we found that
the RNG works even at a very low temperature (-80 °C). In
fact, the RTN behavior is more visible at low temperatures.
On our test platform, the Flash RNG generates about 1K to
10K bits per second. Overall, the experiments show that true
random numbers can be generated reliably from off-the-shelf
Flash memory chips without requiring custom circuits.

In addition to generating true random numbers, we also
found that the standard Flash interface can be used to extract
fingerprints (or signatures) that are unique for each Flash
chip. For this purpose, our technique exploits inherent
random variations during Flash manufacturing processes.
More specifically, we show that the distributions of transistor
threshold voltages can be measured through the standard
Flash interface using incremental partial programming.
Experimental results show that these threshold voltage
distributions can be used as fingerprints, as they are
significantly different from chip to chip, or even from
location to location within a chip. The distributions also stay

2012 IEEE Symposium on Security and Privacy

© 2012, Yinglei Wang. Under license to IEEE.
DOI 10.1109/SP.2012.12

33

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 11,2022 at 14:15:41 UTC from IEEE Xplore. Restrictions apply.

relatively stable across temperature ranges and over time.
Thanks to the large number of bits (often several gigabits) in
modern Flash chips, this technique can generate a large
number of independent fingerprints from each chip.

The Flash fingerprints provide an attractive way to
identify and/or authenticate hardware devices and generate
device-specific keys, especially when no cryptographic
module is available or a large number of independent keys
are desired. For example, at a hardware component level, the
fingerprints can be used to distinguish genuine parts from
counterfeit components without requiring cryptography to be
added to each component. The fingerprinting technique can
also be used for other authentication applications such as
turning a Flash device into a two-factor authentication token,
or identifying individual nodes in sensor networks.

While the notion of exploiting manufacturing process
variations to generate silicon device fingerprints and secret
keys is not new and has been extensively studied under the
name of Physical Unclonable Functions (PUFs) [3], the
Flash-based technique in this paper represents a unique
contribution in terms of its practical applicability. Similar to
true RNGs, most PUF designs require custom circuits to
convert unique analog characteristics into digital bits. On the
other hand, our technique can be applied to off-the-shelf
Flash without hardware changes. Researchers have recently
proposed techniques to exploit existing bi-stable storage
elements such as SRAMs [4] or Flash cells [5] to generate
device fingerprints. Unfortunately, obtaining fingerprints
from bi-stable elements requires a power cycle (power off
and power on) of a device for every fingerprint generation.
The previous approach to fingerprinting Flash only works for
a certain types of Flash chips and takes long time (100
seconds for one fingerprint) because it relies on rare errors
called program disturbs. As an example, we did not see any
program disturbs in SLC Flash chips that we used in
experiments. To the best of our knowledge, the proposed
device fingerprinting techniques is the first that is fast (less
than 1 second for a 1024-bit fingerprint) and widely
applicable without interfering with normal operation or
requiring custom hardware.

The following list summarizes the main strengths of the
proposed security functions based on Flash memory over
existing approaches for hardware random number generators
and fingerprints.

• Widely applicable: Flash memory already exists in
many electronic devices. The proposed techniques
can often be implemented as system software or
firmware updates without hardware changes.

• Non-intrusive: the techniques do not require a reboot
and only have minimal interference with normal
memory operations. Only a small portion of Flash
needs to be used for security functions during
security operations. There is minimal wear-out.

• High security: the Flash random number generator is
based on quantum noise, which exists even at
extremely low temperatures. Thanks to the high
capacity of today’s Flash memory, a very large
number of independent signatures can be generated
from Flash.

The rest of the paper is organized as follows. Section II
provides the basic background on the Flash memory. Based
on this understanding, Section III and Section IV explain the
new techniques to generate random numbers and device
fingerprints through standard Flash interfaces. Then, Section
V studies the effectiveness and the security of the proposed
methods through experimental results on real Flash chips.
Section 0 briefly discusses a few examples of application
scenarios. Finally, Section VII discusses related work and
Section VIII concludes the paper.

II. FLASH MEMORY BASICS
This section provides background material on Flash

memory and its operating principles in order to aid
understanding of our Flash-based security schemes.

A. Floating Gate Transistors
Flash memory is composed of arrays of floating-gate

transistors. A floating-gate transistor is a transistor with two
gates, stacked on top of each other. One gate is electrically
insulated (floating). Figure 1 shows an example of a
floating-gate device. The control gate is on top. An insulated
conductor, surrounded by oxide, is between the control gate
and the channel. This conductor is the floating gate.
Information is stored as the presence or absence of trapped
charge on the floating gate. The trapped negative charge
reduces the current flowing through the channel when the
N-type MOS transistor is on. This current difference is
sensed and translated into the appropriate binary value.

Figure 1. Flash memory cell based on a floating gate transistor.

Flash cells without charge on their floating-gate allow
full current flow in the channel and hence are read as a
binary "1". The presence of charge on the floating-gate will
discourage the presence of current in the channel, making
the cell store a "0". Effectively, the charge on the floating-
gate increases the threshold voltage (Vth) of a transistor.
Single-level cells store one bit of information; multi-level
cells can store more than one bit by reading and injecting
charge to adjust the current flow of the transistor.

Note that the threshold voltage without any charge on the
floating-gate is different for each transistor due to variations
in manufacturing processes. As a result, the amount of
charge that needs to be stored to the floating-gate for a cell
to reliably represent a ''0'' state varies from cell to cell. If the
threshold voltage is not shifted sufficiently, a cell can be in
an unreliable (partially programmed) state that can be

34

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 11,2022 at 14:15:41 UTC from IEEE Xplore. Restrictions apply.

interpreted as either 1 or 0. In this paper, we exploit the
threshold voltage variations and the partially programmed
state to extract fingerprints and random numbers.

B. Flash Organization and Operation
At a high-level, Flash memory provides three major

operations: read, erase, and program (write). In order to
read a bit in a Flash cell, the corresponding transistor is
turned on and the amount of current is detected. A write to a
Flash cell involves two steps. First, an erase operation
pushes charge off the floating-gate by applying a large
negative voltage on the control gate. Then, a program (write)
operation stores charge on the floating-gate by selectively
applying a large positive voltage if the bit needs to be zero.

An important concept in Flash memory operation is that
of pages and blocks. Pages are the smallest unit in which
data is read or written, and are usually 2KB to 8KB. Blocks
are the smallest unit for an erase operation and made up of
several pages, usually 32 - 128 pages. Note that Flash does
not provide bit-level program or erase. To read an address
from a Flash chip, the page containing the address is read.
To update a value, the block that includes the address must
be first erased, then the corresponding page is written with
an update and other pages in the block are restored.

III. RANDOM NUMBER GENERATION

A. Random Telegraph Noise (RTN)
The proposed RNG uses a device effect called Random

Telegraph Noise (RTN) as the source of randomness. In
general, RTN refers to the alternating capture and emission
of carriers at a defect site (trap) of a very small electronic
device, which generates discrete variation in the channel
current [6]. The capture and emission times are random and
exponentially distributed. RTN behavior can be
distinguished from other noise using the power spectrum
density (PSD), which is flat at low frequencies and 1/f2 at
high frequencies. In Flash memory, the defects that cause
RTN are located in the tunnel-oxide near the substrate. The
RTN amplitude is inversely proportional to the gate area and
nearly temperature independent. As Flash memory cells
shrink, RTN effects become relatively stronger and their
impact on the threshold distribution of Flash memory cells,
especially for multi-level cells, can be significant. Because
RTN can be a major factor in Flash memory reliability, there
have been a large number of recent studies on RTN in Flash
memory from a reliability perspective [7] [8] [9].

While RTN is a challenge to overcome from the
perspective of Flash memory operations, it can be an ideal
source of randomness. RTN is caused by the capture and
emission of an electron at a single trap, and is a physical
phenomenon with random quantum properties. Quantum
noise can be seen as the “gold-standard” for random number
generation because the output of quantum events cannot be
predicted. As Flash memory cells scale to smaller technology
nodes, the RTN effect will become stronger. Moreover, RTN
behavior will still exist with increasing process variation and
at extremely low temperatures.

B. Noise Extraction from Digital Interface
As digital devices, Flash memory is designed to tolerate

analog noise; noise should not affect normal memory
operations. In order to observe the noise for random number
generation, a Flash cell needs to be in an unreliable state
between well-defined erase and program states. Interestingly,
we found that Flash cells can be put into the in-between state
using the standard digital interface. In a high level, the
approach first erases a page, issues a program command, and
then issues a reset command after an appropriate time period
to abort the program. This procedure leaves a page partially
programmed so that noise can affect digital outputs. We
found that the outcome of continuously reading a partially
programmed bit oscillates between 1 and 0 due to noise.

Figure 2. Thermal noise in Flash memory (time domain).

For Flash memory in practice, experiments show that two
types of noise coexist: thermal noise and RTN. Thermal
noise is white noise that exists in nearly all electronic
devices. RTN can be observed only if a surface trap exists,
the RTN amplitude is larger than that of thermal noise, and
the sampling frequency (speed for continuous reads) is high
enough. If any of these three conditions is not satisfied, only
thermal noise will be observed as in Figure 2. In the case of
thermal noise, a bit oscillates between the two states quickly,
and the power spectral density (PSD) indicates white noise.

(a)

(b)

Figure 3. RTN with thermal noise in Flash memory. (a) Time domain. (b)
Moving average of 29 points on the time domain.

35

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 11,2022 at 14:15:41 UTC from IEEE Xplore. Restrictions apply.

In the case that the RTN amplitude is comparable to
thermal noise, a combination of RTN and thermal noise is
observed as shown in Figure 3. This is reflected by the
density change of 1s in the continuous reading. A moving
average on the time domain helps to visualize the density
change. The PSD of the result shows 1/f2 spectrum at low
frequencies and becomes flat at high frequencies.

Figure 4. RTN in Flash memory (time domain).

In some cases, the RTN amplitude is very high and
dominates thermal noise. As a result, only RTN behaviors
are visible through digital interfaces for these bits. As shown
in Figure 4, continuous reads show clear clusters of 1s and 0s
in the time domain. The power spectral density (PSD) of
these bit sequences shows a clear RTN pattern of 1/f2.

(a)

(b)

Figure 5. (a) Distribution of time in the programmed state.
(b) Distribution of time in the erased state.

For a bit with nearly pure RTN behavior, we further
validated that the error pattern corresponds to RTN by
plotting the distributions of up and down periods. As shown
in Figure 5, both up time and down time nicely fit an
exponential distribution as expected. Overall, our
experiments show that both RTN and thermal noise exist in
Flash memory and can be observed through a digital

interface. While both noise types can be used for random
number generation, we focus on RTN, which is more robust
to temperature changes.

C. Random Number Generation Algorithms
In Flash memory devices, RTN manifests as random

switching between the erased state (consecutive 1s) and
programmed state (consecutive 0s). At a high-level, our
Flash random number generator (RNG) identifies bits with
RTN behavior, either pure RTN or RTN combined with
thermal noise, and uses a sequence of time in the erased state
(called up-time) and the time in the programmed state (called
down-time) from those bits. In order to produce random
binary outputs, the RNG converts the up-time and down-time
sequence into a binary number sequence, and applies the von
Neumann extractor for de-biasing. We found that thermal
noise itself is random and does not need to be filtered out.

Algorithm I Overall Flash RNG algorithm
Erase a block;

Num = 0;
do {
Partially program a page for T;
Num++;

Read Nbytes in a page N times, and record a
trace for each bit – trace[bit];
For each bit in Nbytes, not selected yet
 If (CheckRTN(trace[bit]) == true) {

 Selected[bit] = yes;
 NumProgram[bit] = Num;
 }
End for

} repeat until most bits are programmed.

ProgramSelectBits(Selected);

Read selected bits M times, and record up-
time and down-time;
For each bit
 ConvertToBinary(rawdata);
End for

Algorithm I shows the overall RNG algorithm. To

generate random numbers from RTN, the first step is to
identify bits with RTN or both RTN and thermal noise. To
do this, one block in Flash memory is erased and then
multiple incomplete programs with the duration of T are
applied. After each partial program, a part of the page is
continuously read N times and the outcome is recorded for
each bit. In our experiments, we chose to read the first 80
bits (10 bytes) in a page for 1,000 times. For each bit that has
not been selected yet, the algorithm checks if RTN exists
using CheckRTN() and marks the bit location if there is RTN.
As an optimization, the algorithm also records the number of
partial programs when a bit is selected. The algorithm
repeats the process until all bits are checked for RTN. The
second step is to partially program all of the selected bits to
an appropriate level so that they will show RTN behavior.
Finally, the algorithm reads the selected bits M times, records

36

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 11,2022 at 14:15:41 UTC from IEEE Xplore. Restrictions apply.

a sequence of up-time and down-time for each bit, and
converts the raw data to a binary sequence.

Algorithm II Determine whether there is RTN in a bit
If trace[bit] has over 98% 1/0s
Return false;

End if

Calculate the power spectrum density (PSD);
Convert PSD to the log scale in both x-y;

If PSD slope is always < Tslope for all high
frequency (> Tfreq)
Return RTN

End if

If PSD slope is < Tslope at least one interval
(Invl) at a high frequency (> Tfreq)
Return RTN-Thermal

End if

The function CheckRTN() in Algorithm II determines

whether there is RTN in a bit based on a trace from N reads.
The algorithm first filters out bits that almost always (more
than 98%) produce one result, either 1 or 0. For the bits with
enough noise, the algorithm uses the power spectral density
(PSD) to distinguish RTN from thermal noise; PSD for RTN
has a form of 1/f2 at a high frequency. To check this
condition, the algorithm computes the PSD, and converts it
to a log-scale in both x and y axes. If the result has a slope
less than Tslope (we use -1.5, the ideal value is -2) for all
frequencies higher than Tfreq (we use 200Hz), the algorithm
categorizes the bit as RTN only. If the PSD has a slope less
than Tslope for any interval larger than than Invl (we use
0.2) at a high frequency, the bit is categorized as a
combination of RTN and thermal noise.

Algorithm III Program selected bits to proper levels where
RTN could be observed.
For each selected bit
Do (NumProgram[bit]-K) partial programs;

do {
 Partially program the bit for T;

 Read the bit N times;
 Find Max and Min for moving averages;

 If Max > TMax and Min < TMin
 Break;
 End if
} repeat up to L times

End for

The function ProgramSelectBits() in Algorithm III

programs selected bits to a proper level where RTN can be
observed. Essentially, the algorithm aims to take each bit to
the point near where they were identified to have RTN. The
number of partial programs that were required to reach this
point before were recorded in NumProgram[Bit]. For each
selected bit, the algorithm first performs partial programs

with the duration of T based on the number recorded earlier
(NumProgram[Bit]-K). Then, the algorithm performs up to
L more partial program operations until a bit shows RTN
behavior. The RTN behavior is checked by reading the bit N
times, and see if the maximum of moving averages is greater
than a threshold (TMax = 0.7) and the minimum is less than
another threshold (TMin = 0.3).

Algorithm IV Convert the raw data to binary random
sequence.
If the bit has both RTN and thermal noise
For each up/down-time in raw data
 Output = LSB(up/down-time);
End for

End if

If the bit has only RTN
 do {
 For each up/down-time in raw data
 Output = LSB(up/down-time);
 Shift right up/down-time by one bit;
 End for
} repeat until all up/down time are zero;

End if

Perform von Neumann de-biasing

Finally, the function ConvertToBinary() converts the

raw data to a binary random sequence. For bits with both
RTN and thermal noise, the up-time and down-time tend to
be short. So only the LSBs of these numbers are used.
Essentially, for every up-time and down-time, the algorithm
produces 1 if the time is odd and 0 otherwise. Effectively,
this is an even-odd scheme. For bits with perfect RTN
behavior, up-time and down-time tend to be longer and we
use more LSBs from the recorded up/down-time. In this
case, we first produce a bit based on the LSB, then the
second LSB, the third LSB, and so on until all extracted bits
become 0. Finally, for both methods, we apply the von
Neumann de-biasing method. The method takes two bits at a
time, throws away both bits if they are identical, and takes
the first bit if different. This process is described in
Algorithm IV.

The stability of the bits in the partially programmed state
is also important. We define the stability as how long a bit
stays in the partially programmed state where RTN behavior
can be observed. This is determined by the retention time of
the Flash memory chip and the amplitude of the RTN
compared to the designed noise margin. Assume the
amplitude of the RTN is Ar, the noise margin of Flash
memory is An, and the Flash retention time is 10 year, then
the stable time for random number generation after partial
programming will be roughly Ts=Ar/An*10 years. This
means that after time Ts, a bit needs to be reset and
reprogrammed. In our experiments, the bit that is shown in
Figure 5 was still showing ideal RTN behavior even after 12
hours.

37

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 11,2022 at 14:15:41 UTC from IEEE Xplore. Restrictions apply.

IV. DEVICE FINGERPRINTS
This section describes techniques to generate unique

fingerprints from Flash memory devices.

A. Sources of Uniqueness
Flash memory is subject to random process variation like

any other semiconductor device. Because Flash is fabricated
for maximum density, small variations can be significant.
Process variation can cause each bit of a Flash memory to
differ from its neighbors. While variation may affect many
aspects of Flash cells, our fingerprinting technique exploits
threshold voltage variations. Variations in doping, floating
gate oxide thickness, and control-gate coupling ratio can
cause the threshold voltage of each transistor to vary.
Because of this threshold voltage variation, different Flash
cells will need different times to be programmed.

B. Extracting Fingerprints
In this paper, we introduce a fingerprinting scheme based

on partial programming. We repeatedly partially program a
page on a Flash chip. After each partial program, some bits
will have been programmed enough to flip their states from 1
to 0. For each bit in the page, we record the order in which
the bit flipped. Pseudo-code is provided in Algorithm V. In
our experiments, T is chosen to be 29.3us. A short partial
program time provide a better resolution to distinguish
different bits with the cost of increased fingerprinting time.
We do not enforce all bits to be programmed, in order to
account for the possibility of faulty bits.

Algorithm V Extract the order in which bits in a page are
reach the programmed state.
Choose a partial programming time T (below
the rated program time).

Nbits = number of bits in one page
Order = 1;
Initialize BitRank[Nbits] to 0.

do {
 Partially program a page for T;
 For all programmed bits do
 BitRank[programmed bit] = Order;
 End for
 Order = Order + 1;
} repeat until most (99%) bits in the page
are programmed

C. Comparing Fingerprints
The fingerprints extracted from the same page on the

same chip over time are noisy but highly correlated. To
compare fingerprints extracted from the same page/chip and
different pages/chips, we use the Pearson correlation
coefficient [5], which is defined as

���� �� �
	
�� � �
��� � ����

�
��

where X is the vector of program orders extracted from one
experiment and Y is another vector of program orders
extracted from another experiment. �
 and �
 are the mean
and standard deviation of the X vector. �� and ���are the
mean and standard deviation of the Y vector.

In this way, the vector of program orders is treated as a
vector of realizations of a random variable. For vectors
extracted from the same page, Y=aX+b+noise where a and b
are constants and the noise is small. So, X and Y are highly
correlated and the correlation coefficient should be close to
1. For vectors extracted from different pages, X and Y
should be nearly independent of each other, so the
correlation coefficient should be close to zero. From another
perspective, if both X[i] and Y[i] are smaller or bigger than
their means, ��
�� � �
���
�� � ��� would be a positive
number. If not, it would be a negative number. If X and Y
are independent, it is equally likely to be positive and
negative so the correlation coefficient would approach 0.

(a)

(b)

Figure 6. Scatter plot for fingerprints extracted on (a) the same page and (b)
different chips.

The scatter plot of X and Y from the same page/chip and

from different chips are shown in Figure 6. The figure
clearly demonstrates a high correlation between fingerprints

38

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 11,2022 at 14:15:41 UTC from IEEE Xplore. Restrictions apply.

from the same chip over time and a low correlation between
fingerprints from different chips. Therefore, this correlation
metric can be used to compare fingerprints to determine
whether they are from the same page/chip or from different
pages/chips.

D. Fingerprints in Binary Numbers
The above fingerprints are in the form of the order in

which each bit was programmed. If an application requires a
binary number such as in generating cryptographic keys, we
need to convert the recorded ordering into a binary number.

There are a couple of ways to generate unique and
unpredictable binary numbers from the Flash fingerprints.
First, we can use a threshold to convert a fingerprint based
on the programming order into a binary number as shown in
Algorithm VI. In the algorithm, we produce 1 if the program
order is high, or 0 otherwise. This approach produces a 1 bit
fingerprint for each Flash bit. Alternatively, we can obtain a
similar binary fingerprint directly from Flash memory by
partially programming (or erasing) a page and reading bits
(1/0) from the Flash.

Algorithm VI Generate a binary signature from the partial
programming order information.
Pick threshold t = Max(BitRank) / 2
For each bit
 If BitRank[bit] > t
 Output 1
 Else Output 0
End for

V. EXPERIMENTAL RESULTS
This section presents evaluation results for the random

number generation and fingerprint techniques for Flash
memory devices.

Figure 7. Flash test board.

A. Testbed Device
Our experiments use a custom Flash test board as shown

in Figure 7. The board is made entirely with commercial off-
the-shelf (COTS) components with a custom PCB board.
There is a socket to hold a Flash chip under test, an ARM
microprocessor to issue commands and receive data from the

Flash chip, and a Maxim MAX-3233 chip to provide a serial
(RS-232) interface. USB support is integrated into the ARM
microcontroller. We also wrote the code to test the device.
The setup represents typical small embedded platforms such
as USB flash drives, sensor nodes, etc. This device shows
that the techniques can be applied to commercial off-the-
shelf devices with no custom integrated circuits (ICs).

The experiments in this paper were performed with four
types of Flash memory chips from Numonyx, Micron and
Hynix, as shown in 0.

TABLE I. TESTED FLASH CHIPS

Manufacturer Part Number Capacity Quantity Technology
Numonyx NAND04GW3B2

DN6
4Gbit 3 57nm SLC

Hynix HY27UF084G2B 4Gbit 10 SLC
Micron MT29F2G08ABA

EAWP-IT:E 4
2Gbit 24 34nm SLC

Micron MT29F16G08CB
ACAWP:C

16Gbit 5 MLC

B. Random Number Generation
The two main metrics for random number generation are

randomness and throughput. For security, the RNG must be
able to reliably generate true random numbers across a range
of environmental conditions over time. For performance,
higher throughput will be desirable.

TABLE II. SUMMARY OF THE NIST TEST SUITE

Test Name Test Description
1 The Frequency

(Monobit) Test:
Tests proportion of zeros and ones for the
whole sequence.

2 Frequency Test within
a Block

Tests the proportions of ones within M-bit
Block.

3 The Run Test Tests the total number of runs in the sequence,
where a run is an uninterrupted sequence of
identical bits

4 Tests for the Longest-
Run-of-Ones in a Block

Tests the longest run of ones within M-bit
Block and consistency with theory

5 The Binary Matrix
Rank Test

Tests rank of disjoint sub-matrices of the entire
sequence and independence

6 The Discrete Fourier
Transform (Spectral)
Test

Tests the peak heights in the Discrete Fourier
Transform of the sequence, to detect periodic
features that indicates deviation of randomness

7 The Non-overlapping
Template Matching Test

Tests the number of occurrences of a pre-
specified target strings

8 The Overlapping
Template Matching Test

Tests the number of occurrences of a pre-
specified target strings. When window found,
slide only one bit before the next search

9 Maurer’s “Universal
Statistics” Test

Tests the number of bits between matching
patterns

10 The Linear
Complexity Test

Tests the length of a linear feedback shift
register, test complexity

11 The Serial Test Tests the frequency of all possible overlapping
m-bit pattern

12 The Approximate
Entropy Test

Tests the frequency of all possible overlapping
m-bits pattern across the entire sequence

13 The Cumulative
Sums (Cusums) Test

Tests maximal excursion from the random walk
defined by the cumulative sum of adjusted (-1,
+1) digits in the sequence

14 The Random
Excursion Test

Tests the number of cycles having exactly K
visits in a cumulative sum random walk

15 The Random
Excursions Variant Test

Tests the total number of times that a particular
state is visited in a cumulative sum random
walk

39

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 11,2022 at 14:15:41 UTC from IEEE Xplore. Restrictions apply.

1) Randomness

Historically, three main randomness test suites exist. The
first one is from Donald Knuth’s book “The Art of computer
Programming (1st edition, 1969)” [10] which is the most
quoted reference in statistical testing for RNGs in literature.
Although it was a standard for many decades, it appears to be
outdated in today’s view and it allows many “bad”
generators to pass the tests. The second one is the “diehard”
test suite from Florida State University. The test suite is
stringent in the sense that they are difficult to pass. However,
the suite has not been maintained in recent years. Therefore,
it was not selected as the tests for this study. The third one is
developed by National Institute of Standards and Technology
(NIST) which is a measurement standard laboratory and a
non-regulatory agency of the United States Department of
Commerce. The NIST Statistical Test Suite is a package
consisting of 15 tests that were developed to test the
randomness of arbitrary long binary sequences produced by
either hardware or software. The test suite makes use of both
existing algorithms from past literatures and newly
developed tests. The most updated version, sts-2.1.1, which
was released in August 11, 2010, is used in our randomness
tests. TABLE II summarizes the 15 NIST tests [2].

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE

PROPORTION OF PASSING SEQUENCES

P-VALUE PROPORTION STATISTICAL TEST
0.122325 10/10 Frequency
0.911413 10/10 BlockFrequency
0.534146 10/10 CumulativeSums
0.066882 10/10 CumulativeSums
0.534146 10/10 Runs
0.350485 10/10 LongestRun
0.739918 10/10 Rank
0.739918 10/10 FFT
0.213309 10/10 NonOverlappingTemplate
0.739918 10/10 NonOverlappingTemplate
0.350485 10/10 OverlappingTemplate
0.911413 9/101 Universal
0.534146 10/10 ApproximateEntropy
 ---- 5/5 RandomExcursions
 ---- 5/5 RandomExcursions
 ---- 5/5 RandomExcursionsVariant
 ---- 5/5 RandomExcursionsVariant
0.739918 10/10 Serial
0.350485 10/10 Serial
0.534146 10/10 LinearComplexity

-
1The minimum pass rate for each statistical test is 8 for a sample size of

10 binary sequences, and 4 for a sample size of 5 sequences.
-

Figure 8. NIST test suite results for bits with RTN and thermal noise.

Figure 8 shows one test result for the even-odd scheme,
which only used an LSB from the up-time and down-time,
when bits with both RTN and thermal noise are used. 10
sequences generated from multiple bits are tested and each
sequence consists of 600,000 bits. Note that some of the
results are not shown here due to the space constraint.
NonOverlappingTemplate, RandomExcursions and
RandomExcursionsVariant have a lot of tests. In the

result above, the proportion in the second column shows the
proportion of the sequences which passed the test. If the
proportion is greater than or equal to the threshold value
specified at the bottom of the figure (8 out of 10 or 4 out of
5), then the data is considered random. The P-value in the
first column indicates the uniformity of the P-values
calculated in each test. If P-value is greater than or equal to
0.0001, the sequences can be considered to be uniformly
distributed [2]. The result indicates that the proposed RNG
passes all the NIST tests.

We also tested random numbers from one bit with only
RTN behavior, using multiple bits from up-time and down-
time. In this case, we generated ten 200,000-bit sequences
from one bit. The data passed all NIST tests with results that
are similar to the above case. For the Universal test, which
requires a sequence longer than 387,840 bits, we used five
500,000-bit sequences.

2) Performance

The throughput of the proposed RNG varies significantly
depending on the switching rate of individual bits, sampling
speed and environment conditions. Typically, only a small
fraction of bits show pure RTN behavior with minimal
thermal noise. TABLE III shows the performance of Flash
chips from four manufacturers. The average throughput
ranges from 848 bits/second to 3.37 Kbits/second. Note that
the fastest switching trap that can be identified is limited by
the reading speed in our experiments.

TABLE III. PERFORMANCE OF BITS WITH PURE RTN BEHAVIOR.

Chip Hynix
SLC

Numonyx
SLC

Micron
SLC

Micron
MLC

Reading speed (KHz) 46.51 45.25 43.10 17.78
Number of bits characterized 303 478 1030 134
Number of bits identified 9 16 5 0
Max throughput (bits/sec) 8.03K 5.35K 2.71K --
Ave. throughput (bits/sec) 3.27K 1.79K 848.29 --
Min throughput (bits/sec) 107.04 34.77 8.14 --

If bits with both RTN and thermal noise are also used,

the percentage of bits which can be used for RNG can be
much higher. The performance of these bits from the same
Flash chips as in the pure RTN case is shown in TABLE IV.
The average throughputs are higher because thermal noise is
high frequency noise.

TABLE IV. PERFORMANCE OF BITS WITH BOTH RTN AND THERMAL NOISE.

Chip Hynix
SLC

Numonyx
SLC

Micron
SLC

Micron
MLC

Reading speed (KHz) 46.51 45.25 43.10 17.78
Number of bits characterized 303 478 1030 134
Number of bits identified 27 81 58 28
Max throughput (bits/sec) 11.48K 9.68K 10.03K 3.83K
Ave. throughput (bits/sec) 3.28K 3.87K 3.53K 1.26K
Min throughput (bits/sec) 28.39 10.21 8.14 55.12

In our tests, the RNG throughput is largely limited by the

timing of the asynchronous interface which is controlled by
an ARM microcontroller with CPU frequency of 60MHz and
the 8-bit bus for a Flash chip. We believe that the RNG

40

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 11,2022 at 14:15:41 UTC from IEEE Xplore. Restrictions apply.

performance can be much higher if data can be transferred
more quickly through the interface. As an example, the
average for RTN transition time is reported to range from 1
microsecond to 10 seconds [11]. If a 128 bytes can be read in
6 microseconds which is the ideal random cache read speed
for the Micron SLC chips, a RTN bit with 0.1ms average
transition time will give approximately 20 Kbits/second
throughput. Note that one page could have multiple RTN bits
and our algorithm allows using multiple bits in parallel so
that the aggregated throughput of an RNG can be much
higher. For example, if N bits can be read at a time, in
theory, that can increase the throughput by a factor of N. �

3) Temperature Variations

For traditional hardware RNGs, low temperatures present
a particular challenge because thermal noise, which they
typically rely on, can be reduced with the temperature. To
study the effectiveness of the Flash-based RNG in low
temperatures, we tested the scheme at two low temperature
settings: one in a freezer, which is about -5°C, and the other
in dry ice, which is about -80°C. The generated random
sequences are tested individually as well as combined
together with data from experiments at room temperature.
All of them passed the NIST test suite without a problem,
showing that our technique is effective at low temperatures.

Note that the experiments for temperature variations and
aging are performed with a setup where data from Flash
memory are transferred from a testbed to a PC through an
USB interface. The post processing is performed on the PC.
The USB interface limits the Flash read speed to 6.67KHz.
As a result, the throughput in this setup is noticeably slower
than the results in previous subsections where the entire
RNG operation is performed on a microcontroller.

To understand the impact of temperature variations on
the Flash-based RNG, we tested the first 80 bits of a page
from a Numonyx chip. At room temperature, 62 bits out of
the 80 bits showed oscillations between the programmed
state and erased state. 14 bits out of the 62 bits were selected
by the selection algorithm, which identifies bits with pure
RTN or both RTN and thermal components. The throughputs
of the 14 bits are shown in Figure 9.

Figure 10 and Figure 11 show the performance of the
RNG at -5 °C and -80 °C, respectively. At -5 °C, 79 bits out
of 80 bits showed noisy behavior and 20 out of 79 bits were
selected by the RNG algorithm as ones with RTN. At -80 °C,
72 bits out of 80 bits showed noise and 28 out of 72 bits were
selected as the ones with RTN. On average, we found that
per-bit throughput is slightly decreased at low temperatures,
most likely because of reduced thermal noise and possibly
because of slowed RTN switching. However, the difference
is not significant. In fact, a previous study [12] claimed that
RTN is temperature independent below 10 Kelvin.
Interestingly, we found that the number of bits that are
selected by our algorithm as ones with RTN behavior
increases at a low temperature. This trend is likely to be
because the low temperature decreases thermal noise
amplitude while RTN amplitude stays almost the same and
the RTN traps slow down so that they become observable at
our sampling frequency.

Figure 9. Throughputs under room temperature.

Figure 10. Throughput at -5 °C.

Figure 11. Throughputs at -80 °C.

4) Aging
Flash devices wear-out over time as more program/erase

(P/E) operations are performed. A typical SLC Flash chip
has a lifetime of 1 million P/E cycles. In the context of
RNGs, however, we do not think that wear-outs cause
concerns. In fact, aging can create new RTN traps and
increase the number of bits with RTN. To check the impact
of aging on the RNG, we tested the scheme after 1,000 P/E
operations and 10,000 P/E operations as shown in TABLE
V. The RNG outputs passed the NIST test suite in both cases
and did not show any degradation in performance.

TABLE V. PERFORMANCE SUMMARY OF RTN IN STRESSED PAGES

Stress (P/E) Bits with noise Bits selected Ave. throughput (bits/sec)
1,000 64 9 303.26

10,000 70 15 239.66

The table shows an interesting trend that more bits show
RTN behavior after 10,000 P/E cycles. The increase in noisy
bits can potentially increase the overall RNG throughput.
One possible concern with aging is a decrease in “stable time
period” during which each bit shows noisy behavior. In our

41

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 11,2022 at 14:15:41 UTC from IEEE Xplore. Restrictions apply.

experiments, we found that a bit can be used for random
number generation for over 12 hours after one programming
(Algorithm III). If a bit is completely worn out, charge can
leak out more quickly, requiring more frequent calibration.
However, given that Flash memory is designed to have a
retention time of 10 years within its lifetime, we do not
expect the leakage to be a significant problem. We plan to
perform larger scale experiments to understand how often a
bit needs to be re-programmed for reliable random number
generation. In practice, a check can also be added to ensure
that a bit oscillates between 1 and 0.

C. Fingerprints
For fingerprinting, we are interested in uniqueness and

robustness of fingerprints. The fingerprint should be unique,
which means that fingerprints from different chips or
different locations of the same chip must be significantly
different – the correlation coefficient should be low. The
fingerprint should also be robust, in a sense that fingerprints
from a given location of a chip must stay stable over time
and even under different environmental conditions – the
correlation coefficient should be high.

In the experiments detailed below, we used 24 chips
(Micron 34nm SLC), and 24 pages (6 pages in 4 blocks)
from each chip. 10 measurements were made from each
page. Each page has 16,384 bits.

1) Uniqueness
To test uniqueness, we compared the fingerprint of a

page to the fingerprints of the same page on different chips,
and recorded their correlation coefficients. A total of 66,240
pairs were compared – (24 chips choose 2) * 24 pages * 10
measurements. The results are shown in Figure 12. The
correlation coefficients are very low, with an average of
0.0076. A Gaussian distribution fits the data well, as shown
in red.

Figure 12. Histogram of correlation coefficients for pages compared to the

same page on a different chip (total 66,240 comparisons).

The correlation coefficients are also very low when a
page is compared not only to the same page on different
chips, but also to different pages on the same and different
chips, shown in Figure 13. There are 1,656,000 pairs in
comparison – ((24 pages * 24 chips) choose 2) * 10
measurements. This indicates that fingerprints from different
parts (pages) of a chip can be considered as two different
fingerprints and do not have much correlation. Therefore, the

fingerprinting scheme allows the generation of many
independent fingerprints from a single chip. The average
correlation coefficient in this case is 0.0072.

Figure 13. Histogram of correlation coefficients for every page compared

to every other page at room temp (total 1,656,000 comparisons).

2) Robustness
To test robustness, we compared each page’s

measurement to the 9 other measurements of the same page’s
fingerprint (an intra-chip measurement). The histogram of
results for all pages is shown in Figure 14. The correlation
coefficient for fingerprints from the same page is very high,
with an average of 0.9673. The minimum observed
coefficient is 0.9022. The results show that fingerprints from
the same page are robust over multiple measurements, and
can be easily distinguished from fingerprints of a different
chip or page.

To be used in an authentication scheme, one could set a
threshold correlation coefficient t. If, when comparing two
fingerprints, their correlation coefficient is above t, then the
two fingerprints are considered to have come from the same
page/chip. If their correlation coefficient is below t, then the
fingerprints are assumed to be from different pages/chips.

Figure 14. Histogram of correlation coefficients for all intra-chip

comparisons (total 25,920 comparisons).

In such a scheme, there is a potential concern for false
positives and false negatives. A false negative is defined as
comparing fingerprints that are actually from two different
pages/chips, but deciding that the fingerprints are from the
same page/chip. A false positive occurs when comparing
fingerprints from the same page/chip, yet deciding that the
fingerprints came from two different pages/chips. The
threshold t can be selected to balance false negatives and
positives. A high value of t would minimize false negatives,
but increase the chance of false positives, and vice versa.

42

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 11,2022 at 14:15:41 UTC from IEEE Xplore. Restrictions apply.

To estimate the chance of false positives and false
negatives, we fit normal probability mass distribution
functions to the correlation coefficient distribution. A false
positive would arise from a comparison of two fingerprints
from the same page being below t. The normal distribution
fitted to the intra-chip comparison data in Figure 14 has an
average � = 0.9722 and a std. deviation of 0.0095. For a
threshold of t = 0.5, the normal distribution function
estimates the cumulative probability of a pair of fingerprints
having a correlation coefficient below 0.5 as 2.62×10-539. At t
= 0.7, the probability is estimated as 7.43×10-181.

The normal distribution function fitted to the inter-chip
comparison data in Figure 13 has a � = 0.0076 and a std.
deviation of 0.0083. The estimated chance of a pair of
fingerprints from different chips exceeding t = 0.5 is
4.52×10-815. At t = 0.3, the probability is estimated as
6.14×10-301.

The tight inter-chip and intra-chip correlations along with
low probability estimates for false positives or negatives
suggest that the size of fingerprints can possibly be reduced.
Instead of using all 16,384 bits in a page, we can generate a
fingerprint for a 1024-bit, 512-bit, or even only a 256-bit
block. Experiments show that the averages of the observed
correlation coefficients remain similar to those when using
every bit in a page while the standard deviation increases by
a factor of 2-3. However, the worst-case false negative
estimates remain low. When using 256 bit fingerprints with
the threshold t = 0.3, the estimate is 7.91×10-7. Under the
same conditions, using 1024 bit fingerprints gives an
estimated 3.20×10-22 chance of a false negative.

3) Temperature Variations and Aging
To see how robust the fingerprints are across different

temperatures. We extracted fingerprints from chips at two
other ambient temperatures, 60 °C and -5 °C. We tested a
subset of the chips tested at room temperature – 6 pages (3
pages in 2 blocks) in 6 chips.

Of interest is how fingerprints from the same page/chip,
but taken at different temperatures, compare. Figure 15
shows the results of the intra-chip comparison between each
temperature pair. Correlations remain high for fingerprints
from the same page/chip, indicating that fingerprints taken at
different temperatures can still be identified as the same. The
average correlation coefficient is lower than when compared
without a temperature difference, but is still sufficiently high
to have very low false positive rates.

Figure 15. Average, minimum, and maximum correlation coefficients for

intra-chip comparisons between different ambient temperatures.

Comparing fingerprints from the same page at the same
temperature at -5 °C or 60 °C still yields high correlation
coefficients, as expected. Comparisons of fingerprints from
different pages/chips at different temperatures give very low
correlation coefficients.

Figure 16. Average, minimum, and maximum correlation coefficients for

comparisons between fresh and stressed Flash.

Flash chips have a limited lifetime, wearing out over
many program/erase (P/E) cycles. For a page’s fingerprint to
be useful over time, fingerprints taken later in life should still
give high correlation with younger fingerprints. Figure 16
shows the results of comparing fingerprints for the same
page/chip taken when a Flash chip is new to fingerprints
taken after a different number of P/E cycles. While the
average correlation coefficient goes down noticeably, we
note that it appears to bend towards an asymptote as the chip
wears out. Even after 500,000 P/E cycles, which is beyond
the typical lifetime of Flash chips, the average coefficient is
still high enough to distinguish fingerprints of the same
page/chip from fingerprints acquired from a different
page/chip.

However, we found that an extreme wear-out such as
500,000 P/E cycles can raise a non-negligible false positive
concern (10-4) for short 256 or 512-bit fingerprints. This
result indicates that we need longer fingerprints if they need
to be used over a long period of time without a re-calibration.

4) Security
An attacker could attempt to store the fingerprints of a

Flash device and replay the fingerprint to convince a verifier
that he has the Flash chip in question. If the attacker cannot
predict which page(s) or parts of a page (for shorter
signatures) will be fingerprinted, he would need to store the
fingerprints for every page to ensure success. The Flash
chips in our experiments required about 800 partial program
cycles per fingerprint. As the fingerprint comprises the order
in which the bit was programmed, each bit’s ordering could
be stored as a 10-bit number. To store an entire chip’s
fingerprints would require 10x the chip storage.

Acquiring a single fingerprint is relatively fast. Our setup
could record an entire page’s fingerprint in about 10 seconds.
However, there are 131,072 pages on our (relatively small)
test chip; characterizing one chip would take about 2 weeks.
The characterization time depends on the speed of the Flash
interface, and we plan to further investigate the limit on how
fast fingerprints can be characterized.

43

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 11,2022 at 14:15:41 UTC from IEEE Xplore. Restrictions apply.

D. Applicability to Multiple Flash Chips
Most of the above experimental results are obtained from

the Micron SLC Flash memory. In order to answer the
question of whether the proposed techniques are applicable
to Flash memory in general, we have repeated both RNG
and fingerprinting tests on four types of Flash memory chips
in 0, including an MLC chip.

The experiments showed that RNG and fingerprinting
both work on all four types of Flash chips, with comparable
performance. Detailed results are not included as they do
not add new information.

While we found that the proposed algorithm works
without any change in most cases, there was one exception
where the fingerprinting algorithm needed to be slightly
modified in order to compensate for systematic variations
for certain manufacturers. For example, for the Hynix and
Numonyx chips, we found that bits from the even bytes of a
page tend to be programmed quicker than bits from the odd
bytes. Similarly, for the MLC chip, bits in a page divide into
two groups: a quickly programmed group and a slowly
programmed group. To accommodate such systematic
behaviors, the fingerprinting algorithm was changed to only
compare programming ordering of bits within the same
group.

VI. APPLICATION SCENARIOS
This section briefly discusses how the Flash memory

based security functions, namely RNGs and device
fingerprints, can be used to improve security of electronic
devices. We first discuss where the techniques can be
deployed and present a few use cases.

A. Applicability
The proposed Flash-based security techniques work with

commercial off-the-shelf Flash memory chips using standard
interfaces. For example, our prototype design is based on the
Open NAND Flash Interface (ONFI) [13], which is used by
many major Flash vendors including Intel, Hynix, Micron,
and SanDisk. Other Flash vendors such as Samsung and
Toshiba also use similar interfaces to their chips.

The proposed techniques can be applied to any Flash or
other floating-gate non-volatile memory, as long as one can
control read, program (write), and erase operations to
specific memory locations (pages and blocks), issue the
RESET command and disable internal ECC. Embedded
systems typically implement a Flash memory controller in
software, exposing the low-level Flash chip interface to a
software layer. Our prototype USB board in the evaluation
section is an example of such a design. While we did not
have a chance to study details, the manual for the TI OMAP
processor family [14], which is widely used in mobile
phones, indicates that its External Memory Interface (EMI)
requires software to control each phase of NAND Flash
accesses. In such platforms where Flash accesses are
controlled by software, our techniques can be implemented
as relatively simple software changes.

For large memory components such as SSDs, the low-
level interfaces to Flash memory chips may not be exposed
to a system software layer. For example, SSD controllers
often implement wear-leveling schemes that move data to a
new location on writes. In such devices, the device vendor
needs to either expose the Flash interfaces to higher level
software or implement the security functions in firmware.

B. Random Number Generation
The Flash-based random number generator (RNG) can

either replace or complement software pseudo random
number generators in any applications that need sources of
randomness. For example, random numbers may be used as
nonces in communication protocols to prevent replays or
used to generate new cryptographic keys. Effectively, the
Flash memory provides the benefits of hardware RNGs for
systems without requiring custom RNG circuits. For
example, with the proposed technique, low-cost embedded
systems such as sensor network nodes can easily generate
random numbers from Flash/EEPROM. Similarly, virtual
machines on servers can obtain true random numbers even
without hardware RNGs.

C. Device Authentication
One application of the Flash device fingerprints is to

identify and/or authenticate hardware devices themselves
similar to the way that we use biometrics to identify humans.

As an example, let us consider distinguishing genuine
Flash memory chips from counterfeits through an untrusted
supply chain. Recent articles report multiple incidents of
counterfeit Flash devices in practice, such as chips from low-
end manufacturers, defective chips, and ones harvested from
thrown-away electronics, etc. [5] [15] [16]. The counterfeit
chips cause a serious concern for consumers in terms of
reliability as well as security; counterfeits may contain
malicious functions. Counterfeits also damage the brand
name for a manufacturer.

The Flash fingerprints can enable authentication of
genuine chips without any additional hardware modifications
to today’s Flash chips. In a simple protocol, a Flash
manufacturer can put an identifier (ID) to a genuine chip
(write to a location in Flash memory), generate a fingerprint
from the chip, and store the fingerprint in a database along
with the ID. To check the authenticity of a Flash chip from a
supply chain, a customer can regenerate a fingerprint and
query the manufacturer’s database to see if it matches the
saved fingerprint.

In order to pass the check, a counterfeit chip needs to
produce the same fingerprint as a genuine one. Interestingly,
unlike simple identifiers and keys stored in memory, device
fingerprints based on random manufacturing variations
cannot be controlled even when a desired fingerprint is
known. For example, even legitimate Flash manufacturers
cannot precisely control individual transistor threshold
voltages, which we use to generate fingerprints. To produce
specific fingerprints, one will need to create a custom chip
that stores the fingerprints and emulates Flash responses.

The authentication scheme can be strengthened against
emulation attacks by exploiting a large number of bits in

44

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 11,2022 at 14:15:41 UTC from IEEE Xplore. Restrictions apply.

Flash memory. Figure 17 illustrates a modified protocol that
utilizes a large number of fingerprints that can be generated
from each Flash chip. Here, we consider a Flash chip as a
function where a different set of bits that are used to generate
a fingerprint is a challenge, and the resulting fingerprint is a
response. A device manufacturer, when in possession of a
genuine IC, applies randomly chosen challenges to obtain
responses. Then, these challenge-response pairs (CRP) are
stored in a database for future authentication operations. To
check the authenticity of an IC later, a CRP that has been
previously recorded but has never been used for a check is
selected from the database, and a re-generated response from
a device can be checked.

Figure 17. Device authentication through a challenge-response protocol.

Unless an adversary can predict which CRPs will be used
for authentication, the adversary needs to measure all (or at
least a large fraction) of possible fingerprints from an
authentic Flash chip and store them in an emulator. In our
prototype board, a generation of all fingerprints from a single
page (16K bits) takes about 10 seconds and requires 10 bits
of storage for each Flash bit. For a 16Gbit (2 GB) Flash chip,
which is a moderate size by today’s standards, this implies
that fully characterizing the chip will take hundreds of days
and 20 GB storage. In the context of counterfeiting, such
costs are likely to be high enough to make producing
counterfeits economically unattractive.

The security of the authentication scheme based on Flash
fingerprints can be further improved if an additional control
can be added to the Flash interface. For example, imagine
using a USB Flash memory as a two-factor authentication
token by updating its firmware to have a challenge-response
interface for Flash fingerprints. Given that authentication
operations only need to be infrequent, the USB stick can be
configured to only allow a query every few seconds. If a
fingerprint is based on 1024 Flash bits, fully characterizing
an 8 GB USB stick can take tens of years.

D. Cryptographic Keys
In addition to device identification and authentication, the

Flash fingerprints can be used as a way to produce many
independent secret keys without additional storage. In effect,
the proposed Flash fingerprints provide unpredictable and
persistent numbers for each device. Previous studies such as
fuzzy extractors [17] and Physical Unclonable Functions
(PUFs) [3] have shown how symmetric keys (uniformly

distributed random numbers) can be obtained from biometric
data or IC signatures from manufacturing variations by
applying hashing and error correction. The same approach
can be applied to Flash fingerprints in order to generate
reliable cryptographic keys. A typical Flash with a few GB
can potentially produce tens of millions of 128-bit symmetric
keys.

VII. RELATED WORK

A. Hardware Random Number Generators
Hardware random number generators generate random

numbers from high-entropy sources in the physical world.
Theoretically, some random physical processes are
completely unpredictable. Therefore, hardware random
number generators provide better random numbers in terms
of randomness than software based pseudo-random number
generators.

Thermal noise and other system level noise are the
common entropy sources in recently proposed hardware
random number generators. In [18], the phase noise of
identical ring oscillators is used as the entropy source. In
[19], the differences in path delays are used. In [20] and [21],
the metastability of flip-flops or two cross coupled inverters
are used. Basically, the entropy source of these RNG designs
is thermal noise and circuit operational conditions. These
hardware random number generators can usually achieve
high throughput because the frequency of the entropy
sources is high. One common characteristic of these
hardware random generators is that they all need carefully
designed circuits where process variations should be
minimized so that noises from the entropy source can be
dominant. Compared to this, the random number generation
in Flash memory cells does not require specially designed
circuits and is more immune to process variation. Moreover,
our entropy source is based on quantum behavior and
theoretically, it should still work under extremely low
temperatures where thermal noise or other kinds of noise
decrease dramatically.

B. Hardware Fingerprint – Physical Unclonable Funcitons
Instead of conventional authentication based on a secret

key and cryptographic computation, researchers have
recently proposed to use the inherent variation in physical
characteristics of a hardware device for identification and
authentication. Process variation in semiconductor foundries
is a common source of hardware uniqueness which is out of
the control of the designer [22] [23] [24]. A unique
fingerprint can be extracted and used to identify the chip, but
cannot be used for security applications because it can be
simply stored and replayed. We also take advantage of
process variation for our fingerprinting scheme.

For security applications, Physical Unclonable Functions
(PUFs) have been proposed. A PUF can generate many
fingerprints per device by using complex physical systems
whose analog characteristics cannot be perfectly replicated.
Pappu initially proposed PUFs [25] using light scattering
patterns of optically transparent tokens. In silicon,
researchers have constructed circuits which, due to random

Authentic
Device A

Flash

Untrusted
Supply Chain /
Environments

???

Challenge Response

Is this the
authentic
Device A?

=?

Flash

Challenge Response’

Challenge Response

Database for Device A

1001010 010101
1011000 101101
0111001 000110

Record

45

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 11,2022 at 14:15:41 UTC from IEEE Xplore. Restrictions apply.

process variation, emit unique outputs per device. Some
silicon PUFs use ring oscillators [26] or race conditions
between two identical delay paths [27]. These PUFs are
usually implemented as custom circuits on the chip. Recently,
PUFs have been implemented without additional circuitry by
exploiting metastable elements such as SRAM cells, which
have unique value on start-up for each IC instance [28] [4],
or in Flash memories [5].

Our authentication scheme requires no new circuitry and
can be done with commercially available and ubiquitous
Flash chips. Unlike metastable elements, authentication does
not require a power cycle. The scheme can generate many
fingerprints by using more pages in the Flash chip.
Acquiring a fingerprint is also faster and more widely
applicable than previous Flash authentication methods.

VIII. CONCLUSION
In this work, we show that unmodified Flash chips are

capable of providing two important security functions: high-
quality true random number generation and the provision of
many digital fingerprints. Using thermal noise and random
telegraph noise, random numbers can be generated at up to
10Kbit per second for each Flash bit and pass all NIST
randomness tests. An authentication scheme with
fingerprints derived from partial programming of pages on
the Flash chip show high robustness and uniqueness. The
authentication scheme was tested over 24 pages with 24
different instances of a Flash chip and showed clear
separation. A Flash chip can provide many unique
fingerprints that remain distinguishable in various
temperature and aged conditions. Both random number
generation and fingerprint generation require no hardware
change to commercial Flash chips. Because Flash chips are
ubiquitous, the proposed techniques have a potential to be
widely deployed to many existing electronic device though a
firmware update or software change.

IX. ACKNOWLEDGEMENTS
In This work was partially supported by the National

Science Foundation grant CNS-0932069, the Air Force
Office of Scientific Research grant FA9550-09-1-0131, and
an equipment donation from Intel Corporation.

REFERENCES

[1] S. Yilek and T. Ristenpart, "When Good Randomness

Goes Bad: Virtual Machine Reset Vulnerabilities and
Hedging Deployed Cryptography," in Proceedings of the
17th Annual Network and Distributed System Security
Conference, 2010.

[2] A. Rukhin, J. Soto and J. Nechvatal, "A Statistical Test
Suite for Random and Pseudorandom Number
Generators for Crytographic Applications," April 2010.
[Online]. Available:
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP8
00-22rev1a.pdf.

[3] G. E. Suh and S. Devadas, "Physical Unclonable
Functions for Device Authentication and Secret Key
Generation," Proceedings of the 44th Conference on
Design Automation, pp. 9-14, 2007.

[4] P. Koeberl, J. Li, A. Rajan, C. Vishik and W. Wu, "A
Practical Device Authentication Scheme Using SRAM
PUFs," Proceedings of the 4th International Conference
on Trust and Trustworthy Computing, pp. 63-77, 2011.

[5] P. Prabhu, A. Akel, L. M. Grupp, W.-K. S. Yu, G. E.
Suh, E. Kan and S. Swanson, "Extracting Device
Fingerprints from Flash Memory by Exploiting Physical
Variations," Proceedings of the 4th International
Conference on Trust and Trustworthy Computing, pp. 1-
17, 2011.

[6] M. J. Kirton and M. J. Uren, "Noise in Solid-State
Microstructures: A New Perspective on Individual
Defects, Interface States and Low-Frequency Noise,"
Advances in Physics, vol. 38, pp. 367-468, 1989.

[7] H. Kurata, K. Otsuga, A. Kotabe, S. Kajiyama, T. Osabe,
Y. Sasago, S. Narumi, K. Tokami, S. Kamohara and O.
Tsuchiya, "Random Telegraph Signal in Flash Memory:
Its Impact on Scaling of Multilevel Flash Memory
Beyond the 90-nm Node," Solid-State Circuits, IEEE
Journal of , vol. 42, no. 6, pp. 1362 - 1369 , 2007.

[8] C. Compagnoni, M. Ghidotti, A. Lacaita, A. Spinelli and
A. Visconti, "Random Telegraph Noise Effect on the
Programmed Threshold-Voltage Distribution of Flash
Memories," Electron Device Letters, IEEE , vol. 30, no.
9, pp. 984-986, 2009.

[9] S.-M. Joe, J.-H. Yi, S.-K. Park, H. Shin, B.-G. Park, Y. J.
Park and J.-H. Lee, "Threshold Voltage Fluctuation by
Random Telegraph Noise in Floating Gate nand Flash
Memory String," Electron Devices, IEEE Transactions
on , vol. 58, no. 1, pp. 67-73, 2011.

[10] D. Knuth, The Art of Computer Programming, Reading:
Addison-Wesley, 1968.

[11] T. K. Abe, A. Sugawa and S. Ohmi, "Understanding of
Traps Causing Random Telegraph Noise Based on
Experimentally Extracted Time Constants and
Amplitude," in Proceedings of the IEEE International
Reliability Physics Symposium (IRPS), Monterey, CA,
2011.

[12] J. H. Scofield, N. Borland and D. M. Fleetwood,
"Temperature-independent switching rates for a random
telegraph signal in a silicon metal–oxide–semiconductor
field-effect transistor at low temperatures," Applied
Physics Letters , vol. 76, no. 22, pp. 3248 - 3250 , 2000.

[13] Open NAND Flash Interface, "Open NAND Flash
Interface," [Online]. Available: http://onfi.org.

[14] Texas Instruments Incorporated, "OMAP Mobile
Processors," [Online]. Available:
http://focus.ti.com/general/docs/gencontent.tsp?contentId
=46946.

[15] EE Times.com, "U.S.: Fake parts threaten electronic
market," 17 February 2010. [Online]. Available:
http://www.eetimes.com/electronics-news/4087628/U-S-
-Fake-parts-threaten-electronic-market.

[16] FrankenFlash Project , "SOSFakeFlash," [Online].
Available: http://sosfakeflash.wordpress.com/.

46

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 11,2022 at 14:15:41 UTC from IEEE Xplore. Restrictions apply.

[17] Y. Dodis, L. Reyzin and A. Smith, "Fuzzy Extractors:
How to Generate Strong Keys from Biometrics and and
Other Noisy Data," SIAM Journal of Computing, vol. 38,
no. 1, pp. 97-139, 2008.

[18] B. Sunar, W. J. Martin and D. R. Stinson, "A provably
secure true random number generator with built-in
tolerance to active attacks," in IEEE Transactions on
Computers, 2007.

[19] C. W. Odonnell, G. E. Suh and S. Devadas, "PUF-based
random number generation," In MIT CSAIL CSG
Technical Memo 481, Cambridge, 2004.

[20] M. Majzoobi, F. Koushanfar and S. Devadas, "FPGA-
based True Random Number Generation using Circuit
Metastability with Adaptive Feedback Control," in
Workshop on Cryptographic Hardware and Embedded
Systems, 2011.

[21] G. Cox, C. Dike and D. J. Johnston, "Intel’s Digital
Random Number Generator," Hot Chips, 2011.

[22] D. S. Boning and J. E. Chung, "Statistical metrology:
Understanding spatial variation in semiconductor
manufacturing," in Proceedings of SPIE 1996 Symposium
on Microelectronic Manufacturing, 1996.

[23] K. A. Bowman, S. G. Duvall and J. D. Meindl, "Impact
of die-to-die and within die parameter fluctuations on
maximum clock frequency distribution for gigascale
integration," Journal of Solid-State Circuits, vol. 37, no.
2, pp. 183-190, 2002.

[24] S. R. Nassif, "Modeling and forecasting of manufacturing
variations," in Proceedings of ASP-DAC 2001, Asia and
South Pacific Design Automation Conference 2001,
2001.

[25] R. Pappu, Physical One-Way Functions, PhD Thesis,
MIT, 2001.

[26] B. Gassend, D. Clarke, M. van Dijk and S. Devadas,
"Silicon Physical Random Functions," in Proceedings of
the Computer and Communication Security Conference,
New York, 2002.

[27] J. W. Lee, D. Lim, B. Gassend, G. E. Suh, M. van Dijk
and S. Devadas, "A technique to build a secret key in
integrated circuits for identification and authentication
application," in Proceedings of the Symposium on VLSI
Circuits, 2004.

[28] D. E. Holcomb, W. P. Burleson and K. Fu, "Initial
SRAM state as a fingerprint and source of true random
numbers for RFID tags," in Proceedings of the
Conference on RFID Security, 2007.

47

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 11,2022 at 14:15:41 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

