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Abstract— We demonstrate that unmodified commercial Flash 
memory can provide two important security functions: true 
random number generation and digital fingerprinting. Taking 
advantage of random telegraph noise (a type of quantum noise 
source in highly scaled Flash memory cells) enables high 
quality true random number generation at a rate up to  
10Kbits / second. A scheme based on partial programming 
exploits process variation in threshold voltages to allow quick 
generation of many unique fingerprints that can be used for 
identification and authentication. Both schemes require no 
change to Flash chips or interfaces, and do not require 
additional hardware.  

Keywords - security; flash memory; true random number 
generation; hardware fingerprints; device authentication 

I.  INTRODUCTION 
Flash memory has gained a ubiquitous place in the 

computing landscape today. Virtually all mobile devices 
such as smartphones and tablets rely on Flash memory as 
their non-volatile storage. Flash memory is also moving into 
laptop and desktop computers, intending to replace the 
mechanical hard drive. Floating-gate non-volatile memory is 
even more broadly used in electronic applications with a 
small amount of non-volatile memory. For example, even 8-
bit or 16-bit microcontrollers for embedded systems 
commonly have on-chip EEPROMs to store instructions and 
data. Many people also carry Flash memory as standalone 
storage medium as in USB memory sticks and SD cards. 

In this paper, we propose to utilize analog behaviors of 
off-the-shelf Flash memory to enable hardware-based 
security functions in a wide range of electronic devices 
without requiring custom hardware. More specifically, we 
show that a standard Flash memory interface can be used to 
generate true random numbers from quantum and thermal 
noises and to produce device fingerprints based on 
manufacturing variations. The techniques can be applied to 
any floating-gate non-volatile memory in general, and does 
not require any hardware modifications to today’s Flash 
memory chips, allowing them to be widely deployed. 

Both hardware random number generators (RNGs) and 
device fingerprints provide important foundations in building 
secure systems. For example, true randomness is a critical 
ingredient in many cryptographic primitives and security 
protocols; random numbers are often required to generate 
secret keys or prevent replays in communications. While 
pseudo-random number generators are often used in today’s 
systems, they cannot provide true randomness if a seed is 

reused or predictable. As an example, a recent study showed 
that reuse of virtual machine (VM) snapshots can break the 
Transport Level Security (TLS) protocol due to predictable 
random numbers [1]. Given the importance of a good source 
of randomness, high security systems typically rely on 
hardware RNGs. 

Instead of requiring custom hardware modules for RNGs, 
we found that analog noise in Flash memory bits can be used 
to reliably generate true random numbers. An interesting 
finding is that the standard Flash chip interface can be used 
to put a memory bit in partially programmed state so that the 
internal noise can be observed through the digital interface. 
There exist two sources of true randomness in Flash bits, 
Random Telegraph Noise (RTN) and thermal noise. While 
both sources can be leveraged for RNGs, our scheme focuses 
on RTN, which is quantum noise. Unlike thermal noise, 
which can be reduced significantly at extremely low 
temperatures, RTN behavior continues at all temperature 
ranges. Moreover, the quantum uncertainty nature of RTN 
provides a better entropy source than system level noises 
which rely on the difficulty of modeling complex yet 
deterministic systems. Our algorithm automatically selects 
bits with RTN behavior and converts RTN into random 
binary bits. 

Experimental results demonstrate that the RTN behavior 
exists in Flash memory and can be converted into random 
numbers through the standard Flash interface. The Flash-
based RNG is tested using the NIST test suite [2] and is 
shown to pass all tests successfully. Moreover, we found that 
the RNG works even at a very low temperature (-80 °C). In 
fact, the RTN behavior is more visible at low temperatures.  
On our test platform, the Flash RNG generates about 1K to 
10K bits per second. Overall, the experiments show that true 
random numbers can be generated reliably from off-the-shelf 
Flash memory chips without requiring custom circuits. 

In addition to generating true random numbers, we also 
found that the standard Flash interface can be used to extract 
fingerprints (or signatures) that are unique for each Flash 
chip. For this purpose, our technique exploits inherent 
random variations during Flash manufacturing processes. 
More specifically, we show that the distributions of transistor 
threshold voltages can be measured through the standard 
Flash interface using incremental partial programming. 
Experimental results show that these threshold voltage 
distributions can be used as fingerprints, as they are 
significantly different from chip to chip, or even from 
location to location within a chip. The distributions also stay 
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relatively stable across temperature ranges and over time. 
Thanks to the large number of bits (often several gigabits) in 
modern Flash chips, this technique can generate a large 
number of independent fingerprints from each chip.  

The Flash fingerprints provide an attractive way to 
identify and/or authenticate hardware devices and generate 
device-specific keys, especially when no cryptographic 
module is available or a large number of independent keys 
are desired. For example, at a hardware component level, the 
fingerprints can be used to distinguish genuine parts from 
counterfeit components without requiring cryptography to be 
added to each component. The fingerprinting technique can 
also be used for other authentication applications such as 
turning a Flash device into a two-factor authentication token, 
or identifying individual nodes in sensor networks.  

While the notion of exploiting manufacturing process 
variations to generate silicon device fingerprints and secret 
keys is not new and has been extensively studied under the 
name of Physical Unclonable Functions (PUFs) [3], the 
Flash-based technique in this paper represents a unique 
contribution in terms of its practical applicability. Similar to 
true RNGs, most PUF designs require custom circuits to 
convert unique analog characteristics into digital bits. On the 
other hand, our technique can be applied to off-the-shelf 
Flash without hardware changes. Researchers have recently 
proposed techniques to exploit existing bi-stable storage 
elements such as SRAMs [4] or Flash cells [5] to generate 
device fingerprints. Unfortunately, obtaining fingerprints 
from bi-stable elements requires a power cycle (power off 
and power on) of a device for every fingerprint generation. 
The previous approach to fingerprinting Flash only works for 
a certain types of Flash chips and takes long time (100 
seconds for one fingerprint) because it relies on rare errors 
called program disturbs. As an example, we did not see any 
program disturbs in SLC Flash chips that we used in 
experiments. To the best of our knowledge, the proposed 
device fingerprinting techniques is the first that is fast (less 
than 1 second for a 1024-bit fingerprint) and widely 
applicable without interfering with normal operation or 
requiring custom hardware. 

The following list summarizes the main strengths of the 
proposed security functions based on Flash memory over 
existing approaches for hardware random number generators 
and fingerprints. 

• Widely applicable: Flash memory already exists in 
many electronic devices. The proposed techniques 
can often be implemented as system software or 
firmware updates without hardware changes. 

• Non-intrusive: the techniques do not require a reboot 
and only have minimal interference with normal 
memory operations. Only a small portion of Flash 
needs to be used for security functions during 
security operations. There is minimal wear-out.  

• High security: the Flash random number generator is 
based on quantum noise, which exists even at 
extremely low temperatures. Thanks to the high 
capacity of today’s Flash memory, a very large 
number of independent signatures can be generated 
from Flash. 

The rest of the paper is organized as follows. Section II 
provides the basic background on the Flash memory. Based 
on this understanding, Section III and Section IV explain the 
new techniques to generate random numbers and device 
fingerprints through standard Flash interfaces. Then, Section 
V studies the effectiveness and the security of the proposed 
methods through experimental results on real Flash chips. 
Section 0 briefly discusses a few examples of application 
scenarios. Finally, Section VII discusses related work and 
Section VIII concludes the paper.  

II. FLASH MEMORY BASICS 
This section provides background material on Flash 

memory and its operating principles in order to aid 
understanding of our Flash-based security schemes. 

A. Floating Gate Transistors 
Flash memory is composed of arrays of floating-gate 

transistors. A floating-gate transistor is a transistor with two 
gates, stacked on top of each other. One gate is electrically 
insulated (floating). Figure 1 shows an example of a 
floating-gate device. The control gate is on top. An insulated 
conductor, surrounded by oxide, is between the control gate 
and the channel. This conductor is the floating gate. 
Information is stored as the presence or absence of trapped 
charge on the floating gate. The trapped negative charge 
reduces the current flowing through the channel when the 
N-type MOS transistor is on. This current difference is 
sensed and translated into the appropriate binary value.  

 
Figure 1. Flash memory cell based on a floating gate transistor. 

Flash cells without charge on their floating-gate allow 
full current flow in the channel and hence are read as a 
binary "1". The presence of charge on the floating-gate will 
discourage the presence of current in the channel, making 
the cell store a "0". Effectively, the charge on the floating-
gate increases the threshold voltage (Vth) of a transistor. 
Single-level cells store one bit of information; multi-level 
cells can store more than one bit by reading and injecting 
charge to adjust the current flow of the transistor. 

Note that the threshold voltage without any charge on the 
floating-gate is different for each transistor due to variations 
in manufacturing processes. As a result, the amount of 
charge that needs to be stored to the floating-gate for a cell 
to reliably represent a ''0'' state varies from cell to cell. If the 
threshold voltage is not shifted sufficiently, a cell can be in 
an unreliable (partially programmed) state that can be 
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interpreted as either 1 or 0. In this paper, we exploit the 
threshold voltage variations and the partially programmed 
state to extract fingerprints and random numbers. 

B. Flash Organization and Operation 
At a high-level, Flash memory provides three major 

operations: read, erase, and program (write). In order to 
read a bit in a Flash cell, the corresponding transistor is 
turned on and the amount of current is detected. A write to a 
Flash cell involves two steps. First, an erase operation 
pushes charge off the floating-gate by applying a large 
negative voltage on the control gate. Then, a program (write) 
operation stores charge on the floating-gate by selectively 
applying a large positive voltage if the bit needs to be zero.  

An important concept in Flash memory operation is that 
of pages and blocks. Pages are the smallest unit in which 
data is read or written, and are usually 2KB to 8KB. Blocks 
are the smallest unit for an erase operation and made up of 
several pages, usually 32 - 128 pages. Note that Flash does 
not provide bit-level program or erase. To read an address 
from a Flash chip, the page containing the address is read. 
To update a value, the block that includes the address must 
be first erased, then the corresponding page is written with 
an update and other pages in the block are restored. 

III. RANDOM NUMBER GENERATION 

A. Random Telegraph Noise (RTN) 
The proposed RNG uses a device effect called Random 

Telegraph Noise (RTN) as the source of randomness. In 
general, RTN refers to the alternating capture and emission 
of carriers at a defect site (trap) of a very small electronic 
device, which generates discrete variation in the channel 
current [6]. The capture and emission times are random and 
exponentially distributed. RTN behavior can be 
distinguished from other noise using the power spectrum 
density (PSD), which is flat at low frequencies and 1/f2 at 
high frequencies. In Flash memory, the defects that cause 
RTN are located in the tunnel-oxide near the substrate. The 
RTN amplitude is inversely proportional to the gate area and 
nearly temperature independent. As Flash memory cells 
shrink, RTN effects become relatively stronger and their 
impact on the threshold distribution of Flash memory cells, 
especially for multi-level cells, can be significant. Because 
RTN can be a major factor in Flash memory reliability, there 
have been a large number of recent studies on RTN in Flash 
memory from a reliability perspective [7] [8] [9]. 

While RTN is a challenge to overcome from the 
perspective of Flash memory operations, it can be an ideal 
source of randomness. RTN is caused by the capture and 
emission of an electron at a single trap, and is a physical 
phenomenon with random quantum properties. Quantum 
noise can be seen as the “gold-standard” for random number 
generation because the output of quantum events cannot be 
predicted. As Flash memory cells scale to smaller technology 
nodes, the RTN effect will become stronger. Moreover, RTN 
behavior will still exist with increasing process variation and 
at extremely low temperatures.  

B. Noise Extraction from Digital Interface 
As digital devices, Flash memory is designed to tolerate 

analog noise; noise should not affect normal memory 
operations. In order to observe the noise for random number 
generation, a Flash cell needs to be in an unreliable state 
between well-defined erase and program states. Interestingly, 
we found that Flash cells can be put into the in-between state 
using the standard digital interface. In a high level, the 
approach first erases a page, issues a program command, and 
then issues a reset command after an appropriate time period 
to abort the program. This procedure leaves a page partially 
programmed so that noise can affect digital outputs. We 
found that the outcome of continuously reading a partially 
programmed bit oscillates between 1 and 0 due to noise.  

 
Figure 2. Thermal noise in Flash memory (time domain). 

For Flash memory in practice, experiments show that two 
types of noise coexist: thermal noise and RTN. Thermal 
noise is white noise that exists in nearly all electronic 
devices. RTN can be observed only if a surface trap exists, 
the RTN amplitude is larger than that of thermal noise, and 
the sampling frequency (speed for continuous reads) is high 
enough. If any of these three conditions is not satisfied, only 
thermal noise will be observed as in Figure 2. In the case of 
thermal noise, a bit oscillates between the two states quickly, 
and the power spectral density (PSD) indicates white noise.  

 
(a) 

 
(b) 

Figure 3. RTN with thermal noise in Flash memory. (a) Time domain. (b) 
Moving average of 29 points on the time domain. 
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In the case that the RTN amplitude is comparable to 
thermal noise, a combination of RTN and thermal noise is 
observed as shown in Figure 3. This is reflected by the 
density change of 1s in the continuous reading. A moving 
average on the time domain helps to visualize the density 
change. The PSD of the result shows 1/f2 spectrum at low 
frequencies and becomes flat at high frequencies. 

 

 

Figure 4. RTN in Flash memory (time domain). 

In some cases, the RTN amplitude is very high and 
dominates thermal noise. As a result, only RTN behaviors 
are visible through digital interfaces for these bits. As shown 
in Figure 4, continuous reads show clear clusters of 1s and 0s 
in the time domain. The power spectral density (PSD) of 
these bit sequences shows a clear RTN pattern of 1/f2.  

 

  
(a) 

 
(b) 

Figure 5. (a) Distribution of time in the programmed state.  
(b) Distribution of time in the erased state. 

For a bit with nearly pure RTN behavior, we further 
validated that the error pattern corresponds to RTN by 
plotting the distributions of up and down periods. As shown 
in Figure 5, both up time and down time nicely fit an 
exponential distribution as expected. Overall, our 
experiments show that both RTN and thermal noise exist in 
Flash memory and can be observed through a digital 

interface. While both noise types can be used for random 
number generation, we focus on RTN, which is more robust 
to temperature changes. 

C. Random Number Generation Algorithms 
In Flash memory devices, RTN manifests as random 

switching between the erased state (consecutive 1s) and 
programmed state (consecutive 0s). At a high-level, our 
Flash random number generator (RNG) identifies bits with 
RTN behavior, either pure RTN or RTN combined with 
thermal noise, and uses a sequence of time in the erased state 
(called up-time) and the time in the programmed state (called 
down-time) from those bits. In order to produce random 
binary outputs, the RNG converts the up-time and down-time 
sequence into a binary number sequence, and applies the von 
Neumann extractor for de-biasing. We found that thermal 
noise itself is random and does not need to be filtered out. 

 
Algorithm I  Overall Flash RNG algorithm 
Erase a block; 
 
Num = 0; 
do { 
Partially program a page for T; 
Num++; 
 
Read Nbytes in a page N times, and record a  
trace for each bit – trace[bit]; 
For each bit in Nbytes, not selected yet 
  If (CheckRTN(trace[bit]) == true) { 

      Selected[bit] = yes; 
      NumProgram[bit] = Num; 
    } 
End for 

} repeat until most bits are programmed. 
 
ProgramSelectBits(Selected); 
 
Read selected bits M times, and record up-
time and down-time; 
For each bit 
  ConvertToBinary(rawdata); 
End for 

 
Algorithm I shows the overall RNG algorithm. To 

generate random numbers from RTN, the first step is to 
identify bits with RTN or both RTN and thermal noise. To 
do this, one block in Flash memory is erased and then 
multiple incomplete programs with the duration of T are 
applied. After each partial program, a part of the page is 
continuously read N times and the outcome is recorded for 
each bit. In our experiments, we chose to read the first 80 
bits (10 bytes) in a page for 1,000 times. For each bit that has 
not been selected yet, the algorithm checks if RTN exists 
using CheckRTN() and marks the bit location if there is RTN. 
As an optimization, the algorithm also records the number of 
partial programs when a bit is selected. The algorithm 
repeats the process until all bits are checked for RTN. The 
second step is to partially program all of the selected bits to 
an appropriate level so that they will show RTN behavior. 
Finally, the algorithm reads the selected bits M times, records 
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a sequence of up-time and down-time for each bit, and 
converts the raw data to a binary sequence.  

 
Algorithm II  Determine whether there is RTN in a bit 
If trace[bit] has over 98% 1/0s 
Return false; 

End if  
 
Calculate the power spectrum density (PSD); 
Convert PSD to the log scale in both x-y; 
 
If PSD slope is always < Tslope for all high 
frequency (> Tfreq) 
Return RTN 

End if  
 
If PSD slope is < Tslope at least one interval 
(Invl) at a high frequency (> Tfreq) 
Return RTN-Thermal 

End if 

 
The function CheckRTN() in Algorithm II determines 

whether there is RTN in a bit based on a trace from N reads. 
The algorithm first filters out bits that almost always (more 
than 98%) produce one result, either 1 or 0. For the bits with 
enough noise, the algorithm uses the power spectral density 
(PSD) to distinguish RTN from thermal noise; PSD for RTN 
has a form of 1/f2 at a high frequency. To check this 
condition, the algorithm computes the PSD, and converts it 
to a log-scale in both x and y axes. If the result has a slope 
less than Tslope (we use -1.5, the ideal value is -2) for all 
frequencies higher than Tfreq (we use 200Hz), the algorithm 
categorizes the bit as RTN only. If the PSD has a slope less 
than Tslope for any interval larger than than Invl (we use 
0.2) at a high frequency, the bit is categorized as a 
combination of RTN and thermal noise. 
 
Algorithm III  Program selected bits to proper levels where 
RTN could be observed. 
For each selected bit 
Do (NumProgram[bit]-K) partial programs; 
 
do { 
  Partially program the bit for T; 
 
  Read the bit N times; 
  Find Max and Min for moving averages; 
 
  If Max > TMax and Min < TMin  
    Break; 
  End if 
} repeat up to L times 

End for 

 
The function ProgramSelectBits() in Algorithm III 

programs selected bits to a proper level where RTN can be 
observed. Essentially, the algorithm aims to take each bit to 
the point near where they were identified to have RTN. The 
number of partial programs that were required to reach this 
point before were recorded in NumProgram[Bit]. For each 
selected bit, the algorithm first performs partial programs 

with the duration of T based on the number recorded earlier 
(NumProgram[Bit]-K). Then, the algorithm performs up to 
L more partial program operations until a bit shows RTN 
behavior. The RTN behavior is checked by reading the bit N 
times, and see if the maximum of moving averages is greater 
than a threshold (TMax = 0.7) and the minimum is less than 
another threshold (TMin = 0.3).  

 
Algorithm IV Convert the raw data to binary random 
sequence. 
If the bit has both RTN and thermal noise 
For each up/down-time in raw data 
  Output = LSB(up/down-time); 
End for 

End if 
 
If the bit has only RTN 
  do { 
  For each up/down-time in raw data 
    Output = LSB(up/down-time); 
    Shift right up/down-time by one bit; 
  End for 
} repeat until all up/down time are zero; 

End if 
 
Perform von Neumann de-biasing 

 
Finally, the function ConvertToBinary() converts the 

raw data to a binary random sequence. For bits with both 
RTN and thermal noise, the up-time and down-time tend to 
be short. So only the LSBs of these numbers are used. 
Essentially, for every up-time and down-time, the algorithm 
produces 1 if the time is odd and 0 otherwise. Effectively, 
this is an even-odd scheme. For bits with perfect RTN 
behavior, up-time and down-time tend to be longer and we 
use more LSBs from the recorded up/down-time. In this 
case, we first produce a bit based on the LSB, then the 
second LSB, the third LSB, and so on until all extracted bits 
become 0. Finally, for both methods, we apply the von 
Neumann de-biasing method. The method takes two bits at a 
time, throws away both bits if they are identical, and takes 
the first bit if different. This process is described in 
Algorithm IV. 

The stability of the bits in the partially programmed state 
is also important. We define the stability as how long a bit 
stays in the partially programmed state where RTN behavior 
can be observed. This is determined by the retention time of 
the Flash memory chip and the amplitude of the RTN 
compared to the designed noise margin. Assume the 
amplitude of the RTN is Ar, the noise margin of Flash 
memory is An, and the Flash retention time is 10 year, then 
the stable time for random number generation after partial 
programming will be roughly Ts=Ar/An*10 years. This 
means that after time Ts, a bit needs to be reset and 
reprogrammed. In our experiments, the bit that is shown in 
Figure 5 was still showing ideal RTN behavior even after 12 
hours. 
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IV. DEVICE FINGERPRINTS 
This section describes techniques to generate unique 

fingerprints from Flash memory devices. 

A. Sources of Uniqueness 
Flash memory is subject to random process variation like 

any other semiconductor device. Because Flash is fabricated 
for maximum density, small variations can be significant. 
Process variation can cause each bit of a Flash memory to 
differ from its neighbors. While variation may affect many 
aspects of Flash cells, our fingerprinting technique exploits 
threshold voltage variations. Variations in doping, floating 
gate oxide thickness, and control-gate coupling ratio can 
cause the threshold voltage of each transistor to vary. 
Because of this threshold voltage variation, different Flash 
cells will need different times to be programmed. 

B. Extracting Fingerprints 
In this paper, we introduce a fingerprinting scheme based 

on partial programming. We repeatedly partially program a 
page on a Flash chip. After each partial program, some bits 
will have been programmed enough to flip their states from 1 
to 0. For each bit in the page, we record the order in which 
the bit flipped. Pseudo-code is provided in Algorithm V. In 
our experiments, T is chosen to be 29.3us. A short partial 
program time provide a better resolution to distinguish 
different bits with the cost of increased fingerprinting time. 
We do not enforce all bits to be programmed, in order to 
account for the possibility of faulty bits. 

 
Algorithm V  Extract the order in which bits in a page are 
reach the programmed state. 
Choose a partial programming time T (below 
the rated program time).  
 
Nbits = number of bits in one page 
Order = 1;  
Initialize BitRank[Nbits] to 0. 
 
do { 
    Partially program a page for T; 
    For all programmed bits do 
        BitRank[programmed bit] = Order; 
    End for 
    Order = Order + 1; 
} repeat until most (99%) bits in the page 
are programmed  

 

C. Comparing Fingerprints 
The fingerprints extracted from the same page on the 

same chip over time are noisy but highly correlated. To 
compare fingerprints extracted from the same page/chip and 
different pages/chips, we use the Pearson correlation 
coefficient [5], which is defined as 

 

���� �� �
	
�� � �
��� � ����

�
��
 

 

where X is the vector of program orders extracted from one 
experiment and Y is another vector of program orders 
extracted from another experiment. �
 and �
 are the mean 
and standard deviation of the X vector. ��  and ���are the 
mean and standard deviation of the Y vector. 

In this way, the vector of program orders is treated as a 
vector of realizations of a random variable. For vectors 
extracted from the same page, Y=aX+b+noise where a and b 
are constants and the noise is small. So, X and Y are highly 
correlated and the correlation coefficient should be close to 
1. For vectors extracted from different pages, X and Y 
should be nearly independent of each other, so the 
correlation coefficient should be close to zero. From another 
perspective, if both X[i] and Y[i] are smaller or bigger than 
their means, ��
�� � �
���
�� � ���  would be a positive 
number. If not, it would be a negative number. If X and Y 
are independent, it is equally likely to be positive and 
negative so the correlation coefficient would approach 0. 

 
(a) 

 
(b) 

Figure 6. Scatter plot for fingerprints extracted on (a) the same page and (b) 
different chips. 

 
The scatter plot of X and Y from the same page/chip and 

from different chips are shown in Figure 6. The figure 
clearly demonstrates a high correlation between fingerprints 
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from the same chip over time and a low correlation between 
fingerprints from different chips. Therefore, this correlation 
metric can be used to compare fingerprints to determine 
whether they are from the same page/chip or from different 
pages/chips. 

D. Fingerprints in Binary Numbers 
The above fingerprints are in the form of the order in 

which each bit was programmed. If an application requires a 
binary number such as in generating cryptographic keys, we 
need to convert the recorded ordering into a binary number. 

There are a couple of ways to generate unique and 
unpredictable binary numbers from the Flash fingerprints. 
First, we can use a threshold to convert a fingerprint based 
on the programming order into a binary number as shown in 
Algorithm VI. In the algorithm, we produce 1 if the program 
order is high, or 0 otherwise. This approach produces a 1 bit 
fingerprint for each Flash bit. Alternatively, we can obtain a 
similar binary fingerprint directly from Flash memory by 
partially programming (or erasing) a page and reading bits 
(1/0) from the Flash. 

 
Algorithm VI  Generate a binary signature from the partial 
programming order information. 
Pick threshold t = Max(BitRank) / 2 
For each bit 
    If BitRank[bit] > t 
        Output 1 
    Else Output 0 
End for 

 

V. EXPERIMENTAL RESULTS 
This section presents evaluation results for the random 

number generation and fingerprint techniques for Flash 
memory devices.  

 

 
Figure 7. Flash test board. 

A. Testbed Device 
Our experiments use a custom Flash test board as shown 

in Figure 7. The board is made entirely with commercial off-
the-shelf (COTS) components with a custom PCB board. 
There is a socket to hold a Flash chip under test, an ARM 
microprocessor to issue commands and receive data from the 

Flash chip, and a Maxim MAX-3233 chip to provide a serial 
(RS-232) interface. USB support is integrated into the ARM 
microcontroller. We also wrote the code to test the device. 
The setup represents typical small embedded platforms such 
as USB flash drives, sensor nodes, etc. This device shows 
that the techniques can be applied to commercial off-the-
shelf devices with no custom integrated circuits (ICs). 

The experiments in this paper were performed with four 
types of Flash memory chips from Numonyx, Micron and 
Hynix, as shown in 0. 

TABLE I. TESTED FLASH CHIPS 

Manufacturer Part Number Capacity Quantity Technology
Numonyx NAND04GW3B2

DN6 
4Gbit 3 57nm SLC

Hynix HY27UF084G2B 4Gbit 10 SLC
Micron MT29F2G08ABA

EAWP-IT:E 4 
2Gbit 24 34nm SLC

Micron MT29F16G08CB
ACAWP:C 

16Gbit 5 MLC

 

B. Random Number Generation 
The two main metrics for random number generation are 

randomness and throughput. For security, the RNG must be 
able to reliably generate true random numbers across a range 
of environmental conditions over time. For performance, 
higher throughput will be desirable.  

TABLE II. SUMMARY OF THE NIST TEST SUITE 

Test Name Test Description 
1 The Frequency 

(Monobit) Test: 
Tests proportion of zeros and ones for the 
whole sequence. 

2 Frequency Test within 
a Block 

Tests the proportions of ones within M-bit 
Block. 

3 The Run Test Tests the total number of runs in the sequence, 
where a run is an uninterrupted sequence of 
identical bits 

4 Tests for the Longest-
Run-of-Ones in a Block 

Tests the longest run of ones within M-bit 
Block and consistency with theory 

5 The Binary Matrix 
Rank Test 

Tests rank of disjoint sub-matrices of the entire 
sequence and independence 

6 The Discrete Fourier 
Transform (Spectral) 
Test 

Tests the peak heights in the Discrete Fourier 
Transform of the sequence, to detect  periodic 
features that indicates deviation of randomness 

7 The Non-overlapping 
Template Matching Test

Tests the number of occurrences of a pre-
specified target strings 

8 The Overlapping 
Template Matching Test 

Tests the number of occurrences of a pre-
specified target strings. When window found, 
slide only one bit before the next search 

9 Maurer’s “Universal 
Statistics” Test 

Tests the number of bits between matching 
patterns 

10 The Linear 
Complexity Test 

Tests the length of a linear feedback shift 
register, test complexity 

11 The Serial Test Tests the frequency of all possible overlapping 
m-bit pattern 

12 The Approximate 
Entropy Test 

Tests the frequency of all possible overlapping 
m-bits pattern across the entire sequence 

13 The Cumulative 
Sums (Cusums) Test 

Tests maximal excursion from the random walk 
defined by the cumulative sum of adjusted (-1, 
+1) digits in the sequence 

14 The Random 
Excursion Test 

Tests the number of cycles having exactly K 
visits in a cumulative sum random walk 

15 The Random 
Excursions Variant Test 

Tests the total number of times that a particular 
state is visited in a cumulative sum random 
walk  
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1) Randomness 

Historically, three main randomness test suites exist. The 
first one is from Donald Knuth’s book “The Art of computer 
Programming (1st edition, 1969)” [10] which is the most 
quoted reference in statistical testing for RNGs in literature. 
Although it was a standard for many decades, it appears to be 
outdated in today’s view and it allows many “bad” 
generators to pass the tests. The second one is the “diehard” 
test suite from Florida State University. The test suite is 
stringent in the sense that they are difficult to pass. However, 
the suite has not been maintained in recent years. Therefore, 
it was not selected as the tests for this study. The third one is 
developed by National Institute of Standards and Technology 
(NIST) which is a measurement standard laboratory and a 
non-regulatory agency of the United States Department of 
Commerce. The NIST Statistical Test Suite is a package 
consisting of 15 tests that were developed to test the 
randomness of arbitrary long binary sequences produced by 
either hardware or software. The test suite makes use of both 
existing algorithms from past literatures and newly 
developed tests. The most updated version, sts-2.1.1, which 
was released in August 11, 2010, is used in our randomness 
tests. TABLE II summarizes the 15 NIST tests [2]. 

 
--------------------------------------------------------------------- 
RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE 

PROPORTION OF PASSING SEQUENCES 
--------------------------------------------------------------------- 
P-VALUE   PROPORTION   STATISTICAL TEST 
0.122325      10/10        Frequency 
0.911413      10/10        BlockFrequency 
0.534146      10/10        CumulativeSums 
0.066882      10/10        CumulativeSums 
0.534146      10/10        Runs 
0.350485      10/10        LongestRun 
0.739918      10/10        Rank 
0.739918      10/10        FFT 
0.213309      10/10        NonOverlappingTemplate 
0.739918      10/10        NonOverlappingTemplate 
0.350485      10/10        OverlappingTemplate 
0.911413         9/101        Universal 
0.534146      10/10        ApproximateEntropy 
           ----        5/5         RandomExcursions 
           ----        5/5         RandomExcursions 
           ----        5/5         RandomExcursionsVariant 
           ----       5/5         RandomExcursionsVariant 
0.739918      10/10        Serial 
0.350485      10/10        Serial 
0.534146      10/10        LinearComplexity 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
1The minimum pass rate for each statistical test is 8 for a sample size of 

10 binary sequences, and 4 for a sample size of 5 sequences. 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Figure 8. NIST test suite results for bits with RTN and thermal noise. 

Figure 8 shows one test result for the even-odd scheme, 
which only used an LSB from the up-time and down-time, 
when bits with both RTN and thermal noise are used. 10 
sequences generated from multiple bits are tested and each 
sequence consists of 600,000 bits. Note that some of the 
results are not shown here due to the space constraint.  
NonOverlappingTemplate, RandomExcursions and 
RandomExcursionsVariant have a lot of tests. In the 

result above, the proportion in the second column shows the 
proportion of the sequences which passed the test. If the 
proportion is greater than or equal to the threshold value 
specified at the bottom of the figure (8 out of 10 or 4 out of 
5), then the data is considered random. The P-value in the 
first column indicates the uniformity of the P-values 
calculated in each test. If P-value is greater than or equal to 
0.0001, the sequences can be considered to be uniformly 
distributed [2]. The result indicates that the proposed RNG 
passes all the NIST tests.  

We also tested random numbers from one bit with only 
RTN behavior, using multiple bits from up-time and down-
time. In this case, we generated ten 200,000-bit sequences 
from one bit. The data passed all NIST tests with results that 
are similar to the above case. For the Universal test, which 
requires a sequence longer than 387,840 bits, we used five 
500,000-bit sequences.  

 
2) Performance 

The throughput of the proposed RNG varies significantly 
depending on the switching rate of individual bits, sampling 
speed and environment conditions. Typically, only a small 
fraction of bits show pure RTN behavior with minimal 
thermal noise. TABLE III shows the performance of Flash 
chips from four manufacturers. The average throughput 
ranges from 848 bits/second to 3.37 Kbits/second. Note that 
the fastest switching trap that can be identified is limited by 
the reading speed in our experiments. 

TABLE III. PERFORMANCE OF BITS WITH PURE RTN BEHAVIOR. 

Chip Hynix 
SLC 

Numonyx 
SLC 

Micron 
SLC 

Micron 
MLC 

Reading speed (KHz) 46.51 45.25 43.10 17.78
Number of bits characterized 303 478 1030 134
Number of  bits identified 9 16 5 0
Max throughput (bits/sec) 8.03K 5.35K 2.71K --
Ave. throughput (bits/sec) 3.27K 1.79K 848.29 --
Min throughput (bits/sec) 107.04 34.77 8.14 --

 
If bits with both RTN and thermal noise are also used, 

the percentage of bits which can be used for RNG can be 
much higher. The performance of these bits from the same 
Flash chips as in the pure RTN case is shown in TABLE IV. 
The average throughputs are higher because thermal noise is 
high frequency noise. 

TABLE IV. PERFORMANCE OF BITS WITH BOTH RTN AND THERMAL NOISE. 

Chip Hynix 
SLC 

Numonyx 
SLC 

Micron 
SLC

Micron 
MLC

Reading speed (KHz) 46.51 45.25 43.10 17.78
Number of bits characterized 303 478 1030 134
Number of  bits identified 27 81 58 28
Max throughput (bits/sec) 11.48K 9.68K 10.03K 3.83K
Ave. throughput (bits/sec) 3.28K 3.87K 3.53K 1.26K
Min throughput (bits/sec) 28.39 10.21 8.14 55.12

 
In our tests, the RNG throughput is largely limited by the 

timing of the asynchronous interface which is controlled by 
an ARM microcontroller with CPU frequency of 60MHz and 
the 8-bit bus for a Flash chip. We believe that the RNG 
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performance can be much higher if data can be transferred 
more quickly through the interface. As an example, the 
average for RTN transition time is reported to range from 1 
microsecond to 10 seconds [11]. If a 128 bytes can be read in 
6 microseconds which is the ideal random cache read speed 
for the Micron SLC chips, a RTN bit with 0.1ms average 
transition time will give approximately 20 Kbits/second 
throughput. Note that one page could have multiple RTN bits 
and our algorithm allows using multiple bits in parallel so 
that the aggregated throughput of an RNG can be much 
higher. For example, if N bits can be read at a time, in 
theory, that can increase the throughput by a factor of N. � 

 
3) Temperature Variations  

For traditional hardware RNGs, low temperatures present 
a particular challenge because thermal noise, which they 
typically rely on, can be reduced with the temperature. To 
study the effectiveness of the Flash-based RNG in low 
temperatures, we tested the scheme at two low temperature 
settings: one in a freezer, which is about -5°C, and the other 
in dry ice, which is about -80°C. The generated random 
sequences are tested individually as well as combined 
together with data from experiments at room temperature. 
All of them passed the NIST test suite without a problem, 
showing that our technique is effective at low temperatures. 

Note that the experiments for temperature variations and 
aging are performed with a setup where data from Flash 
memory are transferred from a testbed to a PC through an 
USB interface. The post processing is performed on the PC. 
The USB interface limits the Flash read speed to 6.67KHz. 
As a result, the throughput in this setup is noticeably slower 
than the results in previous subsections where the entire 
RNG operation is performed on a microcontroller.   

To understand the impact of temperature variations on 
the Flash-based RNG, we tested the first 80 bits of a page 
from a Numonyx chip. At room temperature, 62 bits out of 
the 80 bits showed oscillations between the programmed 
state and erased state. 14 bits out of the 62 bits were selected 
by the selection algorithm, which identifies bits with pure 
RTN or both RTN and thermal components. The throughputs 
of the 14 bits are shown in Figure 9.  

Figure 10 and Figure 11 show the performance of the 
RNG at -5 °C and -80 °C, respectively. At -5 °C, 79 bits out 
of 80 bits showed noisy behavior and 20 out of 79 bits were 
selected by the RNG algorithm as ones with RTN. At -80 °C, 
72 bits out of 80 bits showed noise and 28 out of 72 bits were 
selected as the ones with RTN. On average, we found that 
per-bit throughput is slightly decreased at low temperatures, 
most likely because of reduced thermal noise and possibly 
because of slowed RTN switching. However, the difference 
is not significant. In fact, a previous study [12] claimed that 
RTN is temperature independent below 10 Kelvin. 
Interestingly, we found that the number of bits that are 
selected by our algorithm as ones with RTN behavior 
increases at a low temperature. This trend is likely to be 
because the low temperature decreases thermal noise 
amplitude while RTN amplitude stays almost the same and 
the RTN traps slow down so that they become observable at 
our sampling frequency.  

 

 
Figure 9. Throughputs under room temperature. 

 
Figure 10. Throughput at -5 °C. 

 
Figure 11. Throughputs at -80 °C. 

4) Aging 
Flash devices wear-out over time as more program/erase 

(P/E) operations are performed. A typical SLC Flash chip 
has a lifetime of 1 million P/E cycles. In the context of 
RNGs, however, we do not think that wear-outs cause 
concerns. In fact, aging can create new RTN traps and 
increase the number of bits with RTN. To check the impact 
of aging on the RNG, we tested the scheme after 1,000 P/E 
operations and 10,000 P/E operations as shown in TABLE 
V. The RNG outputs passed the NIST test suite in both cases 
and did not show any degradation in performance.  

TABLE V. PERFORMANCE SUMMARY OF RTN IN STRESSED PAGES 

Stress (P/E) Bits with noise Bits selected Ave. throughput (bits/sec)
1,000 64 9 303.26

10,000 70 15 239.66
 

The table shows an interesting trend that more bits show 
RTN behavior after 10,000 P/E cycles. The increase in noisy 
bits can potentially increase the overall RNG throughput. 
One possible concern with aging is a decrease in “stable time 
period” during which each bit shows noisy behavior. In our 
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experiments, we found that a bit can be used for random 
number generation for over 12 hours after one programming 
(Algorithm III). If a bit is completely worn out, charge can 
leak out more quickly, requiring more frequent calibration. 
However, given that Flash memory is designed to have a 
retention time of 10 years within its lifetime, we do not 
expect the leakage to be a significant problem. We plan to 
perform larger scale experiments to understand how often a 
bit needs to be re-programmed for reliable random number 
generation. In practice, a check can also be added to ensure 
that a bit oscillates between 1 and 0.  

 

C. Fingerprints 
For fingerprinting, we are interested in uniqueness and 

robustness of fingerprints. The fingerprint should be unique, 
which means that fingerprints from different chips or 
different locations of the same chip must be significantly 
different – the correlation coefficient should be low. The 
fingerprint should also be robust, in a sense that fingerprints 
from a given location of a chip must stay stable over time 
and even under different environmental conditions – the 
correlation coefficient should be high. 

In the experiments detailed below, we used 24 chips 
(Micron 34nm SLC), and 24 pages (6 pages in 4 blocks) 
from each chip. 10 measurements were made from each 
page. Each page has 16,384 bits. 

 
1) Uniqueness 
To test uniqueness, we compared the fingerprint of a 

page to the fingerprints of the same page on different chips, 
and recorded their correlation coefficients. A total of 66,240 
pairs were compared – (24 chips choose 2) * 24 pages * 10 
measurements. The results are shown in Figure 12. The 
correlation coefficients are very low, with an average of 
0.0076. A Gaussian distribution fits the data well, as shown 
in red. 

 

 
Figure 12. Histogram of correlation coefficients for pages compared to the 

same page on a different chip (total 66,240 comparisons). 

The correlation coefficients are also very low when a 
page is compared not only to the same page on different 
chips, but also to different pages on the same and different 
chips, shown in Figure 13. There are 1,656,000 pairs in 
comparison – ((24 pages * 24 chips) choose 2) * 10 
measurements. This indicates that fingerprints from different 
parts (pages) of a chip can be considered as two different 
fingerprints and do not have much correlation. Therefore, the 

fingerprinting scheme allows the generation of many 
independent fingerprints from a single chip. The average 
correlation coefficient in this case is 0.0072. 

 

 
Figure 13. Histogram of correlation coefficients for every page compared 

to every other page at room temp (total 1,656,000 comparisons). 

2) Robustness 
To test robustness, we compared each page’s 

measurement to the 9 other measurements of the same page’s 
fingerprint (an intra-chip measurement). The histogram of 
results for all pages is shown in Figure 14. The correlation 
coefficient for fingerprints from the same page is very high, 
with an average of 0.9673. The minimum observed 
coefficient is 0.9022. The results show that fingerprints from 
the same page are robust over multiple measurements, and 
can be easily distinguished from fingerprints of a different 
chip or page.  

To be used in an authentication scheme, one could set a 
threshold correlation coefficient t. If, when comparing two 
fingerprints, their correlation coefficient is above t, then the 
two fingerprints are considered to have come from the same 
page/chip. If their correlation coefficient is below t, then the 
fingerprints are assumed to be from different pages/chips.  

 
Figure 14. Histogram of correlation coefficients for all intra-chip 

comparisons (total 25,920 comparisons). 

In such a scheme, there is a potential concern for false 
positives and false negatives. A false negative is defined as 
comparing fingerprints that are actually from two different 
pages/chips, but deciding that the fingerprints are from the 
same page/chip. A false positive occurs when comparing 
fingerprints from the same page/chip, yet deciding that the 
fingerprints came from two different pages/chips. The 
threshold t can be selected to balance false negatives and 
positives. A high value of t would minimize false negatives, 
but increase the chance of false positives, and vice versa. 
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To estimate the chance of false positives and false 
negatives, we fit normal probability mass distribution 
functions to the correlation coefficient distribution. A false 
positive would arise from a comparison of two fingerprints 
from the same page being below t. The normal distribution 
fitted to the intra-chip comparison data in Figure 14 has an 
average � = 0.9722 and a std. deviation of 0.0095. For a 
threshold of t = 0.5, the normal distribution function 
estimates the cumulative probability of a pair of fingerprints 
having a correlation coefficient below 0.5 as 2.62×10-539. At t 
= 0.7, the probability is estimated as 7.43×10-181. 

The normal distribution function fitted to the inter-chip 
comparison data in Figure 13 has a � = 0.0076 and a std. 
deviation of 0.0083. The estimated chance of a pair of 
fingerprints from different chips exceeding t = 0.5 is 
4.52×10-815. At t = 0.3, the probability is estimated as 
6.14×10-301. 

The tight inter-chip and intra-chip correlations along with 
low probability estimates for false positives or negatives 
suggest that the size of fingerprints can possibly be reduced. 
Instead of using all 16,384 bits in a page, we can generate a 
fingerprint for a 1024-bit, 512-bit, or even only a 256-bit 
block. Experiments show that the averages of the observed 
correlation coefficients remain similar to those when using 
every bit in a page while the standard deviation increases by 
a factor of 2-3. However, the worst-case false negative 
estimates remain low. When using 256 bit fingerprints with 
the threshold t = 0.3, the estimate is 7.91×10-7. Under the 
same conditions, using 1024 bit fingerprints gives an 
estimated 3.20×10-22 chance of a false negative. 

 
3) Temperature Variations and Aging 
To see how robust the fingerprints are across different 

temperatures. We extracted fingerprints from chips at two 
other ambient temperatures, 60 °C and -5 °C. We tested a 
subset of the chips tested at room temperature – 6 pages (3 
pages in 2 blocks) in 6 chips.  

Of interest is how fingerprints from the same page/chip, 
but taken at different temperatures, compare. Figure 15 
shows the results of the intra-chip comparison between each 
temperature pair. Correlations remain high for fingerprints 
from the same page/chip, indicating that fingerprints taken at 
different temperatures can still be identified as the same. The 
average correlation coefficient is lower than when compared 
without a temperature difference, but is still sufficiently high 
to have very low false positive rates. 

 
Figure 15. Average, minimum, and maximum correlation coefficients for 

intra-chip comparisons between different ambient temperatures. 

Comparing fingerprints from the same page at the same 
temperature at -5 °C or 60 °C still yields high correlation 
coefficients, as expected. Comparisons of fingerprints from 
different pages/chips at different temperatures give very low 
correlation coefficients. 

 

 
Figure 16. Average, minimum, and maximum correlation coefficients for 

comparisons between fresh and stressed Flash. 

Flash chips have a limited lifetime, wearing out over 
many program/erase (P/E) cycles. For a page’s fingerprint to 
be useful over time, fingerprints taken later in life should still 
give high correlation with younger fingerprints. Figure 16 
shows the results of comparing fingerprints for the same 
page/chip taken when a Flash chip is new to fingerprints 
taken after a different number of P/E cycles. While the 
average correlation coefficient goes down noticeably, we 
note that it appears to bend towards an asymptote as the chip 
wears out. Even after 500,000 P/E cycles, which is beyond 
the typical lifetime of Flash chips, the average coefficient is 
still high enough to distinguish fingerprints of the same 
page/chip from fingerprints acquired from a different 
page/chip. 

However, we found that an extreme wear-out such as 
500,000 P/E cycles can raise a non-negligible false positive 
concern (10-4) for short 256 or 512-bit fingerprints. This 
result indicates that we need longer fingerprints if they need 
to be used over a long period of time without a re-calibration.  

 
4) Security 
An attacker could attempt to store the fingerprints of a 

Flash device and replay the fingerprint to convince a verifier 
that he has the Flash chip in question. If the attacker cannot 
predict which page(s) or parts of a page (for shorter 
signatures) will be fingerprinted, he would need to store the 
fingerprints for every page to ensure success. The Flash 
chips in our experiments required about 800 partial program 
cycles per fingerprint. As the fingerprint comprises the order 
in which the bit was programmed, each bit’s ordering could 
be stored as a 10-bit number. To store an entire chip’s 
fingerprints would require 10x the chip storage.  

Acquiring a single fingerprint is relatively fast. Our setup 
could record an entire page’s fingerprint in about 10 seconds. 
However, there are 131,072 pages on our (relatively small) 
test chip; characterizing one chip would take about 2 weeks. 
The characterization time depends on the speed of the Flash 
interface, and we plan to further investigate the limit on how 
fast fingerprints can be characterized.  
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D. Applicability to Multiple Flash Chips 
Most of the above experimental results are obtained from 

the Micron SLC Flash memory. In order to answer the 
question of whether the proposed techniques are applicable 
to Flash memory in general, we have repeated both RNG 
and fingerprinting tests on four types of Flash memory chips 
in 0, including an MLC chip. 

The experiments showed that RNG and fingerprinting 
both work on all four types of Flash chips, with comparable 
performance. Detailed results are not included as they do 
not add new information.  

While we found that the proposed algorithm works 
without any change in most cases, there was one exception 
where the fingerprinting algorithm needed to be slightly 
modified in order to compensate for systematic variations 
for certain manufacturers. For example, for the Hynix and 
Numonyx chips, we found that bits from the even bytes of a 
page tend to be programmed quicker than bits from the odd 
bytes. Similarly, for the MLC chip, bits in a page divide into 
two groups: a quickly programmed group and a slowly 
programmed group. To accommodate such systematic 
behaviors, the fingerprinting algorithm was changed to only 
compare programming ordering of bits within the same 
group.  

VI. APPLICATION SCENARIOS 
This section briefly discusses how the Flash memory 

based security functions, namely RNGs and device 
fingerprints, can be used to improve security of electronic 
devices. We first discuss where the techniques can be 
deployed and present a few use cases.  

A. Applicability 
The proposed Flash-based security techniques work with 

commercial off-the-shelf Flash memory chips using standard 
interfaces. For example, our prototype design is based on the 
Open NAND Flash Interface (ONFI) [13], which is used by 
many major Flash vendors including Intel, Hynix, Micron, 
and SanDisk. Other Flash vendors such as Samsung and 
Toshiba also use similar interfaces to their chips.  

The proposed techniques can be applied to any Flash or 
other floating-gate non-volatile memory, as long as one can 
control read, program (write), and erase operations to 
specific memory locations (pages and blocks), issue the 
RESET command and disable internal ECC. Embedded 
systems typically implement a Flash memory controller in 
software, exposing the low-level Flash chip interface to a 
software layer. Our prototype USB board in the evaluation 
section is an example of such a design. While we did not 
have a chance to study details, the manual for the TI OMAP 
processor family [14], which is widely used in mobile 
phones, indicates that its External Memory Interface (EMI) 
requires software to control each phase of NAND Flash 
accesses. In such platforms where Flash accesses are 
controlled by software, our techniques can be implemented 
as relatively simple software changes.  

For large memory components such as SSDs, the low-
level interfaces to Flash memory chips may not be exposed 
to a system software layer. For example, SSD controllers 
often implement wear-leveling schemes that move data to a 
new location on writes. In such devices, the device vendor 
needs to either expose the Flash interfaces to higher level 
software or implement the security functions in firmware.   

B. Random Number Generation 
The Flash-based random number generator (RNG) can 

either replace or complement software pseudo random 
number generators in any applications that need sources of 
randomness. For example, random numbers may be used as 
nonces in communication protocols to prevent replays or 
used to generate new cryptographic keys. Effectively, the 
Flash memory provides the benefits of hardware RNGs for 
systems without requiring custom RNG circuits. For 
example, with the proposed technique, low-cost embedded 
systems such as sensor network nodes can easily generate 
random numbers from Flash/EEPROM. Similarly, virtual 
machines on servers can obtain true random numbers even 
without hardware RNGs. 

C. Device Authentication 
One application of the Flash device fingerprints is to 

identify and/or authenticate hardware devices themselves 
similar to the way that we use biometrics to identify humans.  

As an example, let us consider distinguishing genuine 
Flash memory chips from counterfeits through an untrusted 
supply chain. Recent articles report multiple incidents of 
counterfeit Flash devices in practice, such as chips from low-
end manufacturers, defective chips, and ones harvested from 
thrown-away electronics, etc. [5] [15] [16]. The counterfeit 
chips cause a serious concern for consumers in terms of 
reliability as well as security; counterfeits may contain 
malicious functions. Counterfeits also damage the brand 
name for a manufacturer. 

The Flash fingerprints can enable authentication of 
genuine chips without any additional hardware modifications 
to today’s Flash chips. In a simple protocol, a Flash 
manufacturer can put an identifier (ID) to a genuine chip 
(write to a location in Flash memory), generate a fingerprint 
from the chip, and store the fingerprint in a database along 
with the ID. To check the authenticity of a Flash chip from a 
supply chain, a customer can regenerate a fingerprint and 
query the manufacturer’s database to see if it matches the 
saved fingerprint.  

In order to pass the check, a counterfeit chip needs to 
produce the same fingerprint as a genuine one. Interestingly, 
unlike simple identifiers and keys stored in memory, device 
fingerprints based on random manufacturing variations 
cannot be controlled even when a desired fingerprint is 
known. For example, even legitimate Flash manufacturers 
cannot precisely control individual transistor threshold 
voltages, which we use to generate fingerprints. To produce 
specific fingerprints, one will need to create a custom chip 
that stores the fingerprints and emulates Flash responses. 

The authentication scheme can be strengthened against 
emulation attacks by exploiting a large number of bits in 
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Flash memory.  Figure 17 illustrates a modified protocol that 
utilizes a large number of fingerprints that can be generated 
from each Flash chip. Here, we consider a Flash chip as a 
function where a different set of bits that are used to generate 
a fingerprint is a challenge, and the resulting fingerprint is a 
response. A device manufacturer, when in possession of a 
genuine IC, applies randomly chosen challenges to obtain 
responses. Then, these challenge-response pairs (CRP) are 
stored in a database for future authentication operations. To 
check the authenticity of an IC later, a CRP that has been 
previously recorded but has never been used for a check is 
selected from the database, and a re-generated response from 
a device can be checked. 

 

 
Figure 17. Device authentication through a challenge-response protocol.  

Unless an adversary can predict which CRPs will be used 
for authentication, the adversary needs to measure all (or at 
least a large fraction) of possible fingerprints from an 
authentic Flash chip and store them in an emulator. In our 
prototype board, a generation of all fingerprints from a single 
page (16K bits) takes about 10 seconds and requires 10 bits 
of storage for each Flash bit. For a 16Gbit (2 GB) Flash chip, 
which is a moderate size by today’s standards, this implies 
that fully characterizing the chip will take hundreds of days 
and 20 GB storage. In the context of counterfeiting, such 
costs are likely to be high enough to make producing 
counterfeits economically unattractive.  

The security of the authentication scheme based on Flash 
fingerprints can be further improved if an additional control 
can be added to the Flash interface. For example, imagine 
using a USB Flash memory as a two-factor authentication 
token by updating its firmware to have a challenge-response 
interface for Flash fingerprints. Given that authentication 
operations only need to be infrequent, the USB stick can be 
configured to only allow a query every few seconds. If a 
fingerprint is based on 1024 Flash bits, fully characterizing 
an 8 GB USB stick can take tens of years. 

D. Cryptographic Keys 
In addition to device identification and authentication, the 

Flash fingerprints can be used as a way to produce many 
independent secret keys without additional storage. In effect, 
the proposed Flash fingerprints provide unpredictable and 
persistent numbers for each device. Previous studies such as 
fuzzy extractors [17] and Physical Unclonable Functions 
(PUFs) [3] have shown how symmetric keys (uniformly 

distributed random numbers) can be obtained from biometric 
data or IC signatures from manufacturing variations by 
applying hashing and error correction. The same approach 
can be applied to Flash fingerprints in order to generate 
reliable cryptographic keys. A typical Flash with a few GB 
can potentially produce tens of millions of 128-bit symmetric 
keys. 

VII. RELATED WORK 

A. Hardware Random Number Generators 
Hardware random number generators generate random 

numbers from high-entropy sources in the physical world. 
Theoretically, some random physical processes are 
completely unpredictable. Therefore, hardware random 
number generators provide better random numbers in terms 
of randomness than software based pseudo-random number 
generators. 

Thermal noise and other system level noise are the 
common entropy sources in recently proposed hardware 
random number generators. In [18], the phase noise of 
identical ring oscillators is used as the entropy source. In 
[19], the differences in path delays are used. In [20] and [21], 
the metastability of flip-flops or two cross coupled inverters 
are used. Basically, the entropy source of these RNG designs 
is thermal noise and circuit operational conditions. These 
hardware random number generators can usually achieve 
high throughput because the frequency of the entropy 
sources is high. One common characteristic of these 
hardware random generators is that they all need carefully 
designed circuits where process variations should be 
minimized so that noises from the entropy source can be 
dominant. Compared to this, the random number generation 
in Flash memory cells does not require specially designed 
circuits and is more immune to process variation. Moreover, 
our entropy source is based on quantum behavior and 
theoretically, it should still work under extremely low 
temperatures where thermal noise or other kinds of noise 
decrease dramatically. 

B. Hardware Fingerprint – Physical Unclonable Funcitons 
Instead of conventional authentication based on a secret 

key and cryptographic computation, researchers have 
recently proposed to use the inherent variation in physical 
characteristics of a hardware device for identification and 
authentication. Process variation in semiconductor foundries 
is a common source of hardware uniqueness which is out of 
the control of the designer [22] [23] [24]. A unique 
fingerprint can be extracted and used to identify the chip, but 
cannot be used for security applications because it can be 
simply stored and replayed. We also take advantage of 
process variation for our fingerprinting scheme.  

For security applications, Physical Unclonable Functions 
(PUFs) have been proposed. A PUF can generate many 
fingerprints per device by using complex physical systems 
whose analog characteristics cannot be perfectly replicated. 
Pappu initially proposed PUFs [25] using light scattering 
patterns of optically transparent tokens. In silicon, 
researchers have constructed circuits which, due to random 
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process variation, emit unique outputs per device. Some 
silicon PUFs use ring oscillators [26] or race conditions 
between two identical delay paths [27]. These PUFs are 
usually implemented as custom circuits on the chip. Recently, 
PUFs have been implemented without additional circuitry by 
exploiting metastable elements such as SRAM cells, which 
have unique value on start-up for each IC instance [28] [4], 
or in Flash memories [5].  

Our authentication scheme requires no new circuitry and 
can be done with commercially available and ubiquitous 
Flash chips. Unlike metastable elements, authentication does 
not require a power cycle. The scheme can generate many 
fingerprints by using more pages in the Flash chip. 
Acquiring a fingerprint is also faster and more widely 
applicable than previous Flash authentication methods. 

VIII. CONCLUSION 
In this work, we show that unmodified Flash chips are 

capable of providing two important security functions: high-
quality true random number generation and the provision of 
many digital fingerprints. Using thermal noise and random 
telegraph noise, random numbers can be generated at up to 
10Kbit per second for each Flash bit and pass all NIST 
randomness tests. An authentication scheme with 
fingerprints derived from partial programming of pages on 
the Flash chip show high robustness and uniqueness. The 
authentication scheme was tested over 24 pages with 24 
different instances of a Flash chip and showed clear 
separation. A Flash chip can provide many unique 
fingerprints that remain distinguishable in various 
temperature and aged conditions. Both random number 
generation and fingerprint generation require no hardware 
change to commercial Flash chips. Because Flash chips are 
ubiquitous, the proposed techniques have a potential to be 
widely deployed to many existing electronic device though a 
firmware update or software change. 
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