
ETH 263-2210-00L Computer Architecture, Fall 2022

HW 2: Genome Analysis, RowHammer, Memory Refresh (SOLUTIONS)

Instructor: Prof. Onur Mutlu
TAs: Juan Gómez Luna, Mohammad Sadrosadati, Mohammed Alser, Rahul Bera, Nisa Bostanci,
João Dinis Ferreira, Can Firtina, Nika Mansouri Ghiasi, Geraldo Francisco De Oliveira Junior,

Konstantinos Kanellopoulos, Joël Lindegger, Rakesh Nadig, Ataberk Olgun, Abdullah Giray Yaglikci,
Yahya Can Tugrul, Haocong Luo, Banu Cavlak, Aditya Manglik

Given: Saturday, October 22, 2022
Due: Saturday, November 5, 2022

• Handin - Critical Paper Reviews (1). You need to submit your reviews to https:
//safari.ethz.ch/review/architecture22/. Please, check your inbox, you should have
received an email with the password you should use to login. If you did not receive any
email, contact comparch@lists.inf.ethz.ch. In the first page after login, you should click in
“Computer Architecture Home", and then go to “any submitted paper" to see the list of
papers.

• Handin - Questions (2-5). You should upload your answers to the Moodle Platform
(https://moodle-app2.let.ethz.ch/mod/assign/view.php?id=816655) as a single
PDF file.

• If you have any questions regarding this homework, please ask them the Moodle forum
(https://moodle-app2.let.ethz.ch/mod/moodleoverflow/view.php?id=816657).

• Please note that the handin questions have a hard deadline. However, you can submit your
paper reviews till the end of the semester.

1. Critical Paper Reviews [1,000 points]

You will do at least 5 readings for this homework, out of which 4 are tagged as REQUIRED papers. You
may access them by simply clicking on the QR codes below or scanning them.

Required 1 Required 2 Required 3 Required 4

Write an approximately one-page critical review for the readings (i.e., papers from #1 to #4 and at least 1
of the remaining papers, from #5 to #22). If you review a paper other than the 5 mandatory papers, you
will receive 200 BONUS points on top of 1,000 points you may get from paper reviews (i.e., each additional
submission is worth 200 BONUS points with a possibility to get up to 4400 points). Note that you will get
zero points from the critical paper reviews if you do not submit the required paper reviews (i.e., papers
from #1 to #4).

Please read the guideline slides for reviewing papers and watch Prof. Mutlu’s guideline video on how to do
a critical paper review. We also provide you with sample reviews which you can access using the QR code.
A review with bullet point style is more appreciated. Try not to use very long sentences and paragraphs.
Keep your writing and sentences simple. Make your points bullet by bullet, as much as possible. We will
give out extra credit that is worth 0.5% of your total course grade for each good review.

Guideline Slides Guideline Video Sample Reviews

https://safari.ethz.ch/review/architecture22/
https://safari.ethz.ch/review/architecture22/
https://moodle-app2.let.ethz.ch/mod/assign/view.php?id=816655
https://moodle-app2.let.ethz.ch/mod/moodleoverflow/view.php?id=816657
https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_ieeemicro20.pdf
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20.pdf
https://people.inf.ethz.ch/omutlu/pub/BlockHammer_preventing-DRAM-rowhammer-at-low-cost_hpca21.pdf
https://people.inf.ethz.ch/omutlu/pub/raidr-dram-refresh_isca12.pdf
https://safari.ethz.ch/architecture/fall2022/lib/exe/fetch.php?media=onur-comparch-f22-how-to-do-the-paper-reviews.pdf
https://www.youtube.com/watch?v=tOL6FANAJ8c
https://safari.ethz.ch/architecture/fall2022/doku.php?id=readings

1. (REQUIRED) Alser et al., “Accelerating Genome Analysis: A Primer on an Ongoing Journey”, IEEE MICRO,
2020. https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_ieeemicro20.pdf

2. (REQUIRED) Kim et al., “Revisiting RowHammer: An Experimental Analysis of Modern Devices and Miti-
gation Techniques," ISCA, 2020. https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca2
0.pdf

3. (REQUIRED) Yaglikci et al., “BlockHammer: Preventing RowHammer at Low Cost by Blacklisting Rapidly-
Accessed DRAM Rows”, MICRO 2021, https://people.inf.ethz.ch/omutlu/pub/BlockHammer_preventin
g-DRAM-rowhammer-at-low-cost_hpca21.pdf

4. (REQUIRED) Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” in ISCA, 2012. https:
//people.inf.ethz.ch/omutlu/pub/raidr-dram-refresh_isca12.pdf

5. Liu et al., “An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for
Retention Time Profiling Mechanisms,” in ISCA, 2013. https://people.inf.ethz.ch/omutlu/pub/dram-ret
ention-time-characterization_isca13.pdf

6. Chang et al., “Improving DRAM Performance by Parallelizing Refreshes with Accesses,” in HPCA, 2014. https:
//people.inf.ethz.ch/omutlu/pub/dram-access-refresh-parallelization_hpca14.pdf

7. Kim et al., “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance
Errors,” in ISCA, 2014. https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_isca14.pdf

8. Kang et al., “Co-Architecting Controllers and DRAM to Enhance DRAM Process Scaling”, The Memory Forum,
2014, https://safari.ethz.ch/architecture/fall2022/lib/exe/fetch.php?media=kang-memoryforum1
4.pdf

9. Khan et al., “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative
Experimental Study”, SIGMETRICS, 2014, https://people.inf.ethz.ch/omutlu/pub/error-mitigation
-for-intermittent-dram-failures_sigmetrics14.pdf

10. Qureshi et al., “AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems”, DSN 2015,
https://people.inf.ethz.ch/omutlu/pub/avatar-dram-refresh_dsn15.pdf

11. Meza et al., “Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New
Trends from the Field”, DSN, 2015, https://people.inf.ethz.ch/omutlu/pub/memory-errors-at-faceboo
k_dsn15.pdf

12. Patel et al., “The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling
at Aggressive Conditions”, ISCA 2017, https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retentio
n-profiling-lpddr4_isca17.pdf

13. Mutlu et al., “RowHammer: A Retrospective”, TCAD 2019, https://people.inf.ethz.ch/omutlu/pub/RowH
ammer-Retrospective_ieee_tcad19.pdf

14. Senol Cali et al., “GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Frame-
work for Genome Sequence Analysis”, MICRO 2020, https://people.inf.ethz.ch/omutlu/pub/GenASM-app
roximate-string-matching-framework-for-genome-analysis_micro20.pdf

15. Alser et al., “SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment Filter for CPUs, GPUs, and
FPGAs”, Bioinformatics, 2020, https://people.inf.ethz.ch/omutlu/pub/SneakySnake_UniversalGenome
PrealignmentFilter_bioinformatics20.pdf

16. Frigo et al., “TRRespass: Exploiting the Many Sides of Target Row Refresh”, S&P, 2020. https://people.inf
.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20.pdf

17. Patel et al., “HARP: Practically and Effectively Identifying Uncorrectable Errors in Memory Chips That Use
On-Die Error-Correcting Codes”, MICRO 2021, https://people.inf.ethz.ch/omutlu/pub/HARP-memory-er
ror-profiling_micro21.pdf

18. Orosa et al., “A Deeper Look into RowHammer’s Sensitivities: Experimental Analysis of Real DRAM Chips and
Implications on Future Attacks and Defenses”, MICRO 2021, https://people.inf.ethz.ch/omutlu/pub/AD
eeperLookIntoRowhammer_micro21.pdf

19. Senol Cali et al., “SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and Sequence-
to-Sequence Mapping”, ISCA, 2022, https://people.inf.ethz.ch/omutlu/pub/SeGraM_genomic-sequence-
mapping-universal-accelerator_isca22.pdf

20. Yaglikci et al., “Understanding RowHammer Under Reduced Wordline Voltage: An Experimental Study Using
Real DRAM Devices”, DSN, 2022, https://people.inf.ethz.ch/omutlu/pub/RowHammerUnderReducedWor
dlineVoltage_dsn22.pdf

21. Hassan et al., “Uncovering In-DRAM RowHammer Protection Mechanisms: A New Methodology, Custom
RowHammer Patterns, and Implications”, MICRO, 2021 https://people.inf.ethz.ch/omutlu/pub/U-
TRR-uncovering-RowHammer-protection-mechanisms_micro21.pdf

22. Hassan et al., “A Case for Self-Managing DRAM Chips: Improving Performance, Efficiency, Reliability, and
Security via Autonomous in-DRAM Maintenance Operations”, arXiv preprint, 2022, https://arxiv.org/pdf/
2207.13358.pdf

https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_ieeemicro20.pdf
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20.pdf
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20.pdf
https://people.inf.ethz.ch/omutlu/pub/BlockHammer_preventing-DRAM-rowhammer-at-low-cost_hpca21.pdf
https://people.inf.ethz.ch/omutlu/pub/BlockHammer_preventing-DRAM-rowhammer-at-low-cost_hpca21.pdf
https://people.inf.ethz.ch/omutlu/pub/raidr-dram-refresh_isca12.pdf
https://people.inf.ethz.ch/omutlu/pub/raidr-dram-refresh_isca12.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-retention-time-characterization_isca13.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-retention-time-characterization_isca13.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-access-refresh-parallelization_hpca14.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-access-refresh-parallelization_hpca14.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_isca14.pdf
https://safari.ethz.ch/architecture/fall2022/lib/exe/fetch.php?media=kang-memoryforum14.pdf
https://safari.ethz.ch/architecture/fall2022/lib/exe/fetch.php?media=kang-memoryforum14.pdf
https://people.inf.ethz.ch/omutlu/pub/error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf
https://people.inf.ethz.ch/omutlu/pub/error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf
https://people.inf.ethz.ch/omutlu/pub/avatar-dram-refresh_dsn15.pdf
https://people.inf.ethz.ch/omutlu/pub/memory-errors-at-facebook_dsn15.pdf
https://people.inf.ethz.ch/omutlu/pub/memory-errors-at-facebook_dsn15.pdf
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17.pdf
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17.pdf
https://people.inf.ethz.ch/omutlu/pub/RowHammer-Retrospective_ieee_tcad19.pdf
https://people.inf.ethz.ch/omutlu/pub/RowHammer-Retrospective_ieee_tcad19.pdf
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
https://people.inf.ethz.ch/omutlu/pub/SneakySnake_UniversalGenomePrealignmentFilter_bioinformatics20.pdf
https://people.inf.ethz.ch/omutlu/pub/SneakySnake_UniversalGenomePrealignmentFilter_bioinformatics20.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20.pdf
https://people.inf.ethz.ch/omutlu/pub/HARP-memory-error-profiling_micro21.pdf
https://people.inf.ethz.ch/omutlu/pub/HARP-memory-error-profiling_micro21.pdf
https://people.inf.ethz.ch/omutlu/pub/ADeeperLookIntoRowhammer_micro21.pdf
https://people.inf.ethz.ch/omutlu/pub/ADeeperLookIntoRowhammer_micro21.pdf
https://people.inf.ethz.ch/omutlu/pub/SeGraM_genomic-sequence-mapping-universal-accelerator_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/SeGraM_genomic-sequence-mapping-universal-accelerator_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/RowHammerUnderReducedWordlineVoltage_dsn22.pdf
https://people.inf.ethz.ch/omutlu/pub/RowHammerUnderReducedWordlineVoltage_dsn22.pdf
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21.pdf
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21.pdf
https://arxiv.org/pdf/2207.13358.pdf
https://arxiv.org/pdf/2207.13358.pdf

2. Genome Analysis [150 points]

2.1. Edit Distance Computation
One of the most fundamental computational steps in most bioinformatics analyses is the detection of the

differences between two DNA sequences or two protein sequences. Edit distance is one way to measure the
differences between two genomic sequences. Edit distance algorithm calculates the minimum number of edit
operations needed to convert one sequence into the other. Allowed edit operations are: (1) substitution, (2)
insertion, and (3) deletion of a character. The notion of edit distance is also useful for spell-checking and
pattern recognition applications.

Compute the Edit distance for each of the following string pairs and provide the list of the edit operations
(e.g., delete character ‘F’ from string “Friday” to be “riday”) used to convert the first string into the second
string.

(a) Montag & Donnerstag

Answer:
5 Edits.
1- Substitute character ‘M’ with ‘D’ from string “Montag” to be “Dontag”
2- Insert character ‘n’ into string “Dontag” to be “Donntag”
3- Insert character ‘e’ into string “Donntag” to be “Donnetag”
4- Insert character ‘r’ into string “Donnetag” to be “Donnertag”
5- Insert character ‘s’ into string “Donnertag” to be “Donnerstag”

(b) Freitag & Samstag

Answer:
4 Edits.
1- Substitute character ‘F’ with ‘S’ from string “Freitag” to be “Sreitag”
2- Substitute character ‘r’ with ‘a’ from string “Sreitag” to be “Saeitag”
3- Substitute character ‘e’ with ‘m’ from string “Saeitag” to be “Samitag”
4- Substitute character ‘i’ with ‘s’ from string “Samitag” to be “Samstag”

(c) Donnerstag & “” (where “” is an empty string)

Answer:
10 Edits.
1- Delete character ‘D’ from string “Donnerstag” to be “onnerstag”
2- Delete character ‘0’ from string “onnerstag” to be “nnerstag”
3- Delete character ‘n’ from string “nnerstag” to be “nerstag”
4- Delete character ‘n’ from string “nerstag” to be “erstag”
5- Delete character ‘e’ from string “erstag” to be “rstag”
6- Delete character ‘r’ from string “rstag” to be “stag”
7- Delete character ‘s’ from string “stag” to be “tag”
8- Delete character ‘t’ from string “tag” to be “ag”
9- Delete character ‘a’ from string “ag” to be “g”
10- Delete character ‘g’ from string “g” to be “”

2.2. Hash Table
During a process called read mapping in genome analysis, each read (i.e., genomic subsequence) is mapped

to one or more locations in the reference genome. Potential mapping locations are identified based on the
presence of exact short segments (i.e., k-mers where k is the length of the short segment) from the read se-
quence, in the reference genome. The locations of the k-mers in the reference genome are usually determined
using a hash table. Each entry of the hash table stores a key-value pair, where the key is a k-mer and the
value is a list of locations at which the k-mer occurs in the reference genome. A challenge in designing such
a hash table is deciding which k-mers to use as keys. In this question, you will be exploring two approaches
to k-mer selection:

(1) Non-overlapping 3-mers: Every non-overlapping 3-mers in the reference genome is used as a
key in the hash table. For example, the reference segment "ACTCTAAACATT" contains four non-
overlapping 3-mers: ACT, CTA, AAC, and ATT. Thus, the hash table would have the following entries:
{ACT} → {1}, {CTA} → {4}, {AAC} → {7}, and {ATT} → {10}, where 1, 4, 7 and 10 are the start
locations of the non-overlapping 3-mers (keys) in the reference.

(2) Non-overlapping 3-mer minimizers: For every non-overlapping 3-mer in the reference genome,
the lexicographically minimum 3-mer of it and the two subsequent non-overlapping 3-mers is used as
a key in the hash table. For example, the reference segment "ACTCTAAACATT" contains only one
non-overlapping 3-mer minimizers, AAC. This is because AAC is the lexicographically minimum k-mer
among the first three consecutive 3-mers (i.e., ACT, CTA, and AAC), and the second three consecutive
3-mers (i.e., CTA, AAC, and ATT). Thus, the hash table would only have one entry: {AAC} → {7},
where 7 is the start location of the minimizer (key) in the reference.

Suppose that you would like to map a set of reads to the following reference genome. Note that the
3-mers are separated by ‘_’ only to help you identify the 3-mers easily, so you should not count them when
creating a list of locations for a key.

AGG_ATG_AGA_CAG_ATA_GTA_GAG_ATG_GAG_GTA_ATG_GTA_AAC_ATG_ATA

Answer the following questions based on the information given above:

(a) Please list all {key} → {value} entries in the hash table if we use all non-overlapping 3-mers as
keys. The order of the entries is not important.

Answer:
{AGG} → {1},
{ATG} → {4, 22, 31, 40},
{AGA} → {7},
{CAG} → {10},
{ATA} → {13, 43},
{GTA} → {16, 28, 34},
{GAG} → {19, 25},
{AAC} → {37}.

(b) Please list all {key} → {value} entries in the hash table if we use all non-overlapping 3-mer min-
imizers as keys. Please list all the entries of this hash table. The order of the entries is not important.

Answer:
{AGA} → {7},
{ATA} → {13},
{ATG} → {22, 31},
{AAC} → {37}.

(c) Assume that we calculate the size of the hash table allocated in memory as: 2dlog2 ee+p bytes, where e
is the total number of hash table entries and p is the total number of locations stored across all values.
Calculate the memory footprint (in bytes) of each of the two hash tables you designed in part (a) and
part (b). Show your work. In your opinion what are the advantages and disadvantages of using the
non-overlapping 3-mers approach or the non-overlapping 3-mer minimizers approach?

Answer: Based on the content of the hash tables that we constructed in part a, and part b
of this question, we find that the size of the hash tables for:
1) Non-overlapping 3-mers: 2dlog2 8e + 15 = 23 bytes
2) Non-overlapping 3-mer minimizers: 2dlog2 4e + 5 = 9 bytes
Therefore the hash table with the non-overlapping 3-mers approach requires ∼ 2.5× more
memory than using the non-overlapping 3-mer minimizers approach.
Based on these calculations in the given reference segment, non-overlapping 3-mer minimizers
approach consumes less memory as the e and p values cannot be larger than that of the non-
overlapping 3-mers approach. However, it is not possible to add either 1) more key values
(i.e., k-mers) or 2) more locations in the hash table using non-overlapping 3-mer minimizers
approach than using the non-overlapping 3-mers approach as the latter already stores all
possible non-overlapping {key} → {value} pairs in the hash table.

3. RowHammer [150 points]

3.1. RowHammer Attacks
In order to characterize the vulnerability of your DRAM device to RowHammer attacks, you must be

able to induce RowHammer errors. Assume the following about the target system:
• The CPU has a single in-order processor, and does not implement virtual memory.
• The physical memory address is 16 bits.
• The DRAM subsystem consists of two channels, four banks per channel, and 64 rows per bank.
• The memory controller employs open-page policy.
• The DRAM modules and the memory controller do not employ any remapping or scrambling schemes

for the physical address.
• All the cells in the DRAM subsystem are equally vulnerable to RowHammer-induced errors.
You implement codes based on instructions shown in Table 1.

Instruction Description Functionality
B LABEL Unconditional Branch PC = LABEL
STORE IMM, Rs Store word to memory MEM[IMM] = Rs
CLFLUSH IMM Cache line flush Flush cache line containing IMM

Table 1. Instruction Descriptions.

(a) You run Code 1 below, but you cannot observe any errors in the target system. You figured out that
the number of activations is much lower than your expectation. Give reason(s) as to why Code 1
cannot introduce a sufficient amount of activations.
Code 1
1: LOOP:
2: STORE 0x8732, R0
3: CLFLUSH 0x8732
4: B LOOP

All of reads in Code 1 are to the same row in DRAM, and the memory controller minimizes
the number of DRAM commands by opening and closing the row just once, while issuing
many column reads.

(b) You try Codes 2a, 2b, and 2c, but find that only one of them can induce RowHammer errors in your
DRAM subsystem. Which code segment is the one that can induce RowHammer errors? Justify your
answer.
Code 2a
1: LOOP:
2: STORE 0x8732, R0
3: STORE 0x98CD, R1
4: CLFLUSH 0x8732
5: CLFLUSH 0x98CD
6: B LOOP

Code 2b
1: LOOP:
2: STORE 0xF1AB, R0
3: STORE 0x0054, R1
4: CLFLUSH 0xF1AB
5: CLFLUSH 0x0054
6: B LOOP

Code 2c
1: LOOP:
2: STORE 0x2B97, R0
3: STORE 0xDA68, R1
4: CLFLUSH 0x2B97
5: CLFLUSH 0xDA68
6: B LOOP

(a) In order to introduce enough activations, two STORE instructions should access different
rows in the same bank.

(b) Three code segments are identical except for the memory addresses, so we can assume
that only one code segment has two STORE instructions whose destination addresses are
assigned to the same bank (but different rows).

(c) Since the DRAM subsystem 1) consists of 8 banks and 2) employs no address
remapping/scrambling schemes, two addresses assigned the same bank should satisfy a
condition C: they have at least three same bit values at the same position.

Two addresses in each code are:
• Code 2a
1000 0111 0011 0010 (0x8732)
1001 1000 1100 1101 (0x98CD)

• Code 2b
1111 0001 1010 1011 (0xF1AB)
0000 0000 0101 0100 (0x0054)

• Code 2c
0010 1011 1001 0111 (0x2B97)
1101 1010 0110 1000 (0xDA68)

We can observe
(a) Two paired addresses in every code segment have only three same bit values at the same

position, i.e., satisfy C.
(b) The position of the same bit values in Code 2b and Code 2c is the same, but

different from Code 1. Therefore, if Code 2b can induce RowHammer errors, Code
2c should also be able toinduce errors and Code 2a should not. On the other hand,
if Code 2a can induce RowHammer errors, neither Code 2b or Code 2c can induce errors.

Since only one code segment can induce RowHammer errors, Code 2a is the one able to
induce RowHammer errors.

3.2. RowHammer Mitigation Mechanisms
To identify a viable RowHammer mitigation mechanism for your system, you compare the two following

mitigation mechanisms:
• Mechanism A. The memory controller maintains a counter for every row, which increments every time the

corresponding row is activated. If the counter value for a row exceeds a threshold value T , the memory
controller activates the row’s two adjacent rows and resets the counter.

• Mechanism B. Each time a row is closed (or precharged), the memory controller flips a biased coin with a
probability p of turning up heads, where p << 1. If the coin turns up heads, the memory controller activates
one of its adjacent rows where either of the two adjacent rows are selected with equal probability (p/2).

(a) You set T for Mechanism A to 164 K based on the value of the Maximum Activation Count (MAC,
i.e., the maximum number of times a row can be activated without inducing RowHammer errors in
its adjacent rows) reported by the DRAM manufacturer. Calculate the number of bits required for
counters in a memory controller which manages a single channel, 2 ranks per channel, 8 banks per
rank, and 215 rows per bank.

To count values up to 164 K, we need at least 18 bits (218 > 164K) per counter.
∴ 18 [bit

row]× (215) [row
bank]× 16 [bank] = 9× 220 bits = 9 Mib

(b) How does the answer to (a) change when both the number of rows per bank and the number of banks
per chip are doubled?

It will increase to 36 Mib with 2x rows and 2x banks.

(c) You profile the memory access pattern of the target system, and observe that the same pattern repeats
exactly every 64 ms (the current refresh interval). Table 2 shows the number of activations for each
row within a 64-ms time interval in a descending order. Given values T = 164 K for Mechanism A and
p = 0.001 for Mechanism B, calculate the expected number of additional activations within a 64-ms
time interval under each technique.

Row Index # of ACTs
0x7332F 73 K
0x1802C 64 K
0x03F05 32 K
0x5FF02 10 K

... ...
Total 480 K

Table 2. Number of Activations for Each Row.

Mechanism A introduces no additional row activation, since no row is activated more than
the threshold.

On the other hand, for Mechanism B, the number of additional activations can be modeled
as a random variable X that is binomially-distributed with parameters B(480, 000, p).
∴ # of additional activations = E(X) = 480, 000× 0.001 = 480

(d) How does the answer to (c) change when both the number of rows per bank and the number of banks
per chip are doubled? Assume that the memory access pattern does not change.

The performance overhead only depends on the access pattern, so it will not change.

(e) What is the common challenge to implement the above mechanisms in the commodity systems?

This question is open ended. There could be other possible right answers.

Both Mechanisms require the information about exact mappings between row address and
physical row, which is unlikely disclosed by manufacturers.

(f) How can you address the common challenge?

This question is open ended. There could be other possible right answers.

Possible solutions
• Reverse engineering
• Implementing the techniques inside DRAM modules where the mapping function is
managed.

• For counter-based approach, we can block future activations on a row (instead of re-
freshing its adjacent rows), if the counter value of a row exceeds the threshold value.

4. VRT Mitigation Techniques [150 points]

DRAM cells are susceptible to retention errors, which come in two varieties:
1. Static: cells that have one fixed retention time, beyond which they will fail.
2. Variable Retention Time (VRT): cells that have a dynamically changing retention time.

VRT cells are particularly problematic because they change between different retention times unpredictably
at runtime.
4.1. Part I: Per-Row Techniques

You will implement an idealized version of RAIDR1 that extends the fixed 64 ms DRAM refresh window
in order to improve DRAM performance and save energy. Your design provides three retention time “buckets”
for refreshing DRAM rows, labeled A, B, and C. Each bucket refreshes its corresponding rows with the refresh
windows shown in Table 3.

Bucket Label Refresh Window for Rows in the Bucket
A 64 ms
B 128 ms
C 256 ms

Table 3. RAIDR retention time buckets.

To assign DRAM rows to buckets, you measure the retention time of each row as the worst-case cell in the
row. The profile in Figure 1 shows how rows are split into buckets. Letters a..f represent the proportion
of all DRAM rows with retention times within each range. For example, if a = 0.1, 10% of all DRAM rows
have worst-case retention times within the range shown by a. Note that static rows are fixed within a
bucket, but VRT rows span more than one bucket.

64 ms 128 ms 256 ms

A B C

a b c
d

e
f

static

VRT

Figure 1. Measured retention time profile of all DRAM rows.

1Liu, J., Jaiyen, B., Veras, R. and Mutlu, O., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA, 2012.

(a) Compute the proportion of all DRAM rows that fall in each of the four RAIDR buckets. Minimize the
total number of refresh operations required. Leave your answer in terms of the variables a, b, etc.

Ignoring VRT rows
i.e., assume d= 0, e= 0, and f= 0 Including VRT rows

Bucket Proportion of all rows Bucket Proportion of all rows

A a A a+d+f

B b B b+e

C c C c

(b) Considering the VRT rows, when do unnecessary refresh operations occur?

Whenever a VRT row is in a higher retention time state relative to its assigned bucket.

Specifically, rows being refreshed unnecessarily:
• d: whenever it is in bucket B
• e: whenever it is in bucket C
• f: whenever it is in bucket B or C

(c) For simplicity, assume that VRT rows can only transition between buckets every 256 ms, perfectly
aligned with refresh operations of bucket C. Then, assume that, on average, all VRT rows spend equal
time in each bucket that their retention time spans (e.g., rows d spend equal time in buckets A and B).
On average, what is the proportion of all refresh commands that are unnecessary? Hint: consider the
number of refreshes issued in 3× 512 = 1536 ms.

Without loss of generality, let us assume a time period of 3× 512 ms. Within this period, per-row
refresh counts for each row range are:

• a: 3× 512 ms
64 ms

= 3× 8
• b: 3× 512 ms

128 ms
= 3× 4

• c: 3× 512 ms
256 ms

= 3× 2
• d: 3× 512 ms

64 ms
= 3× 8

• e: 3× 512 ms
128 ms

= 3× 4
• f: 3× 512 ms

64 ms
= 3× 8

Let R be the total number of row refresh operations in 3 × 512 ms, normalized by the number of
DRAM rows:
R
3
= 8a+ 4b+ 2c+ 8d+ 4e+ 8f

R = 24a+ 12b+ 6c+ 24d+ 12e+ 24f

Based on spending equal time in each bucket, necessary refresh counts are:

• a: all
• b: all
• c: all

• d: 3× 256 ms in each of A and B: 3× (4 + 2) = 3× 6
• e: 3× 256 ms in each of B and C: 3× (2 + 1) = 3× 3
• f: 1× 512 ms in each of A, B, and C: 1× (8 + 4 + 2) = 1× 14

Therefore, average unnecessary refresh counts U in 3× 512 ms are:
U = R− (24a+ 12b+ 6c+ 3× 6d+ 3× 3e+ 1× 14f)
U = R− (24a+ 12b+ 6c+ 18d+ 9e+ 14f)
U = 6d+ 3e+ 10f

The final proportion of unnecessary refresh commands is:
U

R
=

6d+ 3e+ 10f

24a+ 12b+ 6c+ 24d+ 12e+ 24f
.

4.2. Part II: Per-Cell Techniques
A different approach to handling VRT cells is to treat them at the cell granularity rather than the row

granularity.
Assume that proportion p of all DRAM cells are susceptible to VRT and might fail. If read operations

target random addresses, we can interpret p as the probability that a single cell might fail due to VRT.
To prevent errors, we implement a single-error correcting error-correcting code (ECC) with 136-bit ECC
words. This code corrects one error within every 136 bits (128 data bits + 8 metadata bits), so a single read
operation provides 128 bits of data.
(d) What is the probability that a 136-bit word contains no errors after ECC operation? Express your

answer in terms of p.

The probability of no error is the probability of 0 or 1 errors in the 136-bit word:

P [0 error] = P [no error in bit[0]] ∧ P [no error in bit[1]] ∧ ... ∧ P [no error in bit[135]] (1)

= (1− p)136 (2)

P [1 error] =
(136

1

)
P [error in bit[0]] ∧ P [no error in bit[1]] ∧ ... ∧ P [no error in bit[135]] (3)

= 136p(1− p)135 (4)

P [0 or 1 error] = P [0 error] + P [1 error] = (1− p)136 + 136p(1− p)135

Note this is the first two terms of the binomial distribution B(136, 0|p) +B(136, 1|p).

(e) Given a DRAM module with bandwidth 16 GB/s, what is the worst-case probability of observing at
least one uncorrectable error after 225 seconds (≈ 1 year) of operation? You may leave your answer in
terms of your answer for part (d).

Let d be the response to part (d), i.e., the probability of no error in a 136-bit word after ECC operation.
Over 225 seconds, we read 16 ∗ 225 GB = 229 GB = 262 bits = 255 ECC words.

The probability of observing at least one error is then 1− P [noerror] = 1− d2
55

5. SARP: Subarray Access-Refresh Parallelization [150 points]

A DRAM bank consists of multiple subarrays, each of which has a single local row buffer. However, only
one of these local row buffers may be connected to the global row buffer at any given time. This means that
only one subarray may be active at a time.

Chang et al. explore several ways to reduce the performance overhead of refresh operations in their
paper.2

They propose (SARP), which refreshes idle subarrays while servicing the active one in order to overlap
the refresh latency with accesses. In this question, you are asked to evaluate a system that uses SARP.
Consider a baseline, where:

• Each bank has 8 subarrays.
• Each row needs to be refreshed every 64 ms, and each bank is unavailable for 0.2 ms during refresh.
• Your application accesses each subarray sequentially in a round-robin fashion such that each subarray

receives its next request only after all other subarrays in the same bank have received exactly one
request.

• Each memory request takes 50 ns to serve, and each bank receives a request every 500 ns.
Is it possible to completely hide the overhead of refresh? Explain. If no, can you enable achieve this by

changing the subarray-bank organization? How?
Note: Assume that the access pattern argument always holds, independent from the subarray organization.

No!

Each subarray will receive a request every 500ns× 8 = 4us.
As each request takes 50ns to finish, each subarray will be idle for 3.95us.
Refreshing a bank takes 200us. Then refreshing a subarray costs 200us/8 = 25us.
As the idle time of a subarray is not as large as the refresh latency, the refresh time cannot be
completely hidden.

How to make it possible?
There are two obstacles:

• A subarray receives requests too frequently (0.5×Nsubarray).
• Refreshing a subarray takes too long (200/Nsubarray).

If we reduce the subarray size and have more subarrays in a bank, then change the decode
logic accordingly to sustain the round-robin access pattern across subarrays, we can make these
parameters to match.

We want to satisfy:
0.5×Nsubarray − 0.05 ≥ 200/Nsubarray

0.5×Nsubarray − 0.05− 200/Nsubarray ≥ 0
0.5×N2

subarray − 0.05×Nsubarray − 200 ≥ 0

N2
subarray − 0.1×Nsubarray − 400 ≥ 0

Say Nsubarray = 16: 256− 1.6− 400 ≥ 0 is false.
Say Nsubarray = 32: 1024− 3.2− 400 ≥ 0 is true.

Increasing the number of subarrays to 32 enables completely overlapping the refresh latency.

2Chang, K. et al., "Improving DRAM performance by Parallelizing Refreshes with Accesses." In Proceedings of International
Symposium on High-Performance Computer Architecture (HPCA), 2014.

	Critical Paper Reviews [1,000 points]
	Genome Analysis [150 points]
	Edit Distance Computation
	Hash Table

	RowHammer [150 points]
	RowHammer Attacks
	RowHammer Mitigation Mechanisms

	VRT Mitigation Techniques [150 points]
	Part I: Per-Row Techniques
	Part II: Per-Cell Techniques

	SARP: Subarray Access-Refresh Parallelization [150 points]

