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2. DRAM Scheduling and Latency [180 points]

You would like to understand the con�guration of the DRAM subsystem of a computer using reverse
engineering techniques. Your current knowledge of the particular DRAM subsystem is limited to the following
information:
� The physical memory address is 16 bits.
� The DRAM subsystem consists of a single channel, 2 banks, and 64 rows per bank.
� The DRAM is byte-addressable.
� The most-signi�cant bit of the physical memory address determines the bank. The following 6 bits of the
physical address determine the row.

� The DRAM command bus operates at 1 GHz frequency.
� The memory controller issues commands to the DRAM in such a way that no command for servicing a
later request is issued before issuing a READ command for the current request, which is the oldest request
in the request bu�er. For example, if there are requests A and B in the request bu�er, where A is the older
request and the two requests are to di�erent banks, the memory controller does not issue an ACTIVATE
command to the bank that B is going to access before issuing a READ command to the bank that A is
accessing.

� The memory controller services requests in order with respect to each bank. In other words, for a given
bank, the memory controller �rst services the oldest request in the request bu�er that targets the same
bank. If all banks are ready to service a request, the memory controller �rst services the oldest request in
the request bu�er.
You realize that you can observe the memory requests that are waiting to be serviced in the request

bu�er. At a particular point in time, you take the snapshot of the request bu�er and you observe the
following requests in the request bu�er (in descending order of request age, where the oldest request is on
the top):
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Read 0xD780

Read 0x280C

Read 0xE4D0

Read 0x2838
At the same time you take the snapshot of the request bu�er, you start probing the DRAM command

bus. You observe the DRAM command type and the cycle (relative to the �rst command) at which the
command is seen on the DRAM command bus. The following are the DRAM commands you observe on the
DRAM bus while the requests above are serviced.

Cycle 0 --- READ

Cycle 1 --- PRECHARGE

Cycle 8 --- PRECHARGE

Cycle 13 --- ACTIVATE

Cycle 18 --- READ

Cycle 20 --- ACTIVATE

Cycle 22 --- READ

Cycle 25 --- READ

Answer the following questions using the information provided above.
(a) What are the following DRAM timing parameters used by the memory controller, in terms of nanosec-

onds? If there is not enough information to infer the value of a timing parameter, write unknown.
i) ACTIVATE-to-READ latency:

5 ns.

Explanation. After issuing the ACTIVATE command at cycle 13, the memory con-
troller waits until cycle 18, which indicates that the ACTIVATE-to-READ latency is 5
cycles. The command bus operates at 1 GHz, so it has 1 ns clock period. Thus, the
ACTIVATE-to-READ is 5 ∗ 1 = 5 ns.



ii) ACTIVATE-to-PRECHARGE latency:

Unknown.

Explanation. In the command sequence above, there is not a PRECHARGE command
that follows an ACTIVATE command with a known issue cycle. Thus, we cannot
determine the ACTIVATE-to-PRECHARGE latency.

iii) PRECHARGE-to-ACTIVATE latency:

12 ns.

Explanation. The PRECHARGE-to-ACTIVATE latency can be easily seen in the
�rst two commands at cycles 1 and 13. The PRECHARGE-to-ACTIVATE latency is
12 cycles = 12 ns.

iv) READ-to-PRECHARGE latency:

8 ns.

Explanation. The READ command at cycle 0 is followed by a PRECHARGE com-
mand to the same bank at cycle 8. There are idle cycles before cycle 8, which indicates
that the memory controller delayed the PRECHARGE command until cycle 8 because
the timing constaints but not because the command bus was busy. Thus, the READ-
to-PRECHARGE is 8 cycles, which is 8 ∗ 1 = 8 ns for the 1 GHz DRAM command
bus.

v) READ-to-READ latency:

4 ns.

Explanation. Bank 0 receives back-to-back reads at cycles 18 and 22. The READ-
to-READ latency is 4 cycles, which is 4 ∗ 1 = 4 ns for the 1 GHz DRAM command
bus.



(b) What is the status of the banks prior to the execution of any of the above requests? In other words,
which rows from which banks were open immediately prior to issuing the DRAM commands listed
above? Fill in the table below indicating whether a bank has an open row, and if there is an open row,
specify its address. If there is not enough information to infer the open row address, write unknown.

Open or Closed? Open Row Address

Bank 0 Open Unknown
Bank 1 Open 43

Explanation. By decoding the accessed addresses we can �nd which bank and row each access
targets. Looking at the commands issued for those requests, we can determine which requests needed
PRECHARGE (row bu�er con�ict, the initially open row is unknown in this case), ACTIVATE (the
bank is initially closed), or directly READ (the bank is initially open and the open row is the same as
the one that the request targets).
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0xD780 → Bank: 1, Row: 43 (Row hit, so Bank 1 must have row 43 open.)
0x280C → Bank: 0, Row: 20 (PRECHARGE �rst. Any row other than 20 might have been open.)
0xE4D0 → Bank: 1, Row: 50

0x2838 → Bank: 0, Row: 20

(c) To improve performance, you decide to implement the idea of Tiered-Latency DRAM (TL-DRAM)
in the DRAM chip. Assume that a bank consists of a single subarray. With TL-DRAM, an entire
bank is divided into a near segment and far segment. When accessing a row in the near segment,
the ACTIVATE-to-READ latency reduces by 1 cycle and the ACTIVATE-to-PRECHARGE latency
reduces by 3 cycles. When precharging a row in the near segment, the PRECHARGE-to-ACTIVATE
latency reduces by 3 cycles. When accessing a row in the far segment, the ACTIVATE-to-READ
latency increases by 1 cycle and the ACTIVATE-to-PRECHARGE latency increases by 2 cycles. When
precharging a row in the far segment, the PRECHARGE-to-ACTIVATE latency increases by 2 cycles.
The following table summarizes the changes in the a�ected latency parameters.

Timing Parameter Near Segment Latency Far Segment Latency

ACTIVATE-to-READ −1 +1
ACTIVATE-to-PRECHARGE −3 +2
PRECHARGE-to-ACTIVATE −3 +2

Assume that the rows in the near segment have smaller row ids compared to the rows in the far
segment. In other words, physical memory row addresses 0 through N − 1 are the near-segment rows,
and physical memory row addresses N through 63 are the far-segment rows.
If the above DRAM commands are issued 2 cycles faster with TL-DRAM compared to the baseline
(the last command is issued in cycle 23), how many rows are in the near segment, i.e., what is N?
Show your work.

The rows in the range of [0-43] should de�nitely be in the near segment. Row 50 should
de�nitely be in the far segment. Thus, N is a number between [44-50].

Explanation. There should be at least 44 rows in the near segment (rows 0 to 43) since
rows until row id 43 need to be accessed with low latency to get 2 cycle reduction. The
unknown open row in bank 0 should be in the near segment to get the 2 cycle improvement.
Row 50 is in the far segment because if it was in the near segment, the command would have
been �nished in cycle 21, i.e., 4 cycles sooner instead of 2 cycles sooner. Thus, the number
of rows in the near segment N is a number between 44 and 50.
Here is the new command trace:
Cycle 0 �- READ - Bank 1

Cycle 1 �- PRECHARGE - Bank 0, an unknown row in the near segment

Cycle 8 �- PRECHARGE - Bank 1, row 43, which is in the near segment

Cycle 10 �- ACT - Bank 0, row 20, which is in the near segment

Cycle 14 �- READ - Bank 0

Cycle 17 �- ACTIVATE - Bank 1, Row 50, which is in the far segment

Cycle 18 �- READ - Bank 0

Cycle 23 �- READ - Bank 1, Row 0



3. Tiered-di�culty [120 points]

Recall from your required reading on Tiered-Latency DRAM that there is a near and far segment, each
containing some number of rows. Assume a very simpli�ed memory model where there is just one bank
and there are two rows in the near segment and four rows in the far segment. The time to activate and
precharge a row is 25ns in the near segment and 50ns in the far segment. The time from start of activation
to reading data is 10ns in the near segment and 15ns in the far segment. All other timings are negligible
for this problem. Given the following memory request stream, determine the optimal assignment (minimize
average latency of requests) of rows in the near and far segment (assume a �xed mapping where rows cannot
migrate, a closed-row policy, and the far segment is inclusive).

time 0ns : row 0 read

time 10ns : row 1 read

time 100ns: row 2 read

time 105ns: row 1 read

time 200ns: row 3 read

time 300ns: row 1 read

(a) What rows would you place in near segment? Hint: draw a timeline.

Rows 0 and 2.

Explanation. If you were to map 0 and 2 (this is the answer) to near segment:
row 0: activated at time = 0

row 0: read at time = 10 (10ns latency)

row 1: activated at time = 25

row 1: read at time = 40 (30ns latency)

row 2: activated at time = 100

row 2: read at time = 110 (10ns latency)

row 1: activated at time = 125

row 1: read at time = 140 (35ns latency)

row 3: activated at time = 200

row 3: read at time = 215 (15ns latency)

row 1: activated at time = 300

row 1: read at time = 315 (15 ns latency)

total latency is 115ns.

If you were to map 1 and 2 (an example incorrect answer) to near segment:
row 0: activated at time = 0

row 0: read at time = 15 (15ns latency)

row 1: activated at time = 50

row 1: read at time = 60 (50ns latency)

row 2: activated at time = 100

row 2: read at time = 110 (10ns latency)

row 1: activated at time = 125

row 1: read at time = 135 (30ns latency)

row 3: activated at time = 200

row 3: read at time = 215 (15ns latency)

row 1: activated at time = 300

row 1: read at time = 310 (10 ns latency)

total latency is 130ns.



(b) What rows would you place in far segment?

Rows 1 and 3 (also rows 0 and 2 since inclusive).

(c) In 15 words or less, describe the insight in your mapping?

See TL-DRAM's WMC policy � the �rst access in near simultaneous requests causes the
second to wait activation + precharge time. minimizing this wait by caching �rst row in
near segment is better than caching second row in near segment (this decreases only time to
read from start of activation), even if second row is accessed more frequently (see example
above)

(d) Assume now that the mapping is dynamic. What are the tradeo�s of an exclusive design vs. an inclu-
sive design? Name one advantage and one disadvantage for each.

Exclusive requires swapping, but can use nearly full capacity of DRAM. Inclusive, the op-
posite.

(e) Assume now that there are eight (8) rows in the near segment. Below is a plot showing the number
of misses to the near segment for three applications (A, B, and C) when run alone with the speci�ed
number of rows allocated to the application in the near segment. This is similar to the plots you saw in
your Utility-Based Cache Partitioning reading except for TL-DRAM instead of a cache. Determine the
optimal static partitioning of the near segment when all three of these applications are run together on
the system. In other words, how many rows would you allocate for each application? Hint: this should
sum to eight. Optimal for this problem is de�ned as minimizing total misses across all applications.

(Question 4 cont’d)

E) [6 pts] Assume now that there are eight (8) rows in the near segment. Below is a plot showing the
number of misses to the near segment for three applications (A, B, and C) when run alone with the specified
number of rows allocated to the application in the near segment. This is similar to the plots you saw in your
Utility-Based Cache Partitioning reading except for TL-DRAM instead of a cache. Determine the optimal
static partitioning of the near segment when all three of these applications are run together on the system.
In other words, how many rows would you allocate for each application? Hint: this should sum to eight.
Optimal for this problem is defined as minimizing total misses across all applications.
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1) How many near segment rows would you allocate to A?

2) How many near segment rows would you allocate to B?

3) How many near segment rows would you allocate to C?
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(1) How many near segment rows would you allocate to A?

5

(2) How many near segment rows would you allocate to B?

3

(3) How many near segment rows would you allocate to C?

0



4. Memory Interference and QoS [180 points]

Row-Bu�er Con�icts. The following timing diagram shows the operation of a single DRAM channel
and a single DRAM bank for two back-to-back reads that con�ict in the row-bu�er. Immediately after the
bank has been busy for 10ns with a READ, data starts to be transferred over the data bus for 5ns.

Initials:

4. Memory Scheduling [50 points]

Row-Buffer Conflicts. The following timing diagram shows the operation of a single DRAM channel
and a single DRAM bank for two back-to-back reads that conflict in the row-buffer. Immediately after
the bank has been busy for 10ns with a READ, data starts to be transferred over the data bus for 5ns.
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(a) Given a long sequence of back-to-back reads that always conflict in the row-buffer, what is the
data throughput of the main memory system? Please state your answer in gigabytes/second.

(b) To increase the data throughput, the main memory designer is considering adding more DRAM
banks to the single DRAM channel. Given a long sequence of back-to-back reads to all banks
that always conflict in the row-buffers, what is the minimum number of banks that is required to
achieve the maximum data throughput of the main memory system?
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(a) Given a long sequence of back-to-back reads that always con�ict in the row-bu�er, what is the data
throughput of the main memory system? Please state your answer in gigabytes/second.

Solution: 64B/30ns = 32B/15ns = 32GB/15s = 2.13 GB/s

(b) To increase the data throughput, the main memory designer is considering adding more DRAM banks
to the single DRAM channel. Given a long sequence of back-to-back reads to all banks that always
con�ict in the row-bu�ers, what is the minimum number of banks that is required to achieve the
maximum data throughput of the main memory system?

Solution: 30ns/5ns = 6



Row-Bu�er Hits. The following timing diagram shows the operation of the single DRAM channel and
the single DRAM bank for four back-to-back reads that hit in the row-bu�er. It is important to note that
row-bu�er hits to the same DRAM bank are pipelined: while each READ keeps the DRAM bank busy for
10ns, up to at most half of this latency (5ns) can be overlapped with another read that hits in the row-bu�er.

Row-Buffer Hits. The following timing diagram shows the operation of the single DRAM channel
and the single DRAM bank for four back-to-back reads that hit in the row-buffer. It is important to
note that row-buffer hits to the same DRAM bank are pipelined: while each READ keeps the DRAM
bank busy for 10ns, up to at most half of this latency (5ns) can be overlapped with another read that
hits in the row-buffer. (Note that this is different from Lab 6 where we unrealistically assumed that
row-buffer hits are non-pipelined.)

64B

5ns

Bank

Command

Bus

Address

Bus

Data

Bus

1ns

1ns

1ns

1ns

time

time

time

time

READ

READ

READ

READ

1ns

1ns

1ns

1ns

64B

5ns

64B

5ns

64B

5ns

(c) Given a long sequence of back-to-back reads that always hits in the row-buffer, what is the data
throughput of the main memory system? Please state your answer in gigabytes/second.

(d) When the maximum data throughput is achieved for a main memory system that has a single
DRAM channel and a single DRAM bank, what is the bottleneck that prevents the data through-
put from becoming even larger? Circle all that apply.

BANK COMMAND BUS ADDRESS BUS DATA BUS

Memory Scheduling Policies. The diagram below shows the memory controller’s request queue
at time 0. The shaded rectangles are read requests generated by thread T0, whereas the unshaded
rectangles are read requests generated by thread T1. Within each rectangle, there is a pair of numbers
that denotes the request’s (BankAddress, RowAddress). Assume that the memory system has a single
DRAM channel and four DRAM banks. Further assume the following.

• All the row-buffers are closed at time 0.

• Both threads start to stall at time 0 because of memory.

• A thread continues to stall until it receives the data for all of its requests.

• Neither thread generates more requests.

(0,0)(0,0) (0,0)(0,0) (0,7)(1,9)(2,4)(3,0)

OldestYoungest
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(c) Given a long sequence of back-to-back reads that always hits in the row-bu�er, what is the data
throughput of the main memory system? Please state your answer in gigabytes/second.

Solution:64B/5ns = 64GB/5s = 12.8GB/s

(d) When the maximum data throughput is achieved for a main memory system that has a single DRAM
channel and a single DRAM bank, what is the bottleneck that prevents the data throughput from
becoming even larger? Circle all that apply.

BANK COMMAND BUS ADDRESS BUS DATA BUS

Memory Scheduling Policies. The diagram below shows the memory controller's request queue at time
0. The shaded rectangles are read requests generated by thread T0, whereas the unshaded rectangles are
read requests generated by thread T1. Within each rectangle, there is a pair of numbers that denotes the
request's (BankAddress, RowAddress). Assume that the memory system has a single DRAM channel and
four DRAM banks. Further assume the following.

� All the row-bu�ers are closed at time 0.
� Both threads start to stall at time 0 because of memory.
� A thread continues to stall until it receives the data for all of its requests.
� Neither thread generates more requests.

Row-Buffer Hits. The following timing diagram shows the operation of the single DRAM channel
and the single DRAM bank for four back-to-back reads that hit in the row-buffer. It is important to
note that row-buffer hits to the same DRAM bank are pipelined: while each READ keeps the DRAM
bank busy for 10ns, up to at most half of this latency (5ns) can be overlapped with another read that
hits in the row-buffer. (Note that this is different from Lab 6 where we unrealistically assumed that
row-buffer hits are non-pipelined.)
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(c) Given a long sequence of back-to-back reads that always hits in the row-buffer, what is the data
throughput of the main memory system? Please state your answer in gigabytes/second.

(d) When the maximum data throughput is achieved for a main memory system that has a single
DRAM channel and a single DRAM bank, what is the bottleneck that prevents the data through-
put from becoming even larger? Circle all that apply.

BANK COMMAND BUS ADDRESS BUS DATA BUS

Memory Scheduling Policies. The diagram below shows the memory controller’s request queue
at time 0. The shaded rectangles are read requests generated by thread T0, whereas the unshaded
rectangles are read requests generated by thread T1. Within each rectangle, there is a pair of numbers
that denotes the request’s (BankAddress, RowAddress). Assume that the memory system has a single
DRAM channel and four DRAM banks. Further assume the following.

• All the row-buffers are closed at time 0.

• Both threads start to stall at time 0 because of memory.

• A thread continues to stall until it receives the data for all of its requests.

• Neither thread generates more requests.

(0,0)(0,0) (0,0)(0,0) (0,7)(1,9)(2,4)(3,0)

OldestYoungest

12/28



(f) For the FCFS scheduling policy, calculate the memory stall time of T0 and T1.
T0:

Solution: Bank 0 is the critical path for both threads.

T0 = Closed + Pipelined-Hit + Pipelined-Hit + Con�ict + Con�ict + Data
= (ACT+RD)+(RD/2)+(RD/2)+(PRE+ACT+RD)+(PRE+ACT+RD)+DATA
= 20ns + 5ns + 5ns + 30ns + 30ns + 5ns
= 95ns

T1:

Solution: T1 = Closed + Pipelined-Hit + Pipelined-Hit + Con�ict + Data
= (ACT+RD)+(RD/2)+(RD/2)+(PRE+ACT+RD)+DATA
= 20ns + 5ns + 5ns + 30ns + 5ns
= 65ns

(g) For the FR− FCFS scheduling policy, calculate the memory stall time of T0 and T1.
T0:

Solution: Bank 0 is the critical path for both threads. First, we serve all four shaded
requests since they are row-bu�er hits. Lastly, we serve the unshaded request.

T0 = Closed + Pipelined-Hit + Pipelined-Hit + Pipelined-Hit + Data
= (ACT+RD)+(RD/2)+(RD/2)+(RD/2)+DATA
= 20ns + 5ns + 5ns + 5ns + 5ns
= 40ns

T1:

Solution: T1 = Closed + Pipelined-Hit + Pipelined-Hit + Pipelined-Hit + Con�ict + Data
= (ACT+RD)+(RD/2)+(RD/2)+(RD/2)+(PRE+ACT+RD)+DATA
= 20ns + 5ns + 5ns + 5ns + 30ns + 5ns
= 70ns



Better Solution: We provide two sets of answers. The correct way to solve the problem is to model
contention in the banks as well as in all of the buses (address/command/data). The answer that is given in
the answer boxes is for the case you modeled contention in only the banks.
(f) For the FCFS scheduling policy, calculate the memory stall time of T0 and T1.

Initials:

We provide two sets of answers. The correct way to solve the problem is to model
contention in the banks as well as in all of the buses (address/command/data). This
answer is what immediately follows. However, no student modeled it to this level of
detail. Therefore, we decided to give full credit if you modeled contention in only the
banks correctly. This answer is given in the answer boxes.

(e) For the FCFS scheduling policy, calculate the memory stall time of T0 and T1.
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(f) For the FR-FCFS scheduling policy, calculate the memory stall time of T0 and T1.
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(g) For the FR− FCFS scheduling policy, calculate the memory stall time of T0 and T1.

Initials:

We provide two sets of answers. The correct way to solve the problem is to model
contention in the banks as well as in all of the buses (address/command/data). This
answer is what immediately follows. However, no student modeled it to this level of
detail. Therefore, we decided to give full credit if you modeled contention in only the
banks correctly. This answer is given in the answer boxes.

(e) For the FCFS scheduling policy, calculate the memory stall time of T0 and T1.
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T0: (10 + 5 + 5 + 10 + 10 + 10) + 10 + 10 + 10 + 10 + 5 = 95ns

T1: (10 + 5 + 5 + 10 + 10 + 10) + 1 + 10 + 5 + 5 + 10 + 5 = 86ns

10 20 30 40 50 60 70 80

(f) For the FR-FCFS scheduling policy, calculate the memory stall time of T0 and T1.
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T1: (10 + 5 + 5 + 5 + 5 + 5 + 5) + 10 + 10 + 10 + 10 + 5 = 85ns
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5. BossMem [60 points]

A researcher has developed a new type of nonvolatile memory, BossMem. He is considering BossMem
as a replacement for DRAM. BossMem is 10x faster (all memory timings are 10x faster) than DRAM, but
since BossMem is so fast, it has to frequently power-o� to cool down. Overheating is only a function of time,
not a function of activity. An idle stick of BossMem has to power-o� just as frequently as an active stick.
When powered-o�, BossMem retains its data, but cannot service requests. Both DRAM and BossMem are
banked and otherwise architecturally similar. To the researcher's dismay, he �nds that a system with 1GB
of DRAM performs considerably better than the same system with 1GB of BossMem.
(i) What can the researcher change or improve in the core (he can't change BossMem or anything beyond

the memory controller) that will make his BossMem perform more favorably compared to DRAM,
realizing that he will have to be fair and evaluate DRAM with his enhanced core as well? (15 words
or less)

Solution: Prefetcher degree or other speculation techniques so that misses can be serviced
before memory powered o�.

(ii) A colleague proposes he builds a hybrid memory system, with both DRAM and BossMem. He decides
to place data that exhibits low row bu�er locality in DRAM and data that exhibits high row bu�er
locality in BossMem. Assume 50% of requests are row bu�er hits. Is this a good or bad idea? Show
your work.

Solution: No, it may be better idea to place data with high row bu�er locality in DRAM
and low row bu�er locality data in BossMem since row bu�er misses are less costly.

(iii) Now a colleague suggests trying to improve the last-level cache replacement policy in the system with
the hybrid memory system. Like before, he wants to improve the performance of this system relative
to one that uses just DRAM and he will have to be fair in his evaluation. Can he design a cache
replacement policy that makes the hybrid memory system look more favorable? In 15 words or less,
justify NO or describe a cache replacement policy that would improve the performance of the hybrid
memory system more than it would DRAM.

Solution: Yes, this is possible. Cost-based replacement where cost to replace is dependent
on data allocation between DRAM and BossMem.

(iv) In class we talked about another nonvolatile memory technology, phase-change memory (PCM). Which
technology, PCM, BossMem, or DRAM requires the greatest attention to security? What is the
vulnerability?

Solution: PCM is nonvolatile and has potential endurance attacks.

(v) Which is likely of least concern to a security researcher?

Solution: DRAM is likely least vulnerable, as BossMem also has nonvolatility concerns.



6. Emerging Memory Technologies [60 points]

Computer scientists at ETH developed a new memory technology, ETH-RAM, which is non-volatile. The
access latency of ETH-RAM is close to that of DRAM while it provides higher density compared to the latest
DRAM technologies. ETH-RAM has one shortcoming, however: it has limited endurance, i.e., a memory
cell stops functioning after 106 writes are performed to the cell (known as cell wear-out).

A bright ETH student has built a computer system using 1GB of ETH-RAM as main memory. ETH-
RAM exploits a perfect wear-leveling mechanism, i.e., a mechanism that equally distributes the writes over
all of the cells of the main memory.
(a) This student is worried about the lifetime of the computer system she has built. She executes a test

program that runs special instructions to bypass the cache hierarchy and repeatedly writes data into
di�erent words until all the ETH-RAM cells are worn-out (stop functioning) and the system becomes
useless. The student's measurements show that ETH-RAM stops functioning (i.e., all its cells are
worn-out) in one year (365 days). Assume the following:

� The processor is in-order and there is no memory-level parallelism.
� It takes 5 ns to send a memory request from the processor to the memory controller and it takes
28 ns to send the request from the memory controller to ETH-RAM.

� ETH-RAM is word-addressable. Thus, each write request writes 4 bytes to memory.
What is the write latency of ETH-RAM? Show your work.

twear_out =
230

22 × 106 × (twrite_MLC + 5 + 28)
365× 24× 3600× 109ns = 228 × 106 × (twrite_MLC + 33)

twrite_MLC = 365×24×3600×103

228 − 33 = 84.5ns

Explanation:
� Each memory cell should receive 106 writes.

� Since ETH-RAM is word addressable, the required amount of writes is equal to 230

22 ×10
6

(there is no problem if 1GB is assumed to be equal to 109 bytes).
� The processor is in-order and there is no memory-level parallelism, so the total latency
of each memory access is equal to twrite_MLC + 5 + 28.

(b) ETH-RAM works in the multi-level cell (MLC) mode in which each memory cell stores 2 bits. The
student decides to improve the lifetime of ETH-RAM cells by using the single-level cell (SLC) mode.
When ETH-RAM is used in SLC mode, the lifetime of each cell improves by a factor of 10 and the
write latency decreases by 70%. What is the lifetime of the system using the SLC mode, if we repeat
the experiment in part (a), with everything else remaining the same in the system? Show your work.

twear_out =
229

22 × 107 × (25.35 + 5 + 28)× 10−9

twear_out = 78579686.3s = 2.49 year

Explanation:
� Each memory cell should receive 10× 106 = 107 writes.
� The memory capacity is reduced by 50% since we are using SLC: Capacity = 230/2 =
229

� The required amount of writes is equal to 229

22 × 107.
� The SLC write latency is 0.3× twrite_MLC : twrite_SLC = 0.3× 84.5 = 25.35 ns


	Critical Paper Reviews [1,000 points]
	DRAM Scheduling and Latency [180 points]
	Tiered-difficulty [120 points]
	Memory Interference and QoS [180 points]
	BossMem [60 points]
	Emerging Memory Technologies [60 points]

