
Computer Architecture (227-2210-00L), Fall 2022 1/7

Lab 2: Memory Hierarchy

Instructor: Prof. Onur Mutlu

TAs: Juan Gómez Luna, Mohammad Sadrosadati, Mohammed Alser,
Ataberk Olgun, Can Firtina, Rahul Bera, João Dinis Ferreira,

Geraldo Francisco De Oliveira Junior, Konstantinos Kanellopoulos,
Nika Mansouri Ghiasi, Abdullah Giray Yaglikci, Rakesh Nadig, Haocong Luo,

Joel Lindegger, Nisa Bostanci, Banu Cavlak, Aditya Manglik, Yahya Can Tugrul

Assigned: Friday, October 7, 2022
Due: Friday, October 21, 2022 (Midnight)

1. Introduction
In this lab, you will extend Lab 1 to implement a memory hierarchy that includes an L2 cache and a
DRAM-based main memory. Similar to Lab 1, we will fully specify the cycle-by-cycle behavior of the
L2 cache and DRAM.

While the L1 caches are tightly integrated with the pipeline, the L2 cache is more decoupled from
the pipeline. In this lab, we will maintain the semantics for the L1 caches that were described in Lab
1, but replace the constant L1 cache miss latency of 50 cycles with a variable latency, which involves
at least the L2 cache and may involve DRAM. Whenever the processor would have begun a 50 cycle
L1 cache miss access stall in Lab 1, it instead issues a request to the memory hierarchy in this lab.
When the data is available from the L2 or main memory (as specified below), the memory hierarchy
issues a cache fill notification back to the L1 caches. If the L1 cache is still stalling on the missing
data (i.e., no cancellation occurred), the data is inserted into the cache and the stall ends in the next
cycle. We now specify exactly how the memory hierarchy is structured and how requests are handled
in more detail.

2. Your Task: Extending the Simulator with L2 Cache and
DRAM

2.1. Unified L2 Cache

The unified L2 cache is accessed whenever there is a miss in either of the two L1 caches (instruction
or data).

Organization. It is a 16-way set-associative cache that is 256 KB in size with 32 byte blocks (this
implies that the cache has 512 sets). When accessing the cache, the set index is equal to [13:5] of
the address.

MSHRs. The L2 cache has 16 MSHRs (miss-status holding registers), which is more than enough
for our simple in-order pipeline. For every L2 cache miss, the L2 cache allocates an MSHR that keeps
track of the miss. An MSHR consists of three fields: (i) valid bit, (ii) address of the cache block
that triggered the miss, and (iii) done bit. You can assume that all bits are initialized to 0. When
main memory serves an L2 cache miss, it sends a fill notification to the L2 cache that sets the done
bit in the corresponding MSHR (i.e., if done=1, then MSHR entry becomes invalid and valid bit=0).
The valid bit can be used to indicate that an MSHR entry contains a valid memory address (and, for
example, not initialized address in the MSHR).



Computer Architecture (227-2210-00L), Fall 2022 2/7

Accessing the L2 Cache. Assume that the L2 cache has a large number of ports and that accesses
to it are never serialized. When a memory access misses in either of the L1 caches, the L2 cache is
“probed”1 immediately in the same cycle as the L1 cache miss. Depending on whether the access hits
or misses in the L2 cache, it is handled differently.

� L2 Cache Hit. After 15 cycles, the L2 cache sends a fill notification to the L1 cache (instruc-
tion or data). For example, if an access misses in an L1 cache but hits in the L2 cache at the
0th cycle, then the L1 cache receives a fill notification at the 15th cycle.

� L2 Cache Miss. Immediately, the L2 cache allocates an MSHR for the miss. After 5 cycles,
the L2 cache sends a memory request to main memory (this models the latency between the L2
cache and the memory controller). When the memory request is served by main memory, the
L2 cache receives a fill notification. After 5 cycles, the retrieved cache block is inserted into the
L2 cache and the corresponding MSHR is freed (this models the latency between the memory
controller and the L2 cache). In the same cycle, if the pipeline is stalled because of the cache
block, then the L2 cache sends a fill notification to the L1 cache. Also in the same cycle, the
cache block is inserted into the L1 cache. In the next cycle, the pipeline becomes unstalled.

Management Policies. A new cache block is inserted into the L2 cache at the MRU position. For
an L2 cache hit, a cache block is promoted to the MRU position. In the same cycle, there can be as
many as two L2 cache hits: one from the fetch stage and another from the memory stage. If they
happen to hit in two different cache blocks that belong to the same set, then there is an ambiguity
about which block is promoted to the MRU position. In this case, we assume that the memory stage
accesses the L2 cache before the fetch stage: we promote the block that is requested by the fetch stage
to the MRU position and the block that is requested by the memory stage to the MRU-1 position.
The L2 cache adopts true LRU replacement.

Other.

� Assume that the L1 and L2 caches are initially empty.

� Assume that the program that runs on the processor never modifies its own code (referred to
as self-modifying code): a given cache block cannot reside in both the L1 caches.

� Unlike an L1 cache access, an L2 cache access cannot be canceled once it has been initiated.

� Similar to Lab 1, we do not model dirty evictions that can occur from either the L1 data cache
(to the L2 cache) or the L2 cache (to main memory). When a newly inserted cache block evicts
a dirty cache block, we assume that the dirty cache block is written into the immediately lower
level of the memory hierarchy instantaneously. Furthermore, this happens without causing
any side effects: the LRU ordering of the cache blocks in the corresponding cache set is not
affected; in DRAM, buses/banks are not utilized and the row buffer status does not change.

� When the L2 cache does not have any free MSHRs remaining (which should not happen in our
simple in-order pipeline), then an L1 cache miss cannot even probe the L2 cache. In other
words, a free MSHR is a prerequisite for an access to the L2 cache, regardless of whether the
access would actually hit or miss in the L2 cache. A freed MSHR can be re-allocated to another
L2 cache miss in the same cycle.

� Once a cache miss (data or instruction) occurs in the MEM stage, you are free to stall the
pipeline until the request is served from L2 cache (hit or miss) or memory. However, if you have
both an instruction cache miss and a data cache miss from an older instruction that is already
in the MEM stage, then you can serve these two instructions by allocating one entry of MSHR
per each miss.

1Probing is when the tags are searched to determine the hit/miss status of an access.



Computer Architecture (227-2210-00L), Fall 2022 3/7

2.2. Main Memory (DRAM)

Organization. The DRAM system has a single rank on a single channel, where the channel
consists of the command/address/data buses. The rank has eight banks. Each bank consists of
64K rows, where each row is 8KB in size. When accessing main memory, the bank index is equal to
[7:5] of the address and the row index is equal to [31:16] of the address. For example, the 32-byte
cache block at address 0x00000000 is stored in the 0th row of the 0th bank. As another example, the
32-byte cache block at address 0x00000020 is stored in the 0th row of the 1st bank.

Memory Controller. The memory controller holds the memory requests received from the L2 cache
in a request queue. The request queue can hold an infinite number of memory requests. In each cycle,
the memory controller scans the request queue (including the memory requests that arrived during the
current cycle) to find the requests that are “schedulable” (to be described later). If there is only one
schedulable request, the memory controller initiates the DRAM access for that request. If there are
multiple schedulable requests, the memory controller prioritizes the requests in the following order,
which is similar to the FR-FCFS policy:

1. requests that are row buffer hits are prioritized over others

2. requests that arrived earlier are prioritized over others

3. requests coming from the memory stage are prioritized over others

DRAM Commands & Timing. A DRAM access consists of a sequence of commands issued to
a DRAM bank. There are four DRAM commands: ACTIVATE (issued with the bank/row addresses),
READ/WRITE (issued with the column address), and PRECHARGE (issued with the bank address). Each
command utilizes both the command and address buses for 4 cycles. Once a DRAM bank receives
a command, it becomes “busy” for 100 cycles and cannot accept any other commands. 100 cycles
after receiving a READ or WRITE command, the bank is ready to send/receive a 32 byte chunk of data
over the data bus – this transfer utilizes the data bus for 50 cycles.

Row-Buffer Status. Each DRAM bank has a row buffer. Depending on the status of the bank’s
row buffer, a different sequence of commands is required to serve a memory request to the bank. For
example, let us assume that a memory request needs to access the 0th row in the 0th bank. At this
point, there are three possible scenarios:

� Row buffer hit: when the 0th row is already in the row buffer

� Row buffer miss: when there is no row loaded in the corresponding bank’s row buffer

� Row buffer conflict: when a row different from the 0th row is loaded in the corresponding bank’s
row buffer

The following table summarizes the sequence of commands that is required for each of the three
scenarios.

Scenario Commands (Latency)

Row-Buffer Hit READ/WRITE

Row-Buffer Miss ACTIVATE, READ/WRITE

Row-Buffer Conflict PRECHARGE, ACTIVATE, READ/WRITE

“Schedulable” Request. A memory request is defined to be schedulable when all of its commands
can be issued without any conflict on the command/address/data buses, as well as the bank, at the
cycles when commands are to be issued and corresponding data is to be expected. For example, at
the 0th cycle, a request to a bank with a closed row buffer is schedulable if and only if all of the
following conditions are met:



Computer Architecture (227-2210-00L), Fall 2022 4/7

1. The command and address buses are free at cycles 0, 1, 2, 3, 100, 101, 102, and 103

2. The data bus us free during cycles 200-249

3. The bank is free during cycles 0-99 and 100-199

First, the command/address buses are free at cycles 0, 1, 2, 3, 100, 101, 102, 103. Second, the data
bus is free during cycles 200–249. Third, the bank is free during cycles 0–99 and 100–199.

Other Assumptions and Policies.

� Assume that the row buffers of all the banks are initially closed, i.e., there is no row in any row
buffer.

� The memory controller follows the open row policy, i.e., once a row is opened it is not closed
unless another scheduled request requires the closing of the row to access another row in the
same bank.

3. Extra Credit
We will offer up to 25% extra credit for this lab for implementing an even more realistic system consid-
ering writebacks from the cache and refreshes in the memory controller. A fully correct implementation
of Lab 2 is a prerequisite for extra credit.

You can add support for writebacks and refreshes in your simulator. The simulator with support for
writebacks should model the writeback of dirty blocks from the L1 cache to the L2 cache, and from
the L2 cache to the main memory. You need to ensure these requests occupy resources and take time,
similarly to other requests.

The simulator with support for refreshes should model periodic refresh of every single DRAM row.
These refreshes should be issued by the memory controller. The refresh rate should be configurable,
e.g., a refresh to a row is issued every N cycles. You need to accurately model the contention caused
by refreshes to other requests and ensure refresh requests occupy request queue entries in the memory
controller, and take time. For this extra-credit assignment, we refer you to the following works if you
want to experiment with even fancier state-of-the-art mechanisms [1, 2].

Please write a report (report writeback refresh.pdf) that briefly summarizes (i) the writeback
policy and refresh mechanism that you implemented, (ii) your observations on the performance and
cache hit/miss rate compared to the simulator without realistic writeback and refresh, and (iii) any
other optimizations you implement. Your report does not need to be more than four pages, but feel
free to use more pages to present schematics, data, and graphs.

4. Lab Resources
4.1. Source Code

The source code that we provide for this lab is the same as the source code we provided for Lab 1.
You are free to choose between starting from scratch using this bare version or continuing with your
simulator that includes your modifications for Lab 1 (i.e., instruction/data caches). If you decide to
continue with your previous simulator, you can skip reading the rest of this section. If you decide to
start from scratch, you will need to implement L1 data cache and L1 instruction cache, as described
in Lab 1.



Computer Architecture (227-2210-00L), Fall 2022 5/7

Do NOT modify any files or folders unless explicitly specified in the list below.

� Makefile

� run.py: Script that runs your simulator and compares it against the baseline simulator. You
may need to modify this script for your own debugging. However, your submission must work
with the unmodified version.

� src/: Source code (Modifiable; feel free to add more files)

– pipe.c: Your simulator (Modifiable)

– pipe.h: Your simulator (Modifiable)

– mips.h: MIPS related pound defines

– shell.c: Interactive shell for your simulator

– shell.h: Interactive shell for your simulator

� inputs/: Example test inputs for your simulator (Modifiable; feel free to add more files)

4.2. Makefile

We provide a Makefile that automates the compilation and verification of your simulator.

The first time you use the Makefile you should compile the baseline simulator:

$ make basesim

This will generate basesim, which is the baseline simulator corresponding to the code we provide.
You can use it to verify the output of a program you run on your simulator. Note that the output of a
program should always match the output obtained by running the program on the baseline simulator.
However, the execution time of a program on the two simulators will not be same after the addition
of the L2 Cache and the DRAM.

To compile your simulator:

$ make

To compile your simulator and check it against the baseline simulator using one or more test inputs:

$ make run INPUT=inputs/inst/addiu.x

$ make run INPUT=inputs/inst/*.x

$ make run

5. Getting Started & Tips
5.1. Lecture Materials that Would be Useful to Study

To get started with this lab, we highly recommend you to study the following relevant materials
from Digital Design and Computer Architecture (Spring 2022) course, which can be accessed at:
https://safari.ethz.ch/digitaltechnik/spring2022/doku.php?id=schedule:

� L22: Memory Organization and Memory Technology - PDF, PPT, Video

� L23: Memory Hierarchy and Caches - PDF, PPT, Video

� L24: Advanced Caches - PDF, PPT, Video

https://safari.ethz.ch/digitaltechnik/spring2022/doku.php?id=schedule
https://safari.ethz.ch/digitaltechnik/spring2022/lib/exe/fetch.php?media=onur-digitaldesign_comparch-2022-lecture22-memory-organization-afterlecture.pdf
https://safari.ethz.ch/digitaltechnik/spring2022/lib/exe/fetch.php?media=onur-digitaldesign_comparch-2022-lecture22-memory-organization-afterlecture.pptx
http://www.youtube.com/watch?v=yOFBiX-Ekrg
https://safari.ethz.ch/digitaltechnik/spring2022/lib/exe/fetch.php?media=onur-digitaldesign_comparch-2022-lecture23-memory-hierarchy-and-caches-afterlecture.pdf
https://safari.ethz.ch/digitaltechnik/spring2022/lib/exe/fetch.php?media=onur-digitaldesign_comparch-2022-lecture23-memory-hierarchy-and-caches-afterlecture.pptx
http://www.youtube.com/watch?v=jys92_j627A
https://safari.ethz.ch/digitaltechnik/spring2022/lib/exe/fetch.php?media=onur-digitaldesign_comparch-2022-lecture24-advanced-caches-afterlecture.pdf
https://safari.ethz.ch/digitaltechnik/spring2022/lib/exe/fetch.php?media=onur-digitaldesign_comparch-2022-lecture24-advanced-caches-afterlecture.pptx
http://www.youtube.com/watch?v=VxEGcEXiFj4


Computer Architecture (227-2210-00L), Fall 2022 6/7

5.2. The Goal

You can skip this section if you are already familiar with the baseline simulator we provided in Lab 1.

We provide you with a skeleton of the timing simulator that models a five-stage MIPS pipeline: pipe.c
and pipe.h. As it is, the simulator is already architecturally correct: it can correctly execute any
arbitrary MIPS program that only uses the implemented instructions2. When the simulator detects
data dependences, it correctly handles them by stalling and/or bypassing. When the simulator detects
control dependences, it correctly handles them by stalling the pipeline as necessary.

By executing the following command, you can see that your simulator (sim) does indeed have identical
architectural outputs (e.g., register values) as the baseline simulator (basesim) for all the test inputs
that we provide in inputs/.

$ make run

Your job is to model accurately the timing effects of the L2 Cache and the DRAM in your timing
simulator.

5.3. Studying the Timing Simulator

Please study pipe.c and pipe.h in detail.

The simulator models each pipeline stage as a separate function – e.g., pipe stage fetch(). The
simulator models the state of the pipeline as a collection of pointers to Pipe Op structures (defined
in pipe.h). Each Pipe Op represents one instruction in the pipeline by storing all of the necessary
information about the instruction that is needed by the simulator. A Pipe Op structure is allocated
when an instruction is fetched. It then flows through the pipeline and eventually arrives at the last
stage (writeback), where it is deallocated once the instruction completes. To elaborate, each stage
receives a Pipe Op from the previous stage, processes the Pipe Op, and passes it down to the next
stage. The simulator models pipeline stalls by stopping the flow of Pipe Op structures and pipeline
flushes by deallocating the Pipe Op structures at different stages.

5.4. Tips

� Please do not distribute the provided program files. These are for exclusive indi-
vidual use of each student of the Computer Architecture course. Distribution and
sharing violates the copyright of the software provided to you.

� Read this handout in detail.

� If needed, please ask questions to the TAs using the corresponding online Q&A forum inMoodle
(https://moodle-app2.let.ethz.ch/mod/moodleoverflow/view.php?id=806298).

� When you encounter a technical problem, please first read the error messages. A search on the
web can usually solve many debugging issues, and error messages.

6. Submission
Use the corresponding assignment in Moodle (https://moodle-app2.let.ethz.ch/mod/assign/
view.php?id=806353). You should submit all the files needed to compile and simulate your code
in a single tarball (with the name lab2 YourSurname YourName.tar.gz). Please include comments
to explain what you have done in the simulator code.

2This is not entirely true since we pose the usual restrictions on system calls, exceptions, etc., as we described in
Lab 1.

https://moodle-app2.let.ethz.ch/mod/moodleoverflow/view.php?id=806298
https://moodle-app2.let.ethz.ch/mod/assign/view.php?id=806353
https://moodle-app2.let.ethz.ch/mod/assign/view.php?id=806353


Computer Architecture (227-2210-00L), Fall 2022 7/7

The structure of the submitted tarball should look like:

� lab2/

– README: (optional) any special instructions you have for us

– task 1/: Source code for your L2 cache and DRAM implementations

* Makefile

* run.py

* src/

* inputs/

– extra credit: (optional) Source code for your write back and refresh implementations

* report writeback refresh.pdf

* Makefile

* run.py

* src/

* inputs/

Please feel free to include a brief README to describe any nuances of building/running your project
that we should be aware of when grading your submission.

References
[1] Chang Joo Lee, Veynu Narasiman, Eiman Ebrahimi, Onur Mutlu, and Yale N Patt. DRAM-aware

last-level cache writeback: Reducing write-caused interference in memory systems. Technical
report, UT Austin, 2010.

[2] Kevin Kai-Wei Chang, Donghyuk Lee, Zeshan Chishti, Alaa R Alameldeen, Chris Wilkerson,
Yoongu Kim, and Onur Mutlu. Improving DRAM performance by parallelizing refreshes with
accesses. In HPCA, 2014.


	Introduction
	Your Task: Extending the Simulator with L2 Cache and DRAM
	Unified L2 Cache
	Main Memory (DRAM)

	Extra Credit
	Lab Resources
	Source Code
	Makefile

	Getting Started & Tips
	Lecture Materials that Would be Useful to Study
	The Goal
	Studying the Timing Simulator
	Tips

	Submission

