COMPUTER ARCHITECTURE (227-2210-00L), FALL 2022 1/7

LAB 5: PREFETCHER DESIGN AND ANALYSIS (BONUS)

INSTRUCTOR: PROF. ONUR MUTLU

TAs: JuAN GOMEZ LUNA, MOHAMMAD SADROSADATI, MOHAMMED ALSER,
ATABERK OLGUN, CAN FIRTINA, RAHUL BERA, JOAO DINIS FERREIRA,
GERALDO FRANCISCO DE OLIVEIRA JUNIOR, KONSTANTINOS KANELLOPOULOS,
NikA MANSOURI GHIASI, ABDULLAH GIRAY YAGLIKCI, RAKESH NADIG, HAOCONG LUO,
JOEL LINDEGGER, NiSA BOSTANCI, BANU CAVLAK, ADITYA MANGLIK, YAHYA CAN TUGRUL

ASSIGNED: SATURDAY, DECEMBER 3, 2022
Duk: Sunday, December 18, 2022 (MIDNIGHT)

1. Introduction

In this lab you will implement and evaluate multiple different prefetchers using ChampSim [1], a trace-
based microarchitectural simulator written in C4++. ChampSim models a modern high-performance
out-of-order (000) core and enables evaluating ideas on classical problems of microarchitectures like
data prefetching, branch prediction and cache replacement policies. Unlike the timing simulator you
used in previous labs, ChampSim does not natively run an executable/assembly program but uses
an instruction trace, extracted out from an application, to simulate the processor microarchitecture
model.

We will provide you the program instruction traces from SPEC CPU 2006 and 2017 [2, 3] as well as
ChampSim’s source code with a baseline branch predictor and cache replacement policy. We will also
provide a high-level prefetcher API. Your job is to use this API to implement different prefetching
algorithms and evaluate the impact of your prefetcher implementations on the supplied program traces.
An efficient prefetcher will reduce the number of cycles a program trace takes to execute.

2. Lab Resources

2.1. How To Get Started
Clone the ChampSim repository.

$ git clone https://gitlab.ethz.ch/rahbera/champsim.git

You need to run build_champsim.sh, which is a shell script to build the simulator. The script
takes a single input parameter that is the prefetching algorithm name. We included three sample L2
prefetchers to help you get started. Compile ChampSim using the following command. This should
create the ChampSim executable inside bin/ directory.

$./build champsim.sh next_line

You need program instruction traces to run ChampSim. You can download all the traces in your local
machine by executing the following command (Note: You need ~2 GB of free space to download the
traces). This script takes lab_traces.txt as input to download the traces. Windows users can easily
find a work around of the bash script.

$ cd scripts/

$./download_traces.sh

COMPUTER ARCHITECTURE (227-2210-00L), FALL 2022 2/7

Your prefetchers will be evaluated using all 16 traces from lab_traces.txt only. However, there is an
additional trace list lab_traces_extended.txt with 10 more traces. Feel free to test your prefetchers
on these traces too.

To run ChampSim, execute run_champsim.sh.
$./run_champsim.sh <BINARY> <WARMUP_INST> <SIM_INST> <TRACE>
This script takes five arguments:

1. BINARY: The full path of the executable

2. WARMUP_INST: Number of instructions (in millions) to warmup (Default: 1)
3. SIM_INST: Number of instructions (in millions) to simulate (Default: 10)
4. TRACE: Full path of the trace file to execute.

Unless otherwise specified, you will always use 100 as WARMUP_INST (i.e., warming up for 100 M
instructions) and 500 as SIM_INST (i.e., simulating 500 M instructions) for all simulations.

NOTE: each trace simulation might take around an hour to get completed. Hence, you might use the
ETH Euler cluster [4] for launching your runs. Euler uses bsub to launch and manage jobs. Please
go through the Euler website to learn more.

ChampSim metrics. ChampSim reports an array of metrics at the end of simulation. Some metrics
to look for while evaluating the L2 prefetcher are: number of cycles, L1D average miss latency, number
of L2 loads/hits/misses, number of L2 prefetch requests and useful prefetch requests.

2.2. Source Code

We will briefly walk you through the major directories of ChampSim and explain their functionality.
Do NOT modify any of these files or directories unless explicitly mentioned.

e inc: This directory contains all the header files. These headers will automatically get included
during the compilation. Do not change any parameters in these files. If you create any header
file by yourself while implementing prefetchers, you need to put it here.

e src: This directory contains files that define the microarchitecture of an OoO core, uncore,
cache and DRAM controller. You might skim through these files to get a better understanding
of ChampSim.

e branch and replacement: These directories contain the source code of different branch pre-
dictors and last level cache (LLC, in our case it is L3) management policies. You will use the
perceptron branch predictor [5] and SHiP [6] cache management policy for the LLC in this
assignment.

e prefetcher: This is the main directory you will work with. ChampSim is extensible to imple-
ment prefetchers at all three cache levels, but you will only focus on implementing prefetchers
at L2. The L2 prefetcher API is defined in 12c_prefetcher.cc file. The API consists of five
key functions:

1. 12c_prefetcher_initialise: This function is called when the cache gets created and
should be used to initialize any internal data structures of the prefetcher.

2. 12c_prefetcher_final stats: This is the final function that is called at the end of simu-
lation. This can be a good place to print overall statistics of the prefetcher.

3. 12c_prefetcher_operate: This function is called for each L2 lookup operation. This means
it is called for both L2 load and store accesses that can either hit or miss in the cache.
The third and fourth arguments of this function helps in identifying the type of lookup.

COMPUTER ARCHITECTURE (227-2210-00L), FALL 2022 3/7

In this lab, you will focus on finding patterns only in L2 load accesses. The first and
second arguments provide the cacheline aligned address and the PC of the memory access,
respectively.

4. 12c_prefetcher_cache fill: This function is called for each L2 fill operation. The func-
tion argument names are self explanatory.

5. prefetch_line: Youdo NOT need to implement this function, but to use it when a prefetch
request needs to be injected into the memory hierarchy. (Tip: see how how this function
is used in next_line.l2c_perf or ip_stride.l2c_perf). The first two arguments are the
PC and the cacheline address of the access that triggers this prefetch request. The third
argument is the cacheline address of the prefetch request. By default, a prefetch request
generated by the prefetcher at a cache level NV first looks up the Ny,-level cache. On a
miss, the prefetch request looks up the next cache levels (N + 1, N + 2 etc) and eventually
goes to main memory if it misses in the LLC. Once the memory supplies the corresponding
data, the prefetched cachelines gets filled in all cache levels from the LLC to the Ny, level.
However, you can modify the prefetcher to send a hint to the memory subsystem to refrain
from filling the cacheline in all cache levels if you think filling a prefetched line in all cache
levels might hurt performance. This hint is passed by the fourth argument, pr_£fill_level.
For an L2 prefetcher, this argument can take either of the two values FILL_L2 or FILL_LLC.
For Task 1 and 2, you will set this to FILL_L2, i.e., the prefetched cacheline will get filled
in both in L2 and LLC. You are free to use this parameter as you deem fit in Task 3.

2.3. Implementing a Prefetcher

To implement your own prefetcher, create a new file with <prefetcher_name>.12c_pref naming
format and define the four API functions in C++ in your own way. If you do not need to use
any specific function, simply define the function with an empty body. Please do not change the
file 12c_prefetcher.cc by yourself. The build script will automatically generate the appropriate
12c_prefetcher.cc file using your 12c_pref file and link it with the ChampSim model.

To help you get started, we have provided two simple prefetcher implementations: (1) next-line
prefetcher and (2) table-based IP-stride prefetcher. These are taken from the 3rd Data Prefetching
Championship [7] and can be found in next_line.l2c_pref and ip_stride.l2c_pref. These files
should give you a brief understanding of how to implement a prefetcher. We have also provided an
empty L2 prefetcher in no.12c_pref to simulate a system without any prefetcher.

3. Basics of Prefetching

As we discussed in depth in lectures, prefetching is a speculation technique to predict a future memory
request and fetch it into the caches before the processor core actually demands it. This prediction
helps to hide the long latency of a DRAM-based main memory access and makes the program run
faster.

The effectiveness of a prefetcher can be measured using four metrics:

e Performance: The number of cycles saved by the prefetcher (the higher the better)
e Coverage: The fraction of the memory accesses saved by the prefetcher (the higher the better)

e Accuracy: The fraction of prefetched addresses that are actually needed later by the program
(the higher the better)

Timeliness: The fraction of the latency of memory accesses hidden by the prefetcher (the higher
the better)

In a processor core with a traditional three level cache hierarchy, a prefetcher can be employed at any
level. For example, a prefetcher at the L2 cache level tries to capture the program access pattern by

COMPUTER ARCHITECTURE (227-2210-00L), FALL 2022 4/7

observing the accesses coming out from the L1 data cache and fills the prefetched cachelines up to the
L2 cache level. Many works propose prefetching algorithms [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18] to
accurately predict future program accesses. Commercial processors use multiple prefetchers in their
cache hierarchies to improve performance [19]. To learn more in depth about prefetching, please watch
Professor Mutlu’s lecture video on the topic [20].

4. Task 1/4: Implement GHB-based Stride Prefetcher

Your goal is to implement a Global History Buffer (GHB) based stride prefetcher at the L2 cache by
using the prefetcher API. The prefetcher learns access patterns on cacheline addresses of loads that
miss in the L1 data cache and prefetches predicted cachelines into the L2 cache. We provide the detail
design of the prefetcher microarchitecture in the next subsection.

4.1. GHB Prefetcher

The GHB prefetcher [10] was introduced in 2004. It comprises of two major structures:

e Index Table (IT): A table that is indexed by program properties, like PC (program counter),
and that stores a pointer to a GHB entry.

e Global History Buffer (GHB): A circular queue that stores time-ordered sequence of the observed
cacheline addresses. Each GHB entry also stores a pointer (called prev_ptr) that points to the
last cacheline address that has the same IT index. By traversing prev_ptr, one can get the
temporal sequence of cacheline addresses that points to the same IT entry.

Stride Prefetching Algorithm. For each L2 cache access (both hit and miss), the algorithm uses
the PC of the access to index into the IT and insert the cacheline address (say A) into the GHB.
Using the PC and the link pointers in GHB entries, the algorithm retrieves the sequence of last 3
addresses by this PC that accessed L2 cache. The stride is computed by taking the difference between
two consecutive addresses in the sequence. If two strides match (say d), the prefetcher simply issues
prefetch requests to cachelines A+1d, A+ (I+1)d, A+ (I+2)d,..., A+ (I +n)d, where [is the prefetch
look-ahead and n is the prefetch degree. For your design, please statically set both [and n to 4. Please
also size the IT and GHB so that they are 256 entries each. For more detail on the GHB based stride
prefetcher implementation, please read the original GHB paper [10]. Doing so will be important for
you to implement Task 1 correctly.

5. Task 2/4: Implement Feedback Directed Prefetching

Your second task is to incorporate feedback information to evaluate the effectiveness of the prefetcher
in the system and accordingly adjust the prefetcher’s aggressiveness. Srinath et al. [11] propose
a mechanism that incorporates dynamic feedback into the design of the prefetcher to increase the
performance improvement provided by prefetching as well as to reduce the negative performance and
bandwidth impact of prefetching. In Task 2, you need to extend the prefetcher you designed in Task 1
using a simplified version of Srinath et al.’s feedback directed mechanism [11]. The two dynamic
feedback metrics you need to incorporate into the GHB prefetcher are described below:

e Prefetch Accuracy: Prefetch accuracy is a measure of how accurately the prefetcher can
predict the memory addresses that will be accessed by the program.

Number of Useful Prefetches

P tch A =
refetch Accuracy Number of Prefetches Sent to Memory

where Number of Useful Prefetches is the number of prefetched cache blocks that are used
by demand requests while they are resident in the L2 cache. Your goal is to implement the
mechanism that calculates the prefetch accuracy as described in Section 3.1.1 of [11].

COMPUTER ARCHITECTURE (227-2210-00L), FALL 2022 5/7

e Prefetch Lateness: Prefetch lateness is a measure of how timely the prefetch requests gener-
ated by the prefetcher are with respect to the demand accesses that need the prefetched data.
A prefetch is defined to be late if the prefetched data has not yet returned from main memory
by the time a load or store instruction requests the prefetched data.

The prefetch lateness is defined as:

Number of Late Prefetches

P tch Lat =
refetch Lateness Number of Useful Prefetches

In general, prefetch lateness decreases as the prefetcher becomes more aggressive. Your goal is
to implement the mechanism that calculates the prefetch lateness as described in Section 3.1.2
of [11].

e DO NOT implement the cache pollution metric proposed in [11]. You can do it, if you wish,
as a part of Task 3.

The feedback information should be collected every 1000 instructions. Based on the collected
feedback you need to update a counter that tunes the aggressiveness of the GHB prefetcher based on
the information provided in Tables 1 and 2 below. The prefetch distance is defined in [11] in Section
2.1. The threshold values which define the accuracy and the lateness of the prefetcher can be found in
Section 4.3 in [11]. DO NOT implement the changes in the cache insertion policy proposed in [11].
You can do it, if you wish, as a part of Task 3.

Table 1. Prefetcher aggressiveness configurations

H Counter Aggressiveness Distance Degree H

1 Very Conservative 4 1
2 Conservative 8 1
3 Middle-of-the-Road 16 2
4 Aggressive 32 4
5 Very Aggressive 48 4

Table 2. Feedback counter updates based on prefetch accuracy and lateness.

H Case Prefetch Accuracy Prefetch Lateness Counter Update H

1 High Late Increment
2 High Not-Late No Change
3 Medium Late Increase

4 Medium Not-Late No Change
5 Low Late Decrement
6 Low Not-Late No Change

6. Task 3/4: Design Your Own Prefetcher

Your goal is to come up with an L2 prefetcher implementation of your choice that beats the exist-
ing prefetchers. You might want to take a look at the prior prefetcher literature to select one for
implementation, or bring your new ideas on prefetcher design. (Note: you can take inspiration from
algorithms proposed in prior data prefetching championships. But DO NOT use the source code
provided by them. We will specifically look for any abuse of this constraint and you will get penalized
for plagiarism.)

Implement and evaluate your prefetcher in the similar way of Task 1 and 2. Please submit a brief
write-up in PDF (no more than 2 A4 pages excluding references), clearly describing the prefetching
algorithm including references to the relevant prefetching works.

COMPUTER ARCHITECTURE (227-2210-00L), FALL 2022 6/7

NOTE: The designers of the top three highest-performing prefetching implementations
will be rewarded 1.5% of their entire course grade, provided the prefetching technique
is of their own. You can be inspired by past works, of course.

7. Task 4/4 (Bonus +25%): Comparison Against a State-Of-
The-Art Prefetcher

Your goal is to quantitatively compare against Pythia [18], a state-of-the-art hardware prefetcher that
makes use of Reinforcement Learning to perform (i) accurate prefetching decisions and (2) tune the
aggressiveness of prefetching based on the system conditions (e.g. high/low bandwidth utilization).
The source code is publicly available along with a walkthrough to reproduce the evaluation results
(only for the 10 provided workload traces that you used in the previous tasks- do NOT download all
the 150 traces) : https://github.com/CMU-SAFARI/Pythia. Once you obtain the evaluation results,
you need extract insights regarding the performance achieved by your prefetcher compared to Pythia.
We highly-recommend reading the paper to understand where the benefits of Pythia are coming from
and how it compares against existing state-of-the-art-prefetchers like [15, 16, 17].

8. Submission and Evaluation

8.1. Submission

Use the corresponding assignment in Moodle (https://moodle-app2.let.ethz.ch/mod/assign/
view.php?i1d=832909) to submit your work. Please prepare your submission in the following way:

e Rename the prefetcher files from Task 1, 2 and 3 to ghb.12c_pref, fdp.12c_pref and
task3.12c_pref respectively. Put them inside prefetcher directory.

e Include a brief write-up in PDF format as mentioned in Task 3, describing your prefetching
algorithm. Rename it as report.pdf and put it in the ChampSim home directory. Optionally,
you may also include another short writeup describing any surprising observations that you
think we should be aware of while grading your submission.

e Prepare a single tarball of your ChampSim repository excluding the traces directory and rename
the tarball to lab5_YourSurname_YourName.tar.gz

8.2. Evaluation

Your prefetchers will be evaluated based on performance improvement over a baseline system without
any prefetchers. We will individually compute the performance improvement for each of the 10 traces.
The overall improvement will be calculated as the geometric mean of individual improvements. For
the prefetcher implementation from Task 3, we will release a leaderboard, where you can check how
your proposal performs as compared to other proposals from your peers.

9. Tips

e If needed, please ask questions to the TAs via the online Q&A forum in Moodle
(https://moodle-app2.let.ethz.ch/mod/moodleoverflow/view.php?id=832910).

e When you encounter a technical problem, please first read the error messages. A search on the
web can usually solve many debugging issues, and error messages.

e One easy way to debug your prefetcher is to test it using the 462.1libquantum-714B. champsim-
trace.xz trace. libquantum a library for the simulation of a quantum computer and is part
of SPEC CPU 2006 workload suite. It provides a structure for representing a quantum register
and some elementary gates. Programmatically, it iterates over a 32 MB integer array and this

COMPUTER ARCHITECTURE (227-2210-00L), FALL 2022 7/7

access pattern generates cacheline addresses with a constant stride of +1 over a physical page.
You can use this workload to test your prefetcher.

References

1]

ChampSim. https://github.com/ChampSim/ChampSim.
SPEC CPU 2006. https://www.spec.org/cpu2006/.
SPEC CPU 2017. https://www.spec.org/cpu2017/.

ETH Zurich FEuler Cluster. https://scicomp.ethz.ch/wiki/Getting_started_with_
clusters.

D.A. Jiménez and C. Lin. Dynamic branch prediction with perceptrons. In HPCA, 2001.

Carole-Jean Wu, Aamer Jaleel, Will Hasenplaugh, Margaret Martonosi, Simon C Steely Jr, and
Joel Emer. SHiP: Signature-based hit predictor for high performance caching. In MICRO, 2011.

3rd Data Prefetching Championship. https://dpc3.compas.cs.stonybrook.edu.

Tien-Fu Chen and Jean-Loup Baer. Effective hardware-based data prefetching for high-
performance processors. In IEEE TC, 1995.

John W. C. Fu, Janak H. Patel, and Bob L. Janssens. Stride Directed Prefetching in Scalar
Processors. In MICRO, 1992.

Kyle J. Nesbit and James E. Smith. Data cache prefetching using a global history buffer. In
HPCA, 2004.

Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N Patt. Feedback directed prefetching:
Improving the performance and bandwidth-efficiency of hardware prefetchers. In HPCA, 2007.

Yasuo Ishii, Mary Inaba, and Kei Hiraki. Access map pattern matching for data cache prefetch.
In ISC, 2009.

Stephen Somogyi, Thomas F Wenisch, Anastassia Ailamaki, Babak Falsafi, and Andreas
Moshovos. Spatial memory streaming. In ISCA, 2006.

Manjunath Shevgoor, Sahil Koladiya, Rajeev Balasubramonian, Chris Wilkerson, Seth H. Pugs-
ley, and Zeshan Chishti. Efficiently prefetching complex address patterns. In MICRO, 2015.

Jinchun Kim, Seth H Pugsley, Paul V Gratz, AL Reddy, Chris Wilkerson, and Zeshan Chishti.
Path confidence based lookahead prefetching. In MICRO, 2016.

Mohammad Bakhshalipour, Mehran Shakerinava, Pejman Lotfi-Kamran, and Hamid Sarbazi-
Azad. Bingo spatial data prefetcher. In HPCA, 2019.

Rahul Bera, Anant V. Nori, Onur Mutlu, and Sreenivas Subramoney. DSPatch: Dual Spatial
Pattern Prefetcher. In MICRO, 2019.

Rahul Bera, Konstantinos Kanellopoulos, Anant V. Nori, Taha Shahroodi, Sreenivas Subramoney,
and Onur Mutlu. Pythia: A Customizable Hardware Prefetching Framework Using Online Rein-
forcement Learning. In MICRO, 2021.

Disclosure of Hardware Prefetcher Control on Some In-
tel®) Processors. https://software.intel.com/en-us/articles/
disclosure-of-hw-prefetcher-control-on-some-intel-processors.

Onur Mutlu, Computer Architecture Lecture: Prefetching, ETH Zurich, Fall 2020. https://
youtu.be/xZmDy jOg3Pw.

