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Executive Summary
Context:  We extensively analyze a state-of-the-art edge ML accelerator 
(Google Edge TPU) using 24 Google edge models

– Wide range of models (CNNs, LSTMs, Transducers, RCNNs)

Problem:  The Edge TPU accelerator suffers from three challenges:
– It operates significantly below its peak throughput
– It operates significantly below its theoretical energy efficiency
– It inefficiently handles memory accesses

Key Insight:  These shortcomings arise from the monolithic design of the 
Edge TPU accelerator

– The Edge TPU accelerator design does not account for layer heterogeneity 

Key Mechanism:  A new framework called Mensa
– Mensa consists of heterogeneous accelerators whose dataflow and 

hardware are specialized for specific families of layers

Key Results:  We design a version of Mensa for Google edge ML models
– Mensa improves performance and energy by 3.0X and 3.1X
– Mensa reduces cost and improves area efficiency
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Why ML on Edge Devices?

Significant interest in pushing ML inference computation 
directly to edge devices

Privacy LatencyConnectivity Bandwidth
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Why Specialized ML Accelerator?
Edge devices have limited battery and computation budget

Limited Power Budget Limited Computational Resources

Specialized accelerators can significantly improve 
inference latency and energy consumption

Apple Neural Engine (A12) Google Edge TPU
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Myriad of Edge Neural Network Models

Challenge: edge ML accelerators have to execute inference 
efficiently across a wide variety of NN models

CNN

RNNTransducers LSTMs

Face Detection

Speech Recognition

Image Captioning

Language Translation

RCNN
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Edge TPU: Baseline Accelerator
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Google Edge NN Models

10

We analyze inference execution using 24 edge NN models 

13 CNN

Face Detection

6 RNNTransducers

Speech Recognition

2 LSTMs

Language Translation

Image Captioning

3 RCNNGoogle Edge TPU
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Major Edge TPU Challenges

1 Operates significantly below its peak throughput

2 Operates significantly below its peak energy efficiency

3 Handles memory accesses inefficiently

We find that the accelerator suffers from 
three major challenges:
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(1) High Resource Underutilization

We find that the accelerator operates significantly below 
its peak throughput across all models
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(2) Low Energy Efficiency
The accelerator operates far below 
its upper bound energy efficiency
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(3) Inefficient Memory Access Handling 
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Parameter traffic (off-chip and on-chip) takes 
a large portion of the inference energy and performance

46% and 31% of total energy goes to off-chip parameter traffic
and distributing parameters across PE array
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Major Edge TPU Challenges

1 Operates significantly below its peak throughput

2 Operates significantly below its peak energy efficiency

3 Handles memory accesses inefficiently

We find that the accelerator suffers from 
three major challenges:

Question: Where do these challenges come from?
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Model Analysis:
Let’s Take a Deeper Look

Into the Google Edge NN Models
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Diversity Across the Models
Insight 1: there is significant variation in terms of 

layer characteristics across the models
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Diversity Within the Models

For example, our analysis of edge CNN models shows: 

1

2

Insight 2: even within each model, layers exhibit 
significant variation in terms of layer characteristics
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Variation in FLOP/Byte: up to 244x across layers

Variation in MAC intensity: up to 200x across layers



Root Cause of Accelerator Challenges
The key components of Google Edge TPU are completely 

oblivious to layer heterogeneity

While this approach might work for a specific group of layers, it fails 
to efficiently execute inference across a wide variety of edge models

DRAM
PE Array
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Dataflow

Off-chip 
bandwidth

Edge accelerators typically take a monolithic approach:
equip the accelerator with an over-provisioned PE array and
on-chip buffer, a rigid dataflow, and fixed off-chip bandwidth
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Mensa Framework
Goal: design an edge accelerator that can efficiently run

inference across a wide range of different models and layers

1

2

Instead of running the entire NN model on 
a monolithic accelerator: 

Mensa: a new acceleration framework for edge NN inference
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Mensa High-Level Overview
Edge TPU Accelerator Mensa

Monolithic Accelerator
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Mensa Runtime Scheduler

Accelerator 
characteristics

Layer 
characteristics

Scheduler

NN model

Layer
Mapping

The goal of Mensa’s software runtime scheduler is to identify
which accelerator each layer in an NN model should run on

Generated once
during initial setup 

of a system

Layers tend to group 
together into a small
number of families  

Each of the accelerators 
caters to 

a specific family of layers
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Mensa Runtime Scheduler

Accelerator 
characteristics

Layer 
characteristics

Scheduler

NN model

Layer
Mapping

The goal of Mensa’s software runtime scheduler is to identify
which accelerator each layer in an NN model should run on

Generated once
during initial setup 

of a system

Layers tend to group 
together into a small
number of families  

Each of the accelerators 
caters to 

a specific family of layers
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Identifying Layer Families
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→ compute-centric layers 
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Mensa-G: Mensa for Google Edge Models
Based on key characteristics of families, we design three accelerators

to efficiently execute inference across our Google NN models
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Mensa-G: Mensa for Google Edge Models
Based on key characteristics of families, we design three accelerators

to efficiently execute inference across our Google NN models
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Mensa-G: Mensa for Google Edge Models
Based on key characteristics of families, we design three accelerators

to efficiently execute inference across our Google NN models
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Mensa-G: Mensa for Google Edge Models
Based on key characteristics of families, we design three accelerators

to efficiently execute inference across our Google NN models
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-16x16 PE Array → 256 GFLOP/s
-128KB Act. Buffer → 16x Reduction
-128KB Param. Buffer → 32x Reduction
- Near-data accelerator 

Families 4&5 → non-LSTM data-centric layers
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Mensa-G: Mensa for Google Edge Models
Based on key characteristics of families, we design three accelerators

to efficiently execute inference across our Google NN models
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Families 4&5 → non-LSTM data-centric layers

Introduction TPU and Model Characterization Mensa Framework Mensa-G Evaluation Conclusion 
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●



32

Introduction1
Edge TPU and Model Characterization2

Mensa Framework

3 Mensa-G: Mensa for Google Edge Models

Evaluation

Conclusion

3
4
5
6

Outline

Introduction TPU and Model Characterization Mensa Framework Mensa-G Evaluation Conclusion 
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●



0

0.25

0.5

0.75

1
Ba
se
lin
e

Ba
se
+H
B

M
en
sa

Ba
se
lin
e

Ba
se
+H
B

M
en
sa

Ba
se
lin
e

Ba
se
+H
B

M
en
sa

Ba
se
lin
e

Ba
se
+H
B

M
en
sa

Ba
se
lin
e

Ba
se
+H
B

M
en
sa

Ba
se
lin
e

Ba
se
+H
B

M
en
sa

Ba
se
lin
e

Ba
se
+H
B

M
en
sa

Ba
se
lin
e

Ba
se
+H
B

M
en
sa

Ba
se
lin
e

Ba
se
+H
B

M
en
sa

Ba
se
lin
e

Ba
se
+H
B

M
en
sa

LSTM1 Transd.1Transd.2 CNN5 CNN9 CNN10 CNN12 RCNN1 RCNN3 Average

N
or

m
al

iz
ed

 E
ne

rg
y

Total Static PE Param Buffer+NoC
Act Buffer+NoC Off-chip Interconnect DRAM

Energy Analysis

33Introduction TPU and Model Characterization Mensa Framework Mensa-G Evaluation Conclusion 
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Baseline Google Edge TPU accelerator
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Energy Analysis

Mensa-G lowers on-chip/off-chip parameter traffic energy by 
15.3x by scheduling layers on the accelerator with the most 

appropriate dataflow and memory bandwidth

Mensa-G reduces the dynamic energy of the on-chip 
buffer and NoC by 49.8x over Base+HB by avoiding

overprovisioning and catering to specialized dataflows
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Mensa-G improves energy efficiency by 3.0X
compared to the Baseline



Throughput Analysis
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Mensa-G improves throughput by 3.1X
compared to the Baseline
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More in the Paper 
• Details about Mensa Runtime Scheduler

• Details about Pascal, Pavlov, and Jacquard’s 
dataflows

• Energy comparison with Eyeriss v2

• Mensa-G’s utilization results 

• Mensa-G’s inference latency results
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Conclusion
Context:  We extensively analyze a state-of-the-art edge ML accelerator 
(Google Edge TPU) using 24 Google edge models

– Wide range of models (CNNs, LSTMs, Transducers, RCNNs)

Problem:  The Edge TPU accelerator suffers from three challenges:
– It operates significantly below its peak throughput
– It operates significantly below its theoretical energy efficiency
– It inefficiently handles memory accesses

Key Insight:  These shortcomings arise from the monolithic design of the 
Edge TPU accelerator

– The Edge TPU accelerator design does not account for layer heterogeneity 

Key Mechanism:  A new framework called Mensa
– Mensa consists of heterogeneous accelerators whose dataflow and 

hardware are specialized for specific families of layers

Key Results:  We design a version of Mensa for Google edge ML models
– Mensa improves performance and energy by 3.0X and 3.1X
– Mensa reduces cost and improves area efficiency
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