

Computer Architecture
Lecture 11b: Simulation

(with a Focus on Memory)

Prof. Onur Mutlu

ETH Zürich

Fall 2022

3 November 2022

Simulating (Memory) Systems

2

Evaluating New Ideas

for New (Memory) Architectures

Potential Evaluation Methods

 How do we assess how an idea will affect a target metric X?

 A variety of evaluation methods are available:

 Theoretical proof

 Analytical modeling/estimation

 Simulation (at varying degrees of abstraction and accuracy)

 Prototyping with a real system (e.g., FPGAs)

 Real implementation

 4

An Example Prototyping Platform

5

Real Processing Using Memory Prototype

 End-to-end RowClone & TRNG using off-the-shelf DRAM chips

 Idea: Violate DRAM timing parameters to mimic RowClone

https://arxiv.org/pdf/2111.00082.pdf

https://github.com/cmu-safari/pidram

https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

6

https://arxiv.org/pdf/2111.00082.pdf
https://github.com/cmu-safari/pidram
https://github.com/cmu-safari/pidram
https://github.com/cmu-safari/pidram
https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

Real Processing Using Memory Prototype

https://arxiv.org/pdf/2111.00082.pdf

https://github.com/cmu-safari/pidram

https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

 7

Host Machine

FPGA Board

RISC-V System
PiM-Enabled DIMM

https://arxiv.org/pdf/2111.00082.pdf
https://github.com/cmu-safari/pidram
https://github.com/cmu-safari/pidram
https://github.com/cmu-safari/pidram
https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

Real Processing Using Memory Prototype

https://arxiv.org/pdf/2111.00082.pdf

https://github.com/cmu-safari/pidram

https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

https://arxiv.org/pdf/2111.00082.pdf
https://github.com/cmu-safari/pidram
https://github.com/cmu-safari/pidram
https://github.com/cmu-safari/pidram
https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

9

Microbenchmark Copy/Initialization Throughput

In-DRAM Copy and Initialization

improve throughput by 119x and 89x

The Difficulty in Architectural Evaluation

 The answer is usually workload dependent

 E.g., think caching

 E.g., think pipelining

 E.g., think any idea we talked about (RAIDR, SALP, TL-DRAM, …)

 Workloads change

 System has many design choices and parameters

 Architect needs to decide many ideas and many parameters for a
design

 Not easy to evaluate all possible combinations!

 System parameters may change

10

Simulation: The Field of Dreams

Dreaming and Reality

 An architect is in part a dreamer, a creator

 Simulation is a key tool of the architect

 Allows the evaluation & understanding of non-existent systems

 Simulation enables

 The exploration of many dreams

 A reality check of the dreams

 Deciding which dream is better

 Simulation also enables

 The ability to fool yourself with false dreams

12

Why High-Level Simulation?

 Problem: RTL simulation is intractable for design space
exploration  too time consuming to design and evaluate

 Especially over a large number of workloads

 Especially if you want to predict the performance of a good
chunk of a workload on a particular design

 Especially if you want to consider many design choices

 Cache size, associativity, block size, algorithms

 Memory control and scheduling algorithms

 In-order vs. out-of-order execution

 Reservation station sizes, ld/st queue size, register file size, …

 …

 Goal: Explore design choices quickly to see their impact on
the workloads we are designing the platform for

13

Different Goals in Simulation
 Explore the design space quickly and see what you want to

 potentially implement in a next-generation platform

 propose as the next big idea to advance the state of the art

 the goal is mainly to see relative effects of design decisions

 Match the behavior of an existing system so that you can

 debug and verify it at cycle-level accuracy

 propose small tweaks to the design that can make a difference in
performance or energy

 the goal is very high accuracy

 Other goals in-between:

 Refine the explored design space without going into a full
detailed, cycle-accurate design

 Gain confidence in your design decisions made by higher-level
design space exploration

14

Tradeoffs in Simulation

 Three metrics to evaluate a simulator

 Speed

 Flexibility

 Accuracy

 Speed: How fast the simulator runs (xIPS, xCPS, slowdown)

 Flexibility: How quickly one can modify the simulator to
evaluate different algorithms and design choices?

 Accuracy: How accurate the performance (energy) numbers
the simulator generates are vs. a real design (Simulation
error)

 The relative importance of these metrics varies depending
on where you are in the design process (what your goal is)

15

Trading Off Speed, Flexibility, Accuracy

 Speed & flexibility affect:

 How quickly you can make design tradeoffs/decisions

 Accuracy affects:

 How good your design tradeoffs/decisions might end up being

 How fast you can build your simulator (simulator design time)

 Flexibility also affects:

 How much human effort you need to spend modifying the
simulator

 You can trade off between the three to achieve design
exploration and decision goals

16

High-Level Simulation

 Key Idea: Raise the abstraction level of modeling to give up
some accuracy to enable speed & flexibility (and quick
simulator design)

 Advantage

+ Can still make the right tradeoffs, and can do it quickly

 + All you need is modeling the key high-level factors, you can
omit corner case conditions

 + All you need is to get the “relative trends” accurately, not
exact performance numbers

 Disadvantage

-- Opens up the possibility of potentially wrong decisions

 -- How do you ensure you get the “relative trends” accurately?

17

Simulation as Progressive Refinement

 High-level models (Abstract, C)

 …

 Medium-level models (Less abstract)

 …

 Low-level models (RTL with “everything” modeled)
 …

 Real design

 As you refine (go down the above list)

 Abstraction level reduces

 Accuracy (hopefully) increases (not necessarily, if not careful)

 Flexibility reduces; Speed likely reduces except for real design

 You can loop back and fix higher-level models
18

Making The Best of Architecture

 A good architect is comfortable at all levels of refinement

 Including the extremes

 A good architect knows when to use what type of
simulation

 And, more generally, what type of evaluation method

 Recall: A variety of evaluation methods are available:

 Theoretical proof

 Analytical modeling

 Simulation (at varying degrees of abstraction and accuracy)

 Prototyping with a real system (e.g., FPGAs)

 Real implementation

 19

Some General Issues

in Architectural Simulation

20

Goal of Simulation Dictates Many Things

 Drives many design choices and what simulator to build/use

 Accuracy, flexibility, speed

 Many possible goals (as discussed earlier)

 Entire system performance estimation

 Component performance estimation (cache, SSD, memory, …)
 Profiling for statistics

 ...

21

What, How, Where, When

 What do you simulate?

 Component(s) or full system

 Program(s) or trace(s)

 How do you simulate it?

 Many choices: Functional vs. timing, event-driven vs. cycle-by-
cycle, state maintenance & recovery, …

 Where do you simulate (each thing you want to simulate)?

 Software vs. hardware-accelerated

 When do you do things in simulation?

 Oracle information vs. execute-like-a-real-machine

22

Simulator Inputs and Outputs: Generalized

 Inputs

 Program binary (can be multiple program binaries)

 System state/checkpoint (e.g., including OS, memory, devices,
storage, network, …)

 Outputs

 Functional

 Program results

 Statistics about functional execution

 Timing related

 Execution time of each program

 System throughput of all programs

 Statistics about timing and performance events

23

Some General Issues in Architecture Simulation

 Functional vs. Timing Simulation

 Purpose: When/why functional vs. timing

 Integration of functional and timing simulation

 Full-System vs. Component Simulation

 Purpose: When/why full system vs. component(s)

 What should be modeled? OS, VMs, memory allocator?

 Complete Workload vs. Sampling Based Simulation

 How do you form workloads to simulate; what parts to simulate?

 Warm-Up of Simulated Structures

 Steady-state vs. cold-start (e.g., caches, branch predictor tables)

24

An Old Example: Simplescalar Func. vs Timing

25 https://web.eecs.umich.edu/~taustin/papers/simple-tutorial-2up.pdf

https://web.eecs.umich.edu/~taustin/papers/simple-tutorial-2up.pdf
https://web.eecs.umich.edu/~taustin/papers/simple-tutorial-2up.pdf
https://web.eecs.umich.edu/~taustin/papers/simple-tutorial-2up.pdf
https://web.eecs.umich.edu/~taustin/papers/simple-tutorial-2up.pdf
https://web.eecs.umich.edu/~taustin/papers/simple-tutorial-2up.pdf

Functional vs. Timing: Many Choices

26 Mauer et al., “Full-system timing-first simulation,” SIGMETRICS 2002.

An Example Functional-First Model

27 Chiou et al., “Accurate Functional-First Multicore Simulators”, CAL 2009.

Some General Issues in Architecture Simulation

 Validation of Accuracy

 Functional accuracy vs. timing accuracy

 Online vs. offline validation

 Simulation Acceleration

 via Hardware Support (e.g., FPGAs)

 via Software Methods (e.g., Memoization)

 via Better Software Engineering

 Trace-driven vs. Execution-driven Simulation

 Captured trace drives what is modeled in simulation (and timing)

 Simulator itself emulates program execution and determines
what is executed (and timing)

 Affects what can be modeled (easily): e.g., wrong path

28

Some General Issues in Architecture Simulation

 Execute-at-Frontend vs. Execute-at-Execute

 Is execution done only in functional simulator or in the timing
simulator as well?

 Timing-dependent execution becomes harder if execution is
done only in the frontend, in the timing simulator

 Examples: value prediction of L2 misses

 State Maintenance and Recovery

 Modeling of mispredicted execution (wrong path, wrong
values, …)

 Event-driven vs. Cycle-by-cycle Polling

 One of many simulator design choices

29

We Covered Until Here in

Lecture. To Be Continued…

Computer Architecture
Lecture 11b: Simulation

(with a Focus on Memory)

Prof. Onur Mutlu

ETH Zürich

Fall 2022

3 November 2022

An Example Simulator

32

Ramulator: A Fast and Extensible

DRAM Simulator

 [IEEE Comp Arch Letters’15]

33

Ramulator Motivation

 DRAM and Memory Controller landscape is changing

 Many new and upcoming standards

 Many new controller designs

 A fast and easy-to-extend simulator is very much needed

34

Ramulator

 Provides out-of-the box support for many DRAM standards:

 DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, plus new
proposals (SALP, AL-DRAM, TLDRAM, RowClone, and SARP)

 ~2.5X faster than fastest open-source simulator

 Modular and extensible to different standards

35

Case Study: Comparison of DRAM Standards

36

Across 22
workloads,
simple CPU
model

Ramulator Paper and Source Code

 Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015.
[Source Code]

 Source code is released under the liberal MIT License

 https://github.com/CMU-SAFARI/ramulator

37

http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf
http://www.computer.org/web/cal
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator

Ramulator: Free & Open Source

38 https://github.com/CMU-SAFARI/ramulator

https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator

Ramulator: Integration with Other Simulators

39 https://github.com/CMU-SAFARI/ramulator

https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator

Ramulator: Reproducibility

40 https://github.com/CMU-SAFARI/ramulator

https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator

Ramulator Project Course
Exploration of Emerging Memory Systems (Spring/Fall 2022)

https://www.youtube.com/onurmutlulectures

 Fall 2022 Edition:

 https://safari.ethz.ch/projects_and_seminars/fall2
022/doku.php?id=ramulator

 Spring 2022 Edition:

 https://safari.ethz.ch/projects_and_seminars/sprin
g2022/doku.php?id=ramulator

 Youtube Livestream (Spring 2022):

 https://www.youtube.com/watch?v=aM-
llXRQd3s&list=PL5Q2soXY2Zi_TlmLGw_Z8hBo292
5ZApqV

 Bachelor’s course

 Elective at ETH Zurich

 Introduction to memory system simulation

 Tutorial on using Ramulator

 C++

 Potential research exploration

https://www.youtube.com/onurmutlulectures
https://safari.ethz.ch/digitaltechnik/spring2022/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=ramulator
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=ramulator
https://safari.ethz.ch/digitaltechnik/spring2021/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=ramulator
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=ramulator
https://www.youtube.com/watch?v=cpXdE3HwvK0&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6
https://www.youtube.com/watch?v=4yfkM_5EFgo&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
https://www.youtube.com/watch?v=r5QxuoJWttg&list=PL5Q2soXY2Zi_1trfCckr6PTN8WR72icUO
https://www.youtube.com/watch?v=r5QxuoJWttg&list=PL5Q2soXY2Zi_1trfCckr6PTN8WR72icUO
https://www.youtube.com/watch?v=r5QxuoJWttg&list=PL5Q2soXY2Zi_1trfCckr6PTN8WR72icUO
https://www.youtube.com/watch?v=r5QxuoJWttg&list=PL5Q2soXY2Zi_1trfCckr6PTN8WR72icUO

Bonus Assignment as Part of Next HW

 Review the Ramulator paper

 Same points as any other BONUS review in the next HW

42

Example Studies using Ramulator

43

An Example Study using Ramulator (I)

 Saugata Ghose, Tianshi Li, Nastaran Hajinazar, Damla Senol Cali, and Onur Mutlu,
"Demystifying Workload–DRAM Interactions: An Experimental Study"
Proceedings of the ACM International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS), Phoenix, AZ, USA, June 2019.
[Preliminary arXiv Version]
[Abstract]
[Slides (pptx) (pdf)]
[MemBen Benchmark Suite]
[Source Code for GPGPUSim-Ramulator]

44

https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19_pomacs19.pdf
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19_pomacs19.pdf
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19_pomacs19.pdf
http://www.sigmetrics.org/sigmetrics2019/
http://www.sigmetrics.org/sigmetrics2019/
https://arxiv.org/pdf/1902.07609.pdf
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-talk.pdf
https://github.com/CMU-SAFARI/MemBen
https://github.com/CMU-SAFARI/GPGPUSim-Ramulator
https://github.com/CMU-SAFARI/GPGPUSim-Ramulator
https://github.com/CMU-SAFARI/GPGPUSim-Ramulator

Why Study Workload–DRAM Interactions?

Manufacturers are developing many new types of
DRAM
• DRAM limits performance, energy improvements:

new types may overcome some limitations

• Memory systems now serve a very diverse set of applications:
can no longer take a one-size-fits-all approach

S o w hich D R AM type w orks be st w ith w hich

a pplica tion?

• Difficult to understand intuitively due to the complexity of the
complexity of the interaction

• Can’t be tested methodically on real systems: new type needs a
type needs a new CPU

We perform a w ide -ra nging e xpe rim e nta l study

study to uncove r

the com bine d be ha vior of workloads and DRAM

•

•

Page 45 of 25

Modern DRAM Types: Comparison to DDR3

Bank groups

3D-stacked DRAM

Page 46 of 25

D R AM

T ype

B a nks

pe r

R a nk

B a nk

G roup

s

3 D -

S ta ck

e d

Low -

P ow e r

DDR3 8

DDR4 16 

GDDR5 16 

HBM
High-

Bandwidth
Memory

16 

HMC
Hybrid

Memory Cube

256 

Wide I/O 4  

Wide I/O 2 8  

LPDDR3 8 

LPDDR4 16 

Memory
Layers

high bandwidth with
Through-Silicon

Vias (TSVs)

dedicated Logic Layer

D R AM

T ype

B a nks

pe r

R a nk

B a nk

G roup

s

3 D -

S ta ck

e d

Low -

P ow e r

DDR3 8

DDR4 16 

GDDR5 16 

HBM
High-

Bandwidth
Memory

16 

HMC
Hybrid

Memory Cube

256 

Wide I/O 4  

Wide I/O 2 8  

LPDDR3 8 

LPDDR4 16 

Bank Group Bank Group

Bank Bank Bank Bank

memory channel

increased latency

increased area/power

narrower rows,

higher latency

4. Need for Lower Access Latency: Performance

New DRAM types often increase access latency in order
to provide more banks, higher throughput

Many applications can’t make up for the increased
latency
• Especially true of common OS routines (e.g., file I/O, process

forking)

• A variety of desktop/scientific, server/cloud, GPGPU
applications Page 47 of 25

0.8

0.9

1.0

1.1

1.2

sh
e

ll
 (

0
.2

)

b
o

o
tu

p
 (

1
.1

)

fo
rk
be

nc
h…

U
D

P
_

R
R

 (
0

.1
)

T
C

P
_

R
R

 (
0

.1
)

UD
P_

ST
RE

AM
…

TC
P_

ST
RE

AM
…

T
e

st
 4

 (
3

.4
)

T
e

st
 1

1
 (

4
.5

)

T
e

st
 1

0
 (

4
.7

)

T
e

st
 9

 (
4

.7
)

T
e

st
 8

 (
4

.7
)

T
e

st
 5

 (
1

0
.1

)

T
e

st
 3

 (
1

3
.3

)

T
e

st
 1

 (
1

3
.6

)

T
e

st
 7

 (
1

3
.7

)

T
e

st
 1

2
 (

1
5

.4
)

T
e

st
 2

 (
1

5
.6

)

T
e

st
 0

 (
1

5
.7

)

T
e

st
 6

 (
1

6
.5

)

S
p

e
e

d
u

p

DDR4 GDDR5 HBM HMC

Netperf IOZone, 64MB File

Several applications don’t bene fit from m ore

pa ra lle lism

Key Takeaways

1. DRAM latency remains a critical bottleneck for
many applications

2. Bank parallelism is not fully utilized by a wide variety
of our applications

3. Spatial locality continues to provide significant
performance benefits if it is exploited by the memory
subsystem

4. For some classes of applications, low-power memory
can provide energy savings without sacrificing
significant performance

Page 48 of 25

Conclusion

Manufacturers are developing many new types of
DRAM
• DRAM limits performance, energy improvements:

new types may overcome some limitations

• Memory systems now serve a very diverse set of applications:
can no longer take a one-size-fits-all approach

• Difficult to intuitively determine which DRAM–workload pair
works best

We perform a w ide -ra nging e xpe rim e nta l study

to uncove r

the com bine d be ha vior of workloads, DRAM types
• 115 prevalent/emerging applications and multiprogrammed

workloads

• 9 modern DRAM types

12 key observations on DRAM–workload behavior Page 49 of 25

O pe n-source tools: https://github.com/CMU-
SAFARI/ramulator

F ull pa pe r: https://arxiv.org/pdf/1902.07609

For More Information…

 Saugata Ghose, Tianshi Li, Nastaran Hajinazar, Damla Senol Cali, and Onur Mutlu,
"Demystifying Workload–DRAM Interactions: An Experimental Study"
Proceedings of the ACM International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS), Phoenix, AZ, USA, June 2019.
[Preliminary arXiv Version]
[Abstract]
[Slides (pptx) (pdf)]
[MemBen Benchmark Suite]
[Source Code for GPGPUSim-Ramulator]

50

https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19_pomacs19.pdf
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19_pomacs19.pdf
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19_pomacs19.pdf
http://www.sigmetrics.org/sigmetrics2019/
http://www.sigmetrics.org/sigmetrics2019/
https://arxiv.org/pdf/1902.07609.pdf
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-talk.pdf
https://github.com/CMU-SAFARI/MemBen
https://github.com/CMU-SAFARI/GPGPUSim-Ramulator
https://github.com/CMU-SAFARI/GPGPUSim-Ramulator
https://github.com/CMU-SAFARI/GPGPUSim-Ramulator

BlockHammer Study in 2021
 A. Giray Yaglikci, Minesh Patel, Jeremie S. Kim, Roknoddin Azizi, Ataberk Olgun, Lois Orosa,

Hasan Hassan, Jisung Park, Konstantinos Kanellopoulos, Taha Shahroodi, Saugata Ghose,
and Onur Mutlu,
"BlockHammer: Preventing RowHammer at Low Cost by Blacklisting Rapidly-
Accessed DRAM Rows"
Proceedings of the 27th International Symposium on High-Performance Computer
Architecture (HPCA), Virtual, February-March 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Intel Hardware Security Academic Awards Short Talk Slides (pptx) (pdf)]
[Talk Video (22 minutes)]
[Short Talk Video (7 minutes)]
[Intel Hardware Security Academic Awards Short Talk Video (2 minutes)]
[BlockHammer Source Code]
Intel Hardware Security Academic Award Finalist (one of 4 finalists out of 34
nominations)

51

https://people.inf.ethz.ch/omutlu/pub/BlockHammer_preventing-DRAM-rowhammer-at-low-cost_hpca21.pdf
https://people.inf.ethz.ch/omutlu/pub/BlockHammer_preventing-DRAM-rowhammer-at-low-cost_hpca21.pdf
https://people.inf.ethz.ch/omutlu/pub/BlockHammer_preventing-DRAM-rowhammer-at-low-cost_hpca21.pdf
https://www.hpca-conf.org/2021/
https://www.hpca-conf.org/2021/
https://www.hpca-conf.org/2021/
https://www.hpca-conf.org/2021/
https://people.inf.ethz.ch/omutlu/pub/BlockHammer-preventing-rowhammer-at-low-cost-by-blacklisting-rapidly-accessed-dram-rows_hpca21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/BlockHammer-preventing-rowhammer-at-low-cost-by-blacklisting-rapidly-accessed-dram-rows_hpca21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/BlockHammer-preventing-rowhammer-at-low-cost-by-blacklisting-rapidly-accessed-dram-rows_hpca21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/BlockHammer-preventing-rowhammer-at-low-cost-by-blacklisting-rapidly-accessed-dram-rows_hpca21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/BlockHammer-IntelHardwareSecurityAcademicAwards-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/BlockHammer-IntelHardwareSecurityAcademicAwards-short-talk.pdf
https://www.youtube.com/watch?v=4Y01N1BhWv4&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=102
https://www.youtube.com/watch?v=h0WiOTVIH70&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=124
https://www.youtube.com/watch?v=5TymwquygZM
https://github.com/CMU-SAFARI/BlockHammer

52

Summary: BlockHammer

• BlockHammer is the first work to practically enable

throttling-based RowHammer mitigation

• BlockHammer is implemented in the memory controller

(no proprietary information of / no modifications to DRAM chips)

• BlockHammer is both scalable with worsening RowHammer

and compatible with commodity DRAM chips

• BlockHammer is open-source along with six state-of-the-art

mechanisms: https://github.com/CMU-SAFARI/BlockHammer

Source

https://github.com/CMU-SAFARI/BlockHammer
https://github.com/CMU-SAFARI/BlockHammer
https://github.com/CMU-SAFARI/BlockHammer
https://github.com/CMU-SAFARI/BlockHammer

BlockHammer: Free & Open Source

53 https://github.com/CMU-SAFARI/BlockHammer

https://github.com/CMU-SAFARI/BlockHammer
https://github.com/CMU-SAFARI/BlockHammer
https://github.com/CMU-SAFARI/BlockHammer

Many Other Ideas Evaluated w/ Ramulator

54 https://www.youtube.com/watch?v=pJ3mdIvMOY4&list=PL5Q2soXY2Zi-cAls3cyauNzM7-74Eq31O&index=9

https://www.youtube.com/watch?v=pJ3mdIvMOY4&list=PL5Q2soXY2Zi-cAls3cyauNzM7-74Eq31O&index=9
https://www.youtube.com/watch?v=pJ3mdIvMOY4&list=PL5Q2soXY2Zi-cAls3cyauNzM7-74Eq31O&index=9
https://www.youtube.com/watch?v=pJ3mdIvMOY4&list=PL5Q2soXY2Zi-cAls3cyauNzM7-74Eq31O&index=9
https://www.youtube.com/watch?v=pJ3mdIvMOY4&list=PL5Q2soXY2Zi-cAls3cyauNzM7-74Eq31O&index=9
https://www.youtube.com/watch?v=pJ3mdIvMOY4&list=PL5Q2soXY2Zi-cAls3cyauNzM7-74Eq31O&index=9

Ramulator for Processing in Memory

55

Simulation Infrastructure for PIM

 Ramulator extended for PIM

 Flexible and extensible DRAM simulator

 Can model many different memory standards and proposals

 Kim+, “Ramulator: A Flexible and Extensible DRAM
Simulator”, IEEE CAL 2015.

 https://github.com/CMU-SAFARI/ramulator-pim

 https://github.com/CMU-SAFARI/ramulator

 [Source Code for Ramulator-PIM]

56

https://github.com/CMU-SAFARI/ramulator-pim
https://github.com/CMU-SAFARI/ramulator-pim
https://github.com/CMU-SAFARI/ramulator-pim
https://github.com/CMU-SAFARI/ramulator-pim
https://github.com/CMU-SAFARI/ramulator-pim
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator-pim
https://github.com/CMU-SAFARI/ramulator-pim
https://github.com/CMU-SAFARI/ramulator-pim

Ramulator for PIM

 Gagandeep Singh, Juan Gomez-Luna, Giovanni Mariani, Geraldo F.
Oliveira, Stefano Corda, Sander Stujik, Onur Mutlu, and Henk Corporaal,
"NAPEL: Near-Memory Computing Application Performance
Prediction via Ensemble Learning"
Proceedings of the 56th Design Automation Conference (DAC), Las Vegas,
NV, USA, June 2019.
[Slides (pptx) (pdf)]
[Poster (pptx) (pdf)]
[Source Code for Ramulator-PIM]

57

https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19.pdf
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19.pdf
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19.pdf
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19.pdf
https://dac.com/
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19-poster.pdf
https://github.com/CMU-SAFARI/ramulator-pim
https://github.com/CMU-SAFARI/ramulator-pim
https://github.com/CMU-SAFARI/ramulator-pim

Ramulator Project Course
Exploration of Emerging Memory Systems (Spring/Fall 2022)

https://www.youtube.com/onurmutlulectures

 Fall 2022 Edition:

 https://safari.ethz.ch/projects_and_seminars/fall2
022/doku.php?id=ramulator

 Spring 2022 Edition:

 https://safari.ethz.ch/projects_and_seminars/sprin
g2022/doku.php?id=ramulator

 Youtube Livestream (Spring 2022):

 https://www.youtube.com/watch?v=aM-
llXRQd3s&list=PL5Q2soXY2Zi_TlmLGw_Z8hBo292
5ZApqV

 Bachelor’s course

 Elective at ETH Zurich

 Introduction to memory system simulation

 Tutorial on using Ramulator

 C++

 Potential research exploration

https://www.youtube.com/onurmutlulectures
https://safari.ethz.ch/digitaltechnik/spring2022/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=ramulator
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=ramulator
https://safari.ethz.ch/digitaltechnik/spring2021/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=ramulator
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=ramulator
https://www.youtube.com/watch?v=cpXdE3HwvK0&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6
https://www.youtube.com/watch?v=4yfkM_5EFgo&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
https://www.youtube.com/watch?v=r5QxuoJWttg&list=PL5Q2soXY2Zi_1trfCckr6PTN8WR72icUO
https://www.youtube.com/watch?v=r5QxuoJWttg&list=PL5Q2soXY2Zi_1trfCckr6PTN8WR72icUO
https://www.youtube.com/watch?v=r5QxuoJWttg&list=PL5Q2soXY2Zi_1trfCckr6PTN8WR72icUO
https://www.youtube.com/watch?v=r5QxuoJWttg&list=PL5Q2soXY2Zi_1trfCckr6PTN8WR72icUO

Some Other Useful Simulators

59

Many Simulators for Many Things

 gem5 full system multi-core simulation

 MQSim for SSD simulation

 DiskSim for Hard Disk simulation

 DAMOV-Sim for Processing-near-Memory simulation

 Sniper for fast Processor Simulation

 Scarab for detailed Microarchitectural Simulation

 Simics, Bochs, QEMU for full-system functional simulation

 …

 Or, develop your own simulator for your purpose…

60

DAMOV Simulator, Methods & Benchmarks

 Geraldo F. Oliveira, Juan Gomez-Luna, Lois Orosa, Saugata Ghose, Nandita
Vijaykumar, Ivan fernandez, Mohammad Sadrosadati, and Onur Mutlu,
"DAMOV: A New Methodology and Benchmark Suite for Evaluating Data
Movement Bottlenecks"
IEEE Access, 8 September 2021.
Preprint in arXiv, 8 May 2021.
[arXiv preprint]
[IEEE Access version]
[DAMOV Suite and Simulator Source Code]
[SAFARI Live Seminar Video (2 hrs 40 mins)]
[Short Talk Video (21 minutes)]

61

https://people.inf.ethz.ch/omutlu/pub/DAMOV-Bottleneck-Analysis-and-DataMovement-Benchmarks_arxiv21.pdf
https://people.inf.ethz.ch/omutlu/pub/DAMOV-Bottleneck-Analysis-and-DataMovement-Benchmarks_arxiv21.pdf
https://doi.org/10.1109/ACCESS.2021.3110993
https://arxiv.org/abs/2105.03725
https://arxiv.org/pdf/2105.03725.pdf
https://doi.org/10.1109/ACCESS.2021.3110993
https://github.com/CMU-SAFARI/DAMOV
https://www.youtube.com/watch?v=GWideVyo0nM&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=156
https://www.youtube.com/watch?v=HkMYuYMuZOg&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=161

DAMOV is Open Source

• We open-source our benchmark suite and our toolchain

DAMOV-SIM

DAMOV

Benchmarks

DAMOV is Open Source

• We open-source our benchmark suite and our toolchain

DAMOV-SIM

DAMOV

Benchmarks

Get DAMOV at:

https://github.com/CMU-SAFARI/DAMOV

https://github.com/CMU-SAFARI/DAMOV
https://github.com/CMU-SAFARI/DAMOV
https://github.com/CMU-SAFARI/DAMOV

More on DAMOV Analysis Methodology & Workloads

https://www.youtube.com/watch?v=GWideVyo0nM&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9&index=3

https://www.youtube.com/watch?v=GWideVyo0nM&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9&index=3
https://www.youtube.com/watch?v=GWideVyo0nM&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9&index=3
https://www.youtube.com/watch?v=GWideVyo0nM&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9&index=3

PIM Course (Spring 2022)

 Spring 2022 Edition:

 https://safari.ethz.ch/projects_and_semi
nars/spring2022/doku.php?id=processing
_in_memory

 Youtube Livestream:

 https://www.youtube.com/watch?v=9e4
Chnwdovo&list=PL5Q2soXY2Zi-
841fUYYUK9EsXKhQKRPyX

 Project course

 Taken by Bachelor’s/Master’s students
 Processing-in-Memory lectures

 Hands-on research exploration

 Many research readings

65

https://www.youtube.com/onurmutlulectures

https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=processing_in_memory
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=processing_in_memory
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=processing_in_memory
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=processing_in_memory
https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://www.youtube.com/watch?v=4yfkM_5EFgo&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://www.youtube.com/onurmutlulectures

MQSim for Modern SSD Simulation

 Arash Tavakkol, Juan Gomez-Luna, Mohammad Sadrosadati, Saugata
Ghose, and Onur Mutlu,
"MQSim: A Framework for Enabling Realistic Studies of Modern
Multi-Queue SSD Devices"
Proceedings of the 16th USENIX Conference on File and Storage
Technologies (FAST), Oakland, CA, USA, February 2018.
[Slides (pptx) (pdf)]
[Source Code]

66

https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18.pdf
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18.pdf
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18.pdf
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18.pdf
https://www.usenix.org/conference/fast18
https://www.usenix.org/conference/fast18
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pdf
https://github.com/CMU-SAFARI/MQSim

Solid-State Drives Course (Spring 2022)

 Spring 2022 Edition:

 https://safari.ethz.ch/projects_and_semi
nars/spring2022/doku.php?id=modern_s
sds

 Youtube Livestream:

 https://www.youtube.com/watch?v=_q4r
m71DsY4&list=PL5Q2soXY2Zi8vabcse1kL
22DEcgMl2RAq

 Project course

 Taken by Bachelor’s/Master’s students
 SSD Basics and Advanced Topics

 Hands-on research exploration

 Many research readings

67

https://www.youtube.com/onurmutlulectures

https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=modern_ssds
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=modern_ssds
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=modern_ssds
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=modern_ssds
https://www.youtube.com/watch?v=_q4rm71DsY4&list=PL5Q2soXY2Zi8vabcse1kL22DEcgMl2RAq
https://www.youtube.com/watch?v=4yfkM_5EFgo&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
https://www.youtube.com/watch?v=_q4rm71DsY4&list=PL5Q2soXY2Zi8vabcse1kL22DEcgMl2RAq
https://www.youtube.com/watch?v=_q4rm71DsY4&list=PL5Q2soXY2Zi8vabcse1kL22DEcgMl2RAq
https://www.youtube.com/watch?v=_q4rm71DsY4&list=PL5Q2soXY2Zi8vabcse1kL22DEcgMl2RAq
https://www.youtube.com/onurmutlulectures

Many More Simulators …

68
https://github.com/CMU-SAFARI

https://github.com/CMU-SAFARI
https://github.com/CMU-SAFARI
https://github.com/CMU-SAFARI

What We Discussed Is Applicable to

Simulation in Other Domains

Case Study:

COVID-19 Spread

Modeling and Prediction

71

https://arxiv.org/pdf/2102.03667.pdf

https://arxiv.org/pdf/2102.03667.pdf

COVID-19 Measures: Evaluation Methods

 How do we assess how an idea will affect a target metric X?

 A variety of evaluation methods are available:

 Theoretical proof

 Analytical modeling/estimation

 Simulation (at varying degrees of abstraction and accuracy)

 Prototyping with a real system (e.g., FPGAs)

 Real implementation

 72

Simulating & Predicting COVID-19 Spread

 An architect is in part a dreamer, a creator

 Simulation is a key tool of the architect

 Allows the evaluation & understanding of non-existent systems

 Simulation enables

 The exploration of many dreams

 A reality check of the dreams

 Deciding which dream is better

 Simulation also enables

 The ability to fool yourself with false dreams

73

Simulating & Predicting COVID-19 Spread

74 https://arxiv.org/pdf/2102.03667.pdf

https://arxiv.org/pdf/2102.03667.pdf

Simulating & Predicting COVID-19 Spread

75 https://arxiv.org/pdf/2102.03667.pdf

https://arxiv.org/pdf/2102.03667.pdf

Predicting Effectiveness of Measures

76

Prediction

Real Outcome

https://mealser.github.io/COVIDHunter/index.html

https://mealser.github.io/COVIDHunter/index.html

Recall: Goals in Simulation
 Explore the design space quickly and see what you want to

 potentially implement in a next-generation platform

 propose as the next big idea to advance the state of the art

 the goal is mainly to see relative effects of design decisions

 Match the behavior of an existing system so that you can

 debug and verify it at high accuracy

 propose small tweaks to the design that can make a difference

 the goal is very high accuracy

 Other goals in-between:

 Refine the explored design space without going into full
detailed modeling

 Gain confidence in your design decisions made by higher-level
design space exploration

77

Recall: Tradeoffs in Simulation

 Three metrics to evaluate a simulator

 Speed

 Flexibility

 Accuracy

 Speed: How fast the simulator runs (xIPS, xCPS, slowdown)

 Flexibility: How quickly one can modify the simulator to
evaluate different algorithms and design choices?

 Accuracy: How accurate the performance (energy) numbers
the simulator generates are vs. a real design (Simulation
error)

 The relative importance of these metrics varies depending
on where you are in the design process (what your goal is)

78

Trading Off Speed, Flexibility, Accuracy

 Speed & flexibility affect:

 How quickly you can make design tradeoffs

 Accuracy affects:

 How good your design tradeoffs may end up being

 How fast you can build your simulator (simulator design time)

 Flexibility also affects:

 How much human effort you need to spend modifying the
simulator

 You can trade off between the three to achieve design
exploration and decision goals

79

High-Level Simulation

 Key Idea: Raise the abstraction level of modeling to give up
some accuracy to enable speed & flexibility (and quick
simulator design)

 Advantage

+ Can still make the right tradeoffs, and can do it quickly

 + All you need is modeling the key high-level factors, you can
omit corner case conditions

 + All you need is to get the “relative trends” accurately, not
exact performance numbers

 Disadvantage

-- Opens up the possibility of potentially wrong decisions

 -- How do you ensure you get the “relative trends” accurately?

80

Simulation as Progressive Refinement

 High-level models (Abstract, C)

 …

 Medium-level models (Less abstract)

 …

 Low-level models (RTL with everything modeled)

 …

 Real design

 As you refine (go down the above list)

 Abstraction level reduces

 Accuracy (hopefully) increases (not necessarily, if not careful)

 Flexibility reduces; Speed likely reduces except for real design

 You can loop back and fix higher-level models
81

Recall: Making The Best of Architecture

 A good architect is comfortable at all levels of refinement

 Including the extremes

 A good architect knows when to use what type of
simulation

 And, more generally, what type of evaluation method

 Recall: A variety of evaluation methods are available:

 Theoretical proof

 Analytical modeling

 Simulation (at varying degrees of abstraction and accuracy)

 Prototyping with a real system (e.g., FPGAs)

 Real implementation

 82

