Computer Architecture
Lecture 13b: Memory Controllers:

Pertormance & Service Quality

Prof. Onur Mutlu
ETH Zurich
Fall 2022
10 November 2022

Memory Controllers

Recall: Why Are DRAM Controllers Ditficult to Design?

Need to obey DRAM timing constraints for correctness
o There are many (50+) timing constraints in DRAM

o tWTR: Minimum number of cycles to wait before issuing a read
command after a write command is issued

o tRC: Minimum number of cycles between the issuing of two
consecutive activate commands to the same bank

a ...

Need to keep track of many resources to prevent conflicts
o Channels, banks, ranks, data bus, address bus, row buffers

Need to handle DRAM refresh
Need to manage power consumption

Need tojoptimize performance & QOS {in the presence of constraints)
o Reordering Is not simple

o Fairness and QoS needs complicates the scheduling problem

Recall: DRAM Controller Design Is Becoming More Difficult

Large Large
CPU CPU Small Small

CPU CPU

Shared Cache HWA HWA DMA

vy ¥ Vv VvV
DRAM and Hybrid Memory Controllers
-/

DRAM and Hybrid Memories

= Heterogeneous agents: CPUs, GPUs, HWAs, DMA engine, ...
= Main memory interference between CPUs, GPUs, HWAs
= Many timing constraints for various memory types

= Many goals at the same time: performance, fairness, QoS,
energy efficiency, ...

Recall: Memory Controller: Performance Function

Resolves memory contention
by scheduling requests

lllllllllllllllllllll

Memory :“ Memory
Controller

llllllllllllllllllllll

Core .

How to schedule requests to maximize system performance?

SAFARI .

Recall: Selt-Optimizing DRAM Controllers

Dynamically adapt the memory scheduling policy via
interaction with the system at runtime

o Associate system states and actions (commands) with long term
reward values: each action at a given state leads to a learned reward

o Schedule command with highest estimated long-term reward value in
each state

o Continuously update reward values for <state, action> pairs based on
feedback from system

>| SYSTEM

Data Bus

Scheduled DRAM Utilization (t)
Command (t+1) Scheduler State

Attributes (1)

More on Selt-Optimizing DRAM Controllers

= Engin Ipek, Onur Mutlu, José F. Martinez, and Rich Caruana,

"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"”

Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.

Self-Optimizing Memory Controllers: A Reinforcement Learning Approach

Engin Ipek> Onur Mutlu?> José F. Martinez! Rich Caruana!

LCornell University, Ithaca, NY 14850 USA
2 Microsoft Research, Redmond, WA 98052 USA

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

Recall: Challenge and Opportunity for Future

Self-Optimizing
(Data-Driven)
Computing Architectures

SAFARI

Recall: System Architecture Design Today

Human-driven
o Humans design the policies (how to do things)

Many (too) simple, short-sighted policies all over the system
No automatic data-driven policy learning

(Almost) no learning: cannot take lessons from past actions

Can we design
fundamentally intelligent architectures?

SAFARI K

Recall: An Intelligent Architecture

Data-driven
o Machine learns the “best” policies (how to do things)

Sophisticated, workload-driven, changing, far-sighted policies
Automatic data-driven policy learning

All controllers are intelligent data-driven agents

We need to rethink design
(of all controllers)

SAFARI 10

Recall: Self-Optimizing Memory Prefetchers

Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu,
"Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.
[Slides (pptx) (pdf)]

[Short Talk Slides (pptx) (pdf)]

[Lightning Talk Slides (pptx) (pdf)]

[Talk Video (20 minutes)]

[Lightning Talk Video (1.5 minutes)]

[Pythia Source Code (Officially Artifact Evaluated with All Badges)]

[arXiv version]

Officially artifact evaluated as available, reusable and reproducible.

Pythia: A Customizable Hardware Prefetching Framework
Using Online Reinforcement Learning
Rahul Bera! Konstantinos Kanellopoulos! ~ Anant V. Nori? Taha Shahroodi*!

Sreenivas Subramoney® Onur Mutlu!
IETH Ziirich ?Processor Architecture Research Labs, Intel Labs 3TU Delft

https://arxiv.orq/pdf/2109.12021.pdf 11

https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=7
https://www.youtube.com/watch?v=kzL22FTz0vc&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=2
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf

Recall: Self-Optimizing Hybrid SSD Controllers

Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar,
David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage
Systems Using Online Reinforcement Learning"”

Proceedings of the 49th International Symposium on Computer

Architecture (ISCA), New York, June 2022.

[Slides (pptx) (pdf)]

[arXiv version]

[Sibyl Source Code]

[Talk Video (16 minutes)]

Sibyl: Adaptive and Extensible Data Placement in
Hybrid Storage Systems Using Online Reinforcement Learning

Gagandeep Singh! Rakesh Nadig! Jisung Park! = Rahul Bera! = Nastaran Hajinazar!
David Novo® Juan Gémez-Luna' Sander Stuijk?* Henk Corporaal® Onur Mutlu!

1ETH Ziirich 2Eindhoven University of Technology SLIRMM, Univ. Montpellier, CNRS

https: //arxiv.orq/pdf/2205.07394.pdf 12

https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
http://iscaconf.org/isca2022/
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pdf
https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000
https://arxiv.org/pdf/2205.07394.pdf

Recall: Learning-Based Otf-Chip LLoad Predictors

= Best Paper Award at MICRO 2022

Hermes: Accelerating Long-Latency Load Requests
via Perceptron-Based Off-Chip Load Prediction

Rahul Bera! Konstantinos Kanellopoulos' ~ Shankar Balachandran? David Novo®
Ataberk Olgun’ Mohammad Sadrosadati’ ~ Onur Mutlu'

1ETH Ziirich 2Intel Processor Architecture Research Lab 3LIRMM, Univ. Montpellier, CNRS

https://arxiv.org/pdf/2209.00188.pdf 13

https://arxiv.org/pdf/2209.00188.pdf

A Blueprint for Fundamentally Better Architectures

= Onur Mutluy,

'Intelligent Architectures for Intelligent Computing Systems"
Invited Paper in Proceedings of the Design, Automation, and Test in
Europe Conference (DATE), Virtual, February 2021.

Slides (pptx) (pdf)]

[IEDM Tutorial Slides (pptx) (pdf)]

[Short DATE Talk Video (11 minutes)]

[Longer IEDM Tutorial Video (1 hr 51 minutes)]

Intelligent Architectures for Intelligent Computing Systems

Onur Mutlu
ETH Zurich

omutlu@gmail.com

SAFARI 14

https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-computingsystems-invited_paper_DATE21.pdf
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://www.youtube.com/watch?v=eAZZGDlsDAY
https://www.youtube.com/watch?v=H3sEaINPBOE

More on Memory Controller Basics

Computer Architecture
Lecture 11a: Memory Controllers

Prof. Onur Mutlu
ETH Zirich
Fall 2022
3 November 2022

Livestream - Computer Architecture - ETH Ziirich (Fall 2022)
Computer Architecture - Lecture 11: Memory Controllers & Simulation (Fall 2022)

- Onur Mutlu Lectures ; e ; =
¢ Analyt Edit vid 28 Sh ¥ Download X ¢l =+ S
5 W 5 icobeoibers nalytics it video ik oy »~> Share 1 Downloa & clip + Save

764 views Streamed 5 days ago

SAFAR]| https://www.youtube.com/watch?v=WcCIV-B4X3E&list=PL 5Q250XY2Zi-cAls3cyauNzM7-74Eq3108&index=11 12

https://www.youtube.com/watch?v=WcCJV-B4X3E&list=PL5Q2soXY2Zi-cAls3cyauNzM7-74Eq31O&index=11

Shared Resource Design for
Multi-Core Systems

Memory System: A Shared Resource View

Shared Memory
Shared Shared
Memory Memory
Shared Control Control
Interconnect
\
\
@)) N
= =
Qo [<Y]
- -
o) e
(=9
\% =
\E\ E
(=] (=]
- =]
e
Shared Shared
Memory Memory
Control Control
Shared Memory

Most of the system is dedicated to storing and moving data
SAFARI 17

Resource Sharing Concept

Idea: Instead of dedicating a hardware resource to a
hardware context, allow multiple contexts to use it

o Example resources: functional units, pipeline, caches, buses,
memory, interconnects, storage

Why?

+ Resource sharing improves utilization/efficiency - throughput

o When a resource is left idle by one thread, another thread can
use it; no need to replicate shared data

+ Reduces communication latency

o For example, shared data kept in the same cache in SMT
processors

+ Compatible with the shared memory model

18

Resource Sharing Disadvantages

Resource sharing results in contention for resources
o When the resource is not idle, another thread cannot use it

o If space is occupied by one thread, another thread needs to re-
occupy it

- Sometimes reduces each or some thread’ s performance
- Thread performance can be worse than when it is run alone

- Eliminates performance isolation - inconsistent performance
across runs

- Thread performance depends on co-executing threads

- Uncontrolled (free-for-all) sharing degrades QoS
- Causes unfairness, starvation

Need to efficiently and fairly utilize shared resources
19

Example: Problem with Shared Caches

[Processor Core 1 }—“ Processor Core 2

i ! L }

L1 $

L |

Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor
Architecture,” PACT 2004.

20

Example: Problem with Shared Caches

Processor Core 1 t2— [Processor Core 2 J

L } i !

L1 $

L } i !

L2 $

Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor
Architecture,” PACT 2004.

21

Example: Problem with Shared Caches

i ! i !

[t2’s throughput is significantly reduced due to unfair cache sharing.

Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor
Architecture,” PACT 2004.

22

Need for QoS and Shared Resource Mgmt.

Why is unpredictable performance (or lack of QoS) bad?

Makes programmer’s life difficult

o An optimized program can get low performance (and
performance varies widely depending on co-runners)

Causes discomfort to user
o An important program can starve
o Examples from shared software resources

Makes system management difficult

o How do we enforce a Service Level Agreement when
hardware resource sharing is uncontrollable?

23

Resource Sharing vs. Partitioning

= Sharing improves throughput
o Better utilization of space

= Partitioning provides performance isolation (predictable
performance)

o Dedicated space

= Can we get the benefits of both?

= Idea: Design shared resources such that they are efficiently
utilized, controllable and partitionable

a No wasted resource + QoS mechanisms for threads

24

Memory System is the Major Shared Resource

threads’ requests

interfere

Core 0 Core | Core 2 Core N
A K
[A\ 4 * \ 4
Shared Cache

Memory Controller

DRAM
Bank |

Shared Memory
Resources

- Chip Boundary

25

Much More of a Shared Resource in Future

Shared Memory
Shared Shared
Memory Memory
Shared Control Control
Interconnect
\
\
o)) N
= =
<Y] Qo
= =
(¢ (¢
(=8
\% =
E 5
(=] (=]
=] =]
e
Shared Shared
Memory Memory
Control Control
Shared Memory

Most of the system is dedicated to storing and moving data

Inter-Thread/Application Interference

= Problem: Threads share the memory system, but memory
system does not distinguish between threads’ requests

= Existing memory systems
Free-for-all, shared based on demand
Control algorithms thread-unaware and thread-unfair

a

a

o Aggressive threads can deny service to others

a Do not try to reduce or control inter-thread interference

Unfair Slowdowns due to Interference

)
w1

W

N
w1

Slowdown
N

—t
o1

0.5 -

1.07

matlab

(Core 1)

3.04

gcc

(Core 2)

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service
in multi-core svstems.” USENIX Securitv 2007.

28

Uncontrolled Interference: An Example

unfairness

L2
CACHE

L2

CACHE

A

INTERCONNECT

3

7

Multi-Core
Chip

DRAM MEMORY CONTROLLER/

DRAM
Bank O

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

~

Shared DRAM
Memory System

29

A Memory Performance Hog

// initialize large arrays A, B

.| streaming
Al[index] = B[index];

STREAM

- Sequential memory access

// initialize large arrays A, B

for (j=0; j<N; j++) {
random

A[index] = B[index];

RANDOM

- Random memory access

- Very high row buffer locality (96% hit rate) - Very low row buffer locality (3% hit rate)

- Memory intensive

- Similarly memory intensive

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

30

What Does the Memory Hog Dor

||||||
IIIIII
IIIIII
IIIIII
——————————————————————————
||||||
||||||

g |

O R

Q R A

& 2 N R

— O IS DUV SO SO

T0: Row 0 g

T0: Row 6 s

TT0feow0
N0 FRow 1B

Memory Request Buffer Row Buffer

Row size: 8KB, cache block size: 64B
128 (8kB/64B) requests of TO serviced before T1

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

31

DRAM Controllers

A row-conflict memory access takes significantly longer
than a row-hit access

Current controllers take advantage of the row buffer

Commonly used scheduling policy (FR-FCFS) [Rixner 20007*
(1) Row-hit first: Service row-hit memory accesses first
(2) Oldest-first: Then service older accesses first

This scheduling policy aims to maximize DRAM throughput
But, it is unfair when multiple threads share the DRAM system

*Rixner et al., “Memory Access Scheduling,” ISCA 2000.
*Zuravleff and Robinson, “Controller for a synchronous DRAM ...,” US Patent 5,630,096, May 1997.

32

Ettect of the Memory Performance Hog

2X slowdown

N
Ul

N

Slowdown
(@]

—
3

o
ul
|

STREAM Virtual PC

Results on Intel Pentium D running Windows XP
(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux)

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

33

Greater Problem with More Cores

/.74

4.72

1.85

1.05

Slowdown
O N WNINHNUITON O

|

libquantum hmmer h264ref omnetpp

= Vulnerable to denial of service (DoS)
= Unable to enforce priorities or SLAs
= Low system performance

Uncontrollable, unpredictable system

SAFARI 34

Greater Problem with More Cores

5 7
c 4 c 6
3 3 S
o 3 O 4
O O
2 2 > 3
e, 2 2
VR “

0 0

zeus art Ibm omnet apsi vortex

= Vulnerable to denial of service (DoS)
= Unable to enforce priorities or SLAs
= Low system performance

Uncontrollable, unpredictable system

SAFARI

35

Distributed DoS in Networked Multi-Core Systems

Attackers Stock option pricing application
(Cores 1-8) (Cores 9-64)

s N 7 N

Cores connected via
packet-switched
routers on chip

ﬁ
i
-
-
i
-
-~

,_
:
—
—
:
—
:

~5000X latency increase

Grot, Hestness, Keckler, Mutlu,
“Preemptive virtual clock: A Flexible,
Efficient, and Cost-effective QOS
Scheme for Networks-on-Chip,"
MICRO 2009.

More on Memory Performance Attacks

= Thomas Moscibroda and Onur Mutluy,

"Memory Performance Attacks: Denial of Memory Service
in Multi-Core Systems"
Proceedings of the 16th USENIX Security Symposium (USENIX

SECURITY), pages 257-274, Boston, MA, August 2007. Slides
(ppt)

Memory Performance Attacks:
Denial of Memory Service in Multi-Core Systems

Thomas Moscibroda Onur Mutlu

Microsoft Research
{moscitho,onur } @microsoft.com

SAFARI http://www.youtube.com/watch?v=V1zZbwgBfy8 i

http://users.ece.cmu.edu/~omutlu/pub/mph_usenix_security07.pdf
http://www.usenix.org/events/sec07/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_usenix-security07_talk.ppt
http://www.youtube.com/watch?v=VJzZbwgBfy8

More on Interconnect Based Starvation

= Boris Grot, Stephen W. Keckler, and Onur Mutlu,
"Preemptive Virtual Clock: A Flexible, Efficient, and Cost-
effective QOS Scheme for Networks-on-Chip"
Proceedings of the 42nd International Symposium on
Microarchitecture (MICRO), pages 268-279, New York, NY,
December 2009. Slides (pdf)

Preemptive Virtual Clock: A Flexible, Efficient, and
Cost-effective QOS Scheme for Networks-on-Chip

Boris Grot Stephen W. Keckler Onur Mutlut
Department of Computer Sciences fComputer Architecture Laboratory (CALCM)
The University of Texas at Austin Carnegie Mellon University
{bgrot, skeckler@cs.utexas.edu} onur@cmu.edu

SAFARI 38

http://users.ece.cmu.edu/~omutlu/pub/pvc-qos_micro09.pdf
http://www.microarch.org/micro42/
http://users.ece.cmu.edu/~omutlu/pub/grot_micro09_talk.pdf

Maslow’s (Human) Hierarchy of Needs

Maslow, “A Theory of Human Motivation,”
Psychological Review, 1943.

Self-fulfillment
needs

Self-
Maslow, “Motivation and Personality,” actualization:

Fias ,
Book, 1954-1970. m‘u"le;g\'gn%r;is

including creative
activities

Esteem needs:

prestige and feeling of accomplishment Psychological

needs

Belongingness and love needs:
infimate relationships, friends

Safety needs:
security, safefy Basic
needs
Physiological needs:
, water, warmth, rest
Lack of QoS can be a safety and security problem
SA F A R l Sszﬁrrg;:;; Lzse:r/:cglc\:s,r\;jsoieren -pI\I/I\gF;Ingi':OI-lIiZ%Zr':r:f ér?l\?ei?j\slvsc;,mclc BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=7964065 39

How Do We Solve The Problem?

Inter-thread interference is uncontrolled in all memory
resources

o Memory controller
o Interconnect
o Caches

We need to control it
o i.e., design an interference-aware (QoS-aware) memory system

40

QoS-Aware Memory Systems: Challenges

How do we reduce inter-thread interference?
o Improve system performance and core utilization
o Reduce request serialization and core starvation

How do we control inter-thread interference?

o Provide mechanisms to enable system software to enforce
QoS policies
o While providing high system performance

How do we make the memory system configurable/flexible?

o Enable flexible mechanisms that can achieve many goals
Provide fairness or throughput when needed
Satisfy performance guarantees when needed

41

Designing QQoS-Aware Memory Systems: Approaches

Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism
Qo5 vere memor onver]

o QoS-aware interconnects

o QoS-aware caches

Dumb resources: Keep each resource free-for-all, but
reduce/control interference by injection control or data
mapping

o Source throttling to control access to memory system

o QoS-aware data mapping to memory controllers

o QoS-aware thread scheduling to cores

42

Fundamental Interference Control Techniques

Goal: to reduce/control inter-thread memory interference

1. Prioritization or request scheduling ‘

2. Data mapping to banks/channels/ranks
3. Core/source throttling

4. Application/thread scheduling

43

Lecture on Other QoS Techniques

| - |
Application-to-Core Mapping N £ R
- A

Improve Bandwidth Improve Bandwidth
Utilization Utilization
B e g Radial
. Balancing Mapping
= 1 r A A T 4‘
:§ ;:| |
V- c-' - L -
A | g: [A A A

\\\/ N _/
Improve Locality Reduce Interference
Reduce Interference

© ETH ZENTRUM
Computer Arch - Lecture 13: Memory Interference and Quality of Service Il (ETH Zirich, Spring 2020)

1,006 views + Nov 7, 2020 e 23 GP 0) SHARE =+ SAVE

@ Onur Mutlu Lectures ANALYTICS EDIT VIDEO
&> 19.8K subscribers

S A FA R I https://www.youtube.com/watch?v=Axye9VaQT7w&list=PL50Q2s0XY2Zi9xidyIgBxUz7xRPS-wisBN&index=26 44

https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26

Lecture on Other QoS Techmques

Lo @
gk

oot X g2
\.\ L"‘)W)\ (Ur\f)'Y/)

|||

S 95

© ETH ZENTRUM
Computer Arch - Lecture 13: Memory Interference and Quality of Service Il (ETH Ziirich, Spring 2020)
1,006 views * Nov 7, 2020

ik 23 CP 0 > SHARE =+ SAVE

@ Onur Mutlu‘Lectures ANALYTICS EDIT VIDEO
& 19.8K subscribers

S A FA R I https://www.youtube.com/watch?v=Axye9VaQT7w&list=PL50Q2s0XY2Zi9xidyIgBxUz7xRPS-wisBN&index=26 45

https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26

Memory Channel Partitioning

Partitioning Channels Between Applications

Core
Red @ Memory
App Controller

Core ><

Blue = Memory
App Controller

Eliminates interference between applications’ requests

© ETH ZURICH D-ITET
Seminar in Computer Architecture - Lecture 4: Memory Channel Partitioning (Fall 2021)

379 views + Streamed live on Oct 14, 2021 e 19 GP 0 > SHARE =+ SAVE

@ Onur Ml-IﬂU‘LeCthES ANALYTICS EDIT VIDEO
& 19.8K subscribers

S A FA R I https://www.youtube.com/watch?v=rimVKDdI8]c&list=PL5Q2s0XY2Zi 7UBNmMCI9B8Yr5JSwWTG9yH4&index=>5

46

https://www.youtube.com/watch?v=rjmVKDdl8Jc&list=PL5Q2soXY2Zi_7UBNmC9B8Yr5JSwTG9yH4&index=5

Handling CPU-IO Interference

Donghyuk Lee, Lavanya Subramanian, Rachata Ausavarungnirun, Jongmoo Choi,
and Onur Mutlu,

"Decoupled Direct Memory Access: Isolating CPU and IO Traffic by
Leveraging a Dual-Data-Port DRAM"

Proceedings of the 24th International Conference on Parallel Architectures and
Compilation Technigues (PACT), San Francisco, CA, USA, October 2015.

[Slides (pptx) (pdf)]
r application (=== Processor -----, ¢==--- Processor -----
e

(s O I N
mem e
main memory &10
DRAM 10
(10 devices) (10devices | (10devices |
(a) Logical Hierarchy (b) Physical System (c) Our Proposal

Figure 1: Methods to Connect Cores and Data Sources

Decoupled Direct Memory Access:
Isolating CPU and IO Traffic by Leveraging a Dual-Data-Port DRAM

Donghyuk Lee* Lavanya Subramanian* Rachata Ausavarungnirun* Jongmoo Choif Onur Mutlu*

*Carnegie Mellon University fDankook University
{donghyul, Isubrama, rachata, onur} @cmu.edu choijm@dankook.ac.kr

SAFARI 47

https://people.inf.ethz.ch/omutlu/pub/decoupled-dma_pact15.pdf
https://sites.google.com/a/lbl.gov/pact2015/
https://people.inf.ethz.ch/omutlu/pub/decoupled-dma_donghyuk_pact15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/decoupled-dma_donghyuk_pact15-talk.pdf

QoS-Aware Memory Scheduling:

Revolution & Evolution

QoS-Aware Memory Scheduling

Resolves memory contention
b /4 schedu//ng reqguests

lllllllllllllllllllll

= How to schedule requests to provide
o High system performance
o High fairness to applications
o Configurability to system software

= Memory controller needs to be aware of threads

SAFARI &

QoS-Aware Memory Scheduling: Evolution

= Stall-time fair memory scheduling [Mutlu+ MICRO'07]
o Idea: Estimate and balance thread slowdowns

o Takeaway: Proportional thread progress improves performance,
especially when threads are “heavy” (memory intensive)

= Parallelism-aware batch scheduling [Mutlu+ ISCA'08, Top Picks'09]

o Idea: Rank threads and service in rank order (to preserve bank
parallelism); batch requests to prevent starvation

o Takeaway: Preserving within-thread bank-parallelism improves
performance; request batching improves fairness

= ATLAS memory scheduler [Kim+ HPCA'10]

o Idea: Prioritize threads that have attained the least service from the
memory scheduler

o Takeaway: Prioritizing “light” threads improves performance
SAFARI >

QoS-Aware Memory Scheduling: Evolution

= Thread cluster memory scheduling [Kim+ MICRO'10, Top Picks'11]

o Idea: Cluster threads into two groups (latency vs. bandwidth
sensitive); prioritize the latency-sensitive ones; employ a fairness
policy in the bandwidth sensitive group

o Takeaway: Heterogeneous scheduling policy that is different based
on thread behavior maximizes both performance and fairness

= Integrated Memory Channel Partitioning and Scheduling
[Muralidhara+ MICRO"11]

= Idea: Only prioritize very latency-sensitive threads in the scheduler;
mitigate all other applications’ interference via channel partitioning

= Takeaway: Intelligently combining application-aware channel
partitioning and memory scheduling provides better performance
than either

SAFARI >

QoS-Aware Memory Scheduling: Evolution

= Parallel application memory scheduling [Ebrahimi+ MICRO"11]

o Idea: Identify and prioritize limiter threads of a multithreaded
application in the memory scheduler; provide fast and fair progress
to non-limiter threads

o Takeaway: Carefully prioritizing between limiter and non-limiter
threads of a parallel application improves performance

= Staged memory scheduling [Ausavarungnirun+ ISCA'12]

= Idea: Divide the functional tasks of an application-aware memory
scheduler into multiple distinct stages, where each stage is
significantly simpler than a monolithic scheduler

= Takeaway: Staging enables the design of a scalable and relatively
simpler application-aware memory scheduler that works on very
large request buffers

SAFARI >2

QoS-Aware Memory Scheduling: Evolution

= MISE: Memory Slowdown Model [Subramanian+ HPCA"13]

= Idea: Estimate the performance of a thread by estimating its change
in memory request service rate when run alone vs. shared - use
this simple model to estimate slowdown to design a scheduling
policy that provides predictable performance or fairness

= Takeaway: Request service rate of a thread is a good proxy for its
performance; alone request service rate can be estimated by giving
high priority to the thread in memory scheduling for a while

= ASM: Application Slowdown Model [Subramanian+ MICRO’15]
o Idea: Extend MISE to take into account cache+memory interference

o Takeaway: Cache access rate of an application can be estimated
accurately and is a good proxy for application performance

SAFARI >3

QoS-Aware Memory Scheduling: Evolution

BLISS: Blacklisting Memory Scheduler [Subramanian+ ICCD’14,
TPDS'16]

o Idea: Deprioritize (i.e., blacklist) a thread that has consecutively
serviced a large number of requests

o Takeaway: Blacklisting greatly reduces interference enables the
scheduler to be simple without requiring full thread ranking

DASH: Deadline-Aware Memory Scheduler [Usui+ TACO'16]

Idea: Balance prioritization between CPUs, GPUs and Hardware
Accelerators (HWA) by keeping HWA progress in check vs. deadlines
such that HWAs do not hog performance and appropriately
distinguishing between latency-sensitive vs. bandwidth-sensitive CPU
workloads

Takeaway: Proper control of HWA progress and application-aware CPU
prioritization leads to better system performance while meeting HWA
deadlines

SAFARI >

QoS-Aware Memory Scheduling: Evolution

= Prefetch-aware shared resource management [Ebrahimi+
ISCA'11] [Ebrahimi+ MICRO’09] [Ebrahimi+ HPCA'09] [Lee+ MICRO'08'09]

o Idea: Prioritize prefetches depending on how they affect system
performance; even accurate prefetches can degrade performance of
the system

o Takeaway: Carefully controlling and prioritizing prefetch requests
improves performance and fairness

= DRAM-Aware last-level cache policies and write scheduling
[Lee+ HPS Tech Report'10] [Seshadri+ ISCA'14]
o Idea: Design cache eviction and replacement policies such that they
proactively exploit the state of the memory controller and DRAM
(e.qg., proactively evict data from the cache that hit in open rows)

o Takeaway: Coordination of last-level cache and DRAM policies
improves performance and fairness; writes should not be ignored

SAFARI >

QoS-Aware Memory Scheduling: Evolution

= FIRM: Memory Scheduling for NVM [Zhao+ MICRO'14]

o Idea: Carefully handle write-read prioritization with coarse-grained
batching and application-aware scheduling

o Takeaway: Carefully controlling and prioritizing write requests
improves performance and fairness; write requests are especially
critical in NVMs

= Criticality-Aware Memory Scheduling for GPUs [Jog+
SIGMETRICS'16]

o Idea: Prioritize latency-critical cores’ requests in a GPU system

o Takeaway: Need to carefully balance locality and criticality to make
sure performance improves by taking advantage of both

= Worst-case Execution Time Based Memory Scheduling for
Real-Time Systems [Kim+ RTAS'14, JRTS'16]

SAFARI >

Stall-Time Fair Memory Scheduling

Onur Mutlu and Thomas Moscibroda,
"Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors"
40th International Symposium on Microarchitecture (MICRO),
pages 146-158, Chicago, IL, December 2007. Slides (ppt)

STFM Micro 2007 Talk

http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_micro07_talk.ppt
file:////Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/mutlu_micro07_talk.ppt

The Problem: Unfairness

/.74

4.72

1.85

1.05

Slowdown
O N WNINHNUITON O

|

libquantum hmmer h264ref omnetpp

= Vulnerable to denial of service (DoS)
= Unable to enforce priorities or SLAs
= Low system performance

Uncontrollable, unpredictable system

SAFARI 58

How Do We Solve the Problem?

Stall-time fair memory scheduling [Mutlu+ MICRO'07]

Goal: Threads sharing main memory should experience
similar slowdowns compared to when they are run alone >

fair scheduling

Also improves overall system performance by ensuring cores make
“proportional” progress

Idea: Memory controller estimates each thread’s slowdown
due to interference and schedules requests in a way to
balance the slowdowns

Mutlu and Moscibroda, “Stall-Time Fair Memory Access Scheduling for
Chip Multiprocessors,” MICRO 2007.

59

Stall-Time Fairness in Shared DRAM Systems

A DRAM system is fair if it equalizes the slowdown of equal-priority threads
relative to when each thread is run alone on the same system

DRAM-related stall-time: The time a thread spends waiting for DRAM memory
STehared: DRAM-related stall-time when the thread runs with other threads
ST,0ne: DRAM-related stall-time when the thread runs alone

Memory-slowdown = STghared/ STalone
o Relative increase in stall-time

Stall-Time Fair Memory scheduler (STFM) aims to equalize
Memory-slowdown for interfering threads, without sacrificing performance

o Considers inherent DRAM performance of each thread
o Aims to allow proportional progress of threads

60

STEM Scheduhng Algorithm [MICRO’ 07]

For each thread, the DRAM controller

a TraCkS STshared
o Estimates ST one

Each cycle, the DRAM controller
o Computes Slowdown = STghared/STaione fOr threads with legal requests
o Computes unfairness = MAX Slowdown / MIN Slowdown

If unfairness < «
o Use DRAM throughput oriented scheduling policy
If unfairness = o

o Use fairness-oriented scheduling policy
(1) requests from thread with MAX Slowdown first
(2) row-hit first , (3) oldest-first

01

How Does STEFM Prevent Unfairness?

T0: Row O

T1: Row 5

T0: Row O

T1: Row 111

TO0: Row 0

T0: Row 06

||||||
IIIIII
IIIIII
IIIIII
——————————————————————————

IIIIII
IIIIII
IIIIII
IIIIII
'''''''''''''''''''''
||||||
||||||
IIIIII
—————————————————————————

IIIIII
IIIIII
IIIIII

||||||
||||||
IIIIII
IIIIII

IIIIII
IIIIII
||||||
L L L R i R
||||||
IIIIII
IIIIII

TO Slowdown

1.08

T1 Slowdown

1.08

e

Unfairness

- S
1.08
N >

R, —

a

1.05

Row 161

Row Buffer

62

STEFM Pros and Cons

Upsides:

o First algorithm specialized for fair multi-core memory scheduling
o Provides a mechanism to estimate memory slowdown of a thread
o Good at providing fairness

o Being fair can improve performance

Downsides:

o Does not handle all types of interference
o Complex to implement

o Slowdown estimations can be incorrect

03

More on STFM

= Onur Mutlu and Thomas Moscibroda,
"Stall-Time Fair Memory Access Scheduling for Chip
Multiprocessors”
Proceedings of the 40th International Symposium on
Microarchitecture (MICRO), pages 146-158, Chicago, IL,
December 2007. [Summary] [Slides (ppt)]

Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors

Onur Mutlu Thomas Moscibroda

Microsoft Research
{onur,moscitho } @microsoft.com

04

http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/mutlu_micro07_talk.ppt

Parallelism-Aware Batch Scheduling

Onur Mutlu and Thomas Moscibroda,
"Parallelism-Aware Batch Scheduling: Enhancing both
Performance and Fairness of Shared DRAM Systems”
35th International Symposium on Computer Architecture (ISCA),
pages 63-74, Beijing, China, June 2008. Slides (ppt)

PAR-BS ISCA 2008 Talk

http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca08_talk.ppt
file:////Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/parbs-isca08-talk.ppt

Another Problem due to Memory Interference

Processors try to tolerate the latency of DRAM requests by
generating multiple outstanding requests

o Memory-Level Parallelism (MLP)

o Out-of-order execution, non-blocking caches, runahead execution

Effective only if the DRAM controller actually services the
multiple requests in parallel in DRAM banks

Multiple threads share the DRAM controller

DRAM controllers are not aware of a thread’s MLP
o Can service each thread’ s outstanding requests serially, not in parallel

06

Bank Parallelism of a Thread

2 DRAM Requests Bank 0 Bank 1

Single Thread:

Thread A :
Thread A: Bank 0, Row 1
Thread A: Bank 1, Row 1

Bank O i
Bank 1
Bank access latencies of the two requests overlapped
Thread stalls for ~ONE bank access latency

67

Bank Parallelism Interference in DRAM

Baseline Scheduler: Bank 0 Bank 1
2 DRAM Requests

A:

2 DRAM Requests Thread A: Bank 0, Row 1 |

> [CEmpUE ISR [CO0E] | |2 & oo 0w o
Thread B: Bank 0, Row 99|
Thread A: Bank 1, Row 1 |

Bank access latencies of each thread serialized
Each thread stalls for ~TWO bank access latencies

68

Parallelism-Aware Scheduler

Baseline Scheduler: Bank 0 Bank 1
2 DRAM Requests

Thread A: Bank 0, Row 1 |
Thread B: Bank 1, Row 99|

Thread B: Bank 0, Row 99|
Parallelism-aware Scheduler: Thread A: Bank 1, Row 1 |

2 DRAM Requests
4. | Compute [NNISTEN Compute i
Bank ; Saved Cycles: Ayerage stall-time:

Bank 1 -
DRAM, Requests 1.5 bank access

2]
- [Compute I NSTENNNSTEI Corpuie| latencles

09

Parallelism-Aware Batch Scheduling (PAR-BS)

Principle 1: Parallelism-awareness

Q

Q

Q

Schedule requests from a thread (to
different banks) back to back
Preserves each thread’ s bank parallelism
But, this can cause starvation...

Principle 2: Request Batching

Q

o o 0O Od

Group a fixed number of oldest requests
from each thread into a “batch”

Service the batch before all other requests
Form a new batch when the current one is done
Eliminates starvation, provides fairness

Allows parallelism-awareness within a batch

T2

T2 T2
{'/---T-Z _____
i
e

Bank 0| | Bank 1

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

i ———— -

\ Batch

70

PAR-BS Components

Request batching

Within-batch scheduling

o Parallelism aware

71

Request Batching

Each memory request has a bit (marked) associated with it

Batch formation:

o Mark up to Marking-Cap oldest requests per bank for each thread
o Marked requests constitute the batch

o Form a new batch when no marked requests are left

Marked requests are prioritized over unmarked ones
o No reordering of requests across batches: no starvation, high fairness

How to prioritize requests within a batch?

72

Within-Batch Scheduling

Can use any existing DRAM scheduling policy
o FR-FCFS (row-hit first, then oldest-first) exploits row-buffer locality

But, we also want to preserve intra-thread bank parallelism
o Service each thread’ s requests back to back

HOW?
Scheduler|computes a ranking of threads when the batch is
formed

o Higher-ranked threads are prioritized over lower-ranked ones

o Improves the likelihood that requests from a thread are serviced in
parallel by different banks

Different threads prioritized in the same order across ALL banks

73

Thread Ranking

X | thread A
Key Idea: S
thread B < | thread B

{————\| {-———\|
e [
thread A i ii i
1 1
Vo M ____ Y

> >
memory service timeline memory service timeline
SAVED CYCLES
thread A WAIT thread A IRV \1EN €<—>
thread B WAIT thread B WAIT
> >
thread execution timeline thread execution timeline

SAFARI “

How to Rank Threads within a Batch

Ranking scheme affects system throughput and fairness

Maximize system throughput
o Minimize average stall-time of threads within the batch

Minimize unfairness (Equalize the slowdown of threads)
o Service threads with inherently low stall-time early in the batch

o Insight: delaying memory non-intensive threads results in high
slowdown

Shortest stall-time first (shortest job first) ranking

o Provides optimal system throughput [Smith, 19561*

o Controller estimates each thread’ s stall-time within the batch
o Ranks threads with shorter stall-time higher

* W.E. Smith, “Various optimizers for single stage production,” Naval Research Logistics Quarterly, 1956.

75

Shortest Stall-Time First Ranking

Maximum number of marked requests to any bank (max-bank-load)
o Rank thread with lower max-bank-load higher (~ low stall-time)

Total number of marked requests (total-load)
o Breaks ties: rank thread with lower total-load higher

13

T3

T3 T3
- N E
- 2 K

T3

- T3 T3
Bank 0| | Bank 1| |Bank 2| | Bank 3

max-bank-load | total-load

Ranking:
T0O>T1>T2>T3

76

Example Within-Batch Scheduling Order

Baseline Scheduling T3
Order (Arrival order) -
T T3
-
-
T1 T3
- 13
Bank 0| | Bank 1| |Bank 2| | Bank 3
TO ([T1 | T2
Stall times

AVG: 5 bank access latencies

= N W s~ 01 O N

A

Time

PAR-BS Scheduling T3 7
Order — 6
T3 T3 5
Pl 4
3 |3
T2 P
Er 1
Bank 0| | Bank 1| |Bank 2| | Bank 3

Ranking: TO>T1>T2>T3

TO0

T1 | T2

Stall times

AVG: 3.5 bank access latencies

77

Time

Putting It Together: PAR-BS Scheduling Policy

PAR-BS Scheduling Policy

‘ (1) Marked requests first \ Batching

(2) Row-hit requests first P .
arallelism-aware

(3) Higher-rank thread first (shortest stall-time first) | within-batch
(4) Oldest first scheduling

Three properties:
o Exploits row-buffer locality and intra-thread bank parallelism
o Work-conserving

Services unmarked requests to banks without marked requests
o Marking-Cap is important

Too small cap: destroys row-buffer locality

Too large cap: penalizes memory non-intensive threads

Many more trade-offs analyzed in the paper

78

Hardware Cost

<1.5KB storage cost for
o 8-core system with 128-entry memory request buffer

No complex operations (e.g., divisions)

Not on the critical path
o Scheduler makes a decision only every DRAM cycle

79

Unfairness on 4-, 8-, 16-core Systems

Unfairness = MAX Memory Slowdown / MIN Memory Slowdown [MICRO 2007]
5

m FR-FCFS

4.5 OFCFS
—_ B NFQ
o 4
£ mSTFM
3 B PAR-BS
» 35
g
O 37
(/)]
o
Q25 -
=
£
S5 27

1.11X 1.08X
1.5 4
\ 4
1 n T
4-core 8-core 16-core

30

System Performance (Hmean-speedup)

Q1.1

Normalized Hmean Speedu

8.3%

6.1%

5.1%

4-core

FR-FCFS

BFCFS
BNFQ

B STFM

B PAR-BS

8-core

16-core

81

PAR-BS Pros and Cons

Upsides:
o First scheduler to address bank parallelism destruction across
multiple threads

o Simple mechanism (vs. STFM)
o Batching provides fairness
o Ranking enables parallelism awareness

Downsides:
o Does not always prioritize the latency-sensitive applications

82

More on PAR-BS

= Onur Mutlu and Thomas Moscibroda,
"Parallelism-Aware Batch Scheduling: Enhancing both
Performance and Fairness of Shared DRAM Systems"
Proceedings of the 35th International Symposium on Computer
Architecture (ISCA), pages 63-74, Beijing, China, June 2008.
[Summary] [Slides (ppt)]
One of the 12 computer architecture papers of 2008
selected as Top Picks by IEEE Micro.

Parallelism-Aware Batch Scheduling:
Enhancing both Performance and Fairness of Shared DRAM Systems

Onur Mutlu Thomas Moscibroda
Microsoft Research

{onur,moscitho }@microsoft.com

http://www.youtube.com/watch?v=UB1kgYR-4V0 83

https://people.inf.ethz.ch/omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
https://people.inf.ethz.ch/omutlu/pub/parbs_isca08-summary.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca08_talk.ppt
http://www.youtube.com/watch?v=UB1kgYR-4V0

More on PAR-BS

Onur Mutlu and Thomas Moscibroda,

"Parallelism-Aware Batch Scheduling: Enabling High-Performance and Fair
Memory Controllers"

IEEE Micro, Special Issue.: Micro's Top Picks from 2008 Computer Architecture
Conferences (MICRO TOP PICKS), Vol. 29, No. 1, pages 22-32, January/February 2009.

PARALLELISM-AWARE
BATCH SCHEDULING: ENABLING
HIGH-PERFORMANCE AND FAIR
SHARED MEMORY CONTROLLERS

UNCONTROLLED INTERTHREAD INTERFERENCE IN MAIN MEMORY CAN DESTRQOY INDIVID-

UAL THREADS" MEMORY-LEVEL PARALLELISM, EFFECTIVELY SERIALIZING THE MEMORY

REQUESTS OF A THREAD WHOSE LATENCIES WOULD OTHERWISE HAVE LARGELY OVER-
LAPPED, THEREBY REDUCING SINGLE-THREAD PERFORMANCE. THE PARALLELISM-AWARE
BATCH SCHEDULER PRESERVES EACH THREAD'S MEMORY-LEVEL PARALLELISM, ENSURES

FAIRNESS AND STARVATION FREEDOM, AND SUPPORTS SYSTEM-LEVEL THREAD PRIORITIES. 84

https://people.inf.ethz.ch/omutlu/pub/parbs_ieee_micro09.pdf
http://www.computer.org/micro/

We Covered Until Here in
Lecture. To Be Continued...

Computer Architecture
Lecture 13b: Memory Controllers:

Pertormance & Service Quality

Prof. Onur Mutlu
ETH Zurich
Fall 2022
10 November 2022

ATLAS Memory Scheduler

Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter,
"ATLAS: A Scalable and High-Performance
Scheduling Algorithm for Multiple Memory Controllers”
16th International Symposium on High-Performance Computer Architecture (HPCA),

Bangalore, India, January 2010. Slides (pptx)

ATLAS HPCA 2010 Talk

http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://www.cse.psu.edu/hpcl/hpca16.html
http://users.ece.cmu.edu/~omutlu/pub/kim_hpca10_talk.pptx
file:////Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/kim_hpca10_talk.pptx

ATLAS: Summary

Goal: To maximize system performance

Main idea: Prioritize the thread that has attained the least
service from the memory controllers (Adaptive per-Thread
Least Attained Service Scheduling)

o Rank threads based on attained service in the past time
interval(s)

o Enforce thread ranking in the memory scheduler during the
current interval

Why it works: Prioritizes “light” (memory non-intensive)
threads that are more likely to keep their cores busy

38

System Throughput: 24-Core System

[N
N Ao

System throughput

~ O

System throughput = > Speedup

W FCFS BFR_FCFS BSTFM mPAR-BS B ATLAS

3.5%

0O

1 2 4 8 16

of memory controllers

ATLAS consistently provides higher system throughput than

all previous scheduling algorithms

L

89

System Throughput: 4-MC System

m PAR-BS m ATLAS

[EE
&

R A0

4.0%0

[EE
N

[EE
o

1.1%

-
- -
4 8 16 24 32
of cores

System throughput

O N b O
[|

of cores increases =» ATLAS performance benefit increases

90

ATIAS Pros and Cons

Upsides:
o Good at improving overall throughput (compute-intensive
threads are prioritized)

o Low complexity
o Coordination among controllers happens infrequently

Downsides:

o Lowest/medium ranked threads get delayed significantly >
high unfairness

91

More on ATLLAS Memory Scheduler

= Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter,
"ATLAS: A Scalable and High-Performance Scheduling
Algorithm for Multiple Memory Controllers™
Proceedings of the 16th International Symposium on High-
Performance Computer Architecture (HPCA), Bangalore, India,
January 2010. Slides (pptx)
Best paper session. One of the four papers nominated for
the Best Paper Award by the Program Committee.

ATLAS: A Scalable and High-Performance Scheduling Algorithm
for Multiple Memory Controllers

Yoongu Kim Dongsu Han Onur Mutlu Mor Harchol-Balter

Carnegie Mellon University

92

https://people.inf.ethz.ch/omutlu/pub/atlas_hpca10.pdf
http://www.cse.psu.edu/hpcl/hpca16.html
https://people.inf.ethz.ch/omutlu/pub/kim_hpca10_talk.pptx

TCM:
Thread Cluster Memory Scheduling

Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter,

‘Thread Cluster Memory Scheduling:
Exploiting Differences in Memory Access Behavior”

43rd International Symposium on Microarchitecture (MICRO),
pages 65-76, Atlanta, GA, December 2010. Slides (pptx) (pdf)

TCM Micro 2010 Talk

http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://www.microarch.org/micro43/
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pdf
file:////Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/kim_micro10_talk.pptx

Previous Scheduling Algorithms are Biased

24 cores, 4 memory controllers, 96 workloads

17 A
2 NN
CI:) Q13| System throughput bias
e 3
© _011
= 7, 5 |
q £
= c /
3 X s Fairness bias

2 3
1 >

7 7.5 8 8.5 9 9.5 10
Weighted Speedup

Better system throughput

No previous memory scheduling algorithm provides
both the best fairness and system throughput

SAFARI

94

Throughput vs. Fairness

Throughput biased approach Fairness biased approach

Prioritize less memory-intensive threads Take turns accessing memory

Good for throughput Does not starve

thread A A ‘<l —<- D

—_—
less memory higher

intensive {M priority
not prioritized =»

starvation = unfairness reduced throughput

Single policy for all threads is insufficient

SAFARI 95

Achieving the Best of Both Worlds

priority L. : :
Prioritize memory-non-intensive threads
i

:
/vﬁ Unfairness caused by memory-intensive
rd- being prioritized over each other

}L, Shuffle thread ranking

|

thread

Memory-intensive threads have
different vulnerability to interference
* Shuffle asymmetrically

\

SAFARI %

Thread Cluster Memory Scheduling [Kim+MICRO’10]

1. Group threads into two clusters
2. Prioritize non-intensive cluster
3. Different policies for each cluster

[higher R

priority
. . Non-intensive
Memory-non-intensive
thread ‘

cluste
]
e Throughput

[higher \

G
Prioritized Zite
priority
’ /
Threads in stem - -
Memory-intensive -

Intensive cluster

SAFARI 97

TCM Outline

1. Clustering

<
%

SAFARI

Clustering Threads

Stepl Sort threads by MPKI (misses per kiloinstruction)
—

higher
MPK]I
Non-intensive Intensive
cluster cluster
.;.
a<10%

I = Total memory bandwidth usage ClusterThreshold

Step2 Memory bandwidth usage aT divides clusters

SAFARI 99

TCM Outline

1. Clustering | e » T:
)

i - ‘ 2. Between
- - ’ Clusters
[]

==&

SAFARI 100

Prioritization Between Clusters

Prioritize non-intensive cluster

== 2

priority

* Increases system throughput

— Non-intensive threads have greater potential for

making progress

* Does not degrade fairness

— Non-intensive threads are “light”

— Rarely interfere with intensive threads

SAFARI

101

TCM Outline

3. Non-Intensive
Cluster

1. Clustering | e » -
)

et Throughput
- - ‘ 2. Between
— Clusters
-0

—
--"{E

SAFARI 102

Non-Intensive Cluster

Prioritize threads according to MPKI

higher 4
priority —lowest MPK|
thread
m\h/ghest MPKI

* Increases system throughput

— Least intensive thread has the greatest potential
for making progress in the processor

SAFARI 103

TCM Outline

3. Non-Intensive
Cluster

1. Clustering | e » -
)

et - ‘ Throughput
2. Between .
- — Clusters 4. Intensive
=0

Cluster

—
--"{E

raimess

SAFARI 104

Intensive Cluster

Periodically shuffle the priority of threads

higher _ g Most prioritized

S -
(:} — Increases fairness

—

* |s treating all threads equally good enough?

 BUT: Equal turns # Same slowdown

SAFARI 105

Case Study: A Tale of Two Threads

Case Study: Two intensive threads contending

1. random-access

: :l— Which is slowed down more easily?
2. streaming

Prioritize random-access Prioritize streaming
14 14
c 12 ——> 11x
S 10 xj
O 3 .7 O 38
o 6 -g 6
% A prioritized 3 . prioritized
@, 1x L 1x
0 0
random-access streaming random-access streaming

random-access thread is more easily slowed down

SAFARI 106

Why are Threads Different?

random-access streaming
stuck >

activated row

p— 7 i /m“% rows

Bank 1 Bank 2 Bank 3 Bank4 Memory

* All requests parallel * All requests =» Same row
* High bank-level parallelism < High row-buffer locality
> =

Vulnerable to interference

SAFARI 107

TCM Outline

3. Non-Intensive
Cluster

1. Clustering | e » -
)

et - ‘ Throughput
- — 2. Between 4. Intensive
Clusters
-0

Cluster

—
--"{E

raimess

108

Niceness

How to quantify difference between threads?

Niceness

Bank-level parallelism Row-buffer locality

Vulnerability to interference Causes interference

= Niceness -

109

TCM: Quantum-Based Operation

Previous quantum Current quantum
(¥1M cycles) (¥1M cycles)
| |

[1 |

Shuffle interval
During quantum: (~1K cycles)
* Monitor thread behavior
1. Memory intensity Beginning of quantum:
2. Bank-level parallelism e Perform clustering
3. Row-buffer locality — e Compute niceness of

intensive threads

110

SAFARI

TCM: Scheduling Algorithm

1. Highest-rank: Requests from higher ranked threads prioritized

| Non-Intensive cluster > Intensive cluster |
| * Non-Intensive cluster: lower intensity = higher rank |

| + Intensive cluster: rank shuffling |

2.Row-hit: Row-buffer hit requests are prioritized

3.0ldest: Older requests are prioritized

SAFARI

111

TCM: Implementation Cost

Required storage at memory controller (24 cores)

Thread memory behavior

MPKI ~0.2kb
Bank-level parallelism ~0.6kb
Row-buffer locality ~2.9kb

* No computation is on the critical path

SAFARI 112

Previous Work

FRFCFS [Rixner et al., ISCA00]: Prioritizes row-buffer hits
— Thread-oblivious = Low throughput & Low fairness

STFM [Mutlu et al., MICROO07]: Equalizes thread slowdowns
— Non-intensive threads not prioritized = Low throughput

PAR-BS [Mutlu et al., ISCA08]: Prioritizes oldest batch of requests
while preserving bank-level parallelism

— Non-intensive threads not always prioritized = Low
throughput

ATLAS [Kim et al., HPCA10]: Prioritizes threads with less memory
service

— Most intensive thread starves = Low fairness
SAFARI 13

TCM: Throughput and Fairness

24 cores, 4 memory controllers, 96 workloads

o
>

[EEN
&
1

[EEN
N
1

Better fairness

Maximum Slowdown
[ERY
(@)

(@)]
L

N

]]]] ’I
7.5 8 8.5 9 9.5 10
Weighted Speedup

Better system throughput

TCM, a heterogeneous scheduling policy,
, provides best fairness and system throughput

SAFAR

114

TCM: Fairness-Throughput Tradeoff

When configuration parameter is varied...

121
7))
C
& S 10 4
c ©
= = ;|
© (@)
U= v
| -
U =
o0 S
24 ~
5 Adjusting

[EY
N

13 14 ClusterThreshold :
Weighted Speetif

Better system throughput

TCM allows robust fairness-throughput tradeoff
SAFARI 115

Operating System Support

° ClusterThreshold is a tunable knob

— OS can trade off between fairness and throughput

* Enforcing thread weights

— OS assigns weights to threads
— TCM enforces thread weights within each cluster

SAFARI 116

Conclusion

* No previous memory scheduling algorithm provides
both high system throughput and fairness

— Problem: They use a single policy for all threads

 TCM groups threads into two clusters
1. Prioritize non-intensive cluster =2 throughput
2. Shuffle priorities in intensive cluster =2 fairness
3. Shuffling should favor nice threads =2 fairness

e TCM provides the best system throughput and fairness

SAFARI 17

TCM Pros and Cons

Upsides:
o Provides both high fairness and high performance

o Caters to the needs for different types of threads (latency vs.
bandwidth sensitive)

o (Relatively) simple

Downsides:

o Scalability to large buffer sizes?

o Robustness of clustering and shuffling algorithms?
o Ranking is still too complex?

118

More on TCM

= Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter,

"Thread Cluster Memory Scheduling: Exploiting Differences in
Memory Access Behavior”

Proceedings of the 43rd International Symposium on
Microarchitecture (MICRO), pages 65-76, Atlanta, GA, December
2010. Slides (pptx) (pdf)

One of the 11 computer architecture papers of 2010 selected
as Top Picks by IEEE Micro.

Thread Cluster Memory Scheduling:
Exploiting Differences in Memory Access Behavior

Yoongu Kim Michael Papamichael Onur Mutlu Mor Harchol-Balter
yoonguk@ece.cmu.edu papamix@cs.cmu.edu onur@cmu.edu harchol@cs.cmu.edu

Carnegie Mellon University

119

https://people.inf.ethz.ch/omutlu/pub/tcm_micro10.pdf
http://www.microarch.org/micro43/
https://people.inf.ethz.ch/omutlu/pub/kim_micro10_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/kim_micro10_talk.pdf

More on TCM

= Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter,
"Thread Cluster Memory Scheduling”
IEEE Micro, Special Issue.: Micro's Top Picks from 2010 Computer Architecture
Conferences (MICRO TOP PICKS), Vol. 31, No. 1, pages 78-89, January/February 2011.

THREAD CLUSTER MEMORY
SCHEDULING

...

MEMORY SCHEDULERS IN MULTICORE SYSTEMS SHOULD CAREFULLY SCHEDULE

MEMORY REQUESTS FROM DIFFERENT THREADS TO ENSURE HIGH SYSTEM PERFORMANCE
AND FAIR, FAST PROGRESS OF EACH THREAD. NO EXISTING MEMORY SCHEDULER
PROVIDES BOTH THE HIGHEST SYSTEM PERFORMANCE AND HIGHEST FAIRNESS. THREAD
CLUSTER MEMORY SCHEDULING IS A NEW ALGORITHM THAT ACHIEVES THE BEST OF

BOTH WORLDS BY DIFFERENTIATING LATENCY-SENSITIVE THREADS FROM BANDWIDTH-

SENSITIVE ONES AND EMPLOYING DIFFERENT SCHEDULING POLICIES FOR EACH.

120

https://people.inf.ethz.ch/omutlu/pub/tcm_ieee_micro_top_picks11.pdf
http://www.computer.org/micro/

The Blacklisting Memory Scheduler

Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha Rastogi, and Onur Mutlu,
"The Blacklisting Memory Scheduler: Achieving High Performance and Fairness at Low Cost"
Proceedings of the 32nd IEEE International Conference on Computer Design (ICCD),
Seoul, South Korea, October 2014. [Slides (pptx) (pdf)]

http://users.ece.cmu.edu/~omutlu/pub/bliss-memory-scheduler_iccd14.pdf
http://www.iccd-conf.com/
http://users.ece.cmu.edu/~omutlu/pub/bliss_lavanya_iccd14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/bliss_lavanya_iccd14-talk.pdf

Tackling Inter-Application Interference:
Application-aware Memory Scheduling

Monitor Rank Enforce

A Ranks

Request Buffer Al vEs:
App. ID Ranked AID

Request (AID)

Full ranking increases
critical path latency and area
significantly to improve
performance and fairness

122

Performance vs. Fairness vs. Simplicity

Fairness

Is it essential to give up simplicity to
optimize for performance and/or fairness?

Our solution achieves all three goals
\ W=" Very Simple
Simplicity 123

Key Observation 1: Group Rather Than Rank

Observation 1: Sufficient to separate applications
into two groups, rather than do full ranking

Monitor Rank Group
Interference
Vulnerable Causing
/ \
! Y
| |
\ /
\ /
S /
S S -

Benefit 2: Lower slowdowns than ranking

124

Key Observation 1: Group Rather Than Rank

Observation 1: Sufficient to separate applications
into two groups, rather than do full ranking

Monitor Rank Group
Interference
Vulnerable Causing
. - ~ ~ . - ~
/ N
: 2 ‘
\
| |
\\ 4 /I
\\ //
N

How to classify applications into groups?

125

Key Observation 2

Observation 2: Serving a large number of consecutive
requests from an application causes interference

Basic Idea:

* Group applications with a large number of consecutive
requests as interference-causing = Blacklisting

* Deprioritize blacklisted applications
* (Clear blacklist periodically (1000s of cycles)

Benefits:
* Lower complexity
* Finer grained grouping decisions = Lower unfairness

Performance vs. Fairness vs. Simplicity

Close to — FRECES

fairest FRFCFSCap
— PARBS

~~~~~~~~ . — ATLAS
~ Highest M

erformance L
P ] == Blacklisting

—2 Performance

Fairness

N,
Y
-
S
S,
N\,
-
LY
S
S,
-
N,
~~
-,

'0
"
4

‘ simplest
Simplicity

127



Performance and Fairness

¢ FRFCFS ¢ FRFCFS-Cap A PARBS

% ATLAS o TCM @® Blacklisting
15 o
1\13 - X
2811
€S g 576
oo ¢ >
£§7- ol 21%
=  {
o5
3 !}
1

1 3 5 7 9

1. Blacklisting achieves the highest performance
2. Blacklisting balances performance and fairness

128



Complexity

¢ FRFCFS ¢ FRFCFS-Cap A PARBS
% ATLAS o TCM ® Blacklisting
T 120000 4
; 100000 - A
® 80000 -
§ 60000 - . T43%
g 40000 0%
S 20000
0 . . . . >
0 2 4 6 8 10 12

Blacklisting reduces complexity significantly

129



More on BLISS (I)

= Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha
Rastogi, and Onur Mutlu,
"The Blacklisting Memory Scheduler: Achieving High
Performance and Fairness at Low Cost"
Proceedings of the 32nd IEEE International Conference on
Computer Design (ICCD), Seoul, South Korea, October 2014.
[Slides (pptx) (pdf)]

The Blacklisting Memory Scheduler:
Achieving High Performance and Fairness at Low Cost
Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha Rastogi, Onur Mutlu

Carnegie Mellon University
{Isubrama,donghyul,visesh,harshar,onur} @cmu.edu

SAFARI 130


http://users.ece.cmu.edu/~omutlu/pub/bliss-memory-scheduler_iccd14.pdf
http://www.iccd-conf.com/
http://users.ece.cmu.edu/~omutlu/pub/bliss_lavanya_iccd14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/bliss_lavanya_iccd14-talk.pdf

Motre on BLISS: Longer Version

= Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha Rastogi,

and Onur Mutluy,
"BLISS: Balancing Performance, Fairness and Complexity in

Memory Access Scheduling”

IEEE Transactions on Parallel and Distributed Systems (TPDS), to
appear in 2016. arXiv.org version, April 2015.

An earlier version as SAFARI Technical Report, TR-SAFARI-2015-004,
Carnegie Mellon University, March 2015.

[Source Code]

BLISS: Balancing Performance, Fairness
and Complexity in Memory Access Scheduling

Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha Rastogi, and Onur Mutlu

SAFARI 131


https://people.inf.ethz.ch/omutlu/pub/bliss-memory-scheduler_ieee-tpds16.pdf
http://www.computer.org/web/tpds/
http://arxiv.org/pdf/1504.00390.pdf
https://people.inf.ethz.ch/omutlu/pub/bliss-memory-scheduler_cmu-safari-tr15.pdf
http://www.ece.cmu.edu/~safari/tr.html
https://github.com/CMU-SAFARI/MemSchedSim

Handling Memory Interference
In Multithreaded Applications

Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin,
Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Parallel Application Memory Scheduling"
Proceedings of the 44th International Symposium on Microarchitecture (MICRO),
Porto Alegre, Brazil, December 2011. Slides (pptx)



http://users.ece.cmu.edu/~omutlu/pub/parallel-memory-scheduling_micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_micro11_talk.pptx

Lecture on Parallel Application Scheduling

Prioritizing Requests from Limiter Threads

Non-Critical Section Critical Section 1 wmssm g 0. ’

Waiting for Sync == 1+ (Critical Section 2 mmmm Critical Path

or Lock
Thread A —— L
Thread B — — —
Thread C—————== —— . — =
Thread D- = — S — — — —
Time
Limiter Thread Identiflcalior>
Thread A [ Most Contended
Thread B - Critical Section: 1
Thread G—————== —— —T— Limiter Thread: B
Thread B — — ———
Time
14 | I

© ETH ZENTRUM
Computer Arch - Lecture 13: Memory Interference and Quality of Service Il (ETH Zrich, Spring 2020)

1,006 views + Nov 7, 2020 e 23 GP O > SHARE =+ SAVE
e OnupMitlujLectures ANALYTICS | EDIT VIDEO
&> 19.8K subscribers

S A FA R I https://www.youtube.com/watch?v=Axye9VaQT7w&list=PL50Q2s0XY2Zi9xidyIgBxUz7xRPS-wisBN&index=26 133



https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26

Lecture on Bottleneck Acceleration

Observation: Limiting Bottlenecks Change Over Time

A=full linked list; B=empty linked list

repeat

Lock A

Traverse list A
Remove X from A
\Unlock A

~N

J

Compute on X

Lock B

Traverse list B
Insert X into B
\Unlock B

D

until A is empty

Contention (# of threads waiting)

32 threads

i

6 8
time [Mcycles]

Computer Architecture - Lecture 17: Bottleneck Acceleration (ETH Ziirich, Fall 2020)

880 views * Nov 20, 2020

@ Onur Mutlu Lectures
N 19.8K subscribers

<« >

SAFARI

https://www.youtube.com/watch?v=KQfKPcztsDQR&list=PL50Q2s0XY2Zi9xidyIgBxUz7xRPS-wisBN&index=31

i 13

CRo

/A> SHARE =+ SAVE

ANALYTICS EDIT VIDEO

134



https://www.youtube.com/watch?v=KQfKPcztsDQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=31

Multithreaded (Parallel) Applications

Threads in a multi-threaded application can be inter-
dependent

o As opposed to threads from different applications

Such threads can synchronize with each other

o Locks, barriers, pipeline stages, condition variables,
semaphores, ...

Some threads can be on the critical path of execution due
to synchronization; some threads are not

Even within a thread, some “code segments” may be on
the critical path of execution; some are not

135



Critical Sections

Enforce mutually exclusive access to shared data

Only one thread can be executing it at a time

Contended critical sections make threads wait = threads
causing serialization can be on the critical path

Each thread:

loop {
| Compute N
lock(A)

Update shared datd
unlock(A) C

}

136



Barriers

Synchronization point
Threads have to wait until all threads reach the barrier
Last thread arriving at the barrier is on the critical path

Each thread: dle barrier
loop1 { ) = eecs
Compute e L
} T2 ¢ )
barrier
loop2 { | | | time

Compute

}

137



Stages of Pipelined Programs

= Loop iterations are statically divided into code segments called stages

= Threads execute stages on different cores
= Thread executing the slowest stage is on the critical path

loop {
Computel| A
Compute2| B

e ® ®
Computed| C e T2 B X (8) 3] -
} T3 ©

138



Handling Interference in Parallel Applications

Threads in a multithreaded application are inter-dependent

Some threads can be on the critical path of execution due
to synchronization; some threads are not

How do we schedule requests of inter-dependent threads
to maximize multithreaded application performance?

Idea: Estimate limiter threads likely to be on the critical path and
prioritize their requests; shuffle priorities of non-limiter threads
to reduce memory interference among them [Ebrahimi+, MICRO'11]

Hardware/software cooperative limiter thread estimation:
Thread executing the most contended critical section
Thread executing the slowest pipeline stage
Thread that is falling behind the most in reaching a barrier

PAMS Micro 2011 Talk 139



file:////Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/ebrahimi_micro2011_talk.pptx

Prioritizing Requests from Limiter Threads

Non-Critical Section Critical Section 1 mmmm g .o |

Waiting for Sync == 1« Critical Section 2 m=== Critical Path

or Lock
Thread A N — — Barmier
Thread B — = —
Thread C —_ — N — -
Thread D—m——— = == = = =
Time
ELimiter Thread IdentificatioE‘ |Barﬁler'

Thread A - el ——— | Most Contended
Thread B — .ﬁ:__ — ?{'} g Critical Section: s
Thread G — ——— Cyc!es [ Limiter Thread: ﬂ]
Thread b——"———— == == = — - - E

I Time

140



Parallel App Mem Scheduling: Pros and Cons

Upsides:
o Improves the performance of multi-threaded applications
o Provides a mechanism for estimating “limiter threads”

o Opens a path for slowdown estimation for multi-threaded
applications

Downsides:

o What if there are multiple multi-threaded applications running
together?

o Limiter thread estimation can be complex
“Joao+, Bottleneck Identification and Scheduling, ASPLOS 2012"

141



More on PAMS

= Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin, Chang Joo
Lee, Onur Mutlu, and Yale N. Patt,
"Parallel Application Memory Scheduling”
Proceedings of the 44th International Symposium on
Microarchitecture (MICRO), Porto Alegre, Brazil, December
2011, Slides (pptx)

Parallel Application Memory Scheduling

Eiman Ebrahimit Rustam Miftakhutdinovi Chris Fallin§
Chang Joo Lee: José A. Joao; Onur Mutlu§ Yale N. Patt;

{Department of Electrical and Computer Engineering
The University of Texas at Austin
{ebrahimi, rustam, joao, patt}@ece.utexas.edu

§Carnegie Mellon University iIntel Corporation
{cfallin,onur }@cmu.edu chang.joo.lee@intel.com

142


http://users.ece.cmu.edu/~omutlu/pub/parallel-memory-scheduling_micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_micro11_talk.pptx

Lecture on Parallel Application Scheduling

Prioritizing Requests from Limiter Threads

Non-Critical Section Critical Section 1 wmssm g 0. ’

Waiting for Sync == 1+ (Critical Section 2 mmmm Critical Path

or Lock
Thread A —— L
Thread B — — —
Thread C—————== —— . — =
Thread D- = — S — — — —
Time
Limiter Thread Identiflcalior>
Thread A [ Most Contended
Thread B - Critical Section: 1
Thread G—————== —— —T— Limiter Thread: B
Thread B — — ———
Time
14 | I

© ETH ZENTRUM
Computer Arch - Lecture 13: Memory Interference and Quality of Service Il (ETH Zrich, Spring 2020)

1,006 views + Nov 7, 2020 e 23 GP O > SHARE =+ SAVE
e OnupMitlujLectures ANALYTICS | EDIT VIDEO
&> 19.8K subscribers

S A FA R I https://www.youtube.com/watch?v=Axye9VaQT7w&list=PL50Q2s0XY2Zi9xidyIgBxUz7xRPS-wisBN&index=26 143



https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26

Bottleneck Identification & Scheduling

= Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt,
"Bottleneck Identification and Scheduling in Multithreaded
Applications”
Proceedings of the 1/th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), London, UK, March 2012. Slides (ppt) (pdf)

Bottleneck Identification and Scheduling
in Multithreaded Applications

José A. Joao M. Aater Suleman Onur Mutlu Yale N. Patt
ECE Department Calxeda Inc. Computer Architecture Lab. ECE Department
The University of Texas at Austin  z3ter.suleman®calxeda.com Carnegie Mellon University =~ The University of Texas at Austin
joao@ece.utexas.edu onur@cmu.edu patt@ece.utexas.edu

144


https://people.inf.ethz.ch/omutlu/pub/bottleneck-identification-and-scheduling_asplos12.pdf
http://research.microsoft.com/en-us/um/cambridge/events/asplos_2012/
https://people.inf.ethz.ch/omutlu/pub/mutlu_asplos12_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_asplos12_talk.pdf

Utility-Based Bottleneck Acceleration

= Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt,
"Utility-Based Acceleration of Multithreaded Applications
on Asymmetric CMPs"
Proceedings of the 40th International Symposium on Computer
Architecture (ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt)
Slides (pdf)

Utility-Based Acceleration of Multithreaded Applications
on Asymmetric CMPs

José A. Joaot M. Aater Suleman # Onur Mutlu ¢ Yale N. Patt

I ECE Department t - § Computer Architecture Laboratory
The Uni\'&ers{;y o_|[)1('e)l(JaSsAat Austin Alfjg;z%g(nsdglxg Cargggig Mer:IOSAU[]Ji\é?{Sity
fioao S Gece qu Suleman@hps.utexas.edu ftisburgh, FA,
, patt}@ece.utexas.edu onur@cmu.edu

145


http://users.ece.cmu.edu/~omutlu/pub/utility-based-acceleration-acmp_isca13.pdf
http://isca2013.eew.technion.ac.il/
http://users.ece.cmu.edu/~omutlu/pub/joao_isca13_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/joao_isca13_talk.pdf

Lecture on Bottleneck Acceleration

Observation: Limiting Bottlenecks Change Over Time

A=full linked list; B=empty linked list

repeat

Lock A

Traverse list A
Remove X from A
\Unlock A

~N

J

Compute on X

Lock B

Traverse list B
Insert X into B
\Unlock B

D

until A is empty

Contention (# of threads waiting)

32 threads

i

6 8
time [Mcycles]

Computer Architecture - Lecture 17: Bottleneck Acceleration (ETH Ziirich, Fall 2020)

880 views * Nov 20, 2020

@ Onur Mutlu Lectures
N 19.8K subscribers

<« >

SAFARI

https://www.youtube.com/watch?v=KQfKPcztsDQR&list=PL50Q2s0XY2Zi9xidyIgBxUz7xRPS-wisBN&index=31

i 13

CRo

/A> SHARE =+ SAVE

ANALYTICS EDIT VIDEO

146



https://www.youtube.com/watch?v=KQfKPcztsDQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=31

Memory Scheduling

for Heterogeneous Systems




Current SoC Architectures: Heterogeneity

Large Large
CPU CPU Small Small

CPU CPU

Shared Cache HWA HWA DMA

vy ¥ Vv VvV
DRAM and Hybrid Memory Controllers
4

DRAM and Hybrid Memories

= Heterogeneous agents: CPUs, GPUs, HWAs, DMA engine, ...
= Memory resources shared by CPUs/GPUs/HWAs - Interference

How to allocate resources to heterogeneous agents
to mitigate interference and provide predictable performance?

SAFARI 148




Current SoC Archltectures Heterogene1ty

8x 16[)

S 'PDDRAX
3 !

Ghannels

SSUGlGachel

ciml LT R R

Gy Apple M1
' ‘!Flrestorm ’
sifzifi: by
Denie: 2021
7' i
nay Iccstorm 117‘ i Il
EfflClency ot -4 |
+4MB Lz,l. 3 : i
ol
SAFARI Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested 149


https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

Lecture on Heterogeneous System Scheduling

SMS: Staged Memory Scheduling
Core 1 Core 2 Core 3 Core 4 GPU

| | ! ] | § |
Stage 1
— | S=al
Formation I | I -

I —— —

Stage 2

p——|
Stage 3 [——
DRAM =]
Command Bank 1
Scheduler

To DRAM

© ETH ZENTRUM
Computer Arch - Lecture 13: Memory Interference and Quality of Service Il (ETH Zdrich, Spring 2020)

1,006 views -+ Nov 7, 2020 e 23 GJ 0 ) SHARE =+ SAVE ...

@ Onur Mutlu Lectures ANALYTICS EDIT VIDEO
& 19.8K subscribers

S A FA R I https://www.youtube.com/watch?v=Axye9VaQT7w&list=PL50Q2s0XY2Zi9xidyIgBxUz7xRPS-wisBN&index=26 150



https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26

L

_ecture on Heterogeneous Computing Systems

r‘\ 11 | —
Asymmetry Enables Customization - F _
x ‘ c1 WS
c Cc Cc ‘ Cc C5 C5 Cc5 C5
Symmetric Asymmetric

Symmetric: One size fits all
2 Energy and performance suboptimal for different “workload” behaviors
= Asymmetric: Enables customization and adaptation
o Processing requirements vary across workloads (applications and phases)
a Execute code on best-fit resources (minimal energy, adequate perf.)

16

Computer Architecture - Lecture 16b: Parallelism and Heterogeneity (ETH Ziirich, Fall 2020)

840 views + Nov 20, 2020 e 17 P DISLIKE > SHARE =+ SAVE

@ Onur Mutlu Lectures ANALYTICS EDIT VIDEO
P8 19.9K subscribers

S A FA R I https://www.youtube.com/watch?v=vA6AQE6uorA&list=PL502s0XY2Zi9xidyIgBxUz7xRPS-wisBN&index=30 151



https://www.youtube.com/watch?v=vA6AQE6uorA&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=30

Staged Memory Scheduling

= Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian,
Gabriel Loh, and Onur Mutluy,
"Staged Memory Scheduling: Achieving High
Performance and Scalability in Heterogeneous Systems"
Proceedings of the 39th International Symposium on Computer
Architecture (ISCA), Portland, OR, June 2012. Slides (pptx)

Staged Memory Scheduling: Achieving High Performance and Scalability
in Heterogeneous Systems
Rachata Ausavarungnirun’ Kevin Kai-Wei Chang” Lavanya Subramanian” Gabriel H. Loh* Onur Mutlu?

"Carnegie Mellon University *Advanced Micro Devices, Inc.
{rachata,kevincha,lsubrama,onur} @cmu.edu gabe.loh@amd.com

SAFARI 152


http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://isca2012.ittc.ku.edu/
http://users.ece.cmu.edu/~omutlu/pub/rachata_isca12_talk.pptx

DASH: Deadline-Aware Memory Scheduler

= Hiroyuki Usui, Lavanya Subramanian, Kevin Kai-Wei Chang, and
Onur Mutluy,

"DASH: Deadline-Aware High-Performance Memo
Scheduler for Heterogeneous Systems with Hardware

Accelerators”

ACM Transactions on Architecture and Code Optimization (TACO),
Vol. 12, January 2016.

Presented at the 11th HIPEAC Conference, Prague, Czech Republic,
January 2016.

Slides (pptx) (pdf)]

[Source Code]

DASH: Deadline-Aware High-Performance Memory Scheduler
for Heterogeneous Systems with Hardware Accelerators

HIROYUKI USUI, LAVANYA SUBRAMANIAN, KEVIN KAI-WEI CHANG,
and ONUR MUTLU, Carnegie Mellon University

SAFARI 153


https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_taco16.pdf
http://taco.acm.org/
https://www.hipeac.net/2016/prague/
https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_usui_hipeac16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_usui_hipeac16-talk.pdf
https://github.com/CMU-SAFARI/HWASim

Handling CPU-IO Interference

Donghyuk Lee, Lavanya Subramanian, Rachata Ausavarungnirun, Jongmoo Choi,
and Onur Mutlu,

"Decoupled Direct Memory Access: Isolating CPU and IO Traffic by
Leveraging a Dual-Data-Port DRAM"

Proceedings of the 24th International Conference on Parallel Architectures and
Compilation Technigues (PACT), San Francisco, CA, USA, October 2015.

[Slides (pptx) (pdf)]
r application (=== Processor -----, ¢==--- Processor -----
e

(s O I N
mem e
main memory &10
DRAM 10
(10 devices ) ( 10devices | ( 10devices |
(a) Logical Hierarchy (b) Physical System (c) Our Proposal

Figure 1: Methods to Connect Cores and Data Sources

Decoupled Direct Memory Access:
Isolating CPU and IO Traffic by Leveraging a Dual-Data-Port DRAM

Donghyuk Lee* Lavanya Subramanian* Rachata Ausavarungnirun* Jongmoo Choif  Onur Mutlu*

*Carnegie Mellon University fDankook University
{donghyul, Isubrama, rachata, onur} @cmu.edu choijm@dankook.ac.kr

SAFARI 154


https://people.inf.ethz.ch/omutlu/pub/decoupled-dma_pact15.pdf
https://sites.google.com/a/lbl.gov/pact2015/
https://people.inf.ethz.ch/omutlu/pub/decoupled-dma_donghyuk_pact15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/decoupled-dma_donghyuk_pact15-talk.pdf

Predictable Performance:
Strong Memory Service Guarantees

155




Goal: Predictable Performance in Complex Systems

Large Large
CPU CPU Small Small

CPU CPU

Shared Cache HWA HWA DMA

vy ¥ Vv VvV
DRAM and Hybrid Memory Controllers
4

DRAM and Hybrid Memories

= Heterogeneous agents: CPUs, GPUs, HWAs, DMA engine, ...
= Memory resources shared by CPUs/GPUs/HWAs - Interference

How to allocate resources to heterogeneous agents
to mitigate interference and provide predictable performance?

SAFARI 156




Lecture on Predictable Performance

For a memory bound application,

rmal

-

Intel Core i7, 4 cores
Mem. Bandwidth: 8.5 GB/s

W
o
c
©
£
=
o
3=
Q
o
°
]
AL
©
£
=
=)
4

03 04 0S5 06 07 08 09 1

Normalized Request Service Rate

SAFARI

P Pl ¢ 4839/2:0846

© ETH ZURICH HAUPTGEBAUDE

Computer Architecture - Lecture 17: Memory Interference and QoS Il (ETH Ziirich, Fall 2018)
274 views * Nov 23,2018

e 4 GPO > SHARE =+ SAVE

ANALYTICS EDIT VIDEO

https://www.youtube.com/watch?v=Axye9VaQT7w&list=PL50Q2s0XY2Zi9xidyIgBxUz7xRPS-wisBN&index=26 157

@ Onur Mutlu Lectures
&> 19.8K subscribers

SAFARI



https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26

Lecture on Predictable Performance

Eftectiveness of MISE in Enforcing QoS

Across 3000 data points

Predicted
[

QoS Bound
Met

QoS Bound
Not Met

MISE-QoS correctly predicts whether or not
the bound is met for 95.7% of workloads

SAFARI

P Pl ¢ 2529/11114

Memory Systems - Lecture 6.4: Memory Interface and QoS (Technion, Summer 2018)

163 views + Oct 12, 2018 e 5 GP 0 > SHARE =+ SAVE

e Onur MUﬂU‘LECthes ANALYTICS EDIT VIDEO
&> 19.8K subscribers

S A FA R ’ https://www.youtube.com/watch?v=15hRILhGWGARlist=PL50Q2s0XY2Zi-IymxXpH 9vIZCOeA7Yfn9&index=19 158



https://www.youtube.com/watch?v=15hRJLhGWGA&list=PL5Q2soXY2Zi-IymxXpH_9vlZCOeA7Yfn9&index=19

Predictable Performance Readings (I)

= Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High-
Performance Fairness Substrate for Multi-Core Memory
Systems"”
Proceedings of the 15th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 335-346, Pittsburgh, PA, March 2010.
Slides (pdf)

Fairness via Source Throttling: A Configurable and High-Performance
Fairness Substrate for Multi-Core Memory Systems

Eiman Ebrahimi{ Chang Joo Leef Onur Mutlug Yale N. Pattf

fDepartment of Electrical and Computer Engineering §Computer Architecture Laboratory (CALCM)
The University of Texas at Austin Carnegie Mellon University
{ebrahimi, cjlee, patt} @ece.utexas.edu onur@cmu.edu

SAFARI 159


http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf

Predictable Performance Readings (1)

= Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen,
and Onur Mutluy,
"MISE: Providing Performance Predictability and
Improving Fairness in Shared Main Memory Systems"”
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China,
February 2013. Slides (pptx)

MISE: Providing Performance Predictability and Improving Fairness
in Shared Main Memory Systems

Lavanya Subramanian =~ Vivek Seshadri ~ Yoongu Kim  Ben Jaiyen =~ Onur Mutlu

Carnegie Mellon University

SAFARI 160


http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx

Predictable Performance Readings (111)

= Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and
Onur Mutlu,
"The Application Slowdown Model: Quantifying and Controlling
the Impact of Inter-Application Interference at Shared Caches
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO) Waikiki, Hawaii, USA, December 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster
(pptx) (pdf)]
[Source Code]

The Application Slowdown Model: Quantifying and Controlling the Impact
of Inter-Application Interference at Shared Caches and Main Memory

Lavanya Subramanian*§ Vivek Seshadri* Arnab Ghosh*T
Samira Khan* Onur Mutlu*

*Carnegie Mellon University §Intel Labs IIT Kanpur *University of Virginia

161


https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim

Predictable Performance Readings (IV)

= Hiroyuki Usui, Lavanya Subramanian, Kevin Kai-Wei Chang, and
Onur Mutluy,
"DASH: Deadline-Aware High-Performance Memo
Scheduler for Heterogeneous Systems with Hardware
Accelerators”
ACM Transactions on Architecture and Code Optimization (TACO),
Vol. 12, January 2016.
Presented at the 11th HIPEAC Conference, Prague, Czech Republic,
January 2016.

Slides (pptx) (pdf)]

[Source Code]

DASH: Deadline-Aware High-Performance Memory Scheduler
for Heterogeneous Systems with Hardware Accelerators

HIROYUKI USUI, LAVANYA SUBRAMANIAN, KEVIN KAI-WEI CHANG,
and ONUR MUTLU, Carnegie Mellon University

SAFARI 162


https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_taco16.pdf
http://taco.acm.org/
https://www.hipeac.net/2016/prague/
https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_usui_hipeac16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_usui_hipeac16-talk.pdf
https://github.com/CMU-SAFARI/HWASim

Handling CPU-IO Interference

Donghyuk Lee, Lavanya Subramanian, Rachata Ausavarungnirun, Jongmoo Choi,
and Onur Mutlu,

"Decoupled Direct Memory Access: Isolating CPU and IO Traffic by
Leveraging a Dual-Data-Port DRAM"

Proceedings of the 24th International Conference on Parallel Architectures and
Compilation Technigues (PACT), San Francisco, CA, USA, October 2015.

[Slides (pptx) (pdf)]
r application (=== Processor -----, ¢==--- Processor -----
e

(s O I N
mem e
main memory &10
DRAM 10
(10 devices ) ( 10devices | ( 10devices |
(a) Logical Hierarchy (b) Physical System (c) Our Proposal

Figure 1: Methods to Connect Cores and Data Sources

Decoupled Direct Memory Access:
Isolating CPU and IO Traffic by Leveraging a Dual-Data-Port DRAM

Donghyuk Lee* Lavanya Subramanian* Rachata Ausavarungnirun* Jongmoo Choif  Onur Mutlu*

*Carnegie Mellon University fDankook University
{donghyul, Isubrama, rachata, onur} @cmu.edu choijm@dankook.ac.kr

SAFARI 163


https://people.inf.ethz.ch/omutlu/pub/decoupled-dma_pact15.pdf
https://sites.google.com/a/lbl.gov/pact2015/
https://people.inf.ethz.ch/omutlu/pub/decoupled-dma_donghyuk_pact15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/decoupled-dma_donghyuk_pact15-talk.pdf

Other QoS Approaches




Recall: Fundamental Interference Control Techniques

= Goal: to reduce/control inter-thread memory interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling

165



Lecture on Other QoS Techniques
A\
-

Application-to-Core Mapping

Improve Bandwidth Improve Bandwidth
Utilization Utilization
B e g Radial
. Balancing Mapping
= 1 r A A T 4‘
:§ ;:| |
V- c-' - L -
A | g: [ A A A

\\\/ N \_/
Improve Locality Reduce Interference
Reduce Interference

© ETH ZENTRUM
Computer Arch - Lecture 13: Memory Interference and Quality of Service Il (ETH Zirich, Spring 2020)

1,006 views + Nov 7, 2020 e 23 GP 0 ) SHARE =+ SAVE

@ Onur Mutlu Lectures ANALYTICS EDIT VIDEO
&> 19.8K subscribers

S A FA R I https://www.youtube.com/watch?v=Axye9VaQT7w&list=PL50Q2s0XY2Zi9xidyIgBxUz7xRPS-wisBN&index=26 166



https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26

Lecture on Other QoS Techmques

Lo @
gk

oot X g2
\.\ L"‘)W )\ (Ur\f)'Y/ )

|||

S 95

© ETH ZENTRUM
Computer Arch - Lecture 13: Memory Interference and Quality of Service Il (ETH Ziirich, Spring 2020)

1,006 views * Nov 7, 2020 e 23 GP 0 > SHARE =+ SAVE

@ Onur Mutlu‘Lectures ANALYTICS EDIT VIDEO
& 19.8K subscribers

S A FA R I https://www.youtube.com/watch?v=Axye9VaQT7w&list=PL50Q2s0XY2Zi9xidyIgBxUz7xRPS-wisBN&index=26 167



https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26

Memory Channel Partitioning

Partitioning Channels Between Applications

Core
Red @ Memory
App Controller

Core ><

Blue = Memory
App Controller

Eliminates interference between applications’ requests

© ETH ZURICH D-ITET
Seminar in Computer Architecture - Lecture 4: Memory Channel Partitioning (Fall 2021)

379 views + Streamed live on Oct 14, 2021 e 19 GP 0 > SHARE =+ SAVE

@ Onur Ml-IﬂU‘LeCthES ANALYTICS EDIT VIDEO
& 19.8K subscribers

S A FAR I https://www.youtube.com/watch?v=rimVKDdI8]c&list=PL5Q2s0XY2Zi 7UBNmMCI9B8Yr5JSwWTG9yH4&index=>5 168



https://www.youtube.com/watch?v=rjmVKDdl8Jc&list=PL5Q2soXY2Zi_7UBNmC9B8Yr5JSwTG9yH4&index=5

Memory Channel Partitioning

Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu,
Mahmut Kandemir, and Thomas Moscibroda,

"Reducing Memory Interference in Multicore Systems via
Application-Aware Memory Channel Partitioning”
Proceedings of the 44th International Symposium on
Microarchitecture (MICRO), Porto Alegre, Brazil, December
2011. Slides (pptx)

Reducing Memory Interference in Multicore Systems via
Application-Aware Memory Channel Partitioning

Sai Prashanth Muralidhara Lavanya Subramanian Onur Mutlu
Pennsylvania State University Carnegie Mellon University Carnegie Mellon University

smuralid@cse.psu.edu Isubrama@ece.cmu.edu onur@cmu.edu

Mahmut Kandemir Thomas Moscibroda
Pennsylvania State University Microsoft Research Asia
kandemir@cse.psu.edu moscitho@microsoft.com

https://www.youtube.com/watch?v=yEYEzFWAY9q 169



http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx
https://www.youtube.com/watch?v=yEYEzFwAY9g

Source Throttling (T)

= Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High-
Performance Fairness Substrate for Multi-Core Memory
Systems"”
Proceedings of the 15th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 335-346, Pittsburgh, PA, March 2010.
Slides (pdf)

Fairness via Source Throttling: A Configurable and High-Performance
Fairness Substrate for Multi-Core Memory Systems

Eiman Ebrahimi{ Chang Joo Leef Onur Mutlug Yale N. Pattf

fDepartment of Electrical and Computer Engineering §Computer Architecture Laboratory (CALCM)
The University of Texas at Austin Carnegie Mellon University
{ebrahimi, cjlee, patt} @ece.utexas.edu onur@cmu.edu

SAFARI 170


http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf

Source Throttling (II)

= Kevin Chang, Rachata Ausavarungnirun, Chris Fallin, and Onur Mutlu,

"HAT: Heterogeneous Adaptive Throttling for On-Chip

Networks"
Proceedings of the 24th International Symposium on Computer

Architecture and High Performance Computing (SBAC-PAD), New
York, NY, October 2012. Slides (pptx) (pdf)

HAT: Heterogeneous Adaptive Throttling for On-Chip Networks

Kevin Kai-Wei Chang, Rachata Ausavarungnirun, Chris Fallin, Onur Mutlu
Carnegie Mellon University
{kevincha,rachata,cfallin,onur}@cmu.edu

SAFARI n


http://users.ece.cmu.edu/~omutlu/pub/hetero-adaptive-source-throttling_sbacpad12.pdf
http://www.sbc.org.br/sbac/2012/
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pdf

Source Throttling (I1I)

George Nychis, Chris Fallin, Thomas Moscibroda, Onur Mutlu,
and Srinivasan Seshan,

"On-Chip Networks from a Networking Perspective:
Congestion and Scalability in Many-core Interconnects”
Proceedings of the 2012 ACM SIGCOMM Conference
(SIGCOMM), Helsinki, Finland, August 2012. Slides (pptx)

On-Chip Networks from a Networking Perspective:
Congestion and Scalability in Many-Core Interconnects

George Nychist, Chris Fallint, Thomas Moscibrodag, Onur Mutlu+t, Srinivasan Seshant

t Carnegie Mellon University § Microsoft Research Asia
{gnychis,cfallin,onur,srini}@cmu.edu moscitho@microsoft.com

SAFARI 172


http://users.ece.cmu.edu/~omutlu/pub/onchip-network-congestion-scalability_sigcomm2012.pdf
http://conferences.sigcomm.org/sigcomm/2012/
http://users.ece.cmu.edu/~omutlu/pub/nychis_sigcomm12_talk.pptx

Application-to-Core Mapping to Reduce Interference

= Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh
Kumar, and Mani Azimi,
"Application-to-Core Mapping Policies to Reduce Memory
System Interference in Multi-Core Systems"
Proceedings of the 19th International Symposium on High-Performance
Computer Architecture (HPCA), Shenzhen, China, February 2013.
Slides (pptx)

Application-to-Core Mapping Policies
to Reduce Memory System Interference in Multi-Core Systems

Reetuparna Dasx  Rachata Ausavarungnirunf  Onur Mutlut  Akhilesh Kumari Mani Azimi:
University of Michiganx  Carnegie Mellon Universityt Intel Labs:

173


http://users.ece.cmu.edu/~omutlu/pub/application-to-core-mapping_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/das_hpca13_talk.pptx

Architecture-Aware DRM

= Hui Wang, Canturk Isci, Lavanya Subramanian, Jongmoo Choi,
Depei Qian, and Onur Mutlu,
"A-DRM: Architecture-aware Distributed Resource
Management of Virtualized Clusters”
Proceedings of the 11th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE), Istanbul,
Turkey, March 2015.

[Slides (pptx) (pdf)]

A-DRM: Architecture-aware Distributed Resource Management
of Virtualized Clusters

Hui Wang'*, Canturk Isci*, Lavanya Subramanian*, Jongmoo Choi®*, Depei Qian', Onur Mutlu*

"Beihang University, ¥IBM Thomas J. Watson Research Center, *Carnegie Mellon University, “Dankook University
{hui.wang, depeiq}@buaa.edu.cn, canturk@us.ibm.com, {Isubrama, onur}@cmu.edu, choijm@dankook.ac.kr

174


http://users.ece.cmu.edu/~omutlu/pub/architecture-aware-distributed-resource-management_vee15.pdf
http://www.cercs.gatech.edu/vee15/
http://users.ece.cmu.edu/~omutlu/pub/architecture-aware-distributed-resource-management_vee15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/architecture-aware-distributed-resource-management_vee15-talk.pdf

Summary

175




Summary: Fundamental Interference Control Techniques

= Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks
3. Core/source throttling

4. Application/thread scheduling

Best is to combine all. How would you do that?

176



Summary: Memory QoS Approaches and Techniques

Approaches: Smart vs. dumb resources

o Smart resources: QoS-aware memory scheduling

o Dumb resources: Source throttling; channel partitioning
o Both approaches are effective at reducing interference
o No single best approach for all workloads

Techniques: Request/thread scheduling, source throttling,
memory partitioning

o All approaches are effective at reducing interference

o Can be applied at different levels: hardware vs. software

o No single best technique for all workloads

Combined approaches and techniques are the most powerful
o Integrated Memory Channel Partitioning and Scheduling [MICRO'11]

SAFARI 7



Summary: Memory Interference and QoS

QoS-unaware memory -
uncontrollable and unpredictable system

Providing QoS awareness improves performance,
predictability, fairness, and utilization of the memory system

Discussed many new techniques to:
o Minimize memory interference
o Provide predictable performance

Many new research ideas needed for integrated techniques
and closing the interaction with software

SAFARI 178



What Did We Not Cover?

Prefetch-aware shared resource management
DRAM-controller co-design

Cache interference management
Interconnect interference management
Write-read scheduling

DRAM designs to reduce interference
Interference & QOS in processing-in-memory

SAFARI 179



What the Future May Bring

Memory QoS techniques for heterogeneous SoC systems

o Many accelerators, processing in/near memory, better
predictability, higher performance

Combinations of memory QoS/performance techniques
o E.g., data mapping and scheduling

Use of machine learning techniques to manage
resources

Real prototypes

SAFARI 180



Backup Slides




Memory Scheduling

for Heterogeneous Systems




Lecture on Heterogeneous System Scheduling

SMS: Staged Memory Scheduling
Core 1 Core 2 Core 3 Core 4 GPU

| | ! ] | § |
Stage 1
— | S=al
Formation I | I -

I —— —

Stage 2

p——|
Stage 3 [——
DRAM =]
Command Bank 1
Scheduler

To DRAM

© ETH ZENTRUM
Computer Arch - Lecture 13: Memory Interference and Quality of Service Il (ETH Zdrich, Spring 2020)

1,006 views -+ Nov 7, 2020 e 23 GJ 0 ) SHARE =+ SAVE ...

@ Onur Mutlu Lectures ANALYTICS EDIT VIDEO
& 19.8K subscribers

S A FA R I https://www.youtube.com/watch?v=Axye9VaQT7w&list=PL50Q2s0XY2Zi9xidyIgBxUz7xRPS-wisBN&index=26 183



https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26

Staged Memory Scheduling

Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, Gabriel Loh, and Onur Mutlu,
"Staged Memory Scheduling: Achieving High Performance
and Scalability in Heterogeneous Systems”
39th International Symposium on Computer Architecture (ISCA),
Portland, OR, June 2012.

SMS ISCA 2012 Talk



http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://isca2012.ittc.ku.edu/
http://isca2012.ittc.ku.edu/
file:////Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/rachata_isca12_talk.pptx

SMS: Executive Summary

Observation: Heterogeneous CPU-GPU systems require
memory schedulers with large request buffers

Problem: Existing monolithic application-aware memory
scheduler designs are hard to scale to large request buffer sizes

Solution: Staged Memory Scheduling (SMS)

decomposes the memory controller into three simple stages:
1) Batch formation: maintains row buffer locality

2) Batch scheduler: reduces interference between applications
3) DRAM command scheduler: issues requests to DRAM

Compared to state-of-the-art memory schedulers:
o SMS is significantly simpler and more scalable
o SMS provides higher performance and fairness

SAFARI 185



SMS: Staged Memory Scheduling
Core 1 Core 2 Core3 Core4 GPU

J J J 4

Scheduler

SAFARI

186



SMS: Staged Memory Scheduling

Stage 1

Batch

Core 1

g

Core 2 Core 3 Core 4 GPU
1
[ .
[ .
____________________ T __

Formation

SAFARI



Putting Everything Together

Stage 1:
Batch
Formation

Corel Core2 Core3 4 GPU
e e R

Stage 3:
DRAM

Command
Scheduler

SAFARI

Bank 1 Bank 2 Bank 3 Bank 4

RR

188



Complexity

Compared to a row hit first scheduler, SMS consumes*

Q

Q

66% less area
46% less static power

Reduction comes from:

Q

Q

Monolithic scheduler - stages of simpler schedulers

Each stage has a simpler scheduler (considers fewer
properties at a time to make the scheduling decision)

Each stage has simpler buffers (FIFO instead of out-of-order)

Each stage has a portion of the total buffer size (buffering is
distributed across stages)

SAFARI * Based on a Verilog model using 180nm library 189



Performance at Ditferent GPU Weights

)] 1 '

e 0.8 - Best Previous

m n

e Scheduler

“f_-’ 0.6

S 0.4

5 02 v T ! ’

7 ATLAS TCM FR-FCFS

m> O I T TTTTT I T T TTTT I T T TTTTIT
0.001 0.1 10 1000

GPUweight

SAFARI 190



Performance at Ditferent GPU Weights

g 1 '
= 0.8 - Best Previous
m .
e Scheduler
5 0.6 — SMS
=
g 0.4
§ 0.2
> O T T T T T 1T T T
)
0.001 0.1 10 1000

GPUweight

= At every GPU weight, SMS outperforms the best previous
scheduling algorithm for that weight

SAFARI 191



More on SMS

= Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian,
Gabriel Loh, and Onur Mutluy,
"Staged Memory Scheduling: Achieving High
Performance and Scalability in Heterogeneous Systems"
Proceedings of the 39th International Symposium on Computer
Architecture (ISCA), Portland, OR, June 2012. Slides (pptx)

Staged Memory Scheduling: Achieving High Performance and Scalability
in Heterogeneous Systems
Rachata Ausavarungnirun’ Kevin Kai-Wei Chang” Lavanya Subramanian” Gabriel H. Loh* Onur Mutlu?

"Carnegie Mellon University *Advanced Micro Devices, Inc.
{rachata,kevincha,lsubrama,onur} @cmu.edu gabe.loh@amd.com

SAFARI 192


http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://isca2012.ittc.ku.edu/
http://users.ece.cmu.edu/~omutlu/pub/rachata_isca12_talk.pptx

DASH Memory Scheduler
[TACO 2016]




Current SoC Architectures

CPU CPU CPU CP

U
|

DRAM Controller I

DRAM

= Heterogeneous agents: CPUs and HWAs
o HWA : Hardware Accelerator

= Main memory is shared by CPUs and HWAs - Interference

How to schedule memory requests from CPUs and HWAs
to mitigate interference?

SAFARI 194



DASH Scheduler: Executive Summary

Problem: Hardware accelerators (HWAs) and CPUs share the same
memory subsystem and interfere with each other in main memory

Goal: Design a memory scheduler that improves CPU performance while
meeting HWAs' deadlines

Challenge: Different HWAs have different memory access characteristics
and different deadlines, which current schedulers do not smoothly handle

o Memory-intensive and long-deadline HWAs significantly degrade CPU
performance when they become high priority (due to slow progress)

o Short-deadline HWAs sometimes miss their deadlines despite high priority

Solution: DASH Memory Scheduler
o Prioritize HWAs over CPU anytime when the HWA is not making good progress
o Application-aware scheduling for CPUs and HWAs

Key Results:
1) Improves CPU performance for a wide variety of workloads by 9.5%
2) Meets 100% deadline met ratio for HWAs

DASH source code freely available on our GitHub

SAFARI 195




Goal of Our Scheduler (DASH)

* Goal: Design a memory scheduler that

— Meets GPU/accelerators’ frame rates/deadlines and
— Achieves high CPU performance

e Basic ldea:

— Different CPU applications and hardware accelerators
have different memory requirements

— Track progress of different agents and prioritize
accordingly



Key Observation:
Distribute Priority for Accelerators

 GPU/accelerators need priority to meet deadlines
* Worst case prioritization not always the best

* Prioritize when they are not on track to meet a
deadline

Distributing priority over time mitigates impact
of accelerators on CPU cores’ requests



Key Observation:
Not All Accelerators are Equal

* Long-deadline accelerators are more likely to
meet their deadlines

* Short-deadline accelerators are more likely to
miss their deadlines

Schedule short-deadline accelerators
based on worst-case memory access time



Key Observation:
Not All CPU cores are Equal

* Memory-intensive cores are much less
vulnerable to interference

* Memory non-intensive cores are much more
vulnerable to interference

Prioritize accelerators over memory-intensive cores
to ensure accelerators do not become urgent



DASH Summary:
Key ldeas and Results

* Distribute priority for HWAs

* Prioritize HWAs over memory-intensive CPU
cores even when not urgent

* Prioritize short-deadline-period HWAs based
on worst case estimates

Improves CPU performance by 7-21%
Meets (almost) 100% of deadlines for HWAS



DASH: Scheduling Policy

= DASH scheduling policy
1. Short-deadline-period HWAs with high priority
. Long-deadline-period HWAs with high priority
. Memory non-intensive CPU applications
. Long-deadline-period HWAs with low priority | ¢+
. Memory-intensive CPU applications probabilistically
. Short-deadline-period HWAs with low priority

O Ul b~ WN

SAFARI 201



More on DASH

= Hiroyuki Usui, Lavanya Subramanian, Kevin Kai-Wei Chang, and
Onur Mutluy,
"DASH: Deadline-Aware High-Performance Memory
Scheduler for Heterogeneous Systems with Hardware
Accelerators”
ACM Transactions on Architecture and Code Optimization (TACO),
Vol. 12, January 2016.
Presented at the 11th HIPEAC Conference, Prague, Czech Republic,
January 2016.

Slides (pptx) (pdf)]
[Source Code]

DASH: Deadline-Aware High-Performance Memory Scheduler
for Heterogeneous Systems with Hardware Accelerators

HIROYUKI USUI, LAVANYA SUBRAMANIAN, KEVIN KAI-WEI CHANG,
and ONUR MUTLU, Carnegie Mellon University

SAFARI

202


https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_taco16.pdf
http://taco.acm.org/
https://www.hipeac.net/2016/prague/
https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_usui_hipeac16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_usui_hipeac16-talk.pdf
https://github.com/CMU-SAFARI/HWASim

Predictable Performance:
Strong Memory Service Guarantees

203




Lecture on Predictable Performance

For a memory bound application,

rmal

-

Intel Core i7, 4 cores
Mem. Bandwidth: 8.5 GB/s

W
o
c
©
£
=
o
3=
Q
o
°
]
AL
©
£
=
=)
4

03 04 0S5 06 07 08 09 1

Normalized Request Service Rate

SAFARI

P Pl ¢ 4839/2:0846

© ETH ZURICH HAUPTGEBAUDE

Computer Architecture - Lecture 17: Memory Interference and QoS Il (ETH Ziirich, Fall 2018)
274 views * Nov 23,2018

e 4 GPO > SHARE =+ SAVE

ANALYTICS EDIT VIDEO

https://www.youtube.com/watch?v=Axye9VaQT7w&list=PL50Q2s0XY2Zi9xidyIgBxUz7xRPS-wisBN&index=26 204

@ Onur Mutlu Lectures
&> 19.8K subscribers

SAFARI



https://www.youtube.com/watch?v=Axye9VqQT7w&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26

Lecture on Predictable Performance

Eftectiveness of MISE in Enforcing QoS

Across 3000 data points

Predicted
[

QoS Bound
Met

QoS Bound
Not Met

MISE-QoS correctly predicts whether or not
the bound is met for 95.7% of workloads

SAFARI

P Pl ¢ 2529/11114

Memory Systems - Lecture 6.4: Memory Interface and QoS (Technion, Summer 2018)

163 views + Oct 12, 2018 e 5 GP 0 > SHARE =+ SAVE

e Onur MUﬂU‘LECthes ANALYTICS EDIT VIDEO
&> 19.8K subscribers

S A FA R ’ https://www.youtube.com/watch?v=15hRILhGWGARlist=PL50Q2s0XY2Zi-IymxXpH 9vIZCOeA7Yfn9&index=19 205



https://www.youtube.com/watch?v=15hRJLhGWGA&list=PL5Q2soXY2Zi-IymxXpH_9vlZCOeA7Yfn9&index=19

Goal: Predictable Performance in Complex Systems

Large Large
CPU CPU Small Small

CPU CPU

Shared Cache HWA HWA DMA

vy ¥ Vv VvV
DRAM and Hybrid Memory Controllers
4

DRAM and Hybrid Memories

= Heterogeneous agents: CPUs, GPUs, HWAs, DMA engine, ...
= Memory resources shared by CPUs/GPUs/HWAs - Interference

How to allocate resources to heterogeneous agents
to mitigate interference and provide predictable performance?

SAFARI 206



Strong Memory Service (Guarantees

Goal: Satisfy performance/SLA requirements in the
presence of shared main memory, heterogeneous agents,
and hybrid memory/storage

Approach:

o Develop techniques/models to accurately estimate the
performance loss of an application/agent in the presence of
resource sharing

o Develop mechanisms (hardware and software) to enable the
resource partitioning/prioritization needed to achieve the
required performance levels for all applications

o All the while providing high system performance

Subramanian et al., "MISE: Providing Performance Predictability and Improving Fairness
in Shared Main Memory Systems,” HPCA 2013.

Subramanian et al., “The Application Slowdown Model,” MICRO 2015.
SAFARI 207



Predictable Performance Readings (I)

= Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High-
Performance Fairness Substrate for Multi-Core Memory
Systems"”
Proceedings of the 15th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 335-346, Pittsburgh, PA, March 2010.
Slides (pdf)

Fairness via Source Throttling: A Configurable and High-Performance
Fairness Substrate for Multi-Core Memory Systems

Eiman Ebrahimi{ Chang Joo Leef Onur Mutlug Yale N. Pattf

fDepartment of Electrical and Computer Engineering §Computer Architecture Laboratory (CALCM)
The University of Texas at Austin Carnegie Mellon University
{ebrahimi, cjlee, patt} @ece.utexas.edu onur@cmu.edu

SAFARI 208


http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf

Predictable Performance Readings (1)

= Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen,
and Onur Mutluy,
"MISE: Providing Performance Predictability and
Improving Fairness in Shared Main Memory Systems"”
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China,
February 2013. Slides (pptx)

MISE: Providing Performance Predictability and Improving Fairness
in Shared Main Memory Systems

Lavanya Subramanian =~ Vivek Seshadri ~ Yoongu Kim  Ben Jaiyen =~ Onur Mutlu

Carnegie Mellon University

SAFARI 209


http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx

Predictable Performance Readings (111)

= Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and
Onur Mutlu,
"The Application Slowdown Model: Quantifying and Controlling
the Impact of Inter-Application Interference at Shared Caches
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO) Waikiki, Hawaii, USA, December 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster
(pptx) (pdf)]
[Source Code]

The Application Slowdown Model: Quantifying and Controlling the Impact
of Inter-Application Interference at Shared Caches and Main Memory

Lavanya Subramanian*§ Vivek Seshadri* Arnab Ghosh*T
Samira Khan* Onur Mutlu*

*Carnegie Mellon University §Intel Labs IIT Kanpur *University of Virginia

210


https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim

MISE:
Providing Performance Predictability
in Shared Main Memory Systems

Lavanya Subramanian, Vivek Seshadri,
Yoongu Kim, Ben Jaiyen, Onur Mutlu

SAFARI Carnegie Mellon




Unpredictable Application Slowdowns

Ul

SN

Slowdown

—
|

Slowdown

—
|

N
|

N
|

.

gcc (core 1)

o
o
|

eslie3d (core Q

An application’s performance depends on
which application it is running with

mcf (core 1)

SAFARI 212



Need for Predictable Performance

Our Goal: Predictable performance
in the presence of memory interference

SAFARI 213



Outline

1. Estimate Slowdown

2. Control Slowdown

SAFARI 214



Outline

1. Estimate Slowdown
o Key Observations
d
d

d

2. Control Slowdown

d

d

SAFARI 215



Slowdown: Definition

Performance Alone

Slowdown =
Performance shared

SAFARI 216



Key Observation 1

For a memory bound application,
Performance «« Memory request service rate

e=0mnetpp ~

7 Harder

Slowdo

ore i/, 4 cores

*3 ../. S%Raﬂée@dth: 8.5 GB/s
\

w b
|

Normalized I&rformance
© o o O ¢

S Easy

03 04 05 06 07 08 09 1

o O

Normalized Request Service Rate

SAFARI 217



Key Observation 2

Request Service Rate pqne (RSRy 1) Of @n application can be
estimated by giving the application highest priority in
accessing memory

Highest priority - Little interference
(almost as if the application were run alone)

SAFARI 218



Key Observation 2

1. Run alone
Request Buffer State

Main
Memory

Time( units

Service order

2. Run with another application.

Request Buffer State

Main
Memory

Tlme unlts

| SerV|ce order

Main
Memory

3. Run with another application: h|ghESt priority

Request Buffer State

SAFARI

Main
Memory

T|me units

1 Service order

Main
Memory

3 ‘ .

Main
Memory

219




Memory Interference-induced Slowdown Estimation
(MISE) model for memory bound applications

Request Service Rate alone (RSR Alone)

Slowdown = :
Request Service Rate shared (RSR shared)

SAFARI 220



Key Observation 3

= Memory-bound application
Compute Phase

Memory Phase

e I
interference fime
e P
interference

—>time

Memory phase slowdown dominates overall slowdown

SAFARI 221



Key Observation 3

Memory Interference-induced Slowdown Estimation
(MISE) model for non-memory bound applications

RS RAlone
RS RShared

Slowdown=(1-a)+ «

SAFARI 222



Outline

1. Estimate Slowdown
a Key Observations
o Implementation
a MISE Model: Putting it All Together
a Evaluating the Model

2. Control Slowdown
a Providing Soft Slowdown Guarantees
a Minimizing Maximum Slowdown

SAFARI 223



Interval Based Operation

Interval
A

Interval
A

(

Y

A

ey { | | €

) | E

Measure RSRghreds &
Estimate RSRyone

Measure RSRgnareds &
Estimate RSRyone

\ 4 4
Estimate Estimate
slowdown slowdown

SAFARI

224



Measuring RSRg, ...q and «

Request Service Rate ¢hared (RSRehared)
a Per-core counter to track number of requests serviced

o At the end of each interval, measure

Number of Requests Serviced

RS RShared —
Interval Length

Memory Phase Fraction (@)
a Count number of stall cycles at the core
o Compute fraction of cycles stalled for memory

SAFARI 225



Estimating Request Service Rate »;,,. (RSRy;.0)

= Divide each interval into shorter epochs

= At the beginning of each epoch

o Memory IS ' n application as the
highest ﬁéﬁa&%ﬁwﬁg%one

How: Periodically give each application
= At ihifne st an sl fet eRck eriEPMRSHBYY,

Number of Requests During High Priority Epochs
Number of Cycles Application Given High Priority

RSRAlone —

SAFARI 226



Inaccuracy 1in Estimating RSR 4.,
ReqUiiieR AR application A NIgREStIaRIRE!bYer Bl High Priority

| exie riences 'somr |r31tere|2enre1 Main
Memory Memory
Request Buffer Time units Service order
State Main 3 2 1 Main
- Memory ‘ -. - Memory
Request Buffer Time< units  Service order
State

3 2 1
| e
Memory
Time( units  Service order
3 2 1
| e
Memory
<>

Interference Cycles

B o
Memory

SAFARI 227



Accounting for Interference in RSR,,; .. Estimation

Solution: Determine and remove interference cycles from
RSR,0ne Calculation

Number of Requests During High Priority Epochs

RSRAlone =
Number of Cycles Application Given High Prioritynterference Cycles>

A cycle is an interference cycle if

o a request from the highest priority application is
waiting in the request buffer and

o another application’s request was issued previously

SAFARI 228



Outline

1. Estimate Slowdown
a Key Observations
a Implementation
o MISE Model: Putting it All Together
a Evaluating the Model

2. Control Slowdown
a Providing Soft Slowdown Guarantees
a Minimizing Maximum Slowdown

SAFARI 229



MISE Model: Putting it All Together

Interval
A

Interval
A

(

Y

A

ey { | | €

) | E

Measure RSRghreds &
Estimate RSRyone

Measure RSRchared, &
Estimate RSRyone

\ 4 4
Estimate Estimate
slowdown slowdown

SAFARI

230



Outline

1. Estimate Slowdown
a Key Observations
a Implementation
a MISE Model: Putting it All Together
o Evaluating the Model

2. Control Slowdown
a Providing Soft Slowdown Guarantees
a Minimizing Maximum Slowdown

SAFARI 231



Previous Work on Slowdown E.stimation

Previous work on slowdown estimation

1 <STFM (Stall Time Fair Memory) Scheduling [Mutlu+, MICRO 071
o FST (Fairness via Source Throttling) [Ebrahimi+, ASPLOS ‘10]

o Per-thread Cycle Accounting [Du Bois+, HIPEAC '13]

Basic Idea:
@l Time S e
Slowdown %ﬁ
d 1IMC Share
d\ Easy

Count number of cycles application receives interference

SAFARI 252



Two Major Advantages of MISE Over STFM

= Advantage 1:

o STFM estimates alone performance while an
application is receiving interference > Hard

o MISE estimates alone performance while giving an
application the highest priority = Easier

= Advantage 2:

o STFM does not take into account compute phase for
non-memory-bound applications

o MISE accounts for compute phase - Better accuracy

SAFARI 233



Methodology

Configuration of our simulated system
2 4 cores

o 1 channel, 8 banks/channel

o DDR3 1066 DRAM

o 512 KB private cache/core

Workloads
o SPEC CPU2006
o 300 multi programmed workloads

SAFARI 234



Quantitative Comparison

SPEC CPU 2006 application

leslie3d
4
3.5
c
S 3
(@)
©C 25 —Actual
S
o 2
7, ’\/\’_\’\N—’
1.5
1 I I I I ]
0 20 40 60 80 100

Million Cycles

SAFARI 235



Comparison to STFM

4 N
Average error of MISE: 8.2%
\_____Average error of STEM: 29.4% /
s (across 300 workloads) A
N /

SAFARI

236



Outline

1. Estimate Slowdown
a Key Observations
a Implementation
a MISE Model: Putting it All Together
a Evaluating the Model

2. Control Slowdown
o Providing Soft Slowdown Guarantees
a Minimizing Maximum Slowdown

SAFARI 237



Providing “Soft” Slowdown Guarantees

= Goal

1. Ensure QoS-critical applications meet a prescribed
slowdown bound

2. Maximize system performance for other applications

= Basic Idea

o Allocate just enough bandwidth to QoS-critical
application

a Assign remaining bandwidth to other applications

SAFARI 238



MISE-QoS: Mechanism to Provide Soft QoS

= Assign an initial bandwidth allocation to QoS-critical application

= Estimate slowdown of QoS-critical application using the MISE
model

= After every N intervals
a If slowdown > bound B +/- €, increase bandwidth allocation

a If slowdown < bound B +/- €, decrease bandwidth allocatior

= When slowdown bound not met for N intervals
a Notify the OS so it can migrate/de-schedule jobs

SAFARI 239



Methodology

Each application (25 applications in total) considered the
QoS-critical application

Run with 12 sets of co-runners of different memory
Intensities

Total of 300 multiprogrammed workloads
Each workload run with 10 slowdown bound values

Baseline memory scheduling mechanism
a Always prioritize QoS-critical application
[Iyer+, SIGMETRICS 2007]
o Other applications’ requests scheduled in FRFCFS order

[Zuravleff +, US Patent 1997, Rixner+, ISCA 2000]

SAFARI 240



A Look at One Workload

Slgwdown Bouind 724 33
3 S own Bound' =2

/

MISE is effective in
1. meeting the slowdown bound for the QoS-

critical application
2. improving performance of non-QoS-critical

applications
(eslie3d hmmer lbm MDEIFII;
QoS-critical non-QoS-critical

SAFARI 241



Ettectiveness of MISE in Enforcing QoS

Across 3000 data points

Predicted Predicted
Not Met

Qos Bound  RETEI> 21% >

Qﬁi?ﬁ:‘:d 2.2% C 16.9% O

MISE-QoS correctly predicts whether or not
the bound is met for 95.7% of workloads

SAFARI 242



Pertormance of Non-QoS-Critical Applications

1.4

£1.2

=

Q 1

g_ m AlwaysPrioritize

»n 0.8 m MISE-Qo0S-10/1

= 0.6 = MISE-Qo0S-10/3

o = MISE-Q0S-10/5

£04 = MISE-Q0S-10/7

T 0.2 = MISE-Q0S-10/9
0

When slowdown bound is 10/3
MISE-QoS improves system performance by 10%

SAFARI 243




Outline

1. Estimate Slowdown
a Key Observations
a Implementation
a MISE Model: Putting it All Together
a Evaluating the Model

2. Control Slowdown
a Providing Soft Slowdown Guarantees
a Minimizing Maximum Slowdown

SAFARI 244



Other Results 1n the Paper

Sensitivity to model parameters
o Robust across different values of model parameters

Comparison of STFM and MISE models in enforcing soft
slowdown guarantees

o MISE significantly more effective in enforcing guarantees

Minimizing maximum slowdown
o MISE improves fairness across several system configurations

SAFARI 245



Summary

= Uncontrolled memory interference slows down
applications unpredictably

= Goal: Estimate and control slowdowns

= Key contribution
o MISE: An accurate slowdown estimation model
o Average error of MISE: 8.2%

= Key Idea
o Request Service Rate is a proxy for performance
o Request Service Rate 5ne €Stimated by giving an application highest
priority in accessing memory
= Leverage slowdown estimates to control slowdowns
o Providing soft slowdown guarantees
o Minimizing maximum slowdown

SAFARI 246



MISE: Pros and Cons

Upsides:
o Simple new insight to estimate slowdown

o Much more accurate slowdown estimations than prior
techniques (STFM, FST)

o Enables a number of QoS mechanisms that can use slowdown
estimates to satisfy performance requirements

Downsides:
o Slowdown estimation is not perfect - there are still errors

o Does not take into account caches and other shared resources
in slowdown estimation

SAFARI 247



More on MISE

= Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen,
and Onur Mutluy,
"MISE: Providing Performance Predictability and
Improving Fairness in Shared Main Memory Systems"”
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China,
February 2013. Slides (pptx)

MISE: Providing Performance Predictability and Improving Fairness
in Shared Main Memory Systems

Lavanya Subramanian =~ Vivek Seshadri ~ Yoongu Kim  Ben Jaiyen =~ Onur Mutlu

Carnegie Mellon University

SAFARI 248


http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx

Extending MISE to Shared Caches: ASM

= Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and
Onur Mutlu,
"The Application Slowdown Model: Quantifying and Controlling
the Impact of Inter-Application Interference at Shared Caches
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO) Waikiki, Hawaii, USA, December 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster
(pptx) (pdf)]
[Source Code]

The Application Slowdown Model: Quantifying and Controlling the Impact
of Inter-Application Interference at Shared Caches and Main Memory

Lavanya Subramanian*§ Vivek Seshadri* Arnab Ghosh*T
Samira Khan* Onur Mutlu*

*Carnegie Mellon University §Intel Labs IIT Kanpur *University of Virginia

SAFARI 249


https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim

Other Ways of

Handling Memory Interference




Fundamental Interference Control Techniques

= Goal: to reduce/control inter-thread memory interference

1. Prioritization or request scheduling

‘ 2. Data mapping to banks/channels/ranks ‘

3. Core/source throttling

4. Application/thread scheduling

251



Designing QQoS-Aware Memory Systems: Approaches

Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism

o QoS-aware memory controllers

o QoS-aware interconnects

o QoS-aware caches

Dumb resources: Keep each resource free-for-all, but
reduce/control interference by injection control or data
mapping

Q U Of] O [1IC[]]()

o] QoS-aware data mapping to memory controllers

o QoS-aware thread scheduling to cores

252



Memory Channel Partitioning

Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut Kandemir, and Thomas Moscibroda,
"Reducing Memory Interference in Multicore Systems via
Application-Aware Memory Channel Partitioning”
44th International Symposium on Microarchitecture (MICRO),

Porto Alegre, Brazil, December 2011. Slides (pptx)

MCP Micro 2011 Talk



http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx
file:////Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/subramanian_micro11_talk.pptx

Observation: Modern Systems Have Multiple Channels

Core

Red Memory Channel 0 Memory

App Controller : : :
Core ><
Blue <}:{> Memory ( Channel1 Memory

App Controller

A new degree of freedom
Mapping data across multiple channels

254
Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.



Data Mapping in Current Systems

Core

Page

Memor

Red Memory

App Controller

Blue <}:{> Memory
Controller

App

Core

=)
=

Causes interference between applications’ requests

255
Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.



Partitioning Channels Between Applications

Core

Page

Memor

Red Memory

App Controller

<}:{> Memory
Controller

Memor

=)
=

Eliminates interference between applications’ requests

256
Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.



Overview: Memory Channel Partitioning (MCP)

= Goal
o Eliminate harmful interference between applications

= Basic Idea

o Map the data of badly-interfering applications to different
channels

= Key Principles
a Separate low and high memory-intensity applications
o Separate low and high row-buffer locality applications

Muralidhara et al., “Memory Channel Partitioning,” MICRO’11. 257



Key Insight 1: Separate by Memory Intensity

Map data of low and high memory-intensity applications
to different channels

258



Key Insight 2: Separate by Row-Buffer Locality

Map data of low and high row-buffer locality applications
to different channels

259



Memory Channel Partitioning (MCP) Mechanism

/ Hardware
1. Profile applications

2. Classify applications into groups

3. Partition channels between application groups
4. Assign a preferred channel to each application
5. Allocate application pages to preferred channel

N

System
Software

Muralidhara et al., “Memory Channel Partitioning,” MICRO’11. 260



Interval Based Operation

Current AInterval

Next ‘Interval

[

|

|

—_—

>

1. Profile applications

\4

time

>

5. Enforce channel preferences

2. Classify applications into groups
3. Partition channels between groups
4. Assign preferred channel to applications

261



Observations

= Applications with very low memory-intensity rarely
access memory
- Dedicating channels to them results in precious
memory bandwidth waste

= They have the most potential to keep their cores busy
- We would really like to prioritize them

= They interfere minimally with other applications
—> Prioritizing them does not hurt others

262



Integrated Memory Partitioning and Scheduling (IMPS)

= Always prioritize very low memory-intensity
applications in the memory scheduler

= Use memory channel partitioning to mitigate
interference between other applications

Muralidhara et al., “Memory Channel Partitioning,” MICRO’11. 263



Hardware Cost

Memory Channel Partitioning (MCP)

o Only profiling counters in hardware

o No madifications to memory scheduling logic

o 1.5 KB storage cost for a 24-core, 4-channel system

Integrated Memory Partitioning and Scheduling (IMPS)

o A single bit per request
o Scheduler prioritizes based on this single bit

Muralidhara et al., “Memory Channel Partitioning,” MICRO’11. 264



Performance of Channel Partitioning

Averaged over 240 workloads

1.15
598
S 11 4 4 B FRFCFS
©
o & \
g £ 1.05 m ATLAS
© T
g 9 - mTCM
S E
< [ = MCP
2095 -
73 m IMPS
09 -

Better system performance than the best previous scheduler
at lower hardware cost

265



An Example of Bad Channel Partitioning

206



Combining Multiple Interference Control Techniques

Combined interference control techniques can mitigate

interference much more than a single technique alone can
do

The key challenge is:
o Deciding what technique to apply when

o Partitioning work appropriately between software and
hardware

267



MCP and IMPS: Pros and Cons

Upsides:

Q

Q

Q

Keeps the memory scheduling hardware simple
Combines multiple interference reduction techniques

Can provide performance isolation across applications mapped
to different channels

General idea of partitioning can be extended to smaller
granularities in the memory hierarchy: banks, subarrays, etc.

Downsides:

Q

Reacting is difficult if workload changes behavior after
profiling

o Overhead of moving pages between channels restricts benefits

268



More on Memory Channel Partitioning

Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu,
Mahmut Kandemir, and Thomas Moscibroda,

"Reducing Memory Interference in Multicore Systems via
Application-Aware Memory Channel Partitioning”
Proceedings of the 44th International Symposium on
Microarchitecture (MICRO), Porto Alegre, Brazil, December
2011. Slides (pptx)

Reducing Memory Interference in Multicore Systems via
Application-Aware Memory Channel Partitioning

Sai Prashanth Muralidhara Lavanya Subramanian Onur Mutlu
Pennsylvania State University Carnegie Mellon University Carnegie Mellon University

smuralid@cse.psu.edu Isubrama@ece.cmu.edu onur@cmu.edu

Mahmut Kandemir Thomas Moscibroda
Pennsylvania State University Microsoft Research Asia
kandemir@cse.psu.edu moscitho@microsoft.com

https://www.youtube.com/watch?v=yEYEzFWAY9q 269



http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx
https://www.youtube.com/watch?v=yEYEzFwAY9g

Fundamental Interference Control Techniques

Goal: to reduce/control inter-thread memory interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

‘ 3. Core/source throttling ‘

4. Application/thread scheduling

270



Fairness via Source Throttling

Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,

'Fairness via Source Throttling: A Configurable and High-Performance
Fairness Substrate for Multi-Core Memory Systems"

15th Intl. Conf on Architectural Support for Programming Languages and Operating Systems (ASPLOS),

pages 335-346, Pittsburgh, PA, March 2010. Slides (pdf)

FST ASPLOS 2010 Talk



http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf
file:////Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/ebrahimi_asplos10_talk.pdf

Many Shared Resources

Shared Memory
Resources

.. Chip Boundary

SAFARI 272



The Problem with “Smart Resources’

Independent interference control mechanisms in
caches, interconnect, and memory can contradict
each other

Explicitly coordinating mechanisms for different
resources requires complex implementation

How do we enable fair sharing of the entire
memory system by controlling interference in a
coordinated manner?

SAFARI 273



Source Throttling: A Fairness Substrate

Key idea: Manage inter-thread interference at the cores
(sources), not at the shared resources

Dynamically estimate unfairness in the memory system
Feed back this information into a controller

Throttle cores’ memory access rates accordingly

o Whom to throttle and by how much depends on performance
target (throughput, fairness, per-thread QoS, etc)

o E.g., if unfairness > system-software-specified target then
throttle down core causing unfairness &
throttle up core that was unfairly treated

Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS'10, TOCS12.

274



Fairness via Source Throttling (FST)

Two components (interval-based)

Run-time unfairness evaluation (in hardware)

o Dynamically estimates the unfairness (application slowdowns)
in the memory system

o Estimates which application is slowing down which other

Dynamic request throttling (hardware or software)

o Adjusts how aggressively each core makes requests to the
shared resources

o Throttles down request rates of cores causing unfairness
Limit miss buffers, limit injection rate

275



Fairness via Source Throttling (FST) [aspLos’10]

‘ Interval 1’ Interval 2 ‘ Interval 3’

Tim)e
———

Slowdown

Estimation
L I

_ Unfairness Estimate
. App-interfering Request Throttling
Evaluation

1- Estimating system unfairness if (Unfairness Estimate >Target)
2- Find app. with the highest {
slowdown (App-slowest) 1-Throttle down App-interfering
3- Find app. causing most (limit injection rate and parallelism)
interference for App-slowest 2-Throttle up App-slowest
(App-interfering) b




Dynamic Request Throttling

Goal: Adjust how aggressively each core makes requests to
the shared memory system

Mechanisms:
o Miss Status Holding Register (MSHR) quota

Controls the number of concurrent requests accessing shared
resources from each application

o Request injection frequency

Controls how often memory requests are issued to the last level
cache from the MSHRs

277



Dynamic Request Throttling

Throttling level assigned to each core determines both
MSHR quota and request injection rate

Throttling level MSHR quota  [Request Injection Rate
100% 128 Every cycle
50% 64 Every other cycle
25% 32 Once every 4 cycles
< 10% 12 Once every 10 cycles |
5% 6 Once every 20 cycles
4% 5 Once every 25 cycles
3% 3 Once every 30 cycles
MSHRs, 126 2% 2 Once every 50 cycles

278



System Software Support

Different fairness objectives can be configured by
system software
o Keep maximum slowdown in check

Estimated Max Slowdown < Target Max Slowdown

o Keep slowdown of particular applications in check to achieve a
particular performance target
Estimated Slowdown(i) < Target Slowdown(i)

Support for thread priorities

o Weighted Slowdown(i) =
Estimated Slowdown(i) x Weight(i)

SAFARI 279



Source Throttling Results: Takeaways

Source throttling alone provides better performance than a
combination of “smart” memory scheduling and fair caching

o Decisions made at the memory scheduler and the cache
sometimes contradict each other

Neither source throttling alone nor “smart resources” alone
provides the best performance

Combined approaches are even more powerful
a Source throttling and resource-based interference control

SAFARI 280



Source Throttling: Ups and Downs

Advantages

+ Core/request throttling is easy to implement: no need to
change the memory scheduling algorithm

+ Can be a general way of handling shared resource
contention

+ Can reduce overall load/contention in the memory system

Disadvantages

- Requires slowdown estimations - difficult to estimate
- Thresholds can become difficult to optimize

- throughput loss due to too much throttling

- can be difficult to find an overall-good configuration

281



More on Source Throttling (I)

= Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High-
Performance Fairness Substrate for Multi-Core Memory
Systems"”
Proceedings of the 15th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 335-346, Pittsburgh, PA, March 2010.
Slides (pdf)

Fairness via Source Throttling: A Configurable and High-Performance
Fairness Substrate for Multi-Core Memory Systems

Eiman Ebrahimi{ Chang Joo Leef Onur Mutlug Yale N. Pattf

fDepartment of Electrical and Computer Engineering §Computer Architecture Laboratory (CALCM)
The University of Texas at Austin Carnegie Mellon University
{ebrahimi, cjlee, patt} @ece.utexas.edu onur@cmu.edu

SAFARI 282


http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf

Mortre on Source Throttling (1)

= Kevin Chang, Rachata Ausavarungnirun, Chris Fallin, and Onur Mutlu,

"HAT: Heterogeneous Adaptive Throttling for On-Chip

Networks"
Proceedings of the 24th International Symposium on Computer

Architecture and High Performance Computing (SBAC-PAD), New
York, NY, October 2012. Slides (pptx) (pdf)

HAT: Heterogeneous Adaptive Throttling for On-Chip Networks

Kevin Kai-Wei Chang, Rachata Ausavarungnirun, Chris Fallin, Onur Mutlu
Carnegie Mellon University
{kevincha,rachata,cfallin,onur}@cmu.edu

SAFARI 283


http://users.ece.cmu.edu/~omutlu/pub/hetero-adaptive-source-throttling_sbacpad12.pdf
http://www.sbc.org.br/sbac/2012/
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pdf

More on Source Throttling (I11)

George Nychis, Chris Fallin, Thomas Moscibroda, Onur Mutlu,
and Srinivasan Seshan,

"On-Chip Networks from a Networking Perspective:
Congestion and Scalability in Many-core Interconnects”
Proceedings of the 2012 ACM SIGCOMM Conference
(SIGCOMM), Helsinki, Finland, August 2012. Slides (pptx)

On-Chip Networks from a Networking Perspective:
Congestion and Scalability in Many-Core Interconnects

George Nychist, Chris Fallint, Thomas Moscibrodag, Onur Mutlu+t, Srinivasan Seshant

t Carnegie Mellon University § Microsoft Research Asia
{gnychis,cfallin,onur,srini}@cmu.edu moscitho@microsoft.com

SAFARI 284


http://users.ece.cmu.edu/~omutlu/pub/onchip-network-congestion-scalability_sigcomm2012.pdf
http://conferences.sigcomm.org/sigcomm/2012/
http://users.ece.cmu.edu/~omutlu/pub/nychis_sigcomm12_talk.pptx

Fundamental Interference Control Techniques

= Goal: to reduce/control interference

1. Prioritization or request scheduling
2. Data mapping to banks/channels/ranks

3. Core/source throttling

‘ 4. Application/thread scheduling

Idea: Pick threads that do not badly interfere with each
other to be scheduled together on cores sharing the memory
system

285



Application-to-Core Mapping to Reduce Interference

Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh
Kumar, and Mani Azimi,

"Application-to-Core Mapping Policies to Reduce Memo

System Interference in Multi-Core Systems"
Proceedings of the 19th International Symposium on High-Performance

Computer Architecture (HPCA), Shenzhen, China, February 2013.
Slides (pptx)

Key ideas:
o Cluster threads to memory controllers (to reduce across chip interference)

o Isolate interference-sensitive (low-intensity) applications in a separate
cluster (to reduce interference from high-intensity applications)

o Place applications that benefit from memory bandwidth closer to the
controller

SAFARI 286


http://users.ece.cmu.edu/~omutlu/pub/application-to-core-mapping_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/das_hpca13_talk.pptx

Multi-Core to Many-Core

Multi-Core Many-Core

HE

287



Many-Core On-Chip Communication

Applications

A

A

>4 (e

P €

Memory
A Controller

Shared
$ Cache Bank

288



Problem: Spatial Task Scheduling

Applications Cores

'z

How to map applications to cores?

289



Challenges in Spatial Task Scheduling

Applications Cores

_—

How to reduce communication distance?

How to reduce destructive interference between applications?

\\

How to prioritize applications to improve throughput?

290



Application-to-Core Mapping

Improve Bandwidth Improve Bandwidth
Utilization Utilization

Balancing | \ M':?)piiang |
N )

| ﬁ ‘ :
A Al ﬁ
S N - < o
Isolation | _

Improve Locality Reduce Interference
Reduce Interference

N\
)

SAFARI 291



Step 1 — Clustering

A A

Controller

\
_:\ Memory
\ A
\

Y
A A

Inefficient data mapping to memory and caches

SAFARI 292



Step 1 — Clustering

Cluster 0

Cluster 1

A

A

i

Cluster 2
>
Cluster 3

A

Improved Locality

Reduced Interference

SAFARI

293



System Performance

1.3

Normalized Weighted
Speedup

MPKI1000 MPKI1500

System performance improves by 17%

294



Network Power

Normalized NoC Power

1.2
m BASE m BASE+CLS = A2C

1.0

0.8

0.6 -

04 -

0.2 -

0.0 -

MPKI500 MPKI1000 MPKI1500  MPKI2000 Avg

Average network power consumption reduces by 52%

295



More on App-to-Core Mapping

= Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh
Kumar, and Mani Azimi,
"Application-to-Core Mapping Policies to Reduce Memory
System Interference in Multi-Core Systems"
Proceedings of the 19th International Symposium on High-Performance
Computer Architecture (HPCA), Shenzhen, China, February 2013.
Slides (pptx)

Application-to-Core Mapping Policies
to Reduce Memory System Interference in Multi-Core Systems

Reetuparna Dasx  Rachata Ausavarungnirunf  Onur Mutlut  Akhilesh Kumari Mani Azimi:
University of Michiganx  Carnegie Mellon Universityt Intel Labs:

296


http://users.ece.cmu.edu/~omutlu/pub/application-to-core-mapping_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/das_hpca13_talk.pptx

Interference-Aware Thread Scheduling

An example from scheduling in compute clusters (data
centers)

Data centers can be running virtual machines

297



Virtualized Cluster

- Distributed Resource Management
(DRM) policies
f AY4 \\ : /f AY4 “

SAFARI 298




Conventional DRM Policies

Bas operating-system-level
e.g., -ation, memor

demand
Memory Capacity Host Host
— % Y4 x % Y4 x

CPUT.

SAFARI

299




Microarchitecture-level Interference

* VMs within a host compete for:

— Shared cache capacity

— Shared memory bandwidth

Can operating-system-level metrics capture the

microarchitecture-level resource interference?
SAFARI 300



Microarchitecture Unawareness

Operating-system-level metrics

Microarchitecture-level metrics

VM
CPU Utilization | Memory Capacity LLC Hit Ratio Memory Bandwidth
- 92% 369 MB 2% 2267 MB/s
App 93% 348 MB 98% 1 MB/s
Host

Memory Capacity % N/ }
S

CPU

Core0O Corel

B e | R

LLC
gromacs

SAFARI N e =/

301




Impact on Performance

0.6
IPC 04

(Harmonic
0.0

m Conventional DRM

Host

Memory Capacity

302

SAFARI




Impact on Performance

We need microarchitecture-
level interference awareness in
DRM!

pp

49%

Core0 1

k / 303

SAFARI




A-DRM: Architecture-aware DRM

* Goal: Take into account microarchitecture-level
shared resource interference
— Shared cache capacity
— Shared memory bandwidth

e Key ldea:

— Monitor and detect microarchitecture-level shared
resource interference

— Balance microarchitecture-level resource usage across
cluster to minimize memory interference while

maximizing system performance
SAFARI 304



A-DRM: Architecture-aware DRM

Hosts Controller
I | A-DRM: Global Architecture -
OS+Hypervisor aware Resource Manager
> Profiling Engine
VM VM \

ooe Architecture-aware
Interference Detector

——

\ / \ y Architecture-aware

Distributed Resource
Management (Polic

7,

.‘[ CPU/Memory

Capacity

___________________________________

— | A Proftiler < Migration Engine

SAFARI 305



More on Architecture-Aware DRM

= Hui Wang, Canturk Isci, Lavanya Subramanian, Jongmoo Choi,
Depei Qian, and Onur Mutlu,
"A-DRM: Architecture-aware Distributed Resource
Management of Virtualized Clusters”
Proceedings of the 11th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE), Istanbul,
Turkey, March 2015.

[Slides (pptx) (pdf)]

A-DRM: Architecture-aware Distributed Resource Management
of Virtualized Clusters

Hui Wang'*, Canturk Isci*, Lavanya Subramanian*, Jongmoo Choi®*, Depei Qian', Onur Mutlu*

"Beihang University, ¥IBM Thomas J. Watson Research Center, *Carnegie Mellon University, “Dankook University
{hui.wang, depeiq}@buaa.edu.cn, canturk@us.ibm.com, {Isubrama, onur}@cmu.edu, choijm@dankook.ac.kr

306


http://users.ece.cmu.edu/~omutlu/pub/architecture-aware-distributed-resource-management_vee15.pdf
http://www.cercs.gatech.edu/vee15/
http://users.ece.cmu.edu/~omutlu/pub/architecture-aware-distributed-resource-management_vee15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/architecture-aware-distributed-resource-management_vee15-talk.pdf

Interference-Aware Thread Scheduling

Advantages

+ Can eliminate/minimize interference by scheduling “symbiotic
applications” together (as opposed to just managing the
interference)

+ Less intrusive to hardware (less need to modify the hardware
resources)

Disadvantages and Limitations

-- High overhead to migrate threads and data between cores and
machines

-- Does not work (well) if all threads are similar and they
interfere

307



Summary

308




Summary: Fundamental Interference Control Techniques

= Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks
3. Core/source throttling

4. Application/thread scheduling

Best is to combine all. How would you do that?

309



Summary: Memory QoS Approaches and Techniques

Approaches: Smart vs. dumb resources

o Smart resources: QoS-aware memory scheduling

o Dumb resources: Source throttling; channel partitioning
o Both approaches are effective at reducing interference
o No single best approach for all workloads

Techniques: Request/thread scheduling, source throttling,
memory partitioning

o All approaches are effective at reducing interference

o Can be applied at different levels: hardware vs. software

o No single best technique for all workloads

Combined approaches and techniques are the most powerful
o Integrated Memory Channel Partitioning and Scheduling [MICRO'11]

SAFARI >10



Summary: Memory Interference and QoS

QoS-unaware memory -
uncontrollable and unpredictable system

Providing QoS awareness improves performance,
predictability, fairness, and utilization of the memory system

Discussed many new techniques to:
o Minimize memory interference
o Provide predictable performance

Many new research ideas needed for integrated techniques
and closing the interaction with software

SAFARI o1



What Did We Not Cover?

Prefetch-aware shared resource management
DRAM-controller co-design

Cache interference management
Interconnect interference management
Write-read scheduling

DRAM designs to reduce interference
Interference issues in hear-memory processing

SAFARI )12



What the Future May Bring

Memory QoS techniques for heterogeneous SoC systems

o Many accelerators, processing in/near memory, better
predictability, higher performance

Combinations of memory QoS/performance techniques
o E.g., data mapping and scheduling

Fundamentally more intelligent designs that use machine
learning

Real prototypes

SAFARI 13



SottMC: Open Source DRAM Infrastructure

= Hasan Hassan et al., “"SoftMC: A
Flexible and Practical Open-
Source Infrastructure for
Enabling Experimental DRAM
Studies,” HPCA 2017.

11N | Host

i el Machme
= Flexible | o
= Easy to Use (C++ API) [ G Contropller y,
= Open-source Heater TS

o
github.com/CMU-SAFART/SORMC

SAFARI 314


https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf

SoftMC

https://github.com/CMU-SAFARI/SoftMC

SoftMC: A Flexible and Practical Open-Source Infrastructure
for Enabling Experimental DRAM Studies

1,2,3 3 4,3 3

Samira Khan Saugata Ghose® Kevin Chang?
6.3 Oguz Ergin? Onur Mutlu!-3

Hasan Hassan Nandita Vijaykumar
Gennady Pekhimenko®3 Donghyuk Lee

\ETH Ziirich ~ 2TOBB University of Economics & Technology ~ >Carnegie Mellon University
*University of Virginia > Microsoft Research ~ SNVIDIA Research

SAFARI 315


https://github.com/CMU-SAFARI/SoftMC

