Computer Architecture
Lecture 16: Prefetching

Prof. Onur Mutlu
ETH Zurich
Fall 2022
18 November 2022

The (Memory) Latency Problem

Recall: Memory Latency Lags Behind

4-Capacity #Bandwidth -@-Latency 128X
Ej
= 100
5
2 20x
>
S
a 10
£
>
< 1.3x
A e—0—0—0—0—0—0—9
@

1999 2003 2006 2008 2011 2013 2014 2015 2016 2017

Memory latency remains almost constant
SAFARI

DRAM Latency Is Critical tor Performance

In-memory Databases Graph/Tree Processing
[Mao+, EuroSys’12; [Xu+, ISWC’12; Umuroglu+, FPL’15]
Clapp+ (Intel), ISWC’ 5]

et N
Spark

In-Memory Data Analytics Datacenter Workloads
[Clapp+ (Intel), ISWC'I5; [Kanev+ (Google), ISCA’15]
Awan+, BDCloud’15]

SAFARI

DRAM Latency Is Critical tor Performance

In-memory Databases Graph/Tree Processing

Long memory latency — performance bottleneck

APACHE

Spark

In-Memory Data Analytics Datacenter Workloads
[Clappt (Intel), ISWC’I5; [Kanev+ (Google), ISCA’|5]
Awan+, BDCloud’ | 5]

SAFARI

New DRAM Types Increase Latency!

= Saugata Ghose, Tianshi Li, Nastaran Hajinazar, Damla Senol Cali, and Onur Mutlu,
"Demystifying Workload—DRAM Interactions: An Experimental Study"
Proceedings of the ACM International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS), Phoenix, AZ, USA, June 2019.
[Preliminary arXiv Version]
[Abstract]
[Slides (pptx) (pdf)]
[MemBen Benchmark Suite]
[Source Code for GPGPUSIim-Ramulator]
[Source Code for Ramulator modeling Hybrid Memory Cube (HMC)]

Demystifying Complex Workload—-DRAM Interactions:
An Experimental Study

Saugata Ghose' Tianshi Li' Nastaran Hajinazar*"
Damla Senol Cali’ Onur Mutlu®*
TCarnegie Mellon University *Simon Fraser University SETH Ziirich

SAFARI 6

https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19_pomacs19.pdf
http://www.sigmetrics.org/sigmetrics2019/
https://arxiv.org/pdf/1902.07609.pdf
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-talk.pdf
https://github.com/CMU-SAFARI/MemBen
https://github.com/CMU-SAFARI/GPGPUSim-Ramulator
https://github.com/CMU-SAFARI/ramulator/tree/hmc

Latency Reduction,
Latency Tolerance, and

Latency Hiding Techniques

Latency Reduction, Tolerance and Hiding

= Fundamentally reduce latency as much as possible
a Data-centric approach

o See Lectures 8-9: Memory Latency
o https://www.youtube.com/watch?v=-jwkVSczPCw&list=PL502s0XY?2Zi-cAls3cyauNzM7-74Eq310&index=8
o https://www.youtube.com/watch?v=p]l3mdIvMOY4®&list=PL5Q2s0oXY?2Zi-cAls3cyauNzM7-74Eq310&index=9

= Hide latency seen by the processor
a Processor-centric approach
o Caching, Prefetching

= Tolerate (or, amortize) latency seen by the processor
a Processor-centric approach
o Multithreading, Out-of-order Execution, Runahead Execution

SAFARI 8

https://www.youtube.com/watch?v=-jwkVSczPCw&list=PL5Q2soXY2Zi-cAls3cyauNzM7-74Eq31O&index=8
https://www.youtube.com/watch?v=pJ3mdIvMOY4&list=PL5Q2soXY2Zi-cAls3cyauNzM7-74Eq31O&index=9

Conventional Latency Tolerance Techniques

Caching [initially by Wilkes, 1965]
o Widely used, simple, effective, but inefficient, passive
o Not all applications/phases exhibit temporal or spatial locality

Prefetching [initially in IBM 360/91, 1967]
o Works well for regular memory access patterns

o Prefetching irregular access patterns is difficult, inaccurate, and hardware-
intensive

Multithreading [initially in CDC 6600, 1964]
o Works well if there are multiple threads

o Improving single thread performance using multithreading hardware is an
ongoing research effort

Out-of-order execution [initially by Tomasulo, 1967]

o Tolerates cache misses that cannot be prefetched
o Requires extensive hardware resources for tolerating long latencies

[SIE=ECE 9

Lectures on Latency Tolerance & Hiding

= Caching
o http://www.youtube.com/watch?v=mZ7CPIJKzwfM
o http://www.youtube.com/watch?v=TsxQPLMXT60
o http://www.youtube.com/watch?v=0Uk96_Bz708
o And more here: https://safari.ethz.ch/architecture/fall2018/doku.php?id=schedule

= Prefetching
o Today
o Also: http://www.youtube.com/watch?v=CLi04cG9aQ8

= Multithreading
http://www.youtube.com/watch?v=bu5dxKTvQVs
https://www.youtube.com/watch?v=iqi9wFgFiNU
https://www.youtube.com/watch?v=e8Ifl6MbILg
https://www.youtube.com/watch?v=7vkDpZ1-hHM

= QOut-of-order Execution, Runahead Execution

http://www.youtube.com/watch?v=EdYAKfx9JEA
http://www.youtube.com/watch?v=WExCvQAuTxo
http://www.youtube.com/watch?v=Kj3relihGF4

10

http://www.youtube.com/watch?v=mZ7CPJKzwfM
http://www.youtube.com/watch?v=TsxQPLMXT60
http://www.youtube.com/watch?v=OUk96_Bz708
https://safari.ethz.ch/architecture/fall2018/doku.php?id=schedule
http://www.youtube.com/watch?v=CLi04cG9aQ8
http://www.youtube.com/watch?v=bu5dxKTvQVs
https://www.youtube.com/watch?v=iqi9wFqFiNU
https://www.youtube.com/watch?v=e8lfl6MbILg
https://www.youtube.com/watch?v=7vkDpZ1-hHM
http://www.youtube.com/watch?v=EdYAKfx9JEA
http://www.youtube.com/watch?v=WExCvQAuTxo
http://www.youtube.com/watch?v=Kj3relihGF4

Prefetching

Prefetching

Idea: Fetch the data before it is needed (i.e. pre-fetch) by
the program

Why?

o Memory latency is high. If we can prefetch accurately and
early enough, we can reduce/eliminate that latency.

a Can eliminate compulsory cache misses

o Can it eliminate all cache misses? Capacity, conflict?
Coherence?

Involves predicting which address will be needed in the
future

o Works if programs have predictable miss address patterns

12

Pretetching and Correctness

Does a misprediction in prefetching affect correctness?

No, prefetched data at a “mispredicted” address is simply
not used

There is no need for state recovery
o In contrast to branch misprediction or value misprediction

13

Basics

In modern systems, prefetching is usually done at cache
block granularity

Prefetching is a technique that can reduce both
o Miss rate
o Miss latency

Prefetching can be done by
o Hardware

o Compiler

o Programmer

o System

How a HW Pretetcher Fits in the Memory System

I-Cache fills I-Cache fills
I-Cache - I-Cache
I-Cache D-Cache fills |-Cache D-Cache fills
misses D-Cache misses D-Cache
D-Cache misses and D-Cache misses and
1 write backs write backs
Prefetches
L2 Request Queue Prefetch Req Queue |------- - L2 Request Queue
: T
o eemememe—-———
L] H :
L} o
L2-Cache hits : H L2-Cache hits
Hardware :
L2 Cache Stream |e------e-mmoa-d L2 Cache)
= 2 - -
L L2—-Cache fills Prefetcher f_,; i(’i’e’rzﬁr;t’ir c:g;;;sm L2-Cache fills
- H
L2 misses and | write backs L2 demandmisses T T T T D misses and 1 write backs
" create streams
Bus Request Queue ‘ ’ L2 Fill Queue Bus Request Queue L2 Fill Queue
i
! On-th.p On-Chip
Bus : Bus :
Y otchip TTTTTITTpTTIITITTmmmmmeeeeeee f """ ott-chip
) 4
Memory Controller Memory Controller
i
. C — —
DRAM Memory Banks DRAM Memory Banks
. o . e e @
Mutlu+, “Using the First-Level Caches as Filters to Reduce the Pollution Caused by Speculative Memory References”, IJPP 2005. 15

Prefetching: The Four Questions

= What
o What addresses to prefetch (i.e., address prediction algorithm)

= When
o When to initiate a prefetch request (early, late, on time)

= Where

o Where to place the prefetched data (caches, separate buffer)
o Where to place the prefetcher (which level in memory hierarchy)

= HOow

o How does the prefetcher operate and who operates it (software,
hardware, execution/thread-based, cooperative, hybrid)

16

Challenge in Pretetching: What

What addresses to prefetch

o Prefetching useless data wastes resources
Memory bandwidth
Cache or prefetch buffer space
Energy consumption

These could all be utilized by demand requests or more accurate
prefetch requests

o Accurate prediction of addresses to prefetch is important
Prefetch accuracy = used prefetches / sent prefetches

How do we know what to prefetch?
o Predict based on past access patterns
o Use the compiler’s/programmer’s knowledge of data structures

Prefetching algorithm determines what to prefetch
17

Challenges 1n Prefetching: When

When to initiate a prefetch request
o Prefetching too early

Prefetched data might not be used before it is evicted from
storage

o Prefetching too late
Might not hide the whole memory latency

When a data item is prefetched affects the timeliness of the
prefetcher

Prefetcher can be made more timely by

o Making it more aggressive: try to stay far ahead of the
processor’'s demand access stream (hardware)

o Moving the prefetch instructions earlier in the code (software)

18

Challenges 1n Prefetching: Where (I)

Where to place the prefetched data

a In cache
+ Simple design, no need for separate buffers
-- Can evict useful demand data - cache pollution
o In a separate prefetch buffer
+ Demand data protected from prefetches = no cache pollution
-- More complex memory system design
- Where to place the prefetch buffer
- When to access the prefetch buffer (parallel vs. serial with cache)
- When to move the data from the prefetch buffer to cache
- How to size the prefetch buffer
- Keeping the prefetch buffer coherent

Many modern systems place prefetched data into the cache

o Many Intel, AMD, IBM systems and more ...
19

Challenges 1n Prefetching: Where (II)

Which level of cache to prefetch into?
o Memory to L2, memory to L1. Advantages/disadvantages?
o L2 to L1? (a separate prefetcher between levels)

Where to place the prefetched data in the cache?

o Do we treat prefetched blocks the same as demand-fetched
blocks?

o Prefetched blocks are not known to be needed
With LRU, a demand block is placed into the MRU position

Do we skew the replacement policy such that it favors the
demand-fetched blocks?

o E.g., place all prefetches into the LRU position in a way?

20

Challenges 1n Prefetching: Where (11I)

Where to place the hardware prefetcher in the memory
hierarchy?

o In other words, what access patterns does the prefetcher see?
a L1 hits and misses

o L1 misses only

o L2 misses only

Seeing a more complete access pattern:
+ Potentially better accuracy and coverage in prefetching

-- Prefetcher needs to examine more requests (bandwidth
intensive, more ports into the prefetcher?)

21

Recall: A Modern Memory Hierarchy

Register File
32 words, sub-nsec

manual/compiler

register spilling

L1 cache
~10s of KB, ~“nsec

L2 cache .
100s of KB ~ few MB, many nsec automatic
HW cache
L3 cache, management

many MBs, even more nsec

Main memory (DRAM),
Many GBs, ~100 nsec

automatic
. demand
Swap Disk]
~100 GB or few TB, ~10s of usec-msec paging

22

Recall: Hybrid Main Memory Extends the Hierarchy

DRAM PCM
Ct_rI Ctrl

Phase Change Memory (or Tech. X)

Hardware/software manage data allocation & movement
to achieve the best of multiple technologies

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon+, "Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best
Paper Award.

SAFARI

Recall: Remote Memory 1n Large Servers

= Memory hierarchy extends beyond a single server
= This enables even higher memory capacity
o Needed to support modern data-intensive workloads

E o n @B a

ow-latency

Compute node network Memory node
(Local) (Remote)
Local memory Remote memory

(and hierarchy)

Calciu+, “Rethinking Software Runtimes for Disaggregated Memory”, ASPLOS 2021. 24

Challenges 1n Prefetching: How

Software prefetching

o ISA provides prefetch instructions

o Programmer or compiler inserts prefetch instructions (effort)
o Usually works well only for “regular access patterns”

Hardware prefetching

o Specialized hardware monitors memory accesses

o Memorizes, finds, learns address strides/patterns/correlations
o Generates prefetch addresses automatically

Execution-based prefetchers

o A “thread” is executed to prefetch data for the main program
o Can be generated by either software/programmer or hardware

25

Outline of Prefetching Lecture(s)

Why prefetch? Why could/does it work?
The four questions

o What (to prefetch), when, where, how
Software prefetching

Hardware prefetching

Execution-based prefetching
Prefetching performance

o Coverage, accuracy, timeliness

o Bandwidth consumption, cache pollution
Prefetcher throttling

Issues in multi-core

26

Software Prefetching (I)

Idea: Compiler/programmer places prefetch instructions into
appropriate places in code

Mowry et al., “Design and Evaluation of a Compiler Algorithm for
Prefetching,” ASPLOS 1992.

Prefetch instructions prefetch data into caches

Compiler or programmer can insert such instructions into the
program

27

X86 PREFETCH Instruction

PREFETCHh—Prefetch Data Into Caches

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
0F18/1 PREFETCHTO m8 Valid Valid Move data from m8 closer to the
processor using TO hint.
OF18/2 PREFETCHT1 m8 Valid Valid Move data from m8 closer to the
processor using T1 hint.
0OF18/3 PREFETCHTZ m8 Valid Valid Move data from m8 closer to the
processor using T2 hint.
OF18/0 PREFETCHNTAm8 Valid Valid Move data from m8 closer to the
processor using NTA hint.
Description

Fetches the line of data from memory that contains the byte specified with the source
operand to a location in the cache hierarchy specified by a locality hint:

microarchitecture * TO (temporal data)—prefetch data into all levels of the cache hierarchy.
dependent < — Pentium Il processor—1st- or 2nd-level cache.
Specification — Pentium 4 and Intel Xeon processors—2nd-level cache.

* T1 (temporal data with respect to first level cache)—prefetch data into level 2
cache and higher.

— Pentium Il processor—2nd-level cache.

— Pentium 4 and Intel Xeon processors—2nd-level cache.

* T2 (temporal data with respect to second level cache)—prefetch data into level 2

different instructions £ache and ugher.

for different cache
levels

— Pentium Il processor—2nd-level cache.
— Pentium 4 and Intel Xeon processors—2nd-level cache.

NTA (non-temporal data with respect to all cache levels)—prefetch data into non-
temporal cache structure and into a location close to the processor, minimizing
cache pollution.

— Pentium lll processor—1st-level cache

— Pentium 4 and Intel Xeon processors—2nd-level cache 28

Sottware Prefetching (II)

for (i=0; i<N; i++) { while (p) { while (p) {
___prefetch(a[i+8]); ___prefetch(p=>next); __prefetch(p—>next>next>next);
___prefetch(b[i+8]); work(p—~>data); work(p—~>data);
sum += a[i]*bl[i]; p = p2>next; —>next;

} } }

Which one is better?
Can work for very regular array-based access patterns. Issues:

-- Prefetch instructions take up processing/execution bandwidth

o How early to prefetch? Determining this is difficult

-- Prefetch distance depends on hardware implementation (memory latency,
cache size, time between loop iterations) - portability?

-- Going too far back in code reduces accuracy (branches in between)
o Need “special” prefetch instructions in ISA?
Alpha load into register 31 treated as prefetch (r31==0)
PowerPC dcbt (data cache block touch) instruction
-- Not easy to do for pointer-based data structures

29

Sottware Pretetching (I11)

Where should a compiler insert prefetches?

o Prefetch for every load access?
Too bandwidth intensive (both memory and execution bandwidth)

o Profile the code and determine loads that are likely to miss
What if profile input set is not representative?

o How far ahead before the miss should the prefetch be inserted?

Profile and determine probability of use for various prefetch
distances from the miss
o What if profile input set is not representative?

0 Usually need to insert a prefetch far in advance to cover 100s of cycles
of main memory latency = reduced accuracy

30

Hardware Prefetching (1)

Idea: Specialized hardware observes load/store access
patterns and prefetches data based on past access behavior

Tradeoffs:
+ Can be tuned to system implementation
+ Does not waste instruction execution bandwidth
-- More hardware complexity to detect patterns
- Software can be more efficient in some cases

31

Next-Line Prefetchers

Simplest form of hardware prefetching: always prefetch next
N cache lines after a demand access (or a demand miss)

o Next-line prefetcher (or next sequential prefetcher)

o Tradeoffs:

+ Simple to implement. No need for sophisticated pattern detection
+ Works well for sequential/streaming access patterns (instructions?)
-- Can waste bandwidth with irregular patterns
-- And, even regular patterns:

- What is the prefetch accuracy if access stride =2 and N = 1?

- What if the program is traversing memory from higher to lower
addresses?

- Also prefetch “previous” N cache lines?

32

Stride Prefetchers

Consider the following strided memory access pattern:
o A, A+N, A+2N, A+3N, A+4N...
o Stride =N

Idea: Record the stride between consecutive memory
accesses; if stable, use it to predict next M memory
accesses

Two types
o Stride determined on a per-instruction basis
o Stride determined on a per-memory-region basis

33

Instruction Based Stride Prefetching

- : Load Inst. Last Address "~ Last Confidence
Load — PC (tag) Referenced Stride
Inst P TP EPTRTEPEPEPTRTRY FE T TR PEPEPTPTREEPEPEPTPPRPRPERERTRRS! FPPS Y (O
PC AT AR IR I
N

Each load/store instruction can lead to a memory access
pattern with a different stride

a Can only detect strides caused by each instruction

Timeliness of prefetches can be an issue

o Initiating the prefetch when the load is fetched the next time
can be too late

o Potential solution: Look ahead in the instruction stream

34

Memory-Region Based Based Stride Prefetching
o . Address tag Stride Control/Confidence
Cache | [
BlOCk_> TP ETE] EETTETPTPEPTPEPEPRTITY EEPTPEPTPTPRRRTPTPRY e
Address (...
N

Can detect strided memory access patterns that appear due
to multiple instructions

o A, A+N, A+2N, A+3N, A+4N ... where each access could be
due to a different instruction

Stream prefetching (stream buffers) is a special case of
memory-region based stride prefetching where N = 1

35

Tradeoffs in Stream/Stride Prefetching

Instruction based stride prefetching vs.
memory region based based stride prefetching

The latter can exploit strides that occur due to the
interaction of multiple instructions

The latter can more easily get further ahead of the
processor access stream

o No need for lookahead PC

The latter is more hardware intensive

o Usually there are more data addresses to monitor than
instructions

36

Instruction-Based Stride Prefetc

hing

An Effective On-Chip Preloading Scheme
To Reduce Data Access Penalty

Jean-Loup Baer, Tien-Fu Chen
Department of Computer Science and Engineering
University of Washington
Seattle, WA 98195

Abstract

Conventional cache prefetching approaches can be
either hardware-based, generally by using a one-block-
lookahead technique, or compiler-directed, with inser-
tions of non-blocking prefetch instructions. We intro-
duce a new hardware scheme based on the prediction of
the execution of the instruction stream and associated
operand references. It consists of a reference predic-
tion table and a look-ahead program counter and its
associated logic. With this scheme, data with regu-
lar access patterns is preloaded, independently of the
stride size, and preloading of data with irregular access
patterns is prevented. We evaluate our design through
trace driven simulation by comparing it with a pure
data cache approach under three different memory ac-
cess models. Our experiments show that this scheme is
very effective for reducing the data access penalty for
scientific programs and that is has moderate success
for other applications.

1 Introduction

The time when peak processor performance will
reach several hundred MIPS is not far away. Such
instruction execution rates will have to be achieved
through technological advances and enhanced archi-
tectural features. Superscalar or multifunctional unit
CPU’s will increase the raw computational speed. Ef-
ficient handling of vector data will be necessary to
provide adequate performance for scientific programs.
Memory latency will be reduced by cache hierarchies.
Processors will have to be designed to support the syn-
chronization and coherency effects of multiprocessing.
Thus, we can safely envision that the processor chip
will include several functional units, first-level instruc-
tion and data caches, and additional hardware support
functions. In this paper, we propose the desu;n of an
on-chip hardware support function whose goal is to re-
duce the memory latency due to data cache misses. We
will show how it can reduce the contribution of the on-
chip data cache to the average number of clock cycles
per instruction (CPI)[3].

The component of the CPI due to cache misses de-
pends on two factors: miss ratio and memory latency.
Its importance as a contributor to the overall CPI has
been illustrated in recent papers [1, 5] where it is shown
that the CPI contribution of first-level data caches can
reach 2.5.

Current, and future, technology dictates that on-
chip caches be small and most likely direct-mapped.
Therefore, the small capacity and the lack of associa-
tivity will result in relatively high miss ratios. More-
over, pure demand fetching cannot prevent compulsory
misses. Our goal is to avoid misses by preloading blocks
before they are needed. Naturally, we won’t always be
successful, since we might preload the wrong block, fail
to preload it in time, or displace a useful %lock. The
techmque that we present will, however, help in reduc-
ing the data cache CPI component

Our notion of preloading is different from the con-
ventional cache prefetching L 1, 12] which associates a
successor block to the block being currently referenced.
Instead, the preloading technique that we propose is
based on the prediction of the instruction stream ex-
ecution and its associated operand references. Since
we rely on instruction stream prediction, the target
architecture must include a branch prediction table.
The additional hardware support that we propose takes
the form of a look-ahead program counter S A-PC)
and a reference prediction table and associated control
(RPT). With the help of the LA-PC and the RPT,
we generate concurrent cache loading instructions suf-
ficiently ahead of the regular load instructions, so that
the latter will result in cache hits. Although this design
has some similarity with decoupled architectures [13],
it is simpler since it requires significantly less control
hardware and no compiler support.

The rest of the paper is organized as follows: Section
2 briefly reviews previous studies of cache prefetching.
Section 3 introduces the basic idea and the supporting
design. Section 4 explains the evaluation methodology.
Section 5 reports on experiments. Section 6 contrasts
our hardware-only design to a compiler solution. Con-
cluding remarks are given in Section 7.

2 Background and Previous work
2.1 Hardware-based prefetching

Standard caches use a demand fetching policy. As
noted by Smith [12], cache prefetching, i.e., the loading
of a block before it is going to be referenced, could be
used. The pure local hardware management of caches
imposes a one block look-ahead (OBL) policy i.e., upon
referencing block #, the only potential prefetch is to
block ¢ + 1. Upon referencing block ¢, the options are:
prefetch block 7 + 1 unconditionally, only on a miss
to block i, or if the prefetch has been successful in

Baer & Chen, “An effective on-chip preloading scheme to reduce data access penalty,” SC 1991.

Instruction-Based Stride Prefetching

Doweck, “Inside Intel®
Core™ Microarchitecture
and Smart Memory
Access,” Intel White
Paper, 2006.

Instruction Pointer-Based (IP)
Prefetcher to Level 1 Data Cache

In addition to memory disambiguation, Intel Smart Memory
Access includes advanced prefetchers. Just like their name
suggests, prefetchers “prefetch” memory data before it's
requested, placing this data in cache for "just-in-time" execution.
By increasing the number of loads that occur from cache
versus main memory, prefetching reduces memory latency
and improves performance.

The Intel Core microarchitecture includes in each processing
core two prefetchers to the Level 1 data cache and the
traditional prefetcher to the Level 1 instruction cache.

In addition it includes two prefetchers associated with the
Level 2 cache and shared between the cores. In total,
there are eight prefetchers per dual core processor.

Of particular interest is the IP-based prefetcher that prefetches
data to the Level 1 data cache. While the basic idea of IP-based
prefetching isn't new, Intel made some microarchitectural
innovations to it for Intel Core microarchitecture.

The purpose of the IP prefetcher, as with any prefetcher,

is to predict what memory addresses are going to be used
by the program and deliver that data just in time. In order to
improve the accuracy of the prediction, the IP prefetcher
tags the history of each load using the Instruction Pointer
(IP) of the load. For each load with an IP, the IP prefetcher
builds a history and keeps it in the IP history array. Based on
load history, the IP prefetcher tries to predict the address of
the next load accordingly to a constant stride calculation
(a fixed distance or "stride” between subsequent accesses
to the same memory area). The IP prefetcher then generates
a prefetch request with the predicted address and brings
the resulting data to the Level 1 data cache.

Obviously, the structure of the IP history array is very impor-
tant here for its ability to retain history information for each
load. The history array in the Intel Core microarchitecture
consists of following fields:
= 12 untranslated bits of last demand address
= 13 bits of last stride data (12 bits of positive

or negative stride with the 13th bit the sign)
= 2 bits of history state machine
= 6 bits of last prefetched address—used to

avoid redundant prefetch requests

Using this IP history array, it's possible to detect iterating
loads that exhibit a perfect stride access pattern (A - An-
= Constant) and thus predict the address required for the
next iteration. A prefetch request is then issued to the L1
cache. If the prefetch request hits the cache, the prefetch
request is dropped. If it misses, the prefetch request propa-
gates to the L2 cache or memory.

Single Entry

[1
12 13 2 L
Last

Load P Prefeglgar:’lllelswry
Buffer 7:0 256 Entries
| Address Prefetch Generator
L1 Data (11:0)
Cache Unit
32KB IP Prefetcher Request
' FIFO
DCU Streamer Request
L‘g’é;‘c’ﬂe Everything happens during load's execution

Figure 3: High level block diagram of the relevant parts in
the Intel Core microarchitecture IP prefetcher system.

https://www.all-electronics.de/wp-content/uploads/migrated/document/196371/413ei0507-intel-sma.pdf

38

https://www.all-electronics.de/wp-content/uploads/migrated/document/196371/413ei0507-intel-sma.pdf

Memory-Region-Based Stride Prefetching

Improving Direct-Mapped Cache Performance by the Addition
of a Small Fully-Associative Cache and Prefetch Buffers

Norman P. Jouppi

Digital Equipment Corporation Western Research Lab
100 Hamilton Ave., Palo Alto, CA 94301

Abstract

Projections of computer technology forecast proces-
sors with peak performance of 1,000 MIPS in the rela-
tively near future. These processors could easily lose
half or more of their performance in the memory hierar-
chy if the hierarchy design is based on conventional
caching techniques. This paper presents hardware tech-
niques to improve the performance of caches.

Miss caching places a small fully-associative cache
between a cache and its refill path. Misses in the cache
that hit in the miss cache have only a one cycle miss
penalty, as ogposed to a many cycle miss penalty without
the miss cache. Small miss caches of 2 to 5 entries are
shown to be very effective in removing mapping conflict
misses in first-level direct-mapped caches.

Victim caching is an improvement to miss caching
that loads the small fully-associative cache with the vic-
tim of a miss and not the requested line. Small victim
caches of 1 to 5 entries are even more effective at remov-
ing conflict misses than miss caching.

Stream buffers prefetch cache lines starting at a
cache miss address. "Fhe prefetched data is placed in the
buffer and not in the cache. Stream buffers are useful in
removing capacity and compulsory cache misses, as well
as some instruction cache conflict misses. Stream buf-
fers are more effective than previously investigated
prefetch techniques at using the next slower level in the
memory hierarchy when it is pipelined. An extension to
the basic stream buffer, called multi-way stream buffers,
is introduced. Multi-way stream buffers are useful for
prefetching along multiple intertwined data reference
streams.

Together, victim caches and stream buffers reduce

the miss rate of the first level in the cache hierarchy by a
factor of two to three on a set of six large benchmarks.

dous increases in miss cost. For example, a cache miss
on 2 VAX 11/780 only costs 60% of the average instruc-
tion execution. Thus even if every instruction had a
cache miss, the machine performance would slow down
by only 60%! However, if a RISC machine like the
WRL Titan [10] has a miss, the cost is almost ten in-
struction times. Moreover, these trends seem to be con-
tinuing, especially the increasing ratio of memory access
time to machine cycle time. In the future a cache miss
all the way to main memory on a superscalar machine
executing two instructions per cycle could cost well over
100 instruction times! Even with careful application of
well-known cache design techniques, machines with
main memory latencies of over 100 instruction times can
easily lose over half of their potential performance to the
memory hierarchy. This makes both hardware and
software research on advanced memory hierarchies in-
creasingly important.

Machine cycles cycle mem miss miss
per time time cost cost
instx (ns) (ns) (cycles) (instr)

VAX11/780 10.0 200 1200 6 .6

WRL Titan 1.4 45 540 12 8.6

? 0.5 4 280 70 140.0

Table 1-1: The increasing cost of cache misses

This paper investigates new hardware techniques for
increasing the performance of the memory hierarchy.
Section 2 describes a baseline design using conventional
caching techniques. The large performance loss due to
the memory hierarchy is a detailed motivation for the
techniques discussed in the remainder of the paper.
Techniques for reducing misses due to mapping conflicts
(i.e., lack of associativity) are presented in Section 3. An

Jouppi, “Improving direct-mapped cache performance by the addition of a small fully-associative cache and prefetch buffers,” ISCA 1990.

39

Stream Buftfers (Jouppi, ISCA 1990)

Each stream buffer holds one stream of
sequentially prefetched cache lines

On a load miss check the head of all
stream buffers for an address match

o if hit, pop the entry from FIFO, update the cache
with data
o if not, allocate a new stream buffer to the new DCachel«

miss address (may have to replace a stream
buffer following LRU policy)

Stream buffer FIFOs are continuously B
topped-off with subsequent cache lines

whenever there is room and the bus is not
busy —

Memory interface

Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of
a Small Fully-Associative Cache and Prefetch Buffers,” ISCA 1990.

40

Stream Buffer Design

CPU address

i

Compare

Next Address Cache Block Tag
v
Increment
Cache Block Tag
v

Prefetch Address

41

Stream Buffer Design

From processor To processor

dh

; tags data Direct mapped cache

.

W
W

N rsIL N/ N7

lag + ‘ﬂg-l- tag + !ag-f

- al data -~ al data = a| da@a = al dala
fag {a| dala ag |al| dala lag [a| dala Tag [&] dama
tTag [a[dala | fag [a| dala tag |a] daa tag” |a| dala
fag |a} dafa a| dala | \E‘l?g al daa lag |a| dala

%—- +1 +1
A4
3 [

N R
From next lowar cache

To next iower cache

Streaming Prefetcher in IBM POWER4

Core

DL1
EU IO l 1

POWER4 hardware data prefetch.

Memory

Ly Ly hs L iy g Lo Iy

117 118 119120\—/

Hardware data prefetch

POWERA4 systems employ hardware to prefetch data
transparently to software into the L1 data cache. When
load instructions miss sequential cache lines, either
ascending or descending, the prefetch engine initiates
accesses to the following cache lines before being
referenced by load instructions. In order to ensure that
the data will be in the L1 data cache, data is prefetched
into the L2 from the L3 and into the L3 from memory.
Figure 8 shows the sequence of prefetch operations. Eight
such streams per processor are supported.

Tendler et al., “POWER4 system microarchitecture,” IBM JR&D, 2002. 43

Improving Direct-Mapped Cache Performance by the Addition
of a Small Fully-Associative Cache and Prefetch Buffers

Norman P. Jouppi

Digital Equipment Corporation Western Research Lab
100 Hamilton Ave., Palo Alto, CA 94301

Abstract

Projections of computer technology forecast proces-
sors with peak performance of 1,000 MIPS in the rela-
tively near future. These processors could easily lose
half or more of their performance in the memory hierar-
chy if the hierarchy design is based on conventional
caching techniques. This paper presents hardware tech-
niques to improve the performance of caches.

Miss caching places a small fully-associative cache
between a cache and its refill path. Misses in the cache
that hit in the miss cache have only a one cycle miss
penalty, as ogposed to a many cycle miss penalty without
the miss cache. Small miss caches of 2 to 5 entries are
shown to be very effective in removing mapping conflict
misses in first-level direct-mapped caches.

Victim caching is an improvement to miss caching
that loads the small fully-associative cache with the vic-
tim of a miss and not the requested line. Small victim
caches of 1 to 5 entries are even more effective at remov-
ing conflict misses than miss caching.

Stream buffers prefetch cache lines starting at a
cache miss address. "Fhe prefetched data is placed in the
buffer and not in the cache. Stream buffers are useful in
removing capacity and compulsory cache misses, as well
as some instruction cache conflict misses. Stream buf-
fers are more effective than previously investigated
prefetch techniques at using the next slower level in the
memory hierarchy when it is pipelined. An extension to
the basic stream buffer, called multi-way stream buffers,
is introduced. Multi-way stream buffers are useful for
prefetching along multiple intertwined data reference
streams.

Together, victim caches and stream buffers reduce

the miss rate of the first level in the cache hierarchy by a
factor of two to three on a set of six large benchmarks.

dous increases in miss cost. For example, a cache miss
on 2 VAX 11/780 only costs 60% of the average instruc-
tion execution. Thus even if every instruction had a
cache miss, the machine performance would slow down
by only 60%! However, if a RISC machine like the
WRL Titan [10] has a miss, the cost is almost ten in-
struction times. Moreover, these trends seem to be con-
tinuing, especially the increasing ratio of memory access
time to machine cycle time. In the future a cache miss
all the way to main memory on a superscalar machine
executing two instructions per cycle could cost well over
100 instruction times! Even with careful application of
well-known cache design techniques, machines with
main memory latencies of over 100 instruction times can
easily lose over half of their potential performance to the
memory hierarchy. This makes both hardware and
software research on advanced memory hierarchies in-
creasingly important.

Machine cycles cycle
per time
instx (ns)

VAX11/780 10.0 200
WRL Titan 1.4 45
? 0.5 4

Table 1-1: The increasing cost of cache misses

This paper investigates new hardware techniques for
increasing the performance of the memory hierarchy.
Section 2 describes a baseline design using conventional
caching techniques. The large performance loss due to
the memory hierarchy is a detailed motivation for the
techniques discussed in the remainder of the paper.
Techniques for reducing misses due to mapping conflicts
(i.e., lack of associativity) are presented in Section 3. An

Jouppi, “Improving direct-mapped cache performance by the addition of a small fully-associative cache and prefetch buffers,” ISCA 1990.

A Recommended Paper: Stream Prefetching

44

Locality Based Prefetchers

In many applications access patterns are not perfectly
strided

o Some patterns look random to closeby addresses
o How do you capture such accesses?

Locality based prefetching

o Srinath et al., "Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware
Prefetchers”, HPCA 2007.

45

Pentium4-Like Locality Based Prefetcher isinan+, rpca 20071

Multiple tracking entries for a range of addresses

Invalid: The tracking entry is not allocated a stream to keep track of. Initially,
all tracking entries are in this state.

Allocated: A demand (i.e. load/store) L2 miss allocates a tracking entry if the
demand miss does not find any existing tracking entry for its cache-block address.

Training: The prefetcher trains the direction (ascending or descending) of the
stream based on the next two L2 misses that occur +/- 16 cache blocks from the
first miss. If the next two accesses in the stream are to ascending (descending)
addresses, the direction of the tracking entry is set to 1 (0) and the entry transitions
to Monitor and Request state.

Monitor and Request: The tracking entry monitors the accesses to a memory
region from a start pointer (address A) to an end pointer (address P). The maximum
distance between the start pointer and the end pointer is determined by Prefetch
Distance, which indicates how far ahead of the demand access stream the
prefetcher can send requests. If there is a demand L2 cache access to a cache block
in the monitored memory region, the prefetcher requests cache blocks [P+1, ...,
P+N] as prefetch requests (assuming the direction of the tracking entry is set to 1).
N is called the Prefetch Degree. After sending the prefetch requests, the tracking
entry starts monitoring the memory region between addresses A+N to P+N (i.e.

effectively it moves the tracked memory region by N cache blocks).
46

Eftfects of Locality Based Prefetchers

O BandW|dth |nten5|ve S 197
D Why? 1:6-_IH\/'\’PEl’laUed _ 1
o Can be fixed by e e A B 2

14

= Stride detection
= Feedback mechanisms

08 -
06 1

Relative Performa

04 -
021

| | | | | |

04

R g &£ & & F & & ¥
& & &) 8 NS éé\
f@b‘ ’9\‘&@ ’;\Q,Qv ’8;\\4&’ (\’\- é)ﬁ <\'b- @\ 9 <\"1/ ‘@@&
I

= Limited to prefetching closeby addresses
o What about large jumps in addresses accessed?

= However, they work well in real life

o Single-core systems

o Boggs et al., “"The Microarchitecture of the Intel Pentium 4 Processor on
90nm Technology”, Intel Technology Journal, Feb 2004.

47

What About More Complex Access Patterns?

Simple regular patterns
o Stride, stream prefetchers do well

Complex regular patterns
o E.g., multiple regular strides
a +1, +2, +3, +1, +2, +3, +1, +2, +3, ...

Irreqular patterns

o Linked data structure traversals

Indirect array accesses

Random accesses

Multiple data structures accessed concurrently

o o o o

48

Multi-Stride Detection in Modern Prefetchers

Delta Pattern
o

-6 -6 -6 -6 -6 -6

Execution Time

GemsFDTD
Complex but predictable set of strides

Path Confidence based Lookahead Prefetching

Jinchun Kim*, Seth H. PugsleyT, Paul V. Gratz*, A. L. Narasimha Reddy*, Chris Wilkerson' and Zeshan Chishtif

*Texas A& M University tIntel Labs
cienlux @tamu.edu, pgratz@gratzl.com, reddy@tamu.edu {seth.h.pugsley, chris.wilkerson, zeshan.a.chishti} @intel.com

49

Path Confidence Based Lookahead Pretetching

= Key Idea:
o Given a history/signature/pattern of strides, learn and predict
what stride might come next 12 12 e

= {7,-6,12} > 6, {-6,12,6} > -5, ...

Delta Patt
® A ©o » ©

-12

o Bootstrap prediction to generate new predictions, until the
cascaded path confidence drops below a threshold

History of | Prediction | Prediction | Path
Strides Confidence | Confidence

Pass1 {7,-6,12} 85% 85% Bootstrap

50

Prefetcher Performance (I)

Accuracy (used prefetches / sent prefetches)
Coverage (prefetched misses / all misses)
Timeliness (on-time prefetches / used prefetches)

Bandwidth consumption

o Memory bandwidth consumed with prefetcher / without
prefetcher

o Good news: Can utilize idle bus bandwidth (if available)

Cache pollution
o Extra demand misses due to prefetch placement in cache
o More difficult to quantify but affects performance

51

Pretetcher Performance (II)

Prefetcher aggressiveness affects all performance metrics
Aggressiveness dependent on prefetcher type

For most hardware prefetchers:
o Prefetch distance: how far ahead of the demand stream
o Prefetch degree: how many prefetches per demand access

Prefetch Degree
XX+1 «

btream
| ‘123 i t 1
PP P TP

max max max Pmax
Very CbhiddleafirfeédioAdsimssive

52

Pretetcher Pertormance (I11)

How do these metrics interact?

Very Aggressive Prefetcher (large prefetch distance & degree)
o Well ahead of the load access stream

o Hides memory access latency better

o More speculative

+ Higher coverage, better timeliness

-- Likely lower accuracy, higher bandwidth and pollution

Very Conservative Prefetcher (small prefetch distance & degree)
o Closer to the load access stream
o Might not hide memory access latency completely
o Reduces potential for cache pollution and bandwidth contention
+ Likely higher accuracy, lower bandwidth, less polluting
-- Likely lower coverage and less timely
53

Prefetcher Performance (IV)

Percentage IPC change over No Prefetching

400%

350%

300%

250%

200%

150%

100%

50%

0% 1

-50%

-100%

) |
|

||

||
||

1
N | -
0.1 o 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

\\-_/
Prefetcher Accuracy

54

Pretetcher Performance (V)

5.0
| @ No Prefetching

o 40 || @VeryConservative
& H mMiddle-of-the-Road
¢ 3.0 [MVeryAggressive
2
o
B 2.0
=
2
= 1.0

0.0

Q;DQ

= Srinath et al., “Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware Prefetchers”,
HPCA 2007.

55

Feedback-Directed Prefetcher Throttling (I)

= Idea:

o Dynamically monitor prefetcher performance metrics

o Throttle the prefetcher aggressiveness up/down based on past
performance

o Change the location prefetches are inserted in cache based on
past performance

\'

| Decrease

Decrease Increase No Change

56

Feedback-Directed Pretetcher Throttling (1I)

5.0

@ No Prefetching

1| mVery Aggressive

1| ODynamic Insertion
ODynamic Aggressiveness
+ BFDP - Dyn Aggr. and Ins.

iy
o

w
o

)
()
9
—
—\
N

Instructions per Cycle

-

0.0 -

= Srinath et al., “Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware Prefetchers”,
HPCA 2007.

57

Feedback-Directed Pretetcher Throttling (I111)

BPKI - Memory Bus Accesses per 1000 retired Instructions

o Includes effects of L2 demand misses as well as pollution
induced misses and prefetches

A measure of bus bandwidth usage

N
No. Pref. | Very Cons / Mid) \%ry AgbU/FDP

IPC 0.85 1.21 1.47 1.57 1.67

BPK] 8.56 9.34 \10.60//\13.38/T\10.88

N N N

58

Feedback Directed Pretetching

= Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Feedback Directed Prefetching: Improving the Performance and
Bandwidth-Efficiency of Hardware Prefetchers"
Proceedings of the 13th International Symposium on High-Performance
Computer Architecture (HPCA), pages 63-74, Phoenix, AZ, February
2007. Slides (ppt)

One of the five papers nominated for the Best Paper Award by
the Program Committee.

Feedback Directed Prefetching:
Improving the Performance and Bandwidth-Efficiency of Hardware Prefetchers

Santhosh Srinath{f Onur Mutlu§ Hyesoon Kimi{ Yale N. Patt}

IDepartment of Electrical and Computer Engineering
The University of Texas at Austin
{santhosh, hyesoon, patt} @ece.utexas.edu

TMicrosoft §Microsoft Research
ssri @microsoft.com onur @microsoft.com

59

https://people.inf.ethz.ch/omutlu/pub/srinath_hpca07.pdf
http://www.ece.arizona.edu/~hpca/
https://people.inf.ethz.ch/omutlu/pub/srinath_hpca07_talk.ppt

Coordinated Prefetching in Multi-Core Systems

Eiman Ebrahimi, Onur Mutlu, Chang Joo Lee, and Yale N. Patt,
"Coordinated Control of Multiple Prefetchers in Multi-Core Systems
Proceedings of the 42nd International Symposium on

Microarchitecture (MICRO), pages 316-326, New York, NY, December
2009. Slides (ppt)

Coordinated Control of Multiple Prefetchers
in Multi-Core Systems

Eiman Ebrahimit Onur Mutlu§ Chang Joo Leet Yale N. Patty

TDepartment of Electrical and Computer Engineering §Computer Architecture Laboratory (CALCM)
The University of Texas at Austin Carnegie Mellon University
{ebrahimi, cjlee, patt}Qece.utexas.edu onur@cmu.edu

60

https://people.inf.ethz.ch/omutlu/pub/coordinated-prefetching_micro09.pdf
http://www.microarch.org/micro42/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_micro09_talk.ppt

How to Prefetch More Irregular Access Patterns?

Regular patterns: Stride, stream prefetchers do well
More irregular access patterns

o Indirect array accesses

o Linked data structures

o Multiple regular strides (1,2,3,1,2,3,1,2,3,...)

o Random patterns?

o Generalized prefetcher for all patterns?

Correlation based prefetchers

Content-directed prefetchers
Precomputation or execution-based prefetchers

61

Address Correlation Based Prefetching (I)

Consider the following history of cache block addresses
A B CD,CEACFFEAATBCD,E AB,CD,C

After referencing a particular address (say A or E),
some addresses are more likely to be referenced next

Markov
Model

62

Address Correlation Based Prefetching (II)

Cache
Block™ |
Addr

-~

N

Cache Block Addr

Prefetch

Confidence

Prefetch

Confidence

Idea: Record the likely-next addresses (B, C, D) after seeing an address A
o Next time A is accessed, prefetch B, C, D
o A is said to be correlated with B, C, D

Prefetch up to N next addresses to increase coverage

Prefetch accuracy can be improved by using multiple addresses as key for
the next address: (A, B) 2 (C)

(A,B) correlated with C

Joseph and Grunwald, “Prefetching using Markov Predictors,” ISCA 1997.
o Also called “"Markov prefetchers”

03

Address Correlation Based Prefetching (I11)

Advantages:
o Can cover arbitrary access patterns
Linked data structures
Streaming patterns (though not so efficiently!)

Disadvantages:

o Correlation table needs to be very large for high coverage

Recording every miss address and its subsequent miss addresses
is infeasible

o Can have low timeliness: Lookahead is limited since a prefetch
for the next access/miss is initiated right after previous

o Can consume a lot of memory bandwidth
Especially when Markov model probabilities (correlations) are low

o Cannot reduce compulsory misses
64

Content Directed Prefetching (I)

A specialized prefetcher for pointer values

Idea: Identify pointers among all values in a fetched cache
block and issue prefetch requests for them.

o Cooksey et al., “A stateless, content-directed data prefetching
mechanism,” ASPLOS 2002.

+ No need to memorize/record past addresses!

+ Can eliminate compulsory misses (never-seen pointers)
-- Indiscriminately prefetches a// pointers in a cache block

How to identify pointer addresses:

o Compare address sized values within cache block with cache
block’s address - if most-significant few bits match, pointer

65

Content Directed Prefetching (II)

Virtual Address Predictor

vGenerate Prefetch

[31:20]

X80022220

L2

DRAM

06

Making Content Directed Prefetching Efficient

Hardware does not have enough information on pointers
Software does (and can profile to get more information)

Idea:

o Compiler profiles/analyzes the code and provides hints as to
which pointer addresses are likely-useful to prefetch.

o Hardware uses hints to prefetch only likely-useful pointers.

Ebrahimi et al., “Techniques for Bandwidth-Efficient Prefetching of
Linked Data Structures in Hybrid Prefetching Systems,” HPCA 2009.

67

Shortcomings of CDP — An Example

Struct node{
HashLookup(int Key) { int Key;
int * D1_ptr;

for (node = head ; node -> Key != Key; node = node -> Next;) : int * D*2_ptr;
if (node) return node->D1; node * Next;
} }
P \
: > D2 Key » D1
"I D2
Key » D1 v
" D2 Key + D1
" D2
Key » D1
"I D2

Example from mst

068

Shortcomings ot CDP — An Example
Cache Line Addr
='| Key |D1_ptr| D2 ptr| Next | Key | D1_ptr| D2_ptr| Next

[31:20] l [31:20] [31:20] l [31:20] l [31:20] [31:20] é[m :20]
SRS ST S

l [31:20]

e

Virtual Address Predictor

N
"| D2
Key > D1
" D2
Key » D1
"I D2

N\

Key » D1
| D2
| D2

09

Shortcomings of CDP — An

HashLookup(int Key) {

}

“xample

for (node = head ; node -> Key != Key; node = node -> Next;)
if (node) return node -> D1;

e \
" D2 Key » D1
I " D2
Key » D1 v
" D2 Key > D1
> D2
Key .| D1
> D2

70

Overcoming the Shortcomings ot CDP

Cache Line Addr

?'| Key | D1 ptr|D2_ptr | Next Key | D1_ptr | D2_ptr| Next
=, | [31:20] 1[31:201 [31:20] 1[31:201 l [31:20] [31:20] 1[31:201 l[31:20]
Virtual Address Predictor
< \
Key » D1
* D2 Key » D1
v | " D2
Key » D1 v
* D2 Key » D1
" D2
Key » D1
| D2

71

More on Content Directed Prefetching

= Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,
"Techniques for Bandwidth-Efficient Prefetching of Linked Data
Structures in Hybrid Prefetching Systems"
Proceedings of the 15th International Symposium on High-Performance
Computer Architecture (HPCA), pages 7-17, Raleigh, NC, February
2009. Slides (ppt)
Best paper session. One of the three papers nominated for the
Best Paper Award by the Program Committee.

Techniques for Bandwidth-Efficient Prefetching of Linked Data Structures in
Hybrid Prefetching Systems

Eiman Ebrahimif Onur Mutlu§ Yale N. Patt}

TDepartment of Electrical and Computer Engineering §Computer Architecture Laboratory (CALCM)
The University of Texas at Austin Carnegie Mellon University

{ebrahimi, patt} @ece.utexas.edu onur@cmu.edu

72

https://people.inf.ethz.ch/omutlu/pub/bandwidth_lds_hpca09.pdf
http://www.comparch.ncsu.edu/hpca/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_hpca09_talk.ppt

Hybrid Hardware Prefetchers

Idea: Use multiple prefetchers to cover many memory
access patterns

+ Better prefetch coverage
+ Potentially better timeliness

-- More complexity (many design & optimization decisions)
-- More bandwidth-intensive

-- Prefetchers interfere with each other (contention, pollution)
- Need to manage accesses from each prefetcher

73

Multi-Core Issues in Prefetching

Real Systems: Pretetching in Multi-Core

Prefetching shared data
o Coherence misses

Prefetching efficiency is a lot more important
o Bus bandwidth more precious
o Cache space more valuable

One cores’ prefetches interfere with other cores’ requests
o Cache conflicts at multiple levels

o Bus contention at multiple levels

o DRAM bank, rank, channel, row buffer contention

U

SAFARI 7

Bandwidth-Etticient Hybrid Prefetchers

= Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,
"Techniques for Bandwidth-Efficient Prefetching of Linked Data
Structures in Hybrid Prefetching Systems"
Proceedings of the 15th International Symposium on High-Performance
Computer Architecture (HPCA), pages 7-17, Raleigh, NC, February
2009. Slides (ppt)
Best paper session. One of the three papers nominated for the
Best Paper Award by the Program Committee.

Techniques for Bandwidth-Efficient Prefetching of Linked Data Structures in
Hybrid Prefetching Systems

Eiman Ebrahimif Onur Mutlu§ Yale N. Patt}

TDepartment of Electrical and Computer Engineering §Computer Architecture Laboratory (CALCM)
The University of Texas at Austin Carnegie Mellon University

{ebrahimi, patt} @ece.utexas.edu onur@cmu.edu

76

https://people.inf.ethz.ch/omutlu/pub/bandwidth_lds_hpca09.pdf
http://www.comparch.ncsu.edu/hpca/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_hpca09_talk.ppt

Coordinated Control of Prefetchers

Eiman Ebrahimi, Onur Mutlu, Chang Joo Lee, and Yale N. Patt,
"Coordinated Control of Multiple Prefetchers in Multi-Core Systems
Proceedings of the 42nd International Symposium on

Microarchitecture (MICRO), pages 316-326, New York, NY, December
2009. Slides (ppt)

Coordinated Control of Multiple Prefetchers
in Multi-Core Systems

Eiman Ebrahimit Onur Mutlu§ Chang Joo Leet Yale N. Patty

TDepartment of Electrical and Computer Engineering §Computer Architecture Laboratory (CALCM)
The University of Texas at Austin Carnegie Mellon University
{ebrahimi, cjlee, patt}Qece.utexas.edu onur@cmu.edu

77

https://people.inf.ethz.ch/omutlu/pub/coordinated-prefetching_micro09.pdf
http://www.microarch.org/micro42/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_micro09_talk.ppt

Pretetching-Aware Shared Resource Management

Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Prefetch-Aware Shared Resource Management for Multi-Core
Systems"”

Proceedings of the 38th International Symposium on Computer
Architecture (ISCA), San Jose, CA, June 2011. Slides (pptx)

Prefetch-Aware Shared-Resource Management
for Multi-Core Systems

Eiman Ebrahimit Chang Joo Leett Onur Mutlu§ Yale N. Patt;

tHPS Research Group tIntel Corporation §Carnegie Mellon University

The University of Texas at Austin . '
{ebrahimi, patt}@hps.utexas.edu chang.joo.lee@intel.com onur@cmu.edu

78

https://people.inf.ethz.ch/omutlu/pub/prefetchaware-shared-resources_isca11.pdf
http://isca2011.umaine.edu/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_isca11_talk.pptx

Prefetching-Aware DRAM Control (I)

= Chang Joo Lee, Onur Mutlu, Veynu Narasiman, and Yale N. Patt,
"Prefetch-Aware DRAM Controllers”

Proceedings of the 41st International Symposium on

Microarchitecture (MICRO), pages 200-209, Lake Como, Italy, November
2008. Slides (ppt)

Prefetch-Aware DRAM Controllers

Chang Joo Leef Onur Mutlu§ Veynu Narasiman{ Yale N. Pattf

fDepartment of E‘lectr.lcal and Computer I?,nglneerlng §Microsoft Research and Carnegie Mellon University
The University of Texas at Austin

)] onur @ { microsoft.com,cmu.edu
{cjlee, narasima, patt} @ece.utexas.edu { }

79

https://people.inf.ethz.ch/omutlu/pub/prefetch-dram_micro08.pdf
http://www.microarch.org/micro41/
https://people.inf.ethz.ch/omutlu/pub/lee_micro08_talk.ppt

Prefetching-Aware DRAM Control (II)

Chang Joo Lee, Veynu Narasiman, Onur Mutlu, and Yale N. Patt,

"Improving Memory Bank-Level Parallelism in the Presence of
Prefetching”

Proceedings of the 42nd International Symposium on

Microarchitecture (MICRO), pages 327-336, New York, NY, December
2009. Slides (ppt)

Improving Memory Bank-Level Parallelism
in the Presence of Prefetching

Chang Joo Leet Veynu Narasimani Onur Mutlu§ Yale N. Pattt

TDepartment of Electrical and Computer Engineering §Computer Architecture Laboratory (CALCM)
The University of Texas at Austin Carnegie Mellon University

{cjlee, narasima, patt}@ece.utexas.edu onur@cmu.edu

80

https://people.inf.ethz.ch/omutlu/pub/dram-blp_micro09.pdf
http://www.microarch.org/micro41/
https://people.inf.ethz.ch/omutlu/pub/lee_micro09_talk.ppt

Prefetching-Aware Cache Management

= Vivek Seshadri, Samihan Yedkar, Hongyi Xin, Onur Mutlu, Phillip P. Gibbons,
Michael A. Kozuch, and Todd C. Mowry,
"Mitigating Prefetcher-Caused Pollution using Informed Caching Policies
for Prefetched Blocks"
ACM Transactions on Architecture and Code Optimization (TACO), Vol. 11, No. 4,
January 2015.
Presented at the 10th HIPEAC Conference, Amsterdam, Netherlands, January
2015.

[Slides (pptx) (pdf)]
[Source Code]

Mitigating Prefetcher-Caused Pollution Using Informed Caching
Policies for Prefetched Blocks

VIVEK SESHADRI, SAMIHAN YEDKAR, HONGYI XIN, and ONUR MUTLU,
Carnegie Mellon University

PHILLIP B. GIBBONS and MICHAEL A. KOZUCH, Intel Pittsburgh

TODD C. MOWRY, Carnegie Mellon University

81

https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_taco15.pdf
http://taco.acm.org/
https://www.hipeac.net/2015/amsterdam/
https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_seshadri_hipeac15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_seshadri_hipeac15-talk.pdf
https://github.com/CMU-SAFARI/memsim

Prefetching in GPUs

= Adwait Jog, Onur Kayiran, Asit K. Mishra, Mahmut T. Kandemir, Onur
Mutlu, Ravishankar Iyer, and Chita R. Das,
"Orchestrated Scheduling and Prefetching for GPGPUs"
Proceedings of the 40th International Symposium on Computer
Architecture (ISCA), Tel-Aviv, Israel, June 2013. Slides (pptx) Slides

(pdf)

Orchestrated Scheduling and Prefetching for GPGPUs

Adwait Jogt Onur Kayirant Asit K. Mishra® Mahmut T. Kandemirt
Onur Mutlu* Ravishankar lyer! Chita R. Dast
"The Pennsylvania State University * Carnegie Mellon University SIntel Labs
University Park, PA 16802 Pittsburgh, PA 15213 Hillsboro, OR 97124
{adwait, onur, kandemir, das}@cse.psu.edu onur@cmu.edu {asit.k.mishra, ravishankar.iyer}@intel.com

82

https://people.inf.ethz.ch/omutlu/pub/orchestrated-gpgpu-scheduling-prefetching_isca13.pdf
http://isca2013.eew.technion.ac.il/
https://people.inf.ethz.ch/omutlu/pub/jog_isca13_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/jog_isca13_talk.pdf

Another Example Prefetcher:
Selt-Optimizing Pretetcher

Pythia: A Selt-Optimizing Prefetcher

Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu,
"Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.
[Slides (pptx) (pdf)]

[Short Talk Slides (pptx) (pdf)]

[Lightning Talk Slides (pptx) (pdf)]

[Talk Video (20 minutes)]

[Lightning Talk Video (1.5 minutes)]

[Pythia Source Code (Officially Artifact Evaluated with All Badges)]

[arXiv version]

Officially artifact evaluated as available, reusable and reproducible.

Pythia: A Customizable Hardware Prefetching Framework
Using Online Reinforcement Learning
Rahul Bera! Konstantinos Kanellopoulos! ~ Anant V. Nori? Taha Shahroodi*!

Sreenivas Subramoney® Onur Mutlu!
IETH Ziirich ?Processor Architecture Research Labs, Intel Labs 3TU Delft

https://arxiv.orq/pdf/2109.12021.pdf 84

https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=7
https://www.youtube.com/watch?v=kzL22FTz0vc&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=2
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf

y

Lack inherent system Lack in-silicon
awareness customizability

Mainly use one

program context info.
for prediction

mﬁ il ”|ll||\yunrm.r.é.".x7

Why do prefetchers
not perform well?

SAFARI > 85

Autonomously learns to prefetch using Can be customized in silicon to change
multiple program context information program context information or
and system-level feedback prefetching objective on the fly

SAFARI 86

Basics of Reinforcement Learning (RL)

* Algorithmic approach to learn to take an action in a
given situation to maximize a numerical reward

| Agent \

[Environment]

* Agent stores Q-values for every state-action pair
- Expected return for taking an action in a state

- Given a state, selects action that provides highest Q-value
SAFARI 87

Brief Overview of Pythia

Pythia formulates prefetching as a reinforcement learning problem

SAFARI 88

What is State?

e k-dimensional vector of features
S = {45, 9% - - P}
 Feature = control-flow + data-flow

A+offset (0)

Memory Subsystem

* Control-flow examples
- PC
- Branch PC
- Last-3 PCs, ...

* Data-flow examples

Cacheline address

Physical page number

Delta between two cacheline addresses
Last 4 deltas, ...

SAFARI 89

Prefetch from address

What is Action?

Given a demand access to address A
the action is to select prefetch offset “O”

: 127 actions in the range [-63, +63]
- For a machine with 4KB page and 64B cacheline

* Upper and lower limits ensure prefetches do not cross
physical page boundary

* A zero offset means no prefetch is generated

* We further prune action-space by design-space exploration

SAFARI 90

What is Reward?

* Defines the objective of Pythia

* Encapsulates two metrics:

- Prefetch usefulness (e.g., accurate, late, out-of-page, ...)

- System-level feedback (e.g., mem. b/w usage, cache
pollution, energy, ...)

* We demonstrate Pythia with
as the system-level feedback in the paper

SAFARI 21

What is Reward?

* Seven distinct reward levels

- Accurate and timely (Rxq)
- Accurate but late (Ry)
- Loss of coverage (R)
- Inaccurate
* With low memory b/w usage (R\-L)
* With high memory b/w usage (R\-H)
- No-prefetch
* With low memory b/w usage (Ryp-L)
* With high memory b/w usage(Ryp-H)

* Values are set at design time via automatic design-
space exploration

- Can be further in silicon for higher performance
SAFARI 92

Basic Pythia Configuration

* Derived from automatic design-space exploration

e State: 2 features
- PC+Delta
- Sequence of last-4 deltas

* Actions: 16 prefetch offsets
- Ranging between -6 to +32. Including O.

* Rewards:
= RAT = +20; RAL - +12; RNP_H=_2; RNP_L=_4;
= R|N‘H='14; R|N‘L='8; RCL=_12

SAFARI

93

More Detailed Pythia Overview

: Records Q-values for all state-action pairs
 Evaluation Queue: A FIFO queue of recently-taken actions

Find the Action with max Q-Value

a A%lIALZIAl?;I a

Look up I 1 1

Generate
II:)(emand . \;State Qvstore |1 prefetch (Memory]
equest ector 52 - i
9 2 [Viax L Hierarchy
> S4
Q-Value Store
6 Evict EQ entry and (QVStore)
update QVStore
—[Evaluation Queue (EQ) |- 9

) Insert prefetch action &

i' T State-Action pair in EQ
Set filled bit a

Assign reward to

corresponding EQ entry

Prefetch Fill

SAFARI

Simulation Methodology

* Champsim |1 trace-driven simulator

* 150 single-core memory-intensive workload traces
- SPEC CPU2006 and CPU2017
- PARSEC 2.1
- Ligra
- Cloudsuite

* Homogeneous and heterogeneous multi-core mixes

* Five state-of-the-art prefetchers
- SPP

Bingo

MLOP

SPP+DSPatch

SPP+PPF

SAFARI

https://github.com/ChampSim/ChampSim

Performance with Varying Core Count

1.35

1.3
o o

c

25
2 © 125 - —O Pythia
T
5 o
cc 127 SPP
S § MLOP
© 2415 | Bihgo

1.1 | | | | | |

0 2 4 6 8 10 12
Number of cores

SAFARI 926

Performance with Varying Core Count

1. Pythia consistently provides the highest
performance in all core configurations

2. Pythia’s gain increases with core count

SAFARI 77

Performance with Varying DRAM Bandwidth

1.25 .
—o0——0——o0 Pythia
1.2 - Bingo
LOP
S tIED 1.15 1 Baseline SPP
2% 11 -
%“% 1.05 - ~Intel Xeon 6258R
s 2 4
X /
o &5 0.95 - ~AMD EPYC Rome 7702P
QS
© 2o 09 -
0.85 -
~AMD Threadripper 3990x
0.8 [[[[[[
Q Q Q Q Q Q Q Q
S S S R O

Cb

N
DRAM MTPS (in log scale)

SAFARI 98

Performance with Varying DRAM Bandwidth

Pythia outperforms prior best prefetchers for

a wide range of DRAM bandwidth configurations

SAFARI 99

Pythia is Open Source
https://github.com/CMU-SAFARI/Pythia

* MICRO’21 artifact evaluated
* Champsim source code + Chisel modeling code

* All traces used for evaluation

SAFARI

<> Code

¥ master ~

a rahulbera Updated README

raNrEErEN-rEl BN BN BN BN BN BN BN |

& CMU-SAFARI/Pythia public

© lssues 11 Pull requests

branch
config
experiments
inc
prefetcher
replacement
scripts

src

tracer
.gitignore
CITATION.cff
LICENSE

LICENSE.champsim

¥ 1branch © 5tags

® Actions [Projects 07 wiki @ Security |~ Insights

O 38 commits

Go to file

f96dee9 2 days ago

Initial commit for MICRO'21 artifact evaluation
Initial commit for MICRO'21 artifact evaluation
Added chart visualization in Excel template
Updated README

Initial commit for MICRO'21 artifact evaluation
Initial commit for MICRO'21 artifact evaluation
Added md5 checksum for all artifact traces to verify download
Initial commit for MICRO'21 artifact evaluation
Initial commit for MICRO'21 artifact evaluation
Initial commit for MICRO'21 artifact evaluation
Added citation file

Updated LICENSE

Initial commit for MICRO'21 artifact evaluation

83 Settings

2 months ago
2 months ago
2 months ago

6 days ago
2 months ago
2 months ago
2 months ago
2 months ago
2 months ago
2 months ago

6 days ago
2 months ago

2 months ago

®Unwatch v 3 Y7 Star 7 % Fork

About oy

A customizable hardware prefetching
framework using online reinforcement
learning as described in the MICRO
2021 paper by Bera and Kanellopoulos
etal.

@ arxiv.org/pdf/2109.12021.pdf

machine-learning

reinforcement-learning
computer-architecture prefetcher
microarchitecture cache-replacement
branch-predictor champsim-simulator

champsim-tracer

0J Readme
&8 View license

G2 Cite this repository +

Releases 5

2

100

https://github.com/CMU-SAFARI/Pythia

Pythia Talk Video

Steering Pythia’s Objective via Reward Values

Strict Pythia configuration

Bandwidth-sensitive
workloads

MICRO 2021 Conference Presentations

Pythia: A Customizable Prefetching Framework Using Reinforcement Learning - MICRO"21 Long Talk

v Ssn;(r htUtlll; LECHRSS w Edit video h 22 CJF > Share {1 Download & clip =+ Save
«T> . subscribers

661 views 11 months ago
Talk: "Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Full Conference Talk at MICRO 2021 by Rahul Bera

SAFAR/| https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q250XY2Zi--0LrXSQ9sST3NOkObXp51&index=8

https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=8

A Lot More in the Pythia Paper

Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu,
"Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.
[Slides (pptx) (pdf)]

[Short Talk Slides (pptx) (pdf)]

[Lightning Talk Slides (pptx) (pdf)]

[Talk Video (20 minutes)]

[Lightning Talk Video (1.5 minutes)]

[Pythia Source Code (Officially Artifact Evaluated with All Badges)]

[arXiv version]

Officially artifact evaluated as available, reusable and reproducible.

Pythia: A Customizable Hardware Prefetching Framework
Using Online Reinforcement Learning
Rahul Bera! Konstantinos Kanellopoulos! ~ Anant V. Nori? Taha Shahroodi*!

Sreenivas Subramoney® Onur Mutlu!
IETH Ziirich ?Processor Architecture Research Labs, Intel Labs 3TU Delft

https://arxiv.org/pdf/2109.12021.pdf 102

https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=7
https://www.youtube.com/watch?v=kzL22FTz0vc&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=2
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf

Learning-Based Off-Chip LLoad Predictors

= Best Paper Award at MICRO 2022

Hermes: Accelerating Long-Latency Load Requests
via Perceptron-Based Off-Chip Load Prediction

Rahul Bera! Konstantinos Kanellopoulos' ~ Shankar Balachandran? David Novo®
Ataberk Olgun’ Mohammad Sadrosadati’ ~ Onur Mutlu'

1ETH Ziirich 2Intel Processor Architecture Research Lab 3LIRMM, Univ. Montpellier, CNRS

https://arxiv.org/pdf/2209.00188.pdf 103

https://arxiv.org/pdf/2209.00188.pdf

FExecution-Based Prefetching

Execution-based Prefetchers (1)

Idea: Pre-execute a piece of the (pruned) program solely
for prefetching data

o Only need to distill pieces that lead to cache misses

Speculative thread: Pre-executed program piece can
be considered a “thread”

Speculative thread can be executed
On a separate processor/core

On a separate hardware thread context (think fine-grained
multithreading)

On the same thread context in idle cycles (during cache misses)

105

FExecution-based Pretfetchers (1I)

How to construct the speculative thread:
o Software based pruning and “spawn” instructions
o Hardware based pruning and “spawn” instructions

o Use the original program (no construction), but
Execute it faster without stalling and correctness constraints

Speculative thread

o Needs to discover misses before the main program
Avoid waiting/stalling and/or compute less

o To get ahead of the main thread

Performs only address generation computation, branch prediction,
value prediction (to predict “"unknown” values)

o Purely speculative so there is no need for recovery of main
program if the speculative thread is incorrect
106

Thread-Based Pre-Execution

= Dubois and Song, “Assisted
Execution,” USC Tech
Report 1998.

fork

prediction

= Chappell et al.,
“Simultaneous Subordinate
Microthreading (SSMT),”
ISCA 19909.

BRANCH

= Zilles and Sohi, “Execution-
based Prediction Using
Speculative Slices”, ISCA
speedup 2001.

107

Thread-Based Pre-Execution Issues

Where to execute the precomputation thread?
1. Separate core (least contention with main thread)
2. Separate thread context on the same core (more contention)
3. Same core, same context
When the main thread is stalled

When to spawn the precomputation thread?
1. Insert spawn instructions well before the “problem” load

How far ahead?
0 Too early: prefetch might not be needed
0 Too late: prefetch might not be timely

2. When the main thread is stalled

When to terminate the precomputation thread?
1. With pre-inserted CANCEL instructions
2. Based on effectiveness/contention feedback (recall throttling)

108

Thread-Based Pre-Execution Issues

= What, when, where, how

o Luk, “Tolerating Memory Latency through Software-Controlled

Pre-Execution in Simultaneous Multithreading Processors,”
ISCA 2001.

o Many issues in software-based pre-execution discussed

(a) Multiple Pointer Chains

=3 Main Execution

» Pre-Execution

L > = Array Elements Accessed

(d) Multiple Control-Flow Paths

109

An Example

(a) Original Code

register int 1;
register arc_t *arcout;
for(; 1< trips;){
/I loop over ‘trips” lists
if (arcout[1] ident != FIXED) {

first_of_sparse_list = arcout + 1;
i
arcin = (arc_t *)first_of_sparse_list

> ta1l—» mark;

/I traverse the list starting with
/l the first node just assigned
while (arcin) {

tail = arcin—> tail;

:;1.1:cin = (arc_t *)tail—» mark;
}

1++, arcout+=3:

(b) Code with Pre-Execution

register int i;
register arc_t *arcout;
for(; 1< trps:){
/I loop over ‘trips” lists
if (arcout[1] 1dent != FIXED) {

first_of_sparse_list = arcout + 1;
H
/I invoke a pre-execution starting
// at END_FOR
PreExecute_Start(tEND_FOR);
arcin = (arc_t *)first_of_sparse_list

—» tail—» mark;

/I traverse the list starting with
/] the first node just assigned
while (arcin) {

tail = arcin—» tail;

arcin = (arc_t *)tail—» mark;
}
/I terminate this pre-execution after
/I prefetching the entire list
PreExecute_Stop();
END_FOR:
/I the target address of the pre-
/I execution
1++, arcout+=3;
1
/I terminate this pre-execution if we
/! have passed the end of the for-loop
PreExecute_Stop();

Figure 2. Abstract versions of an important loop nest in the
Spec2000 benchmarkmc £. Loads that incur many cache miss-

es are underlined.

The Spec2000 benchmark mcf spends roughly half of its ex-
ecution time in a nested loop which traverses a set of linked list-
s. An abstract version of this loop is shown in Figure 2(a), in
which the for-loop iterates over the lists and the while-loop vis-
its the elements of each list. As we observe from the figure, the
first node of each list is assigned by dereferencing the pointer
first of_sparse_list, whose value is in fact determined by
arcout, an induction variable of the for-loop. Therefore, even
when we are still working on the current list, the first and the re-
maining nodes on the next list can be loaded speculatively by pre-
executing the next iteration of the for-loop.

Figure 2(b) shows a version of the program with pre-execution
code inserted (shown in boldface). END_FOR is simply a label
to denote the place where arcout gets updated. The new in-
struction PreExecute_Start(END_FOR) initiates a pre-execution
thread, say 7', starting at the PC represented by END_FOR. Right
after the pre-execution begins, 7"’s registers that hold the values
of i and arcout will be updated. Then i’s value is compared
against trips to see if we have reached the end of the for-loop.
If so, thread 7' will exit the for-loop and encounters a PreExe-
cute_Stop(), which will terminate the pre-execution and free up
1" for future use. Otherwise, 1" will continue pre-executing the
body of the for-loop, and hence compute the first node of the next
list automatically. Finally, after traversing the entire list through
the while-loop, the pre-execution will be terminated by another
PreExecute_Stop(). Notice that any PreExecute_Start() instruc-
tions encountered during pre-execution are simply ignored as we
do not allow nested pre-execution in order to keep our design sim-
ple. Similarly, PreExecute_Stop() instructions cannot terminate
the main thread either.

110

Example ISA Extensions

I'hread_I D = PreExecute_Start(Stari_PC, Max_Insts):
Request for an 1dle context to start pre-execution at
Start_PC and stop when Max_Insts instructions have
been executed: 1'hread_I DD holds either the identity of
the pre-execution thread or -1 if there is no idle context.

This instruction has effect only if it 1s executed by the main
thread.

PreExecute_Stop(): The thread that executes this instruction
will be self terminated if it 1s a pre-execution thread: no
effect otherwise.

PreExecute_Cancel(/'hread_{D): Terminate the pre-
execution thread with I'hread_{ [D. This instruction has
effect only if it 1s executed by the main thread.

Figure 4. Proposed instruction set extensions to support pre-
execution. (C syntax is used to improve readability.)

111

Results on a Multithreaded Processor

105 (a) Execution Time Normalized to the Original Case

® 100 L 100 100 100 100 100 100 100
£]
c
-% load L2-miss stall
§ load L2-hit stall
- 50 |- other stall
N busy
(1]
£
S
=

0 0 PX 0 PX 0 PX 0 PX 0 PX 0 PX 0 PX

Compress Em3d Equake Mcf Mst Raytrace Twolf

Luk, “Tolerating Memory Latency through Software-Controlled Pre-Execution in
Simultaneous Multithreading Processors,” ISCA 2001.

112

Problem Instructions

= Zilles and Sohi, “Execution-based Prediction Using Speculative Slices”, ISCA
2001.

= Zilles and Sohi, “Understanding the backward slices of performance degrading
instructions,” ISCA 2000.

Figure 2. Example problem instructions from heap insertion
routine in vpr.

struct s_heap **heap; // from [l..heap size]
int heap_size; // # of slots in the heap
int heap_tail; // first unused slot in heap

void add_to_heap (struct s_heap *hptr) {
1. heap[heap tail] = hptr; branch
2. int ifrom = heap_tail; misprediction
3. int ito = ifrom/2; .
4. heap_tail++; cache miss
5. while ((ito >= 1) &&
6. (heap[ifrom]->cost < heap[ito]=->cost))
7. struct s_heap *temp_ ptr = heap[ito];
8. heap[ito] = heap[ifrom];
9. heap[ifrom] = temp_ptr;
10. ifrom = ito;
11. ito = ifrom/2;

}
}

113

Fork Point for Prefetching Thread

Figure 3. The node to heap function, which serves as
the fork point for the slice that covers add to heap.

void node to heap (..., float cost, ...) {
struct s_heap *hptr; -e-——— fork point

hptr = alloc_heap_data();
hptr->cost = cost;

add_to_heap (hptr);

114

Pre-execution Thread Construction

Figure 4. Alpha assembly for the add_to_heap function.
The instructions are annotated with the number of the line in
Figure 2 to which they correspond. The problem instructions
are in bold and the shaded instructions comprise the
un-optimized slice.

Figure 5. Slice constructed for example problem instructions.

node_to_ljeiap; . 40 instrucs iy Much smaller than the original code, the slice contains a loop
. SKips ~ insctructions = = = - =
. s1, 252(gp) # sheap tail that mimics the loop in the original code.
2 1d1 t2, 0(sl) # ifrom = heap_tail .
1 1dgq ts, -76(sl) # &heap[O0] slice:
3 cmplt t2, 0, t4 # see note 1 ldg $6, 328(gp) # &heap
4 addl t2, 0xl, t6 # heap_tail +4 2 1dl $3, 252(gp) # ito = heap_tail
1 sBaddq t2, t5, t3 # &heap[heap_tail] slice loop:
4 stl t6, 0(sl) # store heap_tail 3,11 i $3, 0xl, $3 # ito /= 2
: R ¢’ s%addq$3, 56,'S16 # sheaplito)
3 sra t4, 0x1l, t4 # ito = ifrom/2 6 ldg $18, 0($16) # heap[ito]
5 ble t4, return # (ito < 1) 6 lds $f1, 4(s18) ¢ heap[ito]->cost
loop: 6 cmptle $f1,$f17,5f31 £ (heap[ito]->cost
6 s8addg t2, t5, a0 # &heap[ifrom] # < cost) PRED
6 s8addg t4, t5, t7 # &heap[ito] .
11 cmplt t4, 0, t9 # see note br slice_loop
10 move CATNED # ifrom = ito .
[ldg a2z, 0(ao0) # heap[ifrom] ## Annotations
6 1ldg a4, 0(t7) # heap[ito] fork: on first instruction of node_ to_heap
11 addl t4, t9, to # see note live=1in: Sfl7<c03t>' gp
11 sra t9, O0x1, t4 # ito = ifrom/2 max loop iterations: 4
6 lds sfo, 4(a2) # heap[ifrom]->cost
6 1lds sf1, 4(aq) ¢ heap[ito]->cost
6 cmptlt $f0,$f1,$f0 # (heap[ifrom]->cost
6 fbeq $f0, return # < heap[ito]->cost)
8 stq a2z, 0(t7) # heap[ito]
9 stq a4, 0(ao0) # heap[ifrom]
5 bgt t4, loop # (ito >= 1)
return:
. /* register restore code & return */
note: the divide by 2 operation is implemented by a 3 instruc-
tion sequence described in the strength reduction optimization. 115

Runahead Execution

Runahead Execution

A technigue to obtain the memory-level parallelism benefits
of a large instruction window

When the oldest instruction is a long-latency cache miss:
o Checkpoint architectural state and enter runahead mode

In runahead mode:

a Speculatively pre-execute instructions

a The purpose of pre-execution is to generate prefetches

o L2-miss dependent instructions are marked INV and dropped
When the original miss returns:

o Restore checkpoint, flush pipeline, resume normal execution

Mutlu et al., “Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors,” HPCA 2003.

117

Porfect Caches: Runahead Example
Load 1 Hit Load 2 Hit

e

Small Window:
Load 1 Miss Load 2 Miss

Runahead: s
Load 1 Miss Load 2 Miss Load 1 Hit Load 2 Hit i

Saved Cycles

Miss 1

Benefits of Runahead Execution

Instead of stalling during an L2 cache miss:

Pre-executed loads and stores independent of L2-miss
instructions generate very accurate data prefetches:

o For both regular and irregular access patterns

Instructions on the predicted program path are prefetched
into the instruction cache and outer cache levels

Hardware prefetcher and branch predictor tables are trained
using future access information

Runahead Execution Mechanism

Entry into runahead mode
o Checkpoint architectural register state

Instruction processing in runahead mode

Exit from runahead mode
o Restore architectural register state from checkpoint

Instruction Processing in Runahead Mode

Load 1 Miss

h

Miss 1

Runahead mode processing is the same as
normal instruction processing, EXCEPT:

= It is purely speculative: Architectural (software-visible)
register/memory state is NOT updated in runahead mode.

= L2-miss dependent instructions are identified and treated
specially.
o They are quickly removed from the instruction window.
o Their results are not trusted.

[.2-Miss Dependent Instructions

Load 1 Miss

Miss 1

= Two types of results produced: INV and VALID
= INV = Dependent on an L2 miss

= INV results are marked using INV bits in the register file and
store buffer.

= INV values are not used for prefetching/branch resolution.

Removwval of Instructions from Window

Load 1 Miss

h

Miss 1

= Oldest instruction is examined for pseudo-retirement
2 An INV instruction is removed from window immediately.
o A VALID instruction is removed when it completes execution.

s Pseudo-retired instructions free their allocated resources.
o This allows the processing of later instructions.

= Pseudo-retired stores communicate their data to
dependent loads.

Store/LLoad Handling in Runahead Mode

Load 1 Miss

h

Miss 1

= A pseudo-retired store writes its data and INV status to a
dedicated memory, called runahead cache.

= Purpose: Data communication through memory in runahead mode.
= A dependent load reads its data from the runahead cache.

= Does not need to be always correct - Size of runahead cache is
very small.

Branch Handling in Runahead Mode

Load 1 Miss

h

Miss 1

= INV branches cannot be resolved.

o A mispredicted INV branch causes the processor to stay on the wrong
program path until the end of runahead execution.

= VALID branches are resolved and initiate recovery if mispredicted.

A Runahead Processor Diagram

Mutlu+, “Runahead Execution,”

Checkpointed
H PCA 2003 oy Architectural
P FP Register File
FP = PHYSICAL|{—= EXEC
REORDER
* BUFFER
TRACE Frontend INT ’ 2 [T
(i;.;fél}f op Queue RAT Int Uop Queue S CHEDULER NT - .
UNIT PHYSICAL || |UNITS
RENAMER / REG. FILE OhR i
[i
Lo em Uop Queu MEM 4 GEN - |
o SCHEDULER UNITS L1
- 2]| [
' SR ! R I E | Selectiop RAT
* | Stream—based : === - Logif
:) : Hardware f@------ 1| ! | —
nstruction I I
Prefetcher] 1
Decoder ! ¢ | | ! | | STORE
! | : . BUFFER
: v | | |
1 : | | :
i ---» L2 Access Queue - — e : !
| |
| T
| T S — [S —— |
1]
: ¥ ! RUNAHEAD
I CACHE
From memory
L2 CACHE = o e e e oo
Front Side Bus To memory
_______________ = Access Queue [T

Runahead Execution Pros and Cons

Advantages:
+ Very accurate prefetches for data/instructions (all cache levels)
+ Follows the program path
+ Simple to implement: most of the hardware is already built in
+ No waste of hardware context: uses the main thread context for prefetching
+ No need to construct a special-purpose pre-execution thread for prefetching

Disadvantages/Limitations

-- Extra executed instructions

-- Limited by branch prediction accuracy

-- Cannot prefetch dependent cache misses

-- Effectiveness limited by available “memory-level parallelism” (MLP)

-- Prefetch distance (how far ahead to prefetch) limited by memory latency

Implemented in Sun ROCK, IBM POWER6, NVIDIA Denver

127

Performance of Runahead Execution

1.3

122, H No prefetcher, no runahead
1.2 Hl Only prefetcher (baseline)
1.1 B Only runahead
Bl Prefetcher + runahead
1.0 -
0.9 | 22% 12%

16% S52%

Micro-operations Per Cycle

S95 FP00 INT0O0 WEB MM PROD SERV WS AVG

128

Runahead Execution vs. Large Windows

Micro-operations Per Cycle

=
n

=
=

=
W

=
()
"

[y
o
[

=
=)

S
=

e
%

S
Q9

5
=N

S
n

N
=

e
W

S
$)

S
p—

S
=

S95

Hl 128-entry window (baseline)

Ml 128-entry window with Runahead
[1256-entry window

[384-entry window

M 512-entry window

FP00

INTO00

WEB

MM

PROD SERV

129

Runahead on In-order vs. Out-of-order

1.3

1.2

1.1

Micro-operations Per Cycle
A e o e v O
ek (V] W IS W =) | =] o =

&
o

15% 10%

M in-order baseline

M in-order + runahead

B out-of-order baseline

B out-of-order + runahead

14% 12%

20% 22%

17% 13%

73% 23%

39% 20%

28% 15% 50%47%

FP00 INTO00 SERV

WEB PROD

130

More on Runahead Execution

= Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Alternative to Very Large Instruction Windows
for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance Computer
Architecture (HPCA), pages 129-140, Anaheim, CA, February 2003. Slides (pdf)

One of the 15 computer arch. papers of 2003 selected as Top Picks by IEEE Micro.

HPCA Test of Time Award (awarded in 2021).
[Lecture Slides (pptx) (pdf)]

[Lecture Video (1 hr 54 mins)]
[Retrospective HPCA Test of Time Award Talk Slides (pptx) (pdf)]
[Retrospective HPCA Test of Time Award Talk Video (14 minutes)]

Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors

Onur Mutlu § Jared Stark Chris Wilkerson I Yale N. Patt §

S§ECE Department TMicroprocessor Research IDesktop Platforms Group
The University of Texas at Austin Intel Labs Intel Corporation
{onur,patt} @ece.utexas.edu jared.w.stark @intel.com chris.wilkerson @intel.com

131

https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
http://www.cs.arizona.edu/hpca9/
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03_talk.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=onur-comparch-fall2017-lecture17-latencytoleranceandprefetching-afterlecture.pptx
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=onur-comparch-fall2017-lecture17-latencytoleranceandprefetching-afterlecture.pdf
https://youtu.be/Kj3relihGF4?t=1162
https://people.inf.ethz.ch/omutlu/pub/onur-runahead-HPCA-ToT-Award-March-2-2021-withbackup.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-runahead-HPCA-ToT-Award-March-2-2021-withbackup.pdf
https://www.youtube.com/watch?v=KFCOecRQTIc

Effect of Runahead in Sun ROCK
= Shailender Chaudhry talk, Aug 2008.

3.00
Scout
Q 200)
; ' J Buys 12 MB
(}) t /
N
= 1.50 Buys 7 MB =
g / /;7/
o
< 1.00 40% Better
- Performance
0.50 '
256KB512KB 1MB 2MB 4MB 8MB 16MB 32MB 64MB
L2 Cache Size

Effective prefetching can both improve performance and reduce hardware cost
132

More on Runahead in Sun ROCK

HIGH-PERFORMANCE
THROUGHPUT COMPUTING

THROUGHPUT COMPUTING, ACHIEVED THROUGH MULTITHREADING AND
MULTICORE TECHNOLOGY, CAN LEAD TO PERFORMANCE IMPROVEMENTS
THAT ARE 10 TO 30x THOSE OF CONVENTIONAL PROCESSORS AND SYSTEMS.
HOWEVER, SUCH SYSTEMS SHOULD ALSO OFFER GOOD SINGLE-THREAD
PERFORMANCE. HERE, THE AUTHORS SHOW THAT HARDWARE SCOUTING
INCREASES THE PERFORMANCE OF AN ALREADY ROBUST CORE BY UP TO 40

PERCENT FOR COMMERCIAL BENCHMARKS.

Chaudhry+, “High-Performance Throughput Computing,” IEEE Micro 2005. 133

More on Runahead in Sun ROCK

Simultaneous Speculative Threading: A Novel Pipeline
Architecture Implemented in Sun’s ROCK Processor

Shailender Chaudhry, Robert Cypher, Magnus Ekman, Martin Karlsson,

Anders Landin, Sherman Yip, Hakan Zeffer, and Marc Tremblay
Sun Microsystems, Inc.
4180 Network Circle, Mailstop SCA18-211
_ Santa Clara, CA 95054, USA _
{shailender.chaudhry, robert.cypher, magnus.ekman, martin.karlsson,

anders.landin, sherman.yip, haakan.zeffer, marc.tremblay}@sun.com

Chaudhry+, “Simultaneous Speculative Threading,” ISCA 20009. 134

Runahead Execution in IBM POWERG

Runahead Execution vs. Conventional Data Prefetching
in the IBM POWERG6 Microprocessor

Harold W. Cain Priya Nagpurkar

IBM T.J. Watson Research Center
Yorktown Heights, NY
{tcain, pnagpurkar}@us.ibm.com

Cain+, “"Runahead Execution vs. Conventional Data Prefetching
in the IBM POWER6 Microprocessor,” ISPASS 2010.

135

Runahead Execution in IBM POWERG

Abstract

After many years of prefetching research, most commercially
available systems support only two types of prefetching:
software-directed prefetching and hardware-based prefetchers
using simple sequential or stride-based prefetching
algorithms. More sophisticated prefetching proposals, despite
promises of improved performance, have not been adopted
by industry. In this paper, we explore the efficacy of both
hardware and software prefetching in the context of an IBM
POWERG commercial server. Using a variety of applications
that have been compiled with an aggressively optimizing
compiler to use software prefetching when appropriate, we
perform the first study of a new runahead prefetching feature
adopted by the POWERG design, evaluating it in isolation
and in conjunction with a conventional hardware-based
sequential stream prefetcher and compiler-inserted software
prefetching.

We find that the POWERG implementation of runahead
prefetching is quite effective on many of the memory intensive
applications studied; in isolation it improves performance
as much as 36% and on average 10%. However, it outper-
forms the hardware- based stream prefetcher on only two Of

When used in conjunction with the conventional prefetchmg

mechanisms, the runahead feature adds an additional 6% on
average, and 39% in the best case (GemsFDTD).

136

Runahead Execution in NVIDIA Denver

DENVER: NVIDIA'S FIRST 64-BIT ARM
PROCESSOR

NVIDIA'S FIRST 64-BIT ARM PROCESSOR, CODE-NAMED DENVER, LEVERAGES A HOST OF
NEW TECHNOLOGIES, SUCH AS DYNAMIC CODE OPTIMIZATION, TO ENABLE HIGH-
PERFORMANCE MOBILE COMPUTING. IMPLEMENTED IN A 28-NM PROCESS, THE DENVER
CPU CAN ATTAIN CLOCK SPEEDS OF UP TO 2.5 GHZ. THIS ARTICLE OUTLINES THE DENVER
ARCHITECTURE, DESCRIBES ITS TECHNOLOGICAL INNOVATIONS, AND PROVIDES RELEVANT

COMPARISONS AGAINST COMPETING MOBILE PROCESSORS.

Boggs+, “"Denver: NVIDIA's First 64-Bit ARM Processor,” IEEE Micro 2015.

137

Runahead Execution in NVIDIA Denver

Reducing the effects of long cache-miss
penalties has been a major focus of the micro-
architecture, using techniques like prefetch-
ing and run-ahead. An aggressive hardware
prefetcher implementation detects L2 cache
requests and tracks up to 32 streams, each
with complex stride patterns.

Run-ahead uses the idle time that a CPU
spends waiting on a long latency operation to
discover cache and DTLB misses further
down the instruction stream and generates
prefetch requests for these misses." These pre-
fetch requests warm up the data cache and
DTLB well before the actual execution of
the instructions that require the data. Run-
ahead complements the hardware prefetcher
because it’s better at prefetching nonstrided
streams, and it trains the hardware prefetcher

faster than normal execution to yield a com-
bined benefit of 13 percent on SPECint2000
and up to 60 percent on SPECfp2000.

Boggs+, “"Denver: NVIDIA's First 64-Bit ARM Processor,”
IEEE Micro 2015.

Gwennap, “NVIDIA’s First CPU is a Winner,” MPR 2014.

The core includes a hardware prefetch unit that Boggs
describes as aggresswe in preloadlng the data cache but

nnplements a “run-ahead” feature that continues to execute
microcode speculatively after a data-cache miss; this exe-
cution can trigger additional cache misses that resolve in
the shadow of the first miss. Once the data from the original
miss returns, the results of this speculative execution are

discarded and execution restarts with the bundle containing
the original miss, but run-ahead can preload subsequent
data into the cache, thus avoiding a string of time-wasting
cache misses. These and other features help Denver out-
score Cortex-A15 by more than 2.6x on a memory-read test
even when both use the same SoC framework (Tegra K1).

B;an:h ——{ I-TLB | 128KB Instruction Cache (4 way) }-7
re

Unit] 32bytes
| Fetch Queue |
7 pops |] 2instr]
uCode | [ARM ARM "',"rg
Expander| | Decoder | | Decoder fetch | 2MB
! ! ! il P
| Scheduler | | L2 |cache
] 7 uops TLB | (16
| | | ! ! ! ! way)
| Branch Load/ | | Load/ | |Integer| |Integer FPINeon FP/Neon
Store | | Store | | ALU | | +Mult Add
fles |ffes |ffes ffles fflee 111128 {14128
| Integer Registers | | FP + Neon Regs |
[164 | T128
128 |
4_:‘ D-TLB | 64KB Data Cache (4 way) }'—

Figure 3. Denver CPU microarchitecture. This design combines a fairlv

Runahead Enhancements

Runahead Enhancements

Mutlu et al., “Techniques for Efficient Processing in Runahead
Execution Engines,” ISCA 2005, IEEE Micro Top Picks 2006.

Mutlu et al., "Address-Value Delta (AVD) Prediction,” MICRO
2005.

Armstrong et al., "Wrong Path Events,” MICRO 2004.

Mutlu et al., "An Analysis of the Performance Impact of
Wrong-Path Memory References on Out-of-Order and
Runahead Execution Processors,” IEEE TC 2005.

140

Limitations of the Baseline Runahead Mechanism

Energy Inefficiency
o A large number of instructions are speculatively executed
o Efficient Runahead Execution [ISCA'05, IEEE Micro Top Picks'06]

Ineffectiveness for pointer-intensive applications
o Runahead cannot parallelize dependent L2 cache misses
o Address-Value Delta (AVD) Prediction [MICRO'05]

Irresolvable branch mispredictions in runahead mode
o Cannot recover from a mispredicted L2-miss dependent branch
o Wrong Path Events [MICRO'04]

o Wrong Path Memory Reference Analysis [IEEE TC'05]

More on Efficient Runahead Execution

= Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Techniques for Efficient Processing in Runahead Execution
Engines”
Proceedings of the 32nd International Symposium on Computer
Architecture (ISCA), pages 370-381, Madison, WI, June 2005. Slides
(ppt) Slides (pdf)
One of the 13 computer architecture papers of 2005 selected as
Top Picks by IEEE Micro.

Techniques for Efficient Processing in Runahead Execution Engines

Onur Mutlu Hyesoon Kim Yale N. Patt

Department of Electrical and Computer Engineering
University of Texas at Austin

{onur,hyesoon,patt} @ece.utexas.edu
142

https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05.pdf
http://www.cs.wisc.edu/~isca2005/
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05_talk.pdf

More on Efficient Runahead Execution

Onur Mutlu, Hyesoon Kim, and Yale N. Patt,

"Efficient Runahead Execution: Power-Efficient Memory Latency
Tolerance”

IEEE Micro, Special Issue: Micro'’s Top Picks from Microarchitecture
Conferences (MICRO TOP PICKS), Vol. 26, No. 1, pages 10-20,
January/February 2006.

EFFICIENT RUNAHEAD EXECUTION:
POWER-EFFICIENT
MEMORY LATENCY TOLERANCE

143

https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_micro06.pdf
http://doi.ieeecomputersociety.org/10.1109/MM.2006.10

More Effective Runahead Execution

= Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Address-Value Delta (AVD) Prediction: Increasing the Effectiveness of
Runahead Execution by Exploiting Regular Memory Allocation Patterns"
Proceedings of the 38th International Symposium on Microarchitecture (MICRO),
pages 233-244, Barcelona, Spain, November 2005. Slides (ppt) Slides (pdf)

One of the five papers nominated for the Best Paper Award by the
Program Committee.

Address-Value Delta (AVD) Prediction: Increasing the Effectiveness of Runahead
Execution by Exploiting Regular Memory Allocation Patterns

Onur Mutlu Hyesoon Kim Yale N. Patt

Department of Electrical and Computer Engineering
University of Texas at Austin
{onur,hyesoon,patt} @ece.utexas.edu

144

https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05.pdf
http://pcsostres.ac.upc.edu/micro38/
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05_talk.pdf

More on Efficient Runahead Execution

Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Address-Value Delta (AVD) Prediction: A Hardware Technique
for Efficiently Parallelizing Dependent Cache Misses"

[EEE Transactions on Computers (TC), Vol. 55, No. 12, pages 1491-1508,
December 2006.

Address-Value Delta (AVD) Prediction:
A Hardware Technique for Efficiently
Parallelizing Dependent Cache Misses

Onur Mutlu, Member, IEEE, Hyesoon Kim, Student Member, IEEE, and
Yale N. Patt, Fellow, IEEE

145

https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_tc06.pdf
http://www.computer.org/tc/

Continuous Runahead

100%—

= Key Observations: .

o Runahead is prefetching co
only 13% of all 40%
runahead-reachable 20%
misses o

I % of Runahead-Reachable Misses Prefetched [0 % Runahead Performance Gain
I % Oracle Performance Gain

[uy
N
o

o Why? Because
runahead execution
interval is very short
(60 cycles on average)

100
80
60
40
20

Runahead Interval (Cycles)

o

Tt g 2 g 2 5 £ 8

) >
. :
e o
o

|- 128 ROB [256 ROB [512 ROB [CJ 1024 ROB|

Hashemi+, “Continuous Runahead: Transparent Hardware Acceleration for Memory Intensive Workloads,” MICRO 2016. 146

https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16.pdf

Continuous Runahead

Key Idea: Remove the limitation for short runahead
interval

o Identify chain of instructions that lead to a critical cache miss

o Keep executing the chain of instructions in a loop in a special
runahead hardware to keep on generating future misses

Key Results:
o 70% coverage of runahead-reachable misses (up from 13%)
o 21.9% performance gain over best runahead implementation

147

Continuous Runahead

Milad Hashemi, Onur Mutlu, and Yale N. Patt,
"Continuous Runahead: Transparent Hardware Acceleration for

Memory Intensive Workloads"

Proceedings of the 49th International Symposium on
Microarchitecture (MICRO), Taipei, Taiwan, October 2016.

[Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)]
Best paper session.

Continuous Runahead: Transparent Hardware Acceleration
for Memory Intensive Workloads

Milad Hashemi*, Onur Mutlu$, Yale N. Patt*

*The University of Texas at Austin SETH Ziirich

148

https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16.pdf
http://www.microarch.org/micro49/
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-lightning-session-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pdf

Runahead as an
Execution-Based Prefetcher

Runahead as an Execution-based Prefetcher

Idea of an Execution-Based Prefetcher: Pre-execute a piece
of the (pruned) program solely for prefetching data

Idea of Runahead: Pre-execute the main program solely for
prefetching data

Advantages and disadvantages of runahead vs. other
execution-based prefetchers?

Can you make runahead even better by pruning the
program portion executed in runahead mode?

150

Taking Advantage of Pure Speculation

Runahead mode is purely speculative

The goal is to find and generate cache misses that would
otherwise stall execution later on

How do we achieve this goal most efficiently and with the
highest benefit?

Idea: Find and execute only those instructions that will lead
to cache misses (that cannot already be captured by the
instruction window)

How?
151

Execution-based Prefetchers: Pros and Cons

+ Can prefetch pretty much any access pattern

+ Can be very low cost (e.g., runahead execution)
+ Especially if it uses the same hardware context
+ Why? The processor is equipped to execute the program anyway

+ Can be bandwidth-efficient (e.g., runahead execution)

-- Depend on branch prediction and possibly value prediction
accuracy

- Mispredicted branches dependent on missing data throw the thread
off the correct execution path

-- Can be wasteful

-- speculatively execute many instructions
-- can occupy a separate thread context

-- Complexity in deciding when and what to pre-execute
152

Looking to the Past

At the Time... Early 2000s...

Large focus on increasing the size of the window...
o And, designing bigger, more complicated machines

Runahead was a different way of thinking
a Keep the 000 core simple and small
o At the expense of some benefits (e.g., non-memory-related)

o Use aggressive “automatic speculative execution” solely for
prefetching

o Synergistic with prefetching and branch prediction methods

A lot of interesting and innovative ideas ensued...

SAFARI 154

Important Precedent [Dundas & Mudge, ICS 1997]

Improving Data Cache Performance by Pre-executing Instructions Under a Cache Miss

James Dundas and Trevor Mudge
Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, Michigan 48109-2122

{dundas, tnm} @eecs.umich.edu

Abstract

In this paper we propose and evaluate a technique that
improves first level data cache performance by pre-executing future
instructions under a data cache miss. We show that these pre-
executed instructions can generate highly accurate data prefetches,
particularly when the first level cache is small. The technique is
referred to as runahead processing. The hardware required to
implement runahead is modest, because, when a miss occurs, it
makes use of an otherwise idle resource, the execution logic. The
principal hardware cost is an extra register file. To measure the
impact of runahead, we simulated a processor executing five integer
Spec95 benchmarks. Our results show that runahead was able to
significantly reduce data cache CPI for four of the five benchmarks.
We also compared runahead to a simple form of prefetching,
sequential prefetching, which would seem to be suitable for
scientific benchmarks. We confirm this by enlarging the scope of
our experiments to include a scientific benchmark. However, we
show that runahead was also able to outperform sequential
prefetching on the scientific benchmark. We also conduct studics
that demonstrate that runahead can generate many useful prefetches
for lines that show little spatial locality with the misses that initiate
runahead episodes. Finally, we discuss some further enhancements
of our baseline runahead prefetching scheme.

are allocated by the software. This hybrid hardware-software tech-
nique was presented in [8]. Their instruction stride table (IST) selec-
tively generates cache miss initiated prefetches for accesses chosen
beforehand by the compiler. This resulted in multiprocessor perfor-
mance for scientific benchmarks comparable in some cases to soft-
ware prefetching, with an instruction stride table as small as 4
entries. The IST concept was subsequently combined with the
prefetch predicates of [2] in [9]. Another hardware prefetching
scheme that avoids the need for significant amounts of hardware is
the “wrong path” prefetching described in [10]. This actually
prefetches instructions from the not-taken path, in the expectation
that they will be executed during a later iteration.

Most prefetching techniques, software- or hardware-based,
tend to perform poorly on an important class of applications having
recursive data structures such as linked-lists. A software technique
that overcomes this limitation was presented recently in [11], in
which software prefetches were inserted at subroutine call sites that
passed pointers as arguments. Another pointer-based approach was
described in [12}. This approach uses pointers stored within the data
structures to generate software prefetches.

The runahead prefetching approach presented in this paper is a
hardware approach, that requires only a modest amount of hard-
ware, because, when a miss occurs, it makes use of an otherwise

155
SA F ARI Dundas+, “Improving Data Cache Performance by Pre-Executing Instructions Under a Cache Miss,” ICS 1997.

An Inspiration [Glew, ASPLOS-WACI 1998]

MLP yes! ILP no!

Memory Level Parallelism, or why I no longer care about Instruction Level Parallelism

Andrew Glew
Intel Microcomputer Research Labs and University of Wisconsin, Madison

Problem Description: It should be well known that processors are outstripping memory performance: specifically that memory
latencies are not improving as fast as processor cycle time or IPC or memory bandwidth.

Thought experiment: imagine that a cache miss takes 10000 cycles to execute. For such a processor instruction level
parallelism is useless, because most of the time is spent waiting for memory. Branch prediction is also less effective, since most
branches can be determined with data already in registers or in the cache; branch prediction only helps for branches which depend on
outstanding cache misses.

At the same time, pressures for reduced power consumption mount.

Given such trends, some computer architects in industry (although not Intel EPIC) are talking seriously about retreating from
out-of-order superscalar processor architecture, and instead building simpler, faster, dumber, 1-wide in-order processors with high
degrees of speculation. Sometimes this is proposed in combination with multiprocessing and multithreading: tolerate long memory
latencies by switching to other processes or threads.

I propose something different: build narrow fast machines but use intelligent logic inside the CPU to increase the number of
outstanding cache misses that can be generated from a single program.

Solution: First, change the mindset: MLP, Memory Level Parallelism, is what matters, not ILP, Instruction Level
Parallelism.

By MLP I mean simply the number of outstanding cache misses that can be generated (by a single thread, task, or program)
and executed in an overlapped manner. It does not matter what sort of execution engine generates the multiple outstanding cache
misses. An out-of-order superscalar ILP CPU may generate multiple outstanding cache misses, but 1-wide processors can be just as
effective.

Change the metrics: total execution time remains the overall goal, but instead of reporting IPC as an approximation to this, we
must report MLP. Limit studies should be in terms of total number of non-overlapped cache misses on critical path.

Now do the research: Many present-day hot topics in computer architecture help ILP, but do not help MLP. As mentioned
above, predicting branch directions for branches that can be determined from data already in the cache or in registers does not help
MLP for extremely long latencies. Similarly, prefetching of data cache misses for array processing codes does not help MLP — it just

Instead, investigate microarchitectures that help MLP:
0) Trivial case — explicit multithreading, like SMT.
1) Slightly less trivial case — implicitly multithread single programs, either by compiler software on an MT machine, or by a
hybrid, such as Wisconsin Multiscalar, or entirely in hardware, as in Intel’s Dynamic Multi-Threading.
?2) Build 1-wide processors that are as fast as possible: use circuit tricks, as well as logic tricks such as redundant encoding
for numeric computation and memory addressing.
A3) Allow the hardware dynamic scheduling mechanisms to use sequential algorithms implemented by this narrow, fast,
processor, rather than limiting it to parallel algorithms implementable in associative logic.
Build very large instruction windows allowing speculation tens of thousands of instructions ahead. Avoid circuit speed
issues by caching the instruction window. Remove small arbitrary limits on the number of cache misses outstanding allowed.
Further reduce the cost of very large instruction windows by throwing away anything that can be recomputed based on
data in registers or cache.
Don’t stall speculation because the oldest instruction in the machine is a cache miss. Let the front of the machine continug
executing branches, forgetting data dependent on cache misses.
Parallelize linked data structure traversals by building skip lists in hardware — converting sequential data structures into
parallel ones. Store these extra Sklp pomters in main memory

C coretically optima C C y imited he
Barring a revolutlon in memory technology, the Memory Wall is real and gettmg closer. Multlthreadmg and multiprocessing have
some hope of tolerating memory latency, but only if there are parallel workloads. If single thread performance is still an issue, the only
potentially MLP enhancing technologies are what I describe here, or data value prediction — and data value prediction seems to only do
well for stuff that fits in the cache.

“Super-non-blocking” processors extends dynamic, out-of-order, execution to maximize MLP, but simplifies it by discarding
superscalar ILP as unnecessary.

SAFARI

Glew, “MLP yes! ILP no!,” ASPLOS WACI 1998.

156

Looking to the Future

A Look into the Future...

= Microarchitecture (especially memory) is critically important
a And, fun...

o And, impactful...

= Runahead is a great example of harmonious industry-
academia collaboration

= Fundamental problems will remain fundamental
a And will require fundamental (and creative) solutions

SAFARI 158

Citation for the Test of Time Award

Runahead Execution is a pioneering paper that opened up

new avenues in dynamic prefetching.

The basic idea of runahead execution effectively increases

the instruction window very significantly, without having to
increase physical resource size (e.g. the issue queue).

This seminal paper spawned off a new area of ILP-
enhancing microarchitecture research.

This work has had strong industry impact as evidenced by
IBM's POWER®G - Load Lookahead, NVIDIA Denver, and Sun
ROCK's hardware scouting.

159

More on Runahead Execution

= Lecture video from Fall 2020, Computer Architecture:
o https://www.youtube.com/watch?v=zPewo6lal 8

= Lecture video from Fall 2017, Computer Architecture:
o https://www.youtube.com/watch?v=Kj3relihGF4

= Onur Mutluy,
"Efficient Runahead Execution Processors"
Ph.D. Dissertation, HPS Technical Report, TR-HPS-2006-007, July
2006. Slides (ppt)
Nominated for the ACM Doctoral Dissertation Award by
the University of Texas at Austin.

https://www.youtube.com/onurmutlulectures 160

https://www.youtube.com/watch?v=zPewo6IaJ_8
https://www.youtube.com/watch?v=Kj3relihGF4
https://people.inf.ethz.ch/omutlu/pub/mutlu_dissertation.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_phd_defense_talk.ppt
https://www.youtube.com/onurmutlulectures

More on Runahead Execution (I)

Review: Runahead Execution (Mutlu et al., HPCA 2003)

Small Window:

Load 1 Miss Load 2 Miss

| |
(Compute | NS compute | [ININSEHINNNNN

Miss 1] Viss 2 B3 s

Runahead:
Load 1 Miss Load 2 Miss Load 1 Hit Load 2 Hit

l l l l

/Compute| Runahead | B compute | | }< >

Saved Cycles

Miss 1 FE

4 P Pl R) 40:36/1:32:51

Computer Architecture - Lecture 19a: Execution-Based Prefetching (ETH Ziirich, Fall 2020)

395 views * Nov 29, 2020 |. 14 0 SHARE SAVE
8 oot
«T> ’

https://www.youtube.com/watch?v=zPewob6laJ 8&list=PL5Q2s0XY2Zi9xidylgBxUz7xRPS-wisBN&index=34 161

https://www.youtube.com/watch?v=zPewo6IaJ_8&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=34

More on Runahead Execution (II)

Reducing the effects of |un); cache-r

ies has been a major focus of the micro

“k[l.i
architecture, using techniques like prefetch

ng .l!lt’ run ,l!lk'.ll{ \l'. .ll'\L:H'\\]\L' h.l.’({\\.l"('

prefetcher implementation detects L2 cache
requests and tracks up to 32 streams, each
with complex stride patterns

;{HH .lll(\l\é USCS [}H 1\“(ume (:’\.I[al i.l
spends waiting en a long latency operation to
discover cache and DTLB misses further
down the instruction stream and generates
;\lg'ftl\.'l requests for :I\(‘\(' IMISses. |]u\(pre
fetch requests warm up the data cache and

DTLB well before the actual execurion of

Runahead Execution in NVIDIA Denver

T'he core includes a hardware prefetch unit that Boggs
describes as “aggressive” in preloading the data cache but

less aggressive in preloading the instruction cache It also

implements a “run-ahead” feature that continues to execute
microcode speculatively after a data-cache miss; this exe

cution can trigger additional cache misses that resolve in
the shadow of the first miss. Once the data from the original
miss returns, the results of this speculative execution are
discarded and execution restarts with the bundle containing
the original miss, but run-ahead can preload subsequent
data into the cache, thus avoiding a string of time-wasting
cache misses. These and other features help Denver out

score Cortex-A15 by more than 2.6x on a memory-read test
even when both use the same SoC framework (Tegra K1)

the instructions that require the data. Run
ahead complements the hardware prefetcher
because it’s better at prefetching nonstrided
streams, and it trains the hardware prefetcher
faster than normal execution to yield a com

bined benefit of 13 percent on SPECint2000

and up to 60 percent on SPECfp2000.

IEEE Micro 2015.

Boggs+, "Denver: NVIDIA's First 64-Bit ARM Processor,” =

Gwennap, “NVIDIA’s First CPU is a Winner,” MPR 2014.

Banch .. | 1B | 128KB Instruction Cache (4 way)
Pred
Umt |

Fetch Queue

Onur Mutlu - Runahead Execution: A Short Retrospective (HPCA Test of Time Award Talk @ HPCA 2021)

1,162 views * Premiered Mar 6, 2021

@ Onur Mutlu Lectures
< -~ & 16.5K subscribers

https://www.youtube.com/watch?v=KFCOecRQTIc

iy 50 0 SHARE =} SAVE

ANALYTICS EDIT VIDEO

162

https://www.youtube.com/watch?v=KFCOecRQTIc

More Recommended Material
on Prefetching

Lectures on Pretetching (I

PREFETCHA

X86 PREFETCH Instruction

Jpcode Sruchos 64-B1t
Mode

microarchitecture
dependent
specification

ache and higt

different instructions
for different cache
levels

Pentium |l processor—2nd-level cache
Pentium 4 and Intel Xeon processors—2nd-level cache

NTA (non-temporal data with respect to all cache levels)—prefetch data into non-
temporal cache structure and into a location close to the processor, minimizing
cache pollution

— Pentium lll processor— 1st-level cache

— Pentium 4 and Intel Xeon processors—2nd-level cache

4 P Pl o 1:06:55/24537

Computer Architecture - Lecture 18: Prefetching (ETH Ziirich, Fall 2020)

1,203 views * Nov 29, 2020 |b 26 0 SHARE SAVE

@ 106:1:; Ml;ﬂu .teCtureS ANALYTICS EDIT VIDEO
& .5K subscribers

https://www.youtube.com/watch?v=xZmDyj0g3Pw&list=PL5Q2s0XY2Zi9xidylgBxUz7xRPS-wisBN&index=33 164

https://www.youtube.com/watch?v=xZmDyj0g3Pw&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=33

Lectures on Pretetching (1)

Thread-Based Pre-Execution

Dubois and Song, “Assisted
Execution,” USC Tech
Report 1998.

Chappell et al.,
“Simultanaous Subordinate
Microthreading (SSMT),”
ISCA 1999.

Zilles and Sohi, “Execution-
based Prediction Using
Speculative Slices”, ISCA
2001.

4 P Pl R) 12:23/1:3250

Computer Architecture - Lecture 19a: Execution-Based Prefetching (ETH Zdirich, Fall 2020)

424 views * Nov 29, 2020 |. 16 0 SHARE SAVE

@ ?:;J; gl;tslélntgsures ANALYTICS EDIT VIDEO
«T ’

https://www.youtube.com/watch?v=zPewob6laJ 8&list=PL5Q2s0XY2Zi9xidylgBxUz7xRPS-wisBN&index=34 165

https://www.youtube.com/watch?v=zPewo6IaJ_8&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=34

Lectures on Prefetching (111)

Runahead Execution in NVIDIA Denver

Reducing the effects of |un); cache-r

ies has been a major focus of the micro

“k[l.i
architecture, using techniques like prefetch

} i

ng .l!lt’ run-ancad \l'. .ll'\L:H'\\]\L' h.l.’({\\.l"('

prefetcher implementation detects L2 cache
requests and tracks up to 32 streams, each
with complex stride patterns

;{HH .lll(\l\é USCS [}H 1\“(ume (:’\.I[al i.l
spends waiting en a long latency operation to
discover cache and DTLB misses further
down the instruction stream and generates
;\lg'ftl\.'l requests for these misses
fetch requests warm up the data cache and

DTLB well before the

actual execurion of

T'he core includes a hardware prefetch unit that Boggs
describes as “aggressive” in preloading the data cache but

less aggressive in preloading the instruction cache It also

implements a “run-ahead” feature that continues to execute
microcode speculatively after a data-cache miss; this exe

cution can trigger additional cache misses that resolve in
the shadow of the first miss. Once the data from the original
miss returns, the results of this speculative execution are
discarded and execution restarts with the bundle containing
the original miss, but run-ahead can preload subsequent
data into the cache, thus avoiding a string of time-wasting
['hese and other features help Denver out

score Cortex-A15 by more than 2.6x on a memory-read test
even when both use the same SoC framework (Tegra K1)

cache misses

the instructions that require the data. Run
ahead complements the hardware prefetcher
because it’s better at prefetching nonstrided
streams, and it trains the hardware prefetcher
faster than normal execution to yield a com
bined benefit of 13 percent on SPECint2000
and up to 60 percent on SPECfp2000.

Boggs+, "Denver: NVIDIA's First 64-Bit ARM Processor,” =

IEEE Micro 2015.

Gwennap, “NVIDIA’s First CPU is a Winner,” MPR 2014.

Banch .. 18

128KB Instruction Cache (4 way)
Pred
Unit | 32 by
Fetch Queue

Onur Mutlu - Runahead Execution: A Short Retrospective (HPCA Test of Time Award Talk @ HPCA 2021)

1,162 views * Premiered Mar 6, 2021

<

3

ng

Onur Mutlu Lectures
16.5K subscribers

https://www.youtube.com/watch?v=KFCOecRQTIc

iy 50

0

SHARE

ANALYTICS EDIT VIDEO

166

=} SAVE

https://www.youtube.com/watch?v=KFCOecRQTIc

Lectures on Prefetching (IV)

4 P Pl R) 1:10:07/1:43:14

Lecture 25: Prefetching - Carnegie Mellon - Computer Architecture 2015 - Onur Mutlu

5,216 views * Apr 3, 2015 i3> &lo) SHARE =y SAVE

Carnegie Mellon Computer Architecture 7
@ 23.3K subscribers SUBSCRIBED ‘

https://www.youtube.com/watch?v=ibPL7TIiEwY &list=PL5PHmM2jkkXmi5CxxI7b3JCL1TWybTDtKg&index=29 167

https://www.youtube.com/watch?v=ibPL7T9iEwY&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=29

Lectures on Pretetching (V)

4« P Pl R) 11:36/1:56:08

Lecture 26. More Prefetching and Emerging Memory Technologies - CMU - Comp. Arch. 2015 - Onur Mutlu

3,642 views * Apr 6, 2015 ifp26 &0) SHARE =i SAVE

Carnegie Mellon Computer Architecture /da\
@ 23.3K subscribers SUBSCRIBED ‘A

https://www.youtube.com/watch?v=TUFins4z604&list=PL5PHmM2jkkXmi5Cxx|7b3JCL1TWybTDtKq&index=30 168

https://www.youtube.com/watch?v=TUFins4z6o4&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=30

Lectures on Pretetching

= Computer Architecture, Fall 2020, Lecture 18

o Prefetching (ETH, Fall 2020)

o https://www.youtube.com/watch?v=xZmDyj0g3Pw&list=PL502s0XY2Zi9xidyIgBxUz
7XRPS-wisBN&index=33

= Computer Architecture, Fall 2020, Lecture 19a

o Execution-Based Prefetching (ETH, Fall 2020)

o https://www.youtube.com/watch?v=zPewo6lal 8&list=PL502s0XY2Zi9xidylgBxUz7
XRPS-wisBN&index=34

= Computer Architecture, Spring 2015, Lecture 25

o Prefetching (CMU, Spring 2015)
o https://www.youtube.com/watch?v=ibPL7T9iEwY&list=PL5PHmM?2jkkXmi5Cxx17b3]C

L1TWybTDtKg&index=29
= Computer Architecture, Spring 2015, Lecture 26

o More Prefetching (CMU, Spring 2015)

o https://www.youtube.com/watch?v=TUFins4z604&list=PL5PHmM2jkkXmi5CxxI17b3]C
L1TWybTDtKg&index=30

https://www.youtube.com/onurmutlulectures 169

https://www.youtube.com/watch?v=xZmDyj0g3Pw&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=33
https://www.youtube.com/watch?v=zPewo6IaJ_8&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=34
https://www.youtube.com/watch?v=ibPL7T9iEwY&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=29
https://www.youtube.com/watch?v=TUFins4z6o4&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=30
https://www.youtube.com/onurmutlulectures

Computer Architecture
Lecture 16: Prefetching

Prof. Onur Mutlu
ETH Zurich
Fall 2022
18 November 2022

Backup Slides

Backup: Runahead Execution

Small Windows: Full-Window Stalls

8-entry instruction window:

Oldest HOV\ RSN [REIIM L2 Miss! Takes 100s of cycles.
BEQ R1, RO, target
ADD R2 < R2, 8
LOAD R3 € mem[R2]

Independent of the L2 miss,
MUL R4 € R4, R3 executed out of program order,

ADD R4 €< R4, R5 but cannot be retired.
STOR mem[R2] < R4
ADD R2 €« R2, 64

Younger instructions cannot be executed
because there is no space in the instruction window.

The processor stalls until the L2 Miss is serviced.

= Long-latency cache misses are responsible for most
full-window stalls

173

Impact of Long-Latency Cache Misses

100
95
90
85
80

[Non-stall (compute) time

B Full-window stall time

75
70
65
60
55
50
45
40
3
25 L2 Misses
20
15
10

5

0 .

128-entry window

Normalized Execution Time

512KB L2 cache, 500-cycle DRAM latency, aggressive stream-based prefetcher
Data averaged over 147 memory-intensive benchmarks on a high-end x86 processor model

Mutlu et al., “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-order Processors,” HPCA 2003.

Impact ot Long-Latency Cache Misses

100
95
90
85
80

@ Non-stall (compute) time

B Full-window stall time

75
70
65

60

95

50

45

40

35

30

25 L2 Misses

20

Normalized Execution Time

15

10

5

0 .
128-entry window 2048-entry window

512KB L2 cache, 500-cycle DRAM latency, aggressive stream-based prefetcher
Data averaged over 147 memory-intensive benchmarks on a high-end x86 processor model

Mutlu et al., “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-order Processors,” HPCA 2003.

The Problem

Out-of-order execution requires large instruction windows
to tolerate today’s main memory latencies

As main memory latency increases, instruction window size
should also increase to fully tolerate the memory latency

Building a large instruction window is a challenging task
if we would like to achieve

a Low power/energy consumption (tag matching logic,
load/store buffers)

a Short cycle time (wakeup/select, redfile, bypass latencies)
a Low design and verification complexity

176

Etticient Scaling of Instruction Window Size

= One of the major research issues in out of order execution

= How to achieve the benefits of a large window with a small
one (or in a simpler way)?

= How do we efficiently tolerate memory latency with the
machinery of out-of-order execution (and a small
instruction window)?

177

Memory Level Parallelism (MLP)

Idea: Find and service multiple cache misses in parallel so
that the processor stalls only once for all misses

isolated miss y parallel miss

B "4

A < /
C v

, time

o Enables latency tolerance: overlaps latency of different misses

How to generate multiple misses?
o Out-of-order execution, multithreading, prefetching, runahead

178

Runahead Execution

A technique to obtain the memory-level parallelism benefits
of a large instruction window

When the oldest instruction is a long-latency cache miss:
o Checkpoint architectural state and enter runahead mode

In runahead mode:

a Speculatively pre-execute instructions

a The purpose of pre-execution is to generate prefetches

o L2-miss dependent instructions are marked INV and dropped
Runahead mode ends when the original miss returns

o Checkpoint is restored and normal execution resumes

Mutlu et al., “Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors,” HPCA 2003.
179

Runahead vs. A (Real) Large Window

When is one beneficial, when is the other?
Pros and cons of each

Which can tolerate floating-point operation latencies better?
Which leads to less wasted execution?

180

Generalizing the Idea

= Runahead on different long-latency operations?

181

Backup: Runahead Enhancements

Readings

Required
o Mutlu et al., "Runahead Execution”, HPCA 2003, Top Picks 2003.

Recommended

o Mutlu et al., “Efficient Runahead Execution: Power-Efficient
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top Picks
2006.

o Mutlu et al., "Address-Value Delta (AVD) Prediction,” MICRO
2005.

o Armstrong et al., "Wrong Path Events,” MICRO 2004.

183

Limitations of the Baseline Runahead Mechanism

= Energy Inefficiency
o A large number of instructions are speculatively executed
a Efficient Runahead Execution [ISCA’ 05, IEEE Micro Top Picks’ 06]

= Ineffectiveness for pointer-intensive applications
o Runahead cannot parallelize dependent L2 cache misses
a Address-Value Delta (AVD) Prediction [MICRO’ 05]

= Irresolvable branch mispredictions in runahead mode
o Cannot recover from a mispredicted L2-miss dependent branch
a Wrong Path Events [MICRO’ 04]

The Efficiency Problem ~

110% / 235‘%

100%

B % Increase in IPC
90% B % Increase in Executed Instructions

80%

70%

60%

50%

400

309

%
2%

209

100 i

0%\ - J
x
.]
©
o
>

bzip2
cra
eon
gap
gcc
gzip
mcf
art

arser
perlbmk
twolf
ammp
applu
apsi

equa
facerec
fma3d
galgel
lucas
mesa
mgrid
sixtrack
swim
AVG

wupwi

Causes of Inetficiency

Short runahead periods
Overlapping runahead periods
Useless runahead periods

Mutlu et al., “Efficient Runahead Execution: Power-Efficient
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top
Picks 2006.

Short Runahead Periods

= Processor can initiate runahead mode due to an already in-flight L2
miss generated by

o the prefetcher, wrong-path, or a previous runahead period

Load 1 Miss Load 2 Miss Load 1 Hit Load 2 Miss

commlrwaesl W W

Miss 1

= Short periods
o are less likely to generate useful L2 misses
o have high overhead due to the flush penalty at runahead exit

Overlapping Runahead Periods

Two runahead periods that execute the same instructions

Load 1 Miss Load 2 INV Load 1 Hit Load 2 Miss

Compute OVERLAP I OVERLAP |]

Miss 1 Miss 2

Second period is inefficient

Useless Runahead Periods

Periods that do not result in prefetches for normal mode

Load 1 Miss Load 1 Hit

Compute Runahead J

Miss 1

They exist due to the lack of memory-level parallelism
Mechanism to eliminate useless periods:

a Predict if a period will generate useful L2 misses

o Estimate a period to be useful if it generated an L2 miss that
cannot be captured by the instruction window

Useless period predictors are trained based on this estimation

Overall Impact on Executed Instructions

110%

100%

90%

o
S
X

Increase in Executed Instructions

238%

B baseline runahead
M all techniques

A
N Z 588 ST 8L 5ER2T5 L8882 5ES
o © > N g o E > E o g © o > 8 S O £ o I
o o6 T = e S © > © £E o = € & £ » g
o T a S
o O n s

26.5%

£16.2%

Overall Impact on IPC

Increase in IPC

110%

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

116%
B baseline runahead
M all techniques
I-— L
N 2 S 2 8§ 29 %6 § X 5 5 8 2 =23 tE 2L Q9 T T & % 3
§Eg3s5>58E 2528 £ >E28 "5 5%828 ¢ 8
< G 8 % = c © > g E o = =
o 0w)

6%
P.1%

More on Efficient Runahead Execution

= Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Techniques for Efficient Processing in Runahead Execution
Engines”
Proceedings of the 32nd International Symposium on Computer
Architecture (ISCA), pages 370-381, Madison, WI, June 2005. Slides
(ppt) Slides (pdf)
One of the 13 computer architecture papers of 2005 selected as
Top Picks by IEEE Micro.

Techniques for Efficient Processing in Runahead Execution Engines

Onur Mutlu Hyesoon Kim Yale N. Patt

Department of Electrical and Computer Engineering
University of Texas at Austin

{onur,hyesoon,patt} @ece.utexas.edu
192

https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05.pdf
http://www.cs.wisc.edu/~isca2005/
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05_talk.pdf

More on Efficient Runahead Execution

= Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Efficient Runahead Execution: Power-Efficient Memory Latency
Tolerance"
IEEE Micro, Special Issue.: Micro's Top Picks from Microarchitecture
Conferences (MICRO TOP PICKS), Vol. 26, No. 1, pages 10-20,

January/February 2006.

EFFICIENT RUNAHEAD EXECUTION:
POWER-EFFICIENT
MEMORY LATENCY TOLERANCE

193

https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_micro06.pdf
http://doi.ieeecomputersociety.org/10.1109/MM.2006.10

Limitations of the Baseline Runahead Mechanism

= Energy Inefficiency
o A large number of instructions are speculatively executed
a Efficient Runahead Execution [ISCA’ 05, IEEE Micro Top Picks’ 06]

= Ineffectiveness for pointer-intensive applications
o Runahead cannot parallelize dependent L2 cache misses
a Address-Value Delta (AVD) Prediction [MICRO’ 05]

= Irresolvable branch mispredictions in runahead mode
o Cannot recover from a mispredicted L2-miss dependent branch
a Wrong Path Events [MICRO’ 04]

The Problem: Dependent Cache Misses

Runahead: Load 2 is dependent on Load 1

@not Compute Its Add@

e

Load 1 Miss Load 2 INV Load 1 Hit Load 2 Miss

= Runahead execution cannot parallelize dependent misses
o wasted opportunity to improve performance
o wasted energy (useless pre-execution)

= Runahead performance would improve by 25% if this
limitation were ideally overcome

Parallelizing Dependent Cache Misses

= Idea: Enable the parallelization of dependent L2 cache
misses in runahead mode with a low-cost mechanism

= How: Predict the values of L2-miss address (pointer)
loads

= Address load: loads an address into its destination register,
which is later used to calculate the address of another load

= as opposed to data load

= Read:

o Mutlu et al., "Address-Value Delta (AVD) Prediction,” MICRO
2005.

Parallelizing Dependent Cache Misses

@not Compute Its Add@

Load 1 Miss Load 2 INV Load 1 Hit Load 2 Miss

Miss 1

Value Predicted> <Can Compute lts Address>

Load 1 Miss Load 2Miss Load 1 Hit Load 2 Hit Saved Speculative

5 Instructions

Saved Cycles
Miss 1

More on AVD Prediction

= Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Address-Value Delta (AVD) Prediction: Increasing the Effectiveness of
Runahead Execution by Exploiting Regular Memory Allocation Patterns”
Proceedings of the 38th International Symposium on Microarchitecture (MICRO),
pages 233-244, Barcelona, Spain, November 2005. Slides (ppt) Slides (pdf)

One of the five papers nominated for the Best Paper Award by the
Program Committee.

Address-Value Delta (AVD) Prediction: Increasing the Effectiveness of Runahead
Execution by Exploiting Regular Memory Allocation Patterns

Onur Mutlu Hyesoon Kim Yale N. Patt

Department of Electrical and Computer Engineering
University of Texas at Austin
{onur,hyesoon,patt} @ece.utexas.edu

198

https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05.pdf
http://pcsostres.ac.upc.edu/micro38/
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05_talk.pdf

More on AVD Prediction (11

= Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Address-Value Delta (AVD) Prediction: A Hardware Technique
for Efficiently Parallelizing Dependent Cache Misses"

IEEE Transactions on Computers (TC), Vol. 55, No. 12, pages 1491-1508,
December 2006.

Address-Value Delta (AVD) Prediction:
A Hardware Technique for Efficiently
Parallelizing Dependent Cache Misses

Onur Mutlu, Member, IEEE, Hyesoon Kim, Student Member, IEEE, and
Yale N. Patt, Fellow, IEEE

199

https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_tc06.pdf
http://www.computer.org/tc/

Even More on Runahead Execution

= Lecture video from Fall 2017
a https://www.youtube.com/watch?v=Kj3relihGF4

= Onur Mutluy,
"Efficient Runahead Execution Processors"
Ph.D. Dissertation, HPS Technical Report, TR-HPS-2006-007, July
2006. Slides (ppt)
Nominated for the ACM Doctoral Dissertation Award by
the University of Texas at Austin.

200

https://www.youtube.com/watch?v=Kj3relihGF4
https://people.inf.ethz.ch/omutlu/pub/mutlu_dissertation.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_phd_defense_talk.ppt

More on
Multi-Core Issues in Prefetching

201

Prefetching in Multi-Core (I)

Prefetching shared data
o Coherence misses

Prefetch efficiency is a lot more important
o Bus bandwidth more precious
o Cache space more valuable

One cores’ prefetches interfere with other cores’ requests
o Cache conflicts

o Bus contention

o DRAM bank and row buffer contention

SAFARI 202

Prefetching 1n Multi-Core (1I)

Two key issues

o How to prioritize prefetches vs. demands (of different cores)

o How to control the aggressiveness of multiple prefetchers to
achieve high overall performance

Need to coordinate the actions of independent prefetchers
for best system performance

Each prefetcher has different accuracy, coverage, timeliness

SAFARI 205

Some Ideas

Controlling prefetcher aggressiveness

o Feedback directed prefetching [HPCA'07

o | Coordinated control of multiple prefetchers [MICRO'09]
How to prioritize prefetches vs. demands from cores

o Prefetch-aware memory controllers and shared resource
management [MICRO08, ISCA"11]

Bandwidth efficient prefetching of linked data structures

o Through hardware/software cooperation (software hints)
[HPCA'09]

SAFARI 204

Motivation

B Aggressive prefetching improves
memory latency tolerance of
many applications when they run alone

B Prefetching for concurrently-executing
applications on a CMP can lead to

[0 Significant system performance degradation and
bandwidth waste

B Problem: | |
Prefetcher-caused inter-core interference

[0 Prefetches of one application contend with
prefetches and demands of other applications

205

Potential Performance

System performance improvement of ideally removing all

prefetcher-caused inter-core interference in shared resources

o))

S 22+ :

5 2+ s

c 1.8 + 1 56%

= 1.6 ¢ Z

21-‘21-;

o 1.2 ¢

- 1=

@ |

0.8
'c—:uo.s
0.4

S 0.2 1

Z'OI | | | | | | | | | | | |

E - AN ™M & MO O N 0O O OO O™ N OO < ' o

¢ $ddiffgigiiiie

S =2 =2 =2 =23

Q
=
®

Exact workload combinations can be found in [Ebrahimi et al., MICRO 2009]

206

High Interference caused by
Accurate Prefetchers

Legend:

| qarY ’
Disfand Reduat 0

Shared Cache

Hit

Requests

DRAM Being !
Serviced !

Row] :

Bank O Bank |

207

Shortcoming of Local Pretetcher Throttling

Core 0 Core 1 Core 2 Core 3
Degree: 2 Degree: 2
Share
Set 0 Bsafi 1B | Beafi 1B Dem 3 |Dem 3
Set 1 |Peefidp |Besfi(P Dem 3 [Dem 3
Set 2 PmhB |PehB | PeshB | Pesh B
Local-only prefetcher control techniques
have no mechanism to detect inter-core interference

208

Shortcoming of Local-Only
Prefetcher Control

4-core workload example: Ibm_06 + swim_00 + crafty_00 + bzip2_00

B No Prefetching
O Pref. + No Throttling
B Feedback-Directed Prefetching

1I:I HPAC

o
o

=)
o
D

o
N
|

o
N
l

Hspeedup

peedup over Alone Run

n I

Our Abproacw: Use both global and per-core feedback
to determine each prefetcher’ s aggressiveness

209

Prefetching 1n Multi-Core (1I)

Ideas for coordinating different prefetchers’ actions

o Utility-based prioritization

Prioritize prefetchers that provide the best marginal utility on
system performance

o Cost-benefit analysis
Compute cost-benefit of each prefetcher to drive prioritization

o Heuristic based methods

Global controller overrides local controller’s throttling decision
based on interference and accuracy of prefetchers

Ebrahimi et al., "Coordinated Management of Multiple Prefetchers
in Multi-Core Systems,” MICRO 2009.

210

Hierarchical Pretetcher Throttling

bohbacQaintld: goaiepis or Global go
Maxinolze deeisi de b rack of and-coptr
W@éﬁ%ﬂ%lﬁéﬂg’;‘gﬂaﬁzeeof g prefg/l(emor dCO”GO'Pr
GOE 41 RPER 5 rmance

Pref. i

+] Throttling Decision

Local
Control

-

Global control’'s goal: Keep

chercause

inter-core interference in
shared memory system

T

Final
Throttling Decision

-
Accuracy

A

Local

Core i

Throttling Decision

Global
Control

Cache Pollution
Feedback

Shared Cache

211

Hierarchical Pretetcher Throttling Example

- High accuracy
- High pollution

- High bandwidth consumed
while other cores need bandwidth

Memory Controller

Emidrce

v

Pref./ |~

High Acc (i)

Throtttiegidegision

High BW (i)

High BWNO (i)

v

__________ .| Global
Control

Local x
Control Local §
Core i |ThrotlladJpecision . High Pol (i)

Pol. Filter j

1

Shared Cache

212

HPAC Control Policies

Pol (i) Acc (i) BW (i) BWNO (i) Interference Class| Action
4 , N\
. Oér\l;\e/rs I%W N
Low BW <\ need)
Consumption|™_ (i)
4 Inaccurate bl Others’ high} , Severe interference throttle
High BW \<\ BW need | down
Causing Low Consumption|_(Others’ low
. Y ow
[PO”Utlon BW need —>
g /
Highly W >
Accurate J "
) S tort throttle
Inaccurate J » Severe interference down
4 N\
. . Others’ low
Causing High BW need [
Pollution Low BW }<\ J
i 4
Consumption Others’ high\,_>
Highly L BW need
Accurate
Others’ Iow L
High BW BW need
Consumption
P Others’ hlgh R _ throttle
BW need Severe interference down

213

HPAC Evaluation

® No Throttling |
®m Feedback-Directed Prefetching (FDP)|

® Hierarchical Prefetcher Aggressiveness Control (HPAC)]
1.1 =2

1.05

"115%

0.9 -

Normalized System Unfairness

Normalized System Performance

0.85 -

Normalized to system with no prefetching
214

More on Coordinated Prefetcher Control

= Eiman Ebrahimi, Onur Mutlu, Chang Joo Lee, and Yale N. Patt,
"Coordinated Control of Multiple Prefetchers in Multi-Core
Systems"”
Proceedings of the 42nd International Symposium on
Microarchitecture (MICRO), pages 316-326, New York, NY, December
2009. Slides (ppt)

Coordinated Control of Multiple Prefetchers
in Multi-Core Systems
Eiman Ebrahimit Onur Mutlu§ Chang Joo Leet Yale N. Patty

TDepartment of Electrical and Computer Engineering §Computer Architecture Laboratory (CALCM)
The University of Texas at Austin Carnegie Mellon University
{ebrahimi, cjlee, patt}Qece.utexas.edu onur@cmu.edu

215

https://people.inf.ethz.ch/omutlu/pub/coordinated-prefetching_micro09.pdf
http://www.microarch.org/micro42/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_micro09_talk.ppt

More on Pretfetching in Multi-Core (I)

= Chang Joo Lee, Onur Mutlu, Veynu Narasiman, and Yale N. Patt,
"Prefetch-Aware DRAM Controllers”

Proceedings of the 41st International Symposium on

Microarchitecture (MICRO), pages 200-209, Lake Como, Italy, November
2008. Slides (ppt)

Prefetch-Aware DRAM Controllers

Chang Joo Leef Onur Mutlu§ Veynu Narasiman{ Yale N. Pattf

TDepartment of Electrical and Computer Engineering : : o
The University of Texas at Austin §Microsoft Research and Carnegie Mellon University

)] onur @ { microsoft.com,cmu.edu
{cjlee, narasima, patt} @ece.utexas.edu { }

216

https://people.inf.ethz.ch/omutlu/pub/prefetch-dram_micro08.pdf
http://www.microarch.org/micro41/
https://people.inf.ethz.ch/omutlu/pub/lee_micro08_talk.ppt

Problems of Prefetch Handling

= How to schedule prefetches vs demands?

= Demand-first: Always prioritizes demands over
prefetch requests

= Demand-prefetch-equal: Always treats them the same

Neither of these perform best

Neither take into account both:

1. Non-uniform access latency of DRAM systems
2. Usefulness of prefetches

217

When Prefetches are Useful

Row Buffer

DRAM | Controller

Pref Row A

Pref Row A

- X

DemRowB|:Y

Processor needs Y, X, and Z

>

DRAM

Processor

] :
@ Execution

— Stall

Demand-first

2 row-conflicts, 1 row-hit

| 17

Miss Y Miss X Miss Z

218

When Prefetches are Useful

] :
@ Execution

— Stall

DRAM > Demand-first

Row B Row Buffer 2 row-conflicts, 1 row-hit
f oRAM | S

Processor

Dem RowB | : Y > Demand-pref-equal :

Pref Row A | :Z 2 row-hits, 1 row-conflict
oRav (D '

1
1
1
I
Processor | || PN

Processor needs Y, X, and Z | Saved Cycles

Miss Y Hit X Hit Z

219

When Prefetches are Useless

DRAM > Demand-first
Row A Row Buffer
f orav (S SR
_____________________ X Z
Processor =< >
DRAM | Controller :
Saved:Cycles

JOl Demand-first oufperforms demand-pref-equal

Dem RowB | :Y > Demand-pref-equal

Pref RowA | :Z
orRM (D
X Z

Processor,

Processor needs ONLY Y

Miss Y
220

Demand-first vs. Demand-pref-equal policy

Stream prefetcher enabled

e venama oy

{11 Demand-pref-e0

,' -‘\\' Useless prefetches:
[Y ofecnip bandwiar
Queue resources

Cache Pollution

Q
Q
S
o
c
=
gl
@
N
®©
£
o
c
O
Q

Goal 1: Adaptive Goal 2: Eliminate useless prefetches 'tch usefulness

More on Pretetching in Multi-Core (II)

= Chang Joo Lee, Veynu Narasiman, Onur Mutlu, and Yale N. Patt,

"Improving Memory Bank-Level Parallelism in the Presence of
Prefetching"

Proceedings of the 42nd International Symposium on

Microarchitecture (MICRO), pages 327-336, New York, NY, December
2009. Slides (ppt)

Improving Memory Bank-Level Parallelism
in the Presence of Prefetching

Chang Joo Leet Veynu Narasimant Onur Mutlu§ Yale N. Pattt

TDepartment of Electrical and Computer Engineering §Computer Architecture Laboratory (CALCM)
The University of Texas at Austin Carnegie Mellon University

{cjlee, narasima, patt}@ece.utexas.edu onur@cmu.edu

222

https://people.inf.ethz.ch/omutlu/pub/dram-blp_micro09.pdf
http://www.microarch.org/micro41/
https://people.inf.ethz.ch/omutlu/pub/lee_micro09_talk.ppt

More on Pretetching in Multi-Core (111)

= Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Prefetch-Aware Shared Resource Management for Multi-Core
Systems"”
Proceedings of the 38th International Symposium on Computer
Architecture (ISCA), San Jose, CA, June 2011. Slides (pptx)

Prefetch-Aware Shared-Resource Management
for Multi-Core Systems

Eiman Ebrahimiy Chang Joo Leett Onur Mutlu§ Yale N. Pattt

fHPS Research Group tIntel Corporation §Carnegie Mellon University

The University of Texas at Austin . '
{ebrahimi, patt}@hps.utexas.edu chang.joo.lee@intel.com onur@cmu.edu

223

https://people.inf.ethz.ch/omutlu/pub/prefetchaware-shared-resources_isca11.pdf
http://isca2011.umaine.edu/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_isca11_talk.pptx

More on Pretetching in Multi-Core (IV)

= Vivek Seshadri, Samihan Yedkar, Hongyi Xin, Onur Mutlu, Phillip P. Gibbons,
Michael A. Kozuch, and Todd C. Mowry,
"Mitigating Prefetcher-Caused Pollution using Informed Caching Policies
for Prefetched Blocks"
ACM Transactions on Architecture and Code Optimization (TACO), Vol. 11, No. 4,
January 2015.
Presented at the 10th HIPEAC Conference, Amsterdam, Netherlands, January
2015.

[Slides (pptx) (pdf)]
[Source Code]

Mitigating Prefetcher-Caused Pollution Using Informed Caching
Policies for Prefetched Blocks

VIVEK SESHADRI, SAMIHAN YEDKAR, HONGYI XIN, and ONUR MUTLU,
Carnegie Mellon University

PHILLIP B. GIBBONS and MICHAEL A. KOZUCH, Intel Pittsburgh

TODD C. MOWRY, Carnegie Mellon University

224

https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_taco15.pdf
http://taco.acm.org/
https://www.hipeac.net/2015/amsterdam/
https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_seshadri_hipeac15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_seshadri_hipeac15-talk.pdf
https://github.com/CMU-SAFARI/memsim

Caching Policies for Prefetched Blocks

Problem: Existing caching policies for prefetched
blocks result in significant cache pollution

Cache Mi

ion and promotion

Are these inserti
policies good for prefetched b|ocks?

MRU LRU

Cache Set

Informed Caching Policies for Prefetched Blocks 225

Prefetch Usage Experiment

Monitor L2 misses Prefetch into L3

Off-Chip

L Memory

CPU >
1 Prefetcher

Classify prefetched blocks into three categories

1. Blocks that are unused
2. Blocks that are used exactly once before evicted from cache

3. Blocks that are used more than once before evicted from cache

Informed Caching Policies for Prefetched Blocks 226

Usage Distribution of Prefetched Blocks

100%
90%
80%
70% Typically, large data structures
604 benefit repeatedly from
prefetching. Blocks of such data

prefetched blocks are
used only once!
UM Y

structures are unlikely to be
used more than once!

507
409
309
20%

Fraction of Prefetched Blocks

10% [] []
0o Many applications have a
significant fraction of
.oeé\é\oézg\)éonQ@.\\g’b\)#@ (O& @f, 4(7
& FTFTS L V&S

| inaccurate prefetches. $ S
Unce B Used Once H Unused)

Informed Caching Policies for Prefetched Blocks
227

Shortcoming of Traditional Promotion Policy

Promote to MRU

" ﬁThis is a bad policy. The block is

]

l [' ache.
J kunllkely to be reused in the >

’ L
! I
' 1

state-of-the-art

i< nroblem exists with
ety g., DRRIP, DIP)J

replacement policies (e.
—CdCre Set

Informed Caching Policies for Prefetched Blocks 228

Demotion of Prefetched Block

Demote to LRU

?nsures that the block is evicted fromj

the cache quickly after it is used!
Only requires the cache to distinguish between \
prefetched blocks and demand-fetched blocks. J
_
Cache Set

Informed Caching Policies for Prefetched Blocks
229

Cache Insertion Policy for Prefetched Blocks

Good (Accurate prefetch) Good (Inaccurate prefetch)
Bad (Inaccurate prefetch) Bad (accurate prefetch)

Prefetch Miss:
.-~ Insertion Policy? -

Cache Set

Informed Caching Policies for Prefetched Blocks 230

Predicting Usefulness of Prefetch

Fraction of Useful Prefetches

Cache Set

Informed Caching Policies for Prefetched Blocks 231

Prefetching in GPUs

= Adwait Jog, Onur Kayiran, Asit K. Mishra, Mahmut T. Kandemir, Onur
Mutlu, Ravishankar Iyer, and Chita R. Das,
"Orchestrated Scheduling and Prefetching for GPGPUs"
Proceedings of the 40th International Symposium on Computer
Architecture (ISCA), Tel-Aviv, Israel, June 2013. Slides (pptx) Slides

(pdf)

Orchestrated Scheduling and Prefetching for GPGPUs

Adwait Jog"* Onur Kayiran® Asit K. Mishra® Mahmut T. Kandemirt
Onur Mutlu* Ravishankar lyer! Chita R. Dast
"The Pennsylvania State University * Carnegie Mellon University SIntel Labs
University Park, PA 16802 Pittsburgh, PA 15213 Hillsboro, OR 97124
{adwait, onur, kandemir, das}@cse.psu.edu onur@cmu.edu {asit.k.mishra, ravishankar.iyer}@intel.com

232

https://people.inf.ethz.ch/omutlu/pub/orchestrated-gpgpu-scheduling-prefetching_isca13.pdf
http://isca2013.eew.technion.ac.il/
https://people.inf.ethz.ch/omutlu/pub/jog_isca13_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/jog_isca13_talk.pdf

Address-Value Delta Prediction

The Problem: Dependent Cache Misses

Runahead: Load 2 is dependent on Load 1

@not Compute Its Add@

e

Load 1 Miss Load 2 INV Load 1 Hit Load 2 Miss

= Runahead execution cannot parallelize dependent misses
o wasted opportunity to improve performance
o wasted energy (useless pre-execution)

= Runahead performance would improve by 25% if this
limitation were ideally overcome

Parallelizing Dependent Cache Misses

= Idea: Enable the parallelization of dependent L2 cache
misses in runahead mode with a low-cost mechanism

= How: Predict the values of L2-miss address (pointer)
loads

= Address load: loads an address into its destination register,
which is later used to calculate the address of another load

= as opposed to data load

= Read:

o Mutlu et al., "Address-Value Delta (AVD) Prediction,” MICRO
2005.

Parallelizing Dependent Cache Misses

@not Compute Its Add@

Load 1 Miss Load 2 INV Load 1 Hit Load 2 Miss

Miss 1

Value Predicted> <Can Compute lts Address>

Load 1 Miss Load 2Miss Load 1 Hit Load 2 Hit Saved Speculative

5 Instructions

Saved Cycles
Miss 1

AVD Prediction [MICRO’ 05]

Address-value delta (AVD) of a load instruction defined as:
AVD = Effective Address of Load — Data Value of Load

For some address loads, AVD is stable

An AVD predictor keeps track of the AVDs of address loads

When a load is an L2 miss in runahead mode, AVD
predictor is consulted

If the predictor returns a stable (confident) AVD for that
load, the value of the load is predicted

Predicted Value = Effective Address — Predicted AVD

Why Do Stable AVDs Occur?

Regularity in the way data structures are
o allocated in memory AND
o traversed

Two types of loads can have stable AVDs
o Traversal address loads
Produce addresses consumed by address loads

o Leaf address loads
Produce addresses consumed by data loads

Traversal Address L.oads

Regularly-allocated linked list: A traversal address load loads the

pointer to next node:

A node = node->next
,/A+k AVD = Effective Addr — Data Value
/" \ /" \
Effective Addr | Data Value; AVD
A+Zk A A+k [k
+ + -
A+3K A+k A+2k k
A+2k A+3k -k
U U

Striding Stable AVD
data value

Leaf Address Loads

Sorted dictionary in parser: Dictionary looked up for an input word.
NoFles point to strings (words) : A leaf address load loads the pointer to
String and node allocated consecutively . _

the string of each node:

lookup (node, input) { // ...
lA+k ptr_str = node->string;

/...
e B e

m = check match(ptr_str, input);

C+k !
B 75[\ AVD = Effective Addr — Data Value
D4k ek FAk \G+k Effective Addr | Ddta Vaiue /AvD |
A+k A\l
ClDD CSE ClDF <i>G C+k c k
F+k F/\ k)
No stride! Stable AVD

Identitying Address L.oads in Hardware

Insight:

o If the AVD is too large, the value that is loaded is likely not an
address

Only keep track of loads that satisfy:
-MaxAVD = AVD = +MaxAVD

This identification mechanism eliminates many loads from
consideration for prediction

o No need to value- predict the loads that will not generate
addresses

o Enables the predictor to be small

AVD Prediction 2471

An Implementable AVD Predictor

Set-associative prediction table
Prediction table entry consists of

o Tag (Program Counter of the load)
o Last AVD seen for the load

o Confidence counter for the recorded AVD

Updated when an address load is retired in normal mode
Accessed when a load misses in L2 cache in runahead mode

Recovery-free: No need to recover the state of the processor
or the predictor on misprediction

o Runahead mode is purely speculative

242

AVD Update Logic

Effective Address Data Value

Y Y
—
computed &Y D = Effective Addt — Data Value
D= <= l
~Max&VD? | | MaxaVD? o] Ui/t
Logic

P

valid AYD?

1

'

J!

Tag

Conf

AYD

1

PC of Retired Load

245

AVD Prediction Logic

Predicted?
(not INV?)

$ Predicted Value

= Effective Addr— AVYD

LA

Tag

Conf

AVD

-

Program Counter of
L2—miss Load

Effective Address of
L2—miss Load

AVD Prediction

244

1ction

Performance of AVD Pred

runahead

|
. 9 o K~k © v & 0O o - ©Q
- O O o o o o o o o o

SuUOI}oNJSU| PAJN29XT puk awi] UOINI9XT PazIjew.IoN

More on AVD Prediction

= Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Address-Value Delta (AVD) Prediction: Increasing the
Effectiveness of Runahead Execution by Exploiting Reqular
Memory Allocation Patterns"”
Proceedings of the 38th International Symposium on
Microarchitecture (MICRO), pages 233-244, Barcelona, Spain, November
2005. Slides (ppt)Slides (pdf)

Address-Value Delta (AVD) Prediction: Increasing the Effectiveness of Runahead
Execution by Exploiting Regular Memory Allocation Patterns

Onur Mutlu Hyesoon Kim Yale N. Patt

Department of Electrical and Computer Engineering
University of Texas at Austin
{onur,hyesoon,patt} @ece.utexas.edu

246

https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05.pdf
http://pcsostres.ac.upc.edu/micro38/
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05_talk.pdf

More on AVD Prediction (11

= Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Address-Value Delta (AVD) Prediction: A Hardware Technique
for Efficiently Parallelizing Dependent Cache Misses"

IEEE Transactions on Computers (TC), Vol. 55, No. 12, pages 1491-1508,
December 2006.

Address-Value Delta (AVD) Prediction:
A Hardware Technique for Efficiently
Parallelizing Dependent Cache Misses

Onur Mutlu, Member, IEEE, Hyesoon Kim, Student Member, IEEE, and
Yale N. Patt, Fellow, IEEE

247

https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_tc06.pdf
http://www.computer.org/tc/

Wrong Path Events

An Observation and A Question

 In an out-of-order processor, some
Instructions are executed on the
mispredicted path (wrong-path instructions).

* |s the behavior of wrong-path instructions
different from the behavior of correct-path
iInstructions?

— If so, we can use the difference in behavior for
early misprediction detection and recovery.

What is a Wrong Path Event?

An instance of illegal or unusual behavior
that is more likely to occur on the wrong
path than on the correct path.

Wrong Path Event = WPE
Probability (wrong path | WPE) ~ 1

Why Does a WPE Occur?

* A wrong-path instruction may be executed
before the mispredicted branch is
executed.

— Because the mispredicted branch may be
dependent on a long-latency instruction.

* The wrong-path instruction may consume
a data value that is not properly initialized.

A N L W N =

WPE Example from eon:
NULL pointer dereference

: for (inti=0; i< length(); i++) {

structure *ptr = array|[i];
if (ptr->x) {
// --.

Beginning of the loop

Array boundary
i=0
\ 4
Array of pointers
to structs x8ABCDO XEFF8BO0 x0 x0
............ } }
1 : for (inti=0; i< length(); i++) {
2 : structure *ptr = arrayl[i];
3: if (ptr->x) {
4 : // ...
5: }
6

HE

First iteration

Array boundary
=0
ptr = x8ABCDO
v
Array of pointers
to structs x8ABCDO | xEFF8BO x0
............ } }

: for (int i=0; i< length(); i++) {
structure *ptr = arrayl[i];
if (ptr->x) {
//-..
b

U b W N =

Y

First iteration

Array boundary
i=0
ptr = x8ABCDO
v
Array of pointers
to structs x8ABCDO | xEFF8BO x0
*ptr
............ }

: for (int i=0; i< length(); i++) {
structure *ptr = arrayl[i];
if (ptr->x) {
//-..
b

U b W N =

Y

Loop branch correctly predicted

Array boundary
i =1
v
Array of pointers
to structs x8ABCDO | xEFF8BO x0 x0
............ }

1 : for (inti=0; i< length(); i++) {
arrayl[i];

Second iteration

Array boundary

=1
ptr = xEFF8BO

Array of pointers

to structs x0

e

1 : for (inti=0; i< length(); i++) {
2 structure *ptr = array[i];

3 if (ptr->x) {

4 : Y7

5: >

6 : }

Second iteration

Array boundary

| =1
ptr = xEFF8B0 l

Array of pointers
to structs

L L--.}

: for (int i=0; i< length(); i++) {
structure *ptr = array[i];
if (ptr->x) {
// ..
¥

U b W N =

: Y

Loop exit branch mispredicted

Array boundary

l | =2
Array of pointers
to structs x0 x0

») »)
r (inti ;i< length(); i++) {
structure *p array[i];
if (ptr->x) {
// ..
¥

Third iteration on wrong path

Array boundary

| =2
ptr=20
Array of pointers
to structs x0

» »
r (inti ; i< length(); i++) {
structure *p array[i];
if (ptr->x) {
// ..
¥

Wrong Path Event

Array boundary

Array of pointers
to structs

: for (int i=0; i< length(); i++) {
siucture iy = array il NULL pointer dereference!
// ...

¥

U b W N =

P}

Types of WPEs

* Due to memory instructions
— NULL pointer dereference
— Write to read-only page
— Unaligned access (illegal in the Alpha ISA)
— Access to an address out of segment range
— Data access to code segment
— Multiple concurrent TLB misses

Types of WPEs (continued)

 Due to control-flow instructions

— Misprediction under misprediction

* If three branches are executed and resolved as mispredicts
while there are older unresolved branches in the processor, it
is almost certain that one of the older unresolved branches is
mispredicted.

— Return address stack underflow
— Unaligned instruction fetch address (illegal in Alpha)

 Due to arithmetic instructions

— Some arithmetic exceptions
 e.g. Divide by zero

Two Empirical Questions

1. How often do WPEs occur?

2. When do WPEs occur on the wrong path?

More on Wrong Path Events

= David N. Armstrong, Hyesoon Kim, Onur Mutlu, and Yale N. Patt,
"Wrong Path Events: Exploiting Unusual and Illegal Program
Behavior for Early Misprediction Detection and Recovery"
Proceeedings of the 3/th International Symposium on
Microarchitecture (MICRO), pages 119-128, Portland, OR, December
2004. Slides (pdf)Slides (ppt)

Wrong Path Events: Exploiting Unusual and Illegal Program Behavior for Early
Misprediction Detection and Recovery

David N. Armstrong Hyesoon Kim Onur Mutlu Yale N. Patt

Department of Electrical and Computer Engineering
The University of Texas at Austin
{dna,hyesoon,onur,patt} @ece.utexas.edu

265

https://people.inf.ethz.ch/omutlu/pub/armstrong_micro04.pdf
http://www.microarch.org/micro37/
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro04_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro04_talk.ppt

Why Is This Important?

A modern processor spends significant amount of time
fetching/executing instructions on the wrong path

100
95 == % (cycles on wrong path / total cycles)

90 % (fetched wrong path insts / all fetched insts)
85 == % (exec wrong path non-mem insts / all exec insts)

32 ra % (exec wrong path mem insts / all exec insts)

70
65
60
551
50
45
40
354
30
254

8 I I
R » I
3: | | 4. | | | |

Percentage (%)

SaadRRREER

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf amean

Fig. 1. Percentage of fetch cycles spent on the wrong path, percentage
of instructions fetched on the wrong path, and percentage of instructions
(memory and nonmemory) executed on the wrong path in the baseline
processor for SPEC 2000 integer benchmarks. 266

A Lot of Time Spent on The Wrong Path

= A runahead processor, much more so...

100
95 == % (cycles on wrong path / all execution cycles)

90 ' % (fetched wrong path insts / all fetched insts)
85 == % (exec wrong path non-mem insts / all exec insts)
0 ra % (exec wrong path mem insts / all exec insts)

5 -

DGR LLR

70
gzip vpr gcc mef crafty parser eon perlbmk gap vortex bzip2 twolf amean

65
60
55 -
50 -
45
40
35-
30
25
20
15-
10

Percentage (%)

ST

Fig. 20. Percentage of total cycles spent on the wrong path, percentage
of instructions fetched on the wrong path, and percentage of instructions
~ (memory and nonmemory) executed on the wrong path in the runahead

processor. 267

Is Wrong-Path Execution Useless/Useful/Harmful?

4 WRONG PATH: TOo MODEL OR NOT TO MODEL

In this section, we measure the error in IPC if wrong-path
memory references are not simulated. We also evaluate the
overall effect of wrong-path memory references on the IPC
(retired Instructions Per Cycle) performance of a processor.

1.

How important is it to correctly model wrong-path
memory references? What is the error in the
predicted performance if wrong-path references are
not modeled?

Do wrong-path memory references affect perfor-
mance positively or negatively? What is the relative
significance on performance of prefetching, band-
width consumption, and pollution caused by wrong-
path references?

What kind of code structures lead to the positive
effects of wrong-path memory references?

How do wrong-path memory references affect the
performance of a runahead execution processor [7],
[18] which implements an aggressive form of
speculative execution?

268

Wrong Path Is Often Usetul for Performance

4

- N W
|

o
|

== 250-cycle memory latency
== 500-cycle memory latency
= | 000-cycle memory latency

Percent IPC Error (%)

' ' ' | ' | ' ' '
O 0 N O W B W N -

[
=

gzip vpr gcc mef crafty parser eon perlbmk gap vortex bzip2 twolf hmean

Fig. 7. Error in the IPC of the baseline processor with a stream
prefetcher for three different memory latencies if wrong-path memory
references are not simulated.

269

More So In Runahead Execution

== wrong-path references correctly modeled
== wrong-path references not modeled

IPC Improvement due to Runahead Execution (%)
(o
o

0- T e
gzip vpr gece mef crafty parser eon perlbmk gap vortex bzip2 twolf hmean

Fig. 19. IPC improvement of adding runahead execution to the baseline
processor if wrong-path memory references are or are not modeled.

270

Why 1s Wrong Path Usetul? (I)

= Control-independence: e.g., wrong-path execution of future
loop iterations

1 : arc_t *arc; // array of arc_t structures

2 : /[initialize arc (arc = ...)

B

4. for (; arc < stop_arcs; arc += size) {

= § if (arc—>ident > 0) { // frequently mispredicted br.
03 // function calls and

i // operations on the structure pointed to by arc

8 : | .

9. }

10: }

Fig. 16. An example from mcf showing wrong-path prefetching for later
loop iterations.

271

Why 1s Wrong Path Usetul? (I1I)

0NN L B W=

O

10:
11:
12:
13:
14:
15:
16:
W
18:

1 = min; r = max;
cut = perm|[(long)((I+r) / 2)]->abs_cost;

do {
while(perm[l]—>abs_cost > cut)
1++;
while(cut > perm[r]—>abs_cost)
=

if(1<r) {
xchange = perm([l];
perm[l] = perm[r];
perm|[r| = xchange;
}
if(1<=r1) {
l++; r——;
}

} while(1<=r1);

Fig. 17. An example from mcf showing wrong-path prefetching between

different loops.

272

Why 1s Wrong Path Usetul? (I11)

= Same data used in different control flow paths

00O\ B W IN =—

O

.
.

10:
11:
12:
Iy
14:
b
16:
5

node_t *node;
// initialize node
i

while (node) {

if (node—>orientation == UP) { // mispredicted branch
node—>potential = node—>basic_arc—>cost
+ node—>pred—>potential;
}else { /* =DOWN */
node—>potential = node—>pred—>potential
— node—>basic_arc—>cost;
/) -
}
/l control—flow independent point (re—convergent point)
node = node—>child;

}

Fig. 18. An example from mcf showing wrong-path prefetching in
control-flow hammocks.

273

More on Wrong Path Execution (I)

= Onur Mutlu, Hyesoon Kim, David N. Armstrong, and Yale N. Patt,
"Understanding the Effects of Wrong-Path Memory References on
Processor Performance”
Proceedings of the 3rd Workshop on Memory Performance
Issues (WMPI), pages 56-64, Munchen, Germany, June 2004. Slides

(pdf)

Understanding The Effects of Wrong-Path Memory
References on Processor Performance

Onur Mutlu Hyesoon Kim David N. Armstrong Yale N. Patt

Department of Electrical and Computer Engineering
The University of Texas at Austin
{onur,hyesoon,dna,patt}@ece.utexas.edu

274

https://people.inf.ethz.ch/omutlu/pub/mutlu_wmpi04.pdf
http://doi.acm.org/10.1145/1054943.1054951
https://people.inf.ethz.ch/omutlu/pub/mutlu_wmpi04_talk.pdf

More on Wrong Path Execution (1)

= Onur Mutlu, Hyesoon Kim, David N. Armstrong, and Yale N. Patt,
"An Analysis of the Performance Impact of Wrong-Path Memory
References on Out-of-Order and Runahead Execution Processors"

[EEE Transactions on Computers (TC), Vol. 54, No. 12, pages 1556-1571,
December 2005.

An Analysis of the Performance Impact of
Wrong-Path Memory References on Out-of-
Order and Runahead Execution Processors

Onur Mutlu, Student Member, IEEE, Hyesoon Kim, Student Member, IEEE,
David N. Armstrong, and Yale N. Patt, Fellow, IEEE

275

https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_tc05.pdf
http://doi.ieeecomputersociety.org/10.1109/TC.2005.190

What If ...

The system learned from wrong-path execution and used
that learning for better execution of the program/system?

An open research problem...

276

