
Computer Architecture
Lecture 16: Prefetching

Prof. Onur Mutlu
ETH Zürich
Fall 2022

18 November 2022

The (Memory) Latency Problem

1

10

100

1999 2003 2006 2008 2011 2013 2014 2015 2016 2017

D
R

A
M

 Im
pr

ov
em

en
t

(lo
g)

Capacity Bandwidth Latency

Recall: Memory Latency Lags Behind

128x

20x

1.3x

Memory latency remains almost constant

DRAM Latency Is Critical for Performance

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15;
Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]

In-memory Databases
[Mao+, EuroSys’12;
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

DRAM Latency Is Critical for Performance

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15;
Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]

In-memory Databases
[Mao+, EuroSys’12;
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

Long memory latency → performance bottleneck

New DRAM Types Increase Latency!
n Saugata Ghose, Tianshi Li, Nastaran Hajinazar, Damla Senol Cali, and Onur Mutlu,

"Demystifying Workload–DRAM Interactions: An Experimental Study"
Proceedings of the ACM International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS), Phoenix, AZ, USA, June 2019.
[Preliminary arXiv Version]
[Abstract]
[Slides (pptx) (pdf)]
[MemBen Benchmark Suite]
[Source Code for GPGPUSim-Ramulator]
[Source Code for Ramulator modeling Hybrid Memory Cube (HMC)]

6

https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19_pomacs19.pdf
http://www.sigmetrics.org/sigmetrics2019/
https://arxiv.org/pdf/1902.07609.pdf
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-talk.pdf
https://github.com/CMU-SAFARI/MemBen
https://github.com/CMU-SAFARI/GPGPUSim-Ramulator
https://github.com/CMU-SAFARI/ramulator/tree/hmc

Latency Reduction,
Latency Tolerance, and

Latency Hiding Techniques

Latency Reduction, Tolerance and Hiding

n Fundamentally reduce latency as much as possible
q Data-centric approach
q See Lectures 8-9: Memory Latency
q https://www.youtube.com/watch?v=-jwkVSczPCw&list=PL5Q2soXY2Zi-cAls3cyauNzM7-74Eq31O&index=8
q https://www.youtube.com/watch?v=pJ3mdIvMOY4&list=PL5Q2soXY2Zi-cAls3cyauNzM7-74Eq31O&index=9

n Hide latency seen by the processor
q Processor-centric approach
q Caching, Prefetching

n Tolerate (or, amortize) latency seen by the processor
q Processor-centric approach
q Multithreading, Out-of-order Execution, Runahead Execution

8

https://www.youtube.com/watch?v=-jwkVSczPCw&list=PL5Q2soXY2Zi-cAls3cyauNzM7-74Eq31O&index=8
https://www.youtube.com/watch?v=pJ3mdIvMOY4&list=PL5Q2soXY2Zi-cAls3cyauNzM7-74Eq31O&index=9

9

Conventional Latency Tolerance Techniques

n Caching [initially by Wilkes, 1965]
q Widely used, simple, effective, but inefficient, passive
q Not all applications/phases exhibit temporal or spatial locality

n Prefetching [initially in IBM 360/91, 1967]
q Works well for regular memory access patterns
q Prefetching irregular access patterns is difficult, inaccurate, and hardware-

intensive

n Multithreading [initially in CDC 6600, 1964]
q Works well if there are multiple threads
q Improving single thread performance using multithreading hardware is an

ongoing research effort

n Out-of-order execution [initially by Tomasulo, 1967]
q Tolerates cache misses that cannot be prefetched
q Requires extensive hardware resources for tolerating long latencies

Lectures on Latency Tolerance & Hiding
n Caching

q http://www.youtube.com/watch?v=mZ7CPJKzwfM
q http://www.youtube.com/watch?v=TsxQPLMXT60
q http://www.youtube.com/watch?v=OUk96_Bz708
q And more here: https://safari.ethz.ch/architecture/fall2018/doku.php?id=schedule

n Prefetching
q Today
q Also: http://www.youtube.com/watch?v=CLi04cG9aQ8

n Multithreading
q http://www.youtube.com/watch?v=bu5dxKTvQVs
q https://www.youtube.com/watch?v=iqi9wFqFiNU
q https://www.youtube.com/watch?v=e8lfl6MbILg
q https://www.youtube.com/watch?v=7vkDpZ1-hHM

n Out-of-order Execution, Runahead Execution
q http://www.youtube.com/watch?v=EdYAKfx9JEA
q http://www.youtube.com/watch?v=WExCvQAuTxo
q http://www.youtube.com/watch?v=Kj3relihGF4

10

http://www.youtube.com/watch?v=mZ7CPJKzwfM
http://www.youtube.com/watch?v=TsxQPLMXT60
http://www.youtube.com/watch?v=OUk96_Bz708
https://safari.ethz.ch/architecture/fall2018/doku.php?id=schedule
http://www.youtube.com/watch?v=CLi04cG9aQ8
http://www.youtube.com/watch?v=bu5dxKTvQVs
https://www.youtube.com/watch?v=iqi9wFqFiNU
https://www.youtube.com/watch?v=e8lfl6MbILg
https://www.youtube.com/watch?v=7vkDpZ1-hHM
http://www.youtube.com/watch?v=EdYAKfx9JEA
http://www.youtube.com/watch?v=WExCvQAuTxo
http://www.youtube.com/watch?v=Kj3relihGF4

Prefetching

Prefetching
n Idea: Fetch the data before it is needed (i.e. pre-fetch) by

the program

n Why?
q Memory latency is high. If we can prefetch accurately and

early enough, we can reduce/eliminate that latency.
q Can eliminate compulsory cache misses
q Can it eliminate all cache misses? Capacity, conflict?

Coherence?

n Involves predicting which address will be needed in the
future
q Works if programs have predictable miss address patterns

12

Prefetching and Correctness
n Does a misprediction in prefetching affect correctness?

n No, prefetched data at a “mispredicted” address is simply
not used

n There is no need for state recovery
q In contrast to branch misprediction or value misprediction

13

Basics
n In modern systems, prefetching is usually done at cache

block granularity

n Prefetching is a technique that can reduce both
q Miss rate
q Miss latency

n Prefetching can be done by
q Hardware
q Compiler
q Programmer
q System

14

How a HW Prefetcher Fits in the Memory System

15Mutlu+, “Using the First-Level Caches as Filters to Reduce the Pollution Caused by Speculative Memory References”, IJPP 2005.

Prefetching: The Four Questions
n What

q What addresses to prefetch (i.e., address prediction algorithm)

n When
q When to initiate a prefetch request (early, late, on time)

n Where
q Where to place the prefetched data (caches, separate buffer)
q Where to place the prefetcher (which level in memory hierarchy)

n How
q How does the prefetcher operate and who operates it (software,

hardware, execution/thread-based, cooperative, hybrid)
16

Challenge in Prefetching: What
n What addresses to prefetch

q Prefetching useless data wastes resources
n Memory bandwidth
n Cache or prefetch buffer space
n Energy consumption
n These could all be utilized by demand requests or more accurate

prefetch requests
q Accurate prediction of addresses to prefetch is important

n Prefetch accuracy = used prefetches / sent prefetches
n How do we know what to prefetch?

q Predict based on past access patterns
q Use the compiler’s/programmer’s knowledge of data structures

n Prefetching algorithm determines what to prefetch
17

Challenges in Prefetching: When
n When to initiate a prefetch request

q Prefetching too early
n Prefetched data might not be used before it is evicted from

storage
q Prefetching too late

n Might not hide the whole memory latency

n When a data item is prefetched affects the timeliness of the
prefetcher

n Prefetcher can be made more timely by
q Making it more aggressive: try to stay far ahead of the

processor’s demand access stream (hardware)
q Moving the prefetch instructions earlier in the code (software)

18

Challenges in Prefetching: Where (I)
n Where to place the prefetched data

q In cache
+ Simple design, no need for separate buffers
-- Can evict useful demand data à cache pollution

q In a separate prefetch buffer
+ Demand data protected from prefetches à no cache pollution
-- More complex memory system design

- Where to place the prefetch buffer
- When to access the prefetch buffer (parallel vs. serial with cache)
- When to move the data from the prefetch buffer to cache
- How to size the prefetch buffer
- Keeping the prefetch buffer coherent

n Many modern systems place prefetched data into the cache
q Many Intel, AMD, IBM systems and more …

19

Challenges in Prefetching: Where (II)
n Which level of cache to prefetch into?

q Memory to L2, memory to L1. Advantages/disadvantages?
q L2 to L1? (a separate prefetcher between levels)

n Where to place the prefetched data in the cache?
q Do we treat prefetched blocks the same as demand-fetched

blocks?
q Prefetched blocks are not known to be needed

n With LRU, a demand block is placed into the MRU position

n Do we skew the replacement policy such that it favors the
demand-fetched blocks?
q E.g., place all prefetches into the LRU position in a way?

20

Challenges in Prefetching: Where (III)
n Where to place the hardware prefetcher in the memory

hierarchy?
q In other words, what access patterns does the prefetcher see?
q L1 hits and misses
q L1 misses only
q L2 misses only

n Seeing a more complete access pattern:
+ Potentially better accuracy and coverage in prefetching
-- Prefetcher needs to examine more requests (bandwidth

intensive, more ports into the prefetcher?)

21

Recall: A Modern Memory Hierarchy

22

Register File
32 words, sub-nsec

L1 cache
~10s of KB, ~nsec

L2 cache
100s of KB ~ few MB, many nsec

L3 cache,
many MBs, even more nsec

Main memory (DRAM),
Many GBs, ~100 nsec

Swap Disk
~100 GB or few TB, ~10s of usec-msec

manual/compiler
register spilling

automatic
demand
paging

automatic
HW cache
management

Memory
Abstraction

Recall: Hybrid Main Memory Extends the Hierarchy

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best
Paper Award.

CPU
DRAM
Ctrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
CtrlDRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation & movement
to achieve the best of multiple technologies

Recall: Remote Memory in Large Servers
n Memory hierarchy extends beyond a single server
n This enables even higher memory capacity

q Needed to support modern data-intensive workloads

24Calciu+, “Rethinking Software Runtimes for Disaggregated Memory”, ASPLOS 2021.

Local memory
(and hierarchy)

Remote memory

Compute node
(Local)

Memory node
(Remote)

Low-latency
network

Challenges in Prefetching: How
n Software prefetching

q ISA provides prefetch instructions
q Programmer or compiler inserts prefetch instructions (effort)
q Usually works well only for “regular access patterns”

n Hardware prefetching
q Specialized hardware monitors memory accesses
q Memorizes, finds, learns address strides/patterns/correlations
q Generates prefetch addresses automatically

n Execution-based prefetchers
q A “thread” is executed to prefetch data for the main program
q Can be generated by either software/programmer or hardware

25

Outline of Prefetching Lecture(s)
n Why prefetch? Why could/does it work?
n The four questions

q What (to prefetch), when, where, how
n Software prefetching
n Hardware prefetching
n Execution-based prefetching
n Prefetching performance

q Coverage, accuracy, timeliness
q Bandwidth consumption, cache pollution

n Prefetcher throttling
n Issues in multi-core

26

Software Prefetching (I)
n Idea: Compiler/programmer places prefetch instructions into

appropriate places in code

n Mowry et al., “Design and Evaluation of a Compiler Algorithm for
Prefetching,” ASPLOS 1992.

n Prefetch instructions prefetch data into caches
n Compiler or programmer can insert such instructions into the

program

27

X86 PREFETCH Instruction

28

microarchitecture
dependent
specification

different instructions
for different cache
levels

Software Prefetching (II)

n Can work for very regular array-based access patterns. Issues:
-- Prefetch instructions take up processing/execution bandwidth
q How early to prefetch? Determining this is difficult

-- Prefetch distance depends on hardware implementation (memory latency,
cache size, time between loop iterations) à portability?

-- Going too far back in code reduces accuracy (branches in between)
q Need “special” prefetch instructions in ISA?

n Alpha load into register 31 treated as prefetch (r31==0)
n PowerPC dcbt (data cache block touch) instruction

-- Not easy to do for pointer-based data structures

29

for (i=0; i<N; i++) {
__prefetch(a[i+8]);
__prefetch(b[i+8]);
sum += a[i]*b[i];

}

while (p) {
__prefetch(pànext);
work(pàdata);
p = pànext;

}

while (p) {
__prefetch(pànextànextànext);
work(pàdata);
p = pànext;

}
Which one is better?

Software Prefetching (III)
n Where should a compiler insert prefetches?

q Prefetch for every load access?
n Too bandwidth intensive (both memory and execution bandwidth)

q Profile the code and determine loads that are likely to miss
n What if profile input set is not representative?

q How far ahead before the miss should the prefetch be inserted?
n Profile and determine probability of use for various prefetch

distances from the miss
q What if profile input set is not representative?
q Usually need to insert a prefetch far in advance to cover 100s of cycles

of main memory latency à reduced accuracy

30

Hardware Prefetching (I)
n Idea: Specialized hardware observes load/store access

patterns and prefetches data based on past access behavior

n Tradeoffs:
+ Can be tuned to system implementation
+ Does not waste instruction execution bandwidth
-- More hardware complexity to detect patterns

- Software can be more efficient in some cases

31

Next-Line Prefetchers
n Simplest form of hardware prefetching: always prefetch next

N cache lines after a demand access (or a demand miss)
q Next-line prefetcher (or next sequential prefetcher)

q Tradeoffs:
+ Simple to implement. No need for sophisticated pattern detection
+ Works well for sequential/streaming access patterns (instructions?)
-- Can waste bandwidth with irregular patterns
-- And, even regular patterns:

- What is the prefetch accuracy if access stride = 2 and N = 1?
- What if the program is traversing memory from higher to lower
addresses?
- Also prefetch “previous” N cache lines?

32

Stride Prefetchers
n Consider the following strided memory access pattern:

q A, A+N, A+2N, A+3N, A+4N…
q Stride = N

n Idea: Record the stride between consecutive memory
accesses; if stable, use it to predict next M memory
accesses

n Two types
q Stride determined on a per-instruction basis
q Stride determined on a per-memory-region basis

33

Instruction Based Stride Prefetching

n Each load/store instruction can lead to a memory access
pattern with a different stride
q Can only detect strides caused by each instruction

n Timeliness of prefetches can be an issue
q Initiating the prefetch when the load is fetched the next time

can be too late
q Potential solution: Look ahead in the instruction stream

34

Load Inst. Last Address Last Confidence

PC (tag) Referenced Stride

……. ……. ……

Load
Inst
PC

Memory-Region Based Based Stride Prefetching

n Can detect strided memory access patterns that appear due
to multiple instructions
q A, A+N, A+2N, A+3N, A+4N … where each access could be

due to a different instruction

n Stream prefetching (stream buffers) is a special case of
memory-region based stride prefetching where N = 1

35

Address tag Stride Control/Confidence

……. ……

Cache
Block

Address

Tradeoffs in Stream/Stride Prefetching
n Instruction based stride prefetching vs.

memory region based based stride prefetching

n The latter can exploit strides that occur due to the
interaction of multiple instructions

n The latter can more easily get further ahead of the
processor access stream
q No need for lookahead PC

n The latter is more hardware intensive
q Usually there are more data addresses to monitor than

instructions
36

Instruction-Based Stride Prefetching

Baer & Chen, “An effective on-chip preloading scheme to reduce data access penalty,” SC 1991.

Instruction-Based Stride Prefetching

Doweck, “Inside Intel®
Core™ Microarchitecture
and Smart Memory
Access,” Intel White
Paper, 2006.

38https://www.all-electronics.de/wp-content/uploads/migrated/document/196371/413ei0507-intel-sma.pdf

https://www.all-electronics.de/wp-content/uploads/migrated/document/196371/413ei0507-intel-sma.pdf

Memory-Region-Based Stride Prefetching

39Jouppi, “Improving direct-mapped cache performance by the addition of a small fully-associative cache and prefetch buffers,” ISCA 1990.

Stream Buffers (Jouppi, ISCA 1990)
n Each stream buffer holds one stream of

sequentially prefetched cache lines

n On a load miss check the head of all
stream buffers for an address match
q if hit, pop the entry from FIFO, update the cache

with data
q if not, allocate a new stream buffer to the new

miss address (may have to replace a stream
buffer following LRU policy)

n Stream buffer FIFOs are continuously
topped-off with subsequent cache lines
whenever there is room and the bus is not
busy

40

FIFO

FIFO

FIFO

FIFO

DCache

M
em

or
y

in
te

rfa
ce

Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of
a Small Fully-Associative Cache and Prefetch Buffers,” ISCA 1990.

Stream Buffer Design

41

Stream Buffer Design

42

Streaming Prefetcher in IBM POWER4

43Tendler et al., “POWER4 system microarchitecture,” IBM JR&D, 2002.

A Recommended Paper: Stream Prefetching

44Jouppi, “Improving direct-mapped cache performance by the addition of a small fully-associative cache and prefetch buffers,” ISCA 1990.

Locality Based Prefetchers
n In many applications access patterns are not perfectly

strided
q Some patterns look random to closeby addresses
q How do you capture such accesses?

n Locality based prefetching
q Srinath et al., “Feedback Directed Prefetching: Improving the

Performance and Bandwidth-Efficiency of Hardware
Prefetchers”, HPCA 2007.

45

Pentium4-Like Locality Based Prefetcher [Srinath+, HPCA 2007]

n Multiple tracking entries for a range of addresses
n Invalid: The tracking entry is not allocated a stream to keep track of. Initially,

all tracking entries are in this state.
n Allocated: A demand (i.e. load/store) L2 miss allocates a tracking entry if the

demand miss does not find any existing tracking entry for its cache-block address.
n Training: The prefetcher trains the direction (ascending or descending) of the

stream based on the next two L2 misses that occur +/- 16 cache blocks from the
first miss. If the next two accesses in the stream are to ascending (descending)
addresses, the direction of the tracking entry is set to 1 (0) and the entry transitions
to Monitor and Request state.

n Monitor and Request: The tracking entry monitors the accesses to a memory
region from a start pointer (address A) to an end pointer (address P). The maximum
distance between the start pointer and the end pointer is determined by Prefetch
Distance, which indicates how far ahead of the demand access stream the
prefetcher can send requests. If there is a demand L2 cache access to a cache block
in the monitored memory region, the prefetcher requests cache blocks [P+1, ...,
P+N] as prefetch requests (assuming the direction of the tracking entry is set to 1).
N is called the Prefetch Degree. After sending the prefetch requests, the tracking
entry starts monitoring the memory region between addresses A+N to P+N (i.e.
effectively it moves the tracked memory region by N cache blocks).

46

Effects of Locality Based Prefetchers
n Bandwidth intensive

q Why?
q Can be fixed by

n Stride detection
n Feedback mechanisms

n Limited to prefetching closeby addresses
q What about large jumps in addresses accessed?

n However, they work well in real life
q Single-core systems
q Boggs et al., “The Microarchitecture of the Intel Pentium 4 Processor on

90nm Technology”, Intel Technology Journal, Feb 2004.
47

What About More Complex Access Patterns?
n Simple regular patterns

q Stride, stream prefetchers do well

n Complex regular patterns
q E.g., multiple regular strides
q +1, +2, +3, +1, +2, +3, +1, +2, +3, …

n Irregular patterns
q Linked data structure traversals
q Indirect array accesses
q Random accesses
q Multiple data structures accessed concurrently
q …

48

Multi-Stride Detection in Modern Prefetchers

49

GemsFDTD
Complex but predictable set of strides

Path Confidence Based Lookahead Prefetching

n Key Idea:
q Given a history/signature/pattern of strides, learn and predict

what stride might come next
n {7,-6,12} à 6, {-6,12,6} à -5, …

q Bootstrap prediction to generate new predictions, until the
cascaded path confidence drops below a threshold

50

History of
Strides

Prediction Prediction
Confidence

Path
Confidence

Pass 1 {7,-6,12} 6 85% 85% Bootstrap

Pass 2 {-6,12,6} -5 70% 85%*70%=60% Bootstrap
Pass 3 {12,6,-5} -6 82% 60%*82%=49% STOP

Prefetcher Performance (I)
n Accuracy (used prefetches / sent prefetches)
n Coverage (prefetched misses / all misses)
n Timeliness (on-time prefetches / used prefetches)

n Bandwidth consumption
q Memory bandwidth consumed with prefetcher / without

prefetcher
q Good news: Can utilize idle bus bandwidth (if available)

n Cache pollution
q Extra demand misses due to prefetch placement in cache
q More difficult to quantify but affects performance

51

Prefetcher Performance (II)
n Prefetcher aggressiveness affects all performance metrics
n Aggressiveness dependent on prefetcher type
n For most hardware prefetchers:

q Prefetch distance: how far ahead of the demand stream
q Prefetch degree: how many prefetches per demand access

52

Predicted StreamPredicted Stream

X

Access Stream

Pmax
Prefetch Distance

Pmax
Very Conservative

Pmax
Middle of the Road

Pmax
Very Aggressive

P

Prefetch Degree
X+1

1 2 3

Prefetcher Performance (III)
n How do these metrics interact?

n Very Aggressive Prefetcher (large prefetch distance & degree)
q Well ahead of the load access stream
q Hides memory access latency better
q More speculative
+ Higher coverage, better timeliness
-- Likely lower accuracy, higher bandwidth and pollution

n Very Conservative Prefetcher (small prefetch distance & degree)
q Closer to the load access stream
q Might not hide memory access latency completely
q Reduces potential for cache pollution and bandwidth contention
+ Likely higher accuracy, lower bandwidth, less polluting
-- Likely lower coverage and less timely

53

Prefetcher Performance (IV)

54

-100%

-50%

0%

50%

100%

150%

200%

250%

300%

350%

400%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
er

ce
nt

ag
e

IP
C

 c
ha

ng
e

ov
er

 N
o

P
re

fe
tc

hi
ng

Prefetcher Accuracy

Prefetcher Performance (V)

n Srinath et al., “Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware Prefetchers“,
HPCA 2007.

55

0.0

1.0

2.0

3.0

4.0

5.0

bz
ip2 ga

p
mcf

pa
rse

r
vo

rte
x vp

r

am
mp

ap
plu art

eq
ua

ke

fac
ere

c
ga

lge
l

mes
a

mgri
d

six
tra

ck sw
im

wup
wise

gm
ea

n

In
st

ru
ct

io
ns

 p
er

 C
yc

le

No Prefetching
Very Conservative
Middle-of-the-Road
Very Aggressive

â48%
â 29%

Feedback-Directed Prefetcher Throttling (I)
n Idea:

q Dynamically monitor prefetcher performance metrics
q Throttle the prefetcher aggressiveness up/down based on past

performance
q Change the location prefetches are inserted in cache based on

past performance

56

High Accuracy

Not-Late

Polluting

Decrease

Late

Increase

Med Accuracy

Not-Poll

Late

Increase

Polluting

Decrease

Low Accuracy

Not-Poll

Not-Late

No Change

Decrease

Feedback-Directed Prefetcher Throttling (II)

n Srinath et al., “Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware Prefetchers“,
HPCA 2007.

n Srinath et al., “Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware Prefetchers“,
HPCA 2007.

57

á11%á13%

Feedback-Directed Prefetcher Throttling (III)
n BPKI - Memory Bus Accesses per 1000 retired Instructions

q Includes effects of L2 demand misses as well as pollution
induced misses and prefetches

n A measure of bus bandwidth usage

58

No. Pref. Very Cons Mid Very Aggr FDP

IPC 0.85 1.21 1.47 1.57 1.67

BPKI 8.56 9.34 10.60 13.38 10.88

Feedback Directed Prefetching

n Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Feedback Directed Prefetching: Improving the Performance and
Bandwidth-Efficiency of Hardware Prefetchers"
Proceedings of the 13th International Symposium on High-Performance
Computer Architecture (HPCA), pages 63-74, Phoenix, AZ, February
2007. Slides (ppt)
One of the five papers nominated for the Best Paper Award by
the Program Committee.

59

https://people.inf.ethz.ch/omutlu/pub/srinath_hpca07.pdf
http://www.ece.arizona.edu/~hpca/
https://people.inf.ethz.ch/omutlu/pub/srinath_hpca07_talk.ppt

Coordinated Prefetching in Multi-Core Systems

n Eiman Ebrahimi, Onur Mutlu, Chang Joo Lee, and Yale N. Patt,
"Coordinated Control of Multiple Prefetchers in Multi-Core Systems"
Proceedings of the 42nd International Symposium on
Microarchitecture (MICRO), pages 316-326, New York, NY, December
2009. Slides (ppt)

60

https://people.inf.ethz.ch/omutlu/pub/coordinated-prefetching_micro09.pdf
http://www.microarch.org/micro42/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_micro09_talk.ppt

How to Prefetch More Irregular Access Patterns?

n Regular patterns: Stride, stream prefetchers do well
n More irregular access patterns

q Indirect array accesses
q Linked data structures
q Multiple regular strides (1,2,3,1,2,3,1,2,3,…)
q Random patterns?
q Generalized prefetcher for all patterns?

n Correlation based prefetchers
n Content-directed prefetchers
n Precomputation or execution-based prefetchers

61

Address Correlation Based Prefetching (I)
n Consider the following history of cache block addresses

A, B, C, D, C, E, A, C, F, F, E, A, A, B, C, D, E, A, B, C, D, C
n After referencing a particular address (say A or E),

some addresses are more likely to be referenced next

62

A B C

D E F
1.0

.33 .5

.2

1.0.6.2

.67
.6

.5

.2

Markov
Model

Address Correlation Based Prefetching (II)

n Idea: Record the likely-next addresses (B, C, D) after seeing an address A
q Next time A is accessed, prefetch B, C, D
q A is said to be correlated with B, C, D

n Prefetch up to N next addresses to increase coverage
n Prefetch accuracy can be improved by using multiple addresses as key for

the next address: (A, B) à (C)
(A,B) correlated with C

n Joseph and Grunwald, “Prefetching using Markov Predictors,” ISCA 1997.
q Also called “Markov prefetchers”

63

Cache Block Addr Prefetch Confidence …. Prefetch Confidence

(tag) Candidate 1 …. Candidate N

……. ……. …… .… ……. ……
….

Cache
Block
Addr

Address Correlation Based Prefetching (III)
n Advantages:

q Can cover arbitrary access patterns
n Linked data structures
n Streaming patterns (though not so efficiently!)

n Disadvantages:
q Correlation table needs to be very large for high coverage

n Recording every miss address and its subsequent miss addresses
is infeasible

q Can have low timeliness: Lookahead is limited since a prefetch
for the next access/miss is initiated right after previous

q Can consume a lot of memory bandwidth
n Especially when Markov model probabilities (correlations) are low

q Cannot reduce compulsory misses
64

Content Directed Prefetching (I)
n A specialized prefetcher for pointer values
n Idea: Identify pointers among all values in a fetched cache

block and issue prefetch requests for them.
q Cooksey et al., “A stateless, content-directed data prefetching

mechanism,” ASPLOS 2002.

+ No need to memorize/record past addresses!
+ Can eliminate compulsory misses (never-seen pointers)
-- Indiscriminately prefetches all pointers in a cache block

n How to identify pointer addresses:
q Compare address sized values within cache block with cache

block’s address à if most-significant few bits match, pointer
65

Content Directed Prefetching (II)

66

x40373551

L2 DRAM… …

= = = = = = = =

[31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20]

x80011100

Generate Prefetch
Virtual Address Predictor

X80022220

22220X800

11100x800

Making Content Directed Prefetching Efficient

n Hardware does not have enough information on pointers
n Software does (and can profile to get more information)

n Idea:
q Compiler profiles/analyzes the code and provides hints as to

which pointer addresses are likely-useful to prefetch.
q Hardware uses hints to prefetch only likely-useful pointers.

n Ebrahimi et al., “Techniques for Bandwidth-Efficient Prefetching of
Linked Data Structures in Hybrid Prefetching Systems,” HPCA 2009.

67

68

Shortcomings of CDP – An Example

HashLookup(int Key) {
…
for (node = head ; node -> Key != Key;

Struct node{
int Key;
int * D1_ptr;
int * D2_ptr;
node * Next;

}

node = node -> Next;
if (node) return node->D1;

}

…

Key
D2

Key D1

D2

Key D1

D2

…

Key D1

D2

Key

D1

D2

D1

) ;

Key

Example from mst

69

Shortcomings of CDP – An Example

= = = = = = = =

[31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20]

Virtual Address Predictor

Key Next Key Next
Cache Line Addr

…

Key
D2

Key D1

D2

Key D1

D2

…

…

Key D1

D2

D1

D2

D1

D1_ptr D2_ptr D1_ptr D2_ptr

Key

70

Shortcomings of CDP – An Example

HashLookup(int Key) {
…
for (node = head ; node = node -> Next;
if (node)

}

) ;

…

Key
D2

D1

D2

Key D1

D2

…

Key D1

D2

Key D1

D2

D1

node -> Key != Key;
return node -> D1;

Key

71

Overcoming the Shortcomings of CDP

…

= = = = = = = =

[31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20]

Virtual Address Predictor

Key D1_ptr D2_ptr Next Key D1_ptr D2_ptr Next
Cache Line Addr

Key D1

D2

Key D1

D2

Key D1

D2

…

…

Key D1

D2

Key D1

D2

[31:20]

More on Content Directed Prefetching
n Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,

"Techniques for Bandwidth-Efficient Prefetching of Linked Data
Structures in Hybrid Prefetching Systems"
Proceedings of the 15th International Symposium on High-Performance
Computer Architecture (HPCA), pages 7-17, Raleigh, NC, February
2009. Slides (ppt)
Best paper session. One of the three papers nominated for the
Best Paper Award by the Program Committee.

72

https://people.inf.ethz.ch/omutlu/pub/bandwidth_lds_hpca09.pdf
http://www.comparch.ncsu.edu/hpca/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_hpca09_talk.ppt

Hybrid Hardware Prefetchers
n Idea: Use multiple prefetchers to cover many memory

access patterns

+ Better prefetch coverage
+ Potentially better timeliness

-- More complexity (many design & optimization decisions)
-- More bandwidth-intensive
-- Prefetchers interfere with each other (contention, pollution)

- Need to manage accesses from each prefetcher

73

Multi-Core Issues in Prefetching

74

Real Systems: Prefetching in Multi-Core
n Prefetching shared data

q Coherence misses

n Prefetching efficiency is a lot more important
q Bus bandwidth more precious
q Cache space more valuable

n One cores’ prefetches interfere with other cores’ requests
q Cache conflicts at multiple levels
q Bus contention at multiple levels
q DRAM bank, rank, channel, row buffer contention
q …

75

Bandwidth-Efficient Hybrid Prefetchers
n Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,

"Techniques for Bandwidth-Efficient Prefetching of Linked Data
Structures in Hybrid Prefetching Systems"
Proceedings of the 15th International Symposium on High-Performance
Computer Architecture (HPCA), pages 7-17, Raleigh, NC, February
2009. Slides (ppt)
Best paper session. One of the three papers nominated for the
Best Paper Award by the Program Committee.

76

https://people.inf.ethz.ch/omutlu/pub/bandwidth_lds_hpca09.pdf
http://www.comparch.ncsu.edu/hpca/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_hpca09_talk.ppt

Coordinated Control of Prefetchers

n Eiman Ebrahimi, Onur Mutlu, Chang Joo Lee, and Yale N. Patt,
"Coordinated Control of Multiple Prefetchers in Multi-Core Systems"
Proceedings of the 42nd International Symposium on
Microarchitecture (MICRO), pages 316-326, New York, NY, December
2009. Slides (ppt)

77

https://people.inf.ethz.ch/omutlu/pub/coordinated-prefetching_micro09.pdf
http://www.microarch.org/micro42/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_micro09_talk.ppt

Prefetching-Aware Shared Resource Management

n Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Prefetch-Aware Shared Resource Management for Multi-Core
Systems"
Proceedings of the 38th International Symposium on Computer
Architecture (ISCA), San Jose, CA, June 2011. Slides (pptx)

78

https://people.inf.ethz.ch/omutlu/pub/prefetchaware-shared-resources_isca11.pdf
http://isca2011.umaine.edu/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_isca11_talk.pptx

Prefetching-Aware DRAM Control (I)

n Chang Joo Lee, Onur Mutlu, Veynu Narasiman, and Yale N. Patt,
"Prefetch-Aware DRAM Controllers"
Proceedings of the 41st International Symposium on
Microarchitecture (MICRO), pages 200-209, Lake Como, Italy, November
2008. Slides (ppt)

79

https://people.inf.ethz.ch/omutlu/pub/prefetch-dram_micro08.pdf
http://www.microarch.org/micro41/
https://people.inf.ethz.ch/omutlu/pub/lee_micro08_talk.ppt

Prefetching-Aware DRAM Control (II)

n Chang Joo Lee, Veynu Narasiman, Onur Mutlu, and Yale N. Patt,
"Improving Memory Bank-Level Parallelism in the Presence of
Prefetching"
Proceedings of the 42nd International Symposium on
Microarchitecture (MICRO), pages 327-336, New York, NY, December
2009. Slides (ppt)

80

https://people.inf.ethz.ch/omutlu/pub/dram-blp_micro09.pdf
http://www.microarch.org/micro41/
https://people.inf.ethz.ch/omutlu/pub/lee_micro09_talk.ppt

Prefetching-Aware Cache Management
n Vivek Seshadri, Samihan Yedkar, Hongyi Xin, Onur Mutlu, Phillip P. Gibbons,

Michael A. Kozuch, and Todd C. Mowry,
"Mitigating Prefetcher-Caused Pollution using Informed Caching Policies
for Prefetched Blocks"
ACM Transactions on Architecture and Code Optimization (TACO), Vol. 11, No. 4,
January 2015.
Presented at the 10th HiPEAC Conference, Amsterdam, Netherlands, January
2015.
[Slides (pptx) (pdf)]
[Source Code]

81

https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_taco15.pdf
http://taco.acm.org/
https://www.hipeac.net/2015/amsterdam/
https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_seshadri_hipeac15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_seshadri_hipeac15-talk.pdf
https://github.com/CMU-SAFARI/memsim

Prefetching in GPUs
n Adwait Jog, Onur Kayiran, Asit K. Mishra, Mahmut T. Kandemir, Onur

Mutlu, Ravishankar Iyer, and Chita R. Das,
"Orchestrated Scheduling and Prefetching for GPGPUs"
Proceedings of the 40th International Symposium on Computer
Architecture (ISCA), Tel-Aviv, Israel, June 2013. Slides (pptx) Slides
(pdf)

82

https://people.inf.ethz.ch/omutlu/pub/orchestrated-gpgpu-scheduling-prefetching_isca13.pdf
http://isca2013.eew.technion.ac.il/
https://people.inf.ethz.ch/omutlu/pub/jog_isca13_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/jog_isca13_talk.pdf

Another Example Prefetcher:
Self-Optimizing Prefetcher

Pythia: A Self-Optimizing Prefetcher

84

Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu,
"Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (1.5 minutes)]
[Pythia Source Code (Officially Artifact Evaluated with All Badges)]
[arXiv version]
Officially artifact evaluated as available, reusable and reproducible.

https://arxiv.org/pdf/2109.12021.pdf

https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=7
https://www.youtube.com/watch?v=kzL22FTz0vc&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=2
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf

85

Mainly use one
program context info.

for prediction

Lack inherent system
awareness

Lack in-silicon
customizability

Why do prefetchers
not perform well?

86

Autonomously learns to prefetch using
multiple program context information

and system-level feedback

Can be customized in silicon to change
program context information or
prefetching objective on the fly

Pythia

87

Basics of Reinforcement Learning (RL)
• Algorithmic approach to learn to take an action in a

given situation to maximize a numerical reward

• Agent stores Q-values for every state-action pair
- Expected return for taking an action in a state
- Given a state, selects action that provides highest Q-value

Agent

Environment

State (St)State (St) Action (At)Action (At)Reward (Rt+1)Reward (Rt+1)

88

Brief Overview of Pythia
Pythia formulates prefetching as a reinforcement learning problem

Agent

Environment

State (St)State (St) Action (At)Action (At)Reward (Rt+1)Reward (Rt+1)

Prefetcher

Processor &
Memory Subsystem

Reward
Prefetch from address

A+offset (O)

Features of memory
request to address A

(e.g., PC)

89

What is State?
• k-dimensional vector of features

• Feature = control-flow + data-flow

• Control-flow examples
- PC
- Branch PC
- Last-3 PCs, …

• Data-flow examples
- Cacheline address
- Physical page number
- Delta between two cacheline addresses
- Last 4 deltas, …

90

What is Action?
Given a demand access to address A
the action is to select prefetch offset “O”

• Action-space: 127 actions in the range [-63, +63]
- For a machine with 4KB page and 64B cacheline

• Upper and lower limits ensure prefetches do not cross
physical page boundary

• A zero offset means no prefetch is generated

• We further prune action-space by design-space exploration

91

What is Reward?
• Defines the objective of Pythia

• Encapsulates two metrics:
- Prefetch usefulness (e.g., accurate, late, out-of-page, …)
- System-level feedback (e.g., mem. b/w usage, cache

pollution, energy, …)

• We demonstrate Pythia with memory bandwidth
usage as the system-level feedback in the paper

92

What is Reward?
• Seven distinct reward levels

- Accurate and timely (RAT)
- Accurate but late (RAL)
- Loss of coverage (RCL)
- Inaccurate

• With low memory b/w usage (RIN-L)
• With high memory b/w usage (RIN-H)

- No-prefetch
• With low memory b/w usage (RNP-L)
• With high memory b/w usage(RNP-H)

• Values are set at design time via automatic design-
space exploration
- Can be customized further in silicon for higher performance

93

Basic Pythia Configuration
• Derived from automatic design-space exploration

• State: 2 features
- PC+Delta
- Sequence of last-4 deltas

• Actions: 16 prefetch offsets
- Ranging between -6 to +32. Including 0.

• Rewards:
- RAT = +20; RAL = +12; RNP-H=-2; RNP-L=-4;
- RIN-H=-14; RIN-L=-8; RCL=-12

94

More Detailed Pythia Overview
• Q-Value Store: Records Q-values for all state-action pairs
• Evaluation Queue: A FIFO queue of recently-taken actions

Evaluation Queue (EQ)

Demand
Request

1
Assign reward to

corresponding EQ entry

Look up
QVStoreState

Vector

Q-Value Store
(QVStore)

2

3

5
Insert prefetch action &
State-Action pair in EQ

6

Prefetch Fill

A1 A2 A3

Memory
Hierarchy

Generate
prefetch

Evict EQ entry and
update QVStore

4

Find the Action with max Q-Value

7

S1
S2
S3
S4

Set filled bit

Max

95

Simulation Methodology
• Champsim [3] trace-driven simulator

• 150 single-core memory-intensive workload traces
- SPEC CPU2006 and CPU2017
- PARSEC 2.1
- Ligra
- Cloudsuite

• Homogeneous and heterogeneous multi-core mixes

• Five state-of-the-art prefetchers
- SPP [Kim+, MICRO’16]
- Bingo [Bakhshalipour+, HPCA’19]
- MLOP [Shakerinava+, 3rd Prefetching Championship, 2019]
- SPP+DSPatch [Bera+, MICRO’19]
- SPP+PPF [Bhatia+, ISCA’20]

[3] https://github.com/ChampSim/ChampSim

https://github.com/ChampSim/ChampSim

96

1.1

1.15

1.2

1.25

1.3

1.35

0 2 4 6 8 10 12

Ge
om

ea
n

sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

Number of cores

Performance with Varying Core Count

Bingo
MLOP
SPP

Pythia

97

1.1

1.15

1.2

1.25

1.3

1.35

0 2 4 6 8 10 12

Ge
om

ea
n

sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

Number of cores

Performance with Varying Core Count

Bingo
MLOP
SPP

Pythia

3.4% 7.7%

1. Pythia consistently provides the highest
performance in all core configurations

2. Pythia’s gain increases with core count

98

0.8
0.85

0.9
0.95

1
1.05

1.1
1.15

1.2
1.25

100
200

400
800

1600
3200

6400
12800

Ge
om

ea
n

sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

DRAM MTPS (in log scale)

Performance with Varying DRAM Bandwidth

~Intel Xeon 6258R

~AMD EPYC Rome 7702P

~AMD Threadripper 3990x

SPP

Bingo
MLOP

Pythia

Baseline

99

0.8
0.85

0.9
0.95

1
1.05

1.1
1.15

1.2
1.25

100
200

400
800

1600
3200

6400
12800

Ge
om

ea
n

sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

DRAM MTPS (in log scale)

Performance with Varying DRAM Bandwidth

~Intel Xeon 6258R

~AMD EPYC Rome 7702P

~AMD Threadripper 3990x

SPP

Bingo
MLOP

Pythia

Baseline

3%

17%

Pythia outperforms prior best prefetchers for
a wide range of DRAM bandwidth configurations

100

Pythia is Open Source
https://github.com/CMU-SAFARI/Pythia

• MICRO’21 artifact evaluated
• Champsim source code + Chisel modeling code
• All traces used for evaluation

https://github.com/CMU-SAFARI/Pythia

Pythia Talk Video

https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=8

https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=8

A Lot More in the Pythia Paper

102

Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu,
"Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (1.5 minutes)]
[Pythia Source Code (Officially Artifact Evaluated with All Badges)]
[arXiv version]
Officially artifact evaluated as available, reusable and reproducible.

https://arxiv.org/pdf/2109.12021.pdf

https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=7
https://www.youtube.com/watch?v=kzL22FTz0vc&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=2
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf

Learning-Based Off-Chip Load Predictors
n Best Paper Award at MICRO 2022

103https://arxiv.org/pdf/2209.00188.pdf

https://arxiv.org/pdf/2209.00188.pdf

Execution-Based Prefetching

Execution-based Prefetchers (I)
n Idea: Pre-execute a piece of the (pruned) program solely

for prefetching data
q Only need to distill pieces that lead to cache misses

n Speculative thread: Pre-executed program piece can
be considered a “thread”

n Speculative thread can be executed
n On a separate processor/core
n On a separate hardware thread context (think fine-grained

multithreading)
n On the same thread context in idle cycles (during cache misses)

105

Execution-based Prefetchers (II)
n How to construct the speculative thread:

q Software based pruning and “spawn” instructions
q Hardware based pruning and “spawn” instructions
q Use the original program (no construction), but

n Execute it faster without stalling and correctness constraints

n Speculative thread
q Needs to discover misses before the main program

n Avoid waiting/stalling and/or compute less
q To get ahead of the main thread

n Performs only address generation computation, branch prediction,
value prediction (to predict “unknown” values)

q Purely speculative so there is no need for recovery of main
program if the speculative thread is incorrect

106

Thread-Based Pre-Execution
n Dubois and Song, “Assisted

Execution,” USC Tech
Report 1998.

n Chappell et al.,
“Simultaneous Subordinate
Microthreading (SSMT),”
ISCA 1999.

n Zilles and Sohi, “Execution-
based Prediction Using
Speculative Slices”, ISCA
2001.

107

Thread-Based Pre-Execution Issues
n Where to execute the precomputation thread?

1. Separate core (least contention with main thread)
2. Separate thread context on the same core (more contention)
3. Same core, same context

n When the main thread is stalled
n When to spawn the precomputation thread?

1. Insert spawn instructions well before the “problem” load
n How far ahead?

q Too early: prefetch might not be needed
q Too late: prefetch might not be timely

2. When the main thread is stalled
n When to terminate the precomputation thread?

1. With pre-inserted CANCEL instructions
2. Based on effectiveness/contention feedback (recall throttling)

108

Thread-Based Pre-Execution Issues
n What, when, where, how

q Luk, “Tolerating Memory Latency through Software-Controlled
Pre-Execution in Simultaneous Multithreading Processors,”
ISCA 2001.

q Many issues in software-based pre-execution discussed

109

An Example

110

Example ISA Extensions

111

Results on a Multithreaded Processor

112

Luk, “Tolerating Memory Latency through Software-Controlled Pre-Execution in
Simultaneous Multithreading Processors,” ISCA 2001.

Problem Instructions
n Zilles and Sohi, “Execution-based Prediction Using Speculative Slices”, ISCA

2001.
n Zilles and Sohi, ”Understanding the backward slices of performance degrading

instructions,” ISCA 2000.

113

Fork Point for Prefetching Thread

114

Pre-execution Thread Construction

115

Runahead Execution

Runahead Execution
n A technique to obtain the memory-level parallelism benefits

of a large instruction window

n When the oldest instruction is a long-latency cache miss:
q Checkpoint architectural state and enter runahead mode

n In runahead mode:
q Speculatively pre-execute instructions
q The purpose of pre-execution is to generate prefetches
q L2-miss dependent instructions are marked INV and dropped

n When the original miss returns:
q Restore checkpoint, flush pipeline, resume normal execution

n Mutlu et al., “Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors,” HPCA 2003.

117

Compute

Compute

Compute

Load 1 Miss

Miss 1

Stall Compute

Load 2 Miss

Miss 2

Stall

Load 1 Hit Load 2 Hit

Compute

Load 1 Miss

Runahead

Load 2 Miss Load 2 Hit

Miss 1

Miss 2

Compute

Load 1 Hit

Saved Cycles

Perfect Caches:

Small Window:

Runahead:

Runahead Example

Benefits of Runahead Execution

Instead of stalling during an L2 cache miss:

n Pre-executed loads and stores independent of L2-miss
instructions generate very accurate data prefetches:
q For both regular and irregular access patterns

n Instructions on the predicted program path are prefetched
into the instruction cache and outer cache levels

n Hardware prefetcher and branch predictor tables are trained
using future access information

Runahead Execution Mechanism
n Entry into runahead mode

q Checkpoint architectural register state

n Instruction processing in runahead mode

n Exit from runahead mode
q Restore architectural register state from checkpoint

Instruction Processing in Runahead Mode

Compute

Load 1 Miss

Runahead
Miss 1

Runahead mode processing is the same as
normal instruction processing, EXCEPT:

n It is purely speculative: Architectural (software-visible)
register/memory state is NOT updated in runahead mode.

n L2-miss dependent instructions are identified and treated
specially.
q They are quickly removed from the instruction window.
q Their results are not trusted.

L2-Miss Dependent Instructions

Compute

Load 1 Miss

Runahead
Miss 1

n Two types of results produced: INV and VALID

n INV = Dependent on an L2 miss

n INV results are marked using INV bits in the register file and
store buffer.

n INV values are not used for prefetching/branch resolution.

Removal of Instructions from Window

Compute

Load 1 Miss

Runahead
Miss 1

n Oldest instruction is examined for pseudo-retirement
q An INV instruction is removed from window immediately.
q A VALID instruction is removed when it completes execution.

n Pseudo-retired instructions free their allocated resources.
q This allows the processing of later instructions.

n Pseudo-retired stores communicate their data to
dependent loads.

Store/Load Handling in Runahead Mode

Compute

Load 1 Miss

Runahead
Miss 1

n A pseudo-retired store writes its data and INV status to a
dedicated memory, called runahead cache.

n Purpose: Data communication through memory in runahead mode.

n A dependent load reads its data from the runahead cache.

n Does not need to be always correct à Size of runahead cache is
very small.

Branch Handling in Runahead Mode

Compute

Load 1 Miss

Runahead
Miss 1

n INV branches cannot be resolved.
q A mispredicted INV branch causes the processor to stay on the wrong
program path until the end of runahead execution.

n VALID branches are resolved and initiate recovery if mispredicted.

A Runahead Processor Diagram

126

Mutlu+, “Runahead Execution,”
HPCA 2003.

Runahead Execution Pros and Cons
n Advantages:

+ Very accurate prefetches for data/instructions (all cache levels)
+ Follows the program path

+ Simple to implement: most of the hardware is already built in
+ No waste of hardware context: uses the main thread context for prefetching
+ No need to construct a special-purpose pre-execution thread for prefetching

n Disadvantages/Limitations
-- Extra executed instructions
-- Limited by branch prediction accuracy
-- Cannot prefetch dependent cache misses
-- Effectiveness limited by available “memory-level parallelism” (MLP)
-- Prefetch distance (how far ahead to prefetch) limited by memory latency

n Implemented in Sun ROCK, IBM POWER6, NVIDIA Denver
127

128

12%

35%

13%

15%
22% 12%

16% 52%

22%

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

S95 FP00 INT00 WEB MM PROD SERV WS AVG

M
ic

ro
-o

pe
ra

tio
ns

 P
er

 C
yc

le

No prefetcher, no runahead
Only prefetcher (baseline)
Only runahead
Prefetcher + runahead

Performance of Runahead Execution

129

Runahead Execution vs. Large Windows

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

S95 FP00 INT00 WEB MM PROD SERV WS AVG

M
ic

ro
-o

pe
ra

tio
ns

 P
er

 C
yc

le

128-entry window (baseline)
128-entry window with Runahead
256-entry window
384-entry window
512-entry window

130

Runahead on In-order vs. Out-of-order

39%

50%28%

14%
20%

17%

73%

73%

15%

20%

47%15%

12%
22%

13%

16%

23%

10%

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

S95 FP00 INT00 WEB MM PROD SERV WS AVG

M
ic

ro
-o

pe
ra

tio
ns

 P
er

 C
yc

le

in-order baseline
in-order + runahead
out-of-order baseline
out-of-order + runahead

More on Runahead Execution
n Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,

"Runahead Execution: An Alternative to Very Large Instruction Windows
for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance Computer
Architecture (HPCA), pages 129-140, Anaheim, CA, February 2003. Slides (pdf)
One of the 15 computer arch. papers of 2003 selected as Top Picks by IEEE Micro.
HPCA Test of Time Award (awarded in 2021).
[Lecture Slides (pptx) (pdf)]
[Lecture Video (1 hr 54 mins)]
[Retrospective HPCA Test of Time Award Talk Slides (pptx) (pdf)]
[Retrospective HPCA Test of Time Award Talk Video (14 minutes)]

131

https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
http://www.cs.arizona.edu/hpca9/
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03_talk.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=onur-comparch-fall2017-lecture17-latencytoleranceandprefetching-afterlecture.pptx
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=onur-comparch-fall2017-lecture17-latencytoleranceandprefetching-afterlecture.pdf
https://youtu.be/Kj3relihGF4?t=1162
https://people.inf.ethz.ch/omutlu/pub/onur-runahead-HPCA-ToT-Award-March-2-2021-withbackup.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-runahead-HPCA-ToT-Award-March-2-2021-withbackup.pdf
https://www.youtube.com/watch?v=KFCOecRQTIc

Effect of Runahead in Sun ROCK
n Shailender Chaudhry talk, Aug 2008.

132

Effective prefetching can both improve performance and reduce hardware cost

More on Runahead in Sun ROCK

133Chaudhry+, “High-Performance Throughput Computing,” IEEE Micro 2005.

More on Runahead in Sun ROCK

134Chaudhry+, “Simultaneous Speculative Threading,” ISCA 2009.

Runahead Execution in IBM POWER6

135

Cain+, “Runahead Execution vs. Conventional Data Prefetching
in the IBM POWER6 Microprocessor,” ISPASS 2010.

Runahead Execution in IBM POWER6

136

Runahead Execution in NVIDIA Denver

137

Boggs+, “Denver: NVIDIA’s First 64-Bit ARM Processor,” IEEE Micro 2015.

Runahead Execution in NVIDIA Denver

138

Boggs+, “Denver: NVIDIA’s First 64-Bit ARM Processor,”
IEEE Micro 2015.
Gwennap, “NVIDIA’s First CPU is a Winner,” MPR 2014.

Runahead Enhancements

Runahead Enhancements

n Mutlu et al., “Techniques for Efficient Processing in Runahead
Execution Engines,” ISCA 2005, IEEE Micro Top Picks 2006.

n Mutlu et al., “Address-Value Delta (AVD) Prediction,” MICRO
2005.

n Armstrong et al., “Wrong Path Events,” MICRO 2004.

n Mutlu et al., “An Analysis of the Performance Impact of
Wrong-Path Memory References on Out-of-Order and
Runahead Execution Processors,” IEEE TC 2005.

140

Limitations of the Baseline Runahead Mechanism

n Energy Inefficiency
q A large number of instructions are speculatively executed
q Efficient Runahead Execution [ISCA’05, IEEE Micro Top Picks’06]

n Ineffectiveness for pointer-intensive applications
q Runahead cannot parallelize dependent L2 cache misses
q Address-Value Delta (AVD) Prediction [MICRO’05]

n Irresolvable branch mispredictions in runahead mode
q Cannot recover from a mispredicted L2-miss dependent branch
q Wrong Path Events [MICRO’04]
q Wrong Path Memory Reference Analysis [IEEE TC’05]

More on Efficient Runahead Execution
n Onur Mutlu, Hyesoon Kim, and Yale N. Patt,

"Techniques for Efficient Processing in Runahead Execution
Engines"
Proceedings of the 32nd International Symposium on Computer
Architecture (ISCA), pages 370-381, Madison, WI, June 2005. Slides
(ppt) Slides (pdf)
One of the 13 computer architecture papers of 2005 selected as
Top Picks by IEEE Micro.

142

https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05.pdf
http://www.cs.wisc.edu/~isca2005/
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05_talk.pdf

More on Efficient Runahead Execution
n Onur Mutlu, Hyesoon Kim, and Yale N. Patt,

"Efficient Runahead Execution: Power-Efficient Memory Latency
Tolerance"
IEEE Micro, Special Issue: Micro's Top Picks from Microarchitecture
Conferences (MICRO TOP PICKS), Vol. 26, No. 1, pages 10-20,
January/February 2006.

143

https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_micro06.pdf
http://doi.ieeecomputersociety.org/10.1109/MM.2006.10

More Effective Runahead Execution

n Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Address-Value Delta (AVD) Prediction: Increasing the Effectiveness of
Runahead Execution by Exploiting Regular Memory Allocation Patterns"
Proceedings of the 38th International Symposium on Microarchitecture (MICRO),
pages 233-244, Barcelona, Spain, November 2005. Slides (ppt) Slides (pdf)
One of the five papers nominated for the Best Paper Award by the
Program Committee.

144

https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05.pdf
http://pcsostres.ac.upc.edu/micro38/
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05_talk.pdf

More on Efficient Runahead Execution

n Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Address-Value Delta (AVD) Prediction: A Hardware Technique
for Efficiently Parallelizing Dependent Cache Misses"
IEEE Transactions on Computers (TC), Vol. 55, No. 12, pages 1491-1508,
December 2006.

145

https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_tc06.pdf
http://www.computer.org/tc/

Continuous Runahead
n Key Observations:

q Runahead is prefetching
only 13% of all
runahead-reachable
misses

q Why? Because
runahead execution
interval is very short
(60 cycles on average)

146Hashemi+, “Continuous Runahead: Transparent Hardware Acceleration for Memory Intensive Workloads,” MICRO 2016.

https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16.pdf

Continuous Runahead
n Key Idea: Remove the limitation for short runahead

interval
q Identify chain of instructions that lead to a critical cache miss
q Keep executing the chain of instructions in a loop in a special

runahead hardware to keep on generating future misses

n Key Results:
q 70% coverage of runahead-reachable misses (up from 13%)
q 21.9% performance gain over best runahead implementation

147

Continuous Runahead
n Milad Hashemi, Onur Mutlu, and Yale N. Patt,

"Continuous Runahead: Transparent Hardware Acceleration for
Memory Intensive Workloads"
Proceedings of the 49th International Symposium on
Microarchitecture (MICRO), Taipei, Taiwan, October 2016.
[Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)]
Best paper session.

148

https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16.pdf
http://www.microarch.org/micro49/
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-lightning-session-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pdf

Runahead as an
Execution-Based Prefetcher

Runahead as an Execution-based Prefetcher
n Idea of an Execution-Based Prefetcher: Pre-execute a piece

of the (pruned) program solely for prefetching data

n Idea of Runahead: Pre-execute the main program solely for
prefetching data

n Advantages and disadvantages of runahead vs. other
execution-based prefetchers?

n Can you make runahead even better by pruning the
program portion executed in runahead mode?

150

Taking Advantage of Pure Speculation
n Runahead mode is purely speculative

n The goal is to find and generate cache misses that would
otherwise stall execution later on

n How do we achieve this goal most efficiently and with the
highest benefit?

n Idea: Find and execute only those instructions that will lead
to cache misses (that cannot already be captured by the
instruction window)

n How?
151

Execution-based Prefetchers: Pros and Cons
+ Can prefetch pretty much any access pattern
+ Can be very low cost (e.g., runahead execution)

+ Especially if it uses the same hardware context
+ Why? The processor is equipped to execute the program anyway

+ Can be bandwidth-efficient (e.g., runahead execution)

-- Depend on branch prediction and possibly value prediction
accuracy
- Mispredicted branches dependent on missing data throw the thread
off the correct execution path

-- Can be wasteful
-- speculatively execute many instructions
-- can occupy a separate thread context

-- Complexity in deciding when and what to pre-execute
152

Looking to the Past

At the Time… Early 2000s…

n Large focus on increasing the size of the window…
q And, designing bigger, more complicated machines

n Runahead was a different way of thinking
q Keep the OoO core simple and small
q At the expense of some benefits (e.g., non-memory-related)
q Use aggressive “automatic speculative execution” solely for

prefetching
q Synergistic with prefetching and branch prediction methods

n A lot of interesting and innovative ideas ensued…

154

Important Precedent [Dundas & Mudge, ICS 1997]

155
Dundas+, “Improving Data Cache Performance by Pre-Executing Instructions Under a Cache Miss,” ICS 1997.

An Inspiration [Glew, ASPLOS-WACI 1998]

156
Glew, “MLP yes! ILP no!,” ASPLOS WACI 1998.

Looking to the Future

A Look into the Future…

n Microarchitecture (especially memory) is critically important
q And, fun…
q And, impactful…

n Runahead is a great example of harmonious industry-
academia collaboration

n Fundamental problems will remain fundamental
q And will require fundamental (and creative) solutions

158

Citation for the Test of Time Award

n Runahead Execution is a pioneering paper that opened up
new avenues in dynamic prefetching.

n The basic idea of runahead execution effectively increases
the instruction window very significantly, without having to
increase physical resource size (e.g. the issue queue).

n This seminal paper spawned off a new area of ILP-
enhancing microarchitecture research.

n This work has had strong industry impact as evidenced by
IBM's POWER6 - Load Lookahead, NVIDIA Denver, and Sun
ROCK's hardware scouting.

159

More on Runahead Execution
n Lecture video from Fall 2020, Computer Architecture:

q https://www.youtube.com/watch?v=zPewo6IaJ_8

n Lecture video from Fall 2017, Computer Architecture:
q https://www.youtube.com/watch?v=Kj3relihGF4

n Onur Mutlu,
"Efficient Runahead Execution Processors"
Ph.D. Dissertation, HPS Technical Report, TR-HPS-2006-007, July
2006. Slides (ppt)
Nominated for the ACM Doctoral Dissertation Award by
the University of Texas at Austin.

160https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=zPewo6IaJ_8
https://www.youtube.com/watch?v=Kj3relihGF4
https://people.inf.ethz.ch/omutlu/pub/mutlu_dissertation.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_phd_defense_talk.ppt
https://www.youtube.com/onurmutlulectures

More on Runahead Execution (I)

161https://www.youtube.com/watch?v=zPewo6IaJ_8&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=34

https://www.youtube.com/watch?v=zPewo6IaJ_8&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=34

More on Runahead Execution (II)

162https://www.youtube.com/watch?v=KFCOecRQTIc

https://www.youtube.com/watch?v=KFCOecRQTIc

More Recommended Material
on Prefetching

Lectures on Prefetching (I)

164https://www.youtube.com/watch?v=xZmDyj0g3Pw&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=33

https://www.youtube.com/watch?v=xZmDyj0g3Pw&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=33

Lectures on Prefetching (II)

165https://www.youtube.com/watch?v=zPewo6IaJ_8&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=34

https://www.youtube.com/watch?v=zPewo6IaJ_8&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=34

Lectures on Prefetching (III)

166https://www.youtube.com/watch?v=KFCOecRQTIc

https://www.youtube.com/watch?v=KFCOecRQTIc

Lectures on Prefetching (IV)

167https://www.youtube.com/watch?v=ibPL7T9iEwY&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=29

https://www.youtube.com/watch?v=ibPL7T9iEwY&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=29

Lectures on Prefetching (V)

168https://www.youtube.com/watch?v=TUFins4z6o4&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=30

https://www.youtube.com/watch?v=TUFins4z6o4&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=30

Lectures on Prefetching
n Computer Architecture, Fall 2020, Lecture 18

q Prefetching (ETH, Fall 2020)
q https://www.youtube.com/watch?v=xZmDyj0g3Pw&list=PL5Q2soXY2Zi9xidyIgBxUz

7xRPS-wisBN&index=33

n Computer Architecture, Fall 2020, Lecture 19a
q Execution-Based Prefetching (ETH, Fall 2020)
q https://www.youtube.com/watch?v=zPewo6IaJ_8&list=PL5Q2soXY2Zi9xidyIgBxUz7

xRPS-wisBN&index=34

n Computer Architecture, Spring 2015, Lecture 25
q Prefetching (CMU, Spring 2015)
q https://www.youtube.com/watch?v=ibPL7T9iEwY&list=PL5PHm2jkkXmi5CxxI7b3JC

L1TWybTDtKq&index=29

n Computer Architecture, Spring 2015, Lecture 26
q More Prefetching (CMU, Spring 2015)
q https://www.youtube.com/watch?v=TUFins4z6o4&list=PL5PHm2jkkXmi5CxxI7b3JC

L1TWybTDtKq&index=30
169https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=xZmDyj0g3Pw&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=33
https://www.youtube.com/watch?v=zPewo6IaJ_8&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=34
https://www.youtube.com/watch?v=ibPL7T9iEwY&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=29
https://www.youtube.com/watch?v=TUFins4z6o4&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=30
https://www.youtube.com/onurmutlulectures

Computer Architecture
Lecture 16: Prefetching

Prof. Onur Mutlu
ETH Zürich
Fall 2022

18 November 2022

Backup Slides

171

Backup: Runahead Execution

172

173

ADD R2 ß R2, 64
STOR mem[R2] ß R4
ADD R4 ß R4, R5
MUL R4 ß R4, R3

LOAD R3 ß mem[R2]

ADD R2 ß R2, 8

BEQ R1, R0, target
LOAD R1 ß mem[R5]

Small Windows: Full-Window Stalls

Oldest L2 Miss! Takes 100s of cycles.

8-entry instruction window:

Independent of the L2 miss,
executed out of program order,
but cannot be retired.

Younger instructions cannot be executed
because there is no space in the instruction window.

The processor stalls until the L2 Miss is serviced.

n Long-latency cache misses are responsible for most
full-window stalls

LOAD R3 ß mem[R2]

Impact of Long-Latency Cache Misses

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

128-entry window

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Non-stall (compute) time

Full-window stall time

512KB L2 cache, 500-cycle DRAM latency, aggressive stream-based prefetcher
Data averaged over 147 memory-intensive benchmarks on a high-end x86 processor model

L2 Misses

Mutlu et al., “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-order Processors,” HPCA 2003.

Impact of Long-Latency Cache Misses

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

128-entry window 2048-entry window

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Non-stall (compute) time

Full-window stall time

L2 Misses

512KB L2 cache, 500-cycle DRAM latency, aggressive stream-based prefetcher
Data averaged over 147 memory-intensive benchmarks on a high-end x86 processor model

Mutlu et al., “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-order Processors,” HPCA 2003.

176

The Problem
n Out-of-order execution requires large instruction windows

to tolerate today’s main memory latencies

n As main memory latency increases, instruction window size
should also increase to fully tolerate the memory latency

n Building a large instruction window is a challenging task
if we would like to achieve
q Low power/energy consumption (tag matching logic,

load/store buffers)
q Short cycle time (wakeup/select, regfile, bypass latencies)
q Low design and verification complexity

Efficient Scaling of Instruction Window Size

n One of the major research issues in out of order execution

n How to achieve the benefits of a large window with a small
one (or in a simpler way)?

n How do we efficiently tolerate memory latency with the
machinery of out-of-order execution (and a small
instruction window)?

177

Memory Level Parallelism (MLP)
n Idea: Find and service multiple cache misses in parallel so

that the processor stalls only once for all misses

q Enables latency tolerance: overlaps latency of different misses

n How to generate multiple misses?
q Out-of-order execution, multithreading, prefetching, runahead

178

time

A
B

C

isolated miss parallel miss

Runahead Execution
n A technique to obtain the memory-level parallelism benefits

of a large instruction window

n When the oldest instruction is a long-latency cache miss:
q Checkpoint architectural state and enter runahead mode

n In runahead mode:
q Speculatively pre-execute instructions
q The purpose of pre-execution is to generate prefetches
q L2-miss dependent instructions are marked INV and dropped

n Runahead mode ends when the original miss returns
q Checkpoint is restored and normal execution resumes

n Mutlu et al., “Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors,” HPCA 2003.

179

Runahead vs. A (Real) Large Window
n When is one beneficial, when is the other?
n Pros and cons of each

n Which can tolerate floating-point operation latencies better?
n Which leads to less wasted execution?

180

Generalizing the Idea
n Runahead on different long-latency operations?

181

Backup: Runahead Enhancements

Readings
n Required

q Mutlu et al., “Runahead Execution”, HPCA 2003, Top Picks 2003.

n Recommended

q Mutlu et al., “Efficient Runahead Execution: Power-Efficient
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top Picks
2006.

q Mutlu et al., “Address-Value Delta (AVD) Prediction,” MICRO
2005.

q Armstrong et al., “Wrong Path Events,” MICRO 2004.

183

Limitations of the Baseline Runahead Mechanism

n Energy Inefficiency
q A large number of instructions are speculatively executed
q Efficient Runahead Execution [ISCA’05, IEEE Micro Top Picks’06]

n Ineffectiveness for pointer-intensive applications
q Runahead cannot parallelize dependent L2 cache misses
q Address-Value Delta (AVD) Prediction [MICRO’05]

n Irresolvable branch mispredictions in runahead mode
q Cannot recover from a mispredicted L2-miss dependent branch
q Wrong Path Events [MICRO’04]

The Efficiency Problem

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%
bz
ip
2

cr
af
ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs
er

pe
rlb
m
k

tw
ol
f

vo
rte
x

vp
r

am
m
p

ap
pl
u

ap
si ar
t

eq
ua
ke

fa
ce
re
c

fm
a3
d

ga
lg
el

lu
ca
s

m
es
a

m
gr
id

si
xt
ra
ck

sw
im

w
up
w
is
e

AV
G

% Increase in IPC
% Increase in Executed Instructions

235%

22%
27%

Causes of Inefficiency
n Short runahead periods

n Overlapping runahead periods

n Useless runahead periods

n Mutlu et al., “Efficient Runahead Execution: Power-Efficient
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top
Picks 2006.

Short Runahead Periods
n Processor can initiate runahead mode due to an already in-flight L2

miss generated by
q the prefetcher, wrong-path, or a previous runahead period

n Short periods
q are less likely to generate useful L2 misses
q have high overhead due to the flush penalty at runahead exit

Compute

Load 1 Miss

Runahead

Load 2 Miss Load 2 Miss

Miss 1

Miss 2

Load 1 Hit

Overlapping Runahead Periods

Compute

Load 1 Miss

Miss 1

Runahead

Load 2 Miss

Miss 2

Load 2 INV Load 1 Hit

OVERLAP OVERLAP

n Two runahead periods that execute the same instructions

n Second period is inefficient

Useless Runahead Periods
n Periods that do not result in prefetches for normal mode

n They exist due to the lack of memory-level parallelism
n Mechanism to eliminate useless periods:

q Predict if a period will generate useful L2 misses
q Estimate a period to be useful if it generated an L2 miss that

cannot be captured by the instruction window
n Useless period predictors are trained based on this estimation

Compute

Load 1 Miss

Runahead
Miss 1

Load 1 Hit

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%
bz
ip
2

cr
af
ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs
er

pe
rlb
m
k

tw
ol
f

vo
rte
x

vp
r

am
m
p

ap
pl
u

ap
si ar
t

eq
ua
ke

fa
ce
re
c

fm
a3
d

ga
lg
el

lu
ca
s

m
es
a

m
gr
id

si
xt
ra
ck

sw
im

w
up
w
is
e

AV
G

In
cr

ea
se

 in
 E

xe
cu

te
d

In
st

ru
ct

io
ns

baseline runahead
all techniques

235%

Overall Impact on Executed Instructions

26.5%

6.2%

Overall Impact on IPC

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%
bz
ip
2

cr
af
ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs
er

pe
rlb
m
k

tw
ol
f

vo
rte
x

vp
r

am
m
p

ap
pl
u

ap
si ar
t

eq
ua
ke

fa
ce
re
c

fm
a3
d

ga
lg
el

lu
ca
s

m
es
a

m
gr
id

six
tra
ck

sw
im

wu
pw
ise

AV
G

In
cr

ea
se

 in
 IP

C

baseline runahead
all techniques

116%

22.6%
22.1%

More on Efficient Runahead Execution
n Onur Mutlu, Hyesoon Kim, and Yale N. Patt,

"Techniques for Efficient Processing in Runahead Execution
Engines"
Proceedings of the 32nd International Symposium on Computer
Architecture (ISCA), pages 370-381, Madison, WI, June 2005. Slides
(ppt) Slides (pdf)
One of the 13 computer architecture papers of 2005 selected as
Top Picks by IEEE Micro.

192

https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05.pdf
http://www.cs.wisc.edu/~isca2005/
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05_talk.pdf

More on Efficient Runahead Execution

n Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Efficient Runahead Execution: Power-Efficient Memory Latency
Tolerance"
IEEE Micro, Special Issue: Micro's Top Picks from Microarchitecture
Conferences (MICRO TOP PICKS), Vol. 26, No. 1, pages 10-20,
January/February 2006.

193

https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_micro06.pdf
http://doi.ieeecomputersociety.org/10.1109/MM.2006.10

Limitations of the Baseline Runahead Mechanism

n Energy Inefficiency
q A large number of instructions are speculatively executed
q Efficient Runahead Execution [ISCA’05, IEEE Micro Top Picks’06]

n Ineffectiveness for pointer-intensive applications
q Runahead cannot parallelize dependent L2 cache misses
q Address-Value Delta (AVD) Prediction [MICRO’05]

n Irresolvable branch mispredictions in runahead mode
q Cannot recover from a mispredicted L2-miss dependent branch
q Wrong Path Events [MICRO’04]

n Runahead execution cannot parallelize dependent misses
q wasted opportunity to improve performance
q wasted energy (useless pre-execution)

n Runahead performance would improve by 25% if this
limitation were ideally overcome

The Problem: Dependent Cache Misses

Compute

Load 1 Miss

Miss 1

Load 2 Miss

Miss 2

Load 2 Load 1 Hit

Runahead: Load 2 is dependent on Load 1

Runahead

Cannot Compute Its Address!

INV

Parallelizing Dependent Cache Misses
n Idea: Enable the parallelization of dependent L2 cache

misses in runahead mode with a low-cost mechanism

n How: Predict the values of L2-miss address (pointer)
loads

n Address load: loads an address into its destination register,
which is later used to calculate the address of another load

n as opposed to data load

n Read:
q Mutlu et al., “Address-Value Delta (AVD) Prediction,” MICRO

2005.

Parallelizing Dependent Cache Misses

Compute

Load 1 Miss

Miss 1

Load 2 Hit

Miss 2

Load 2 Load 1 Hit

Value Predicted

Runahead
Saved Cycles

Can Compute Its Address

Compute

Load 1 Miss

Miss 1

Load 2 Miss

Miss 2

Load 2 INV Load 1 Hit

Runahead

Cannot Compute Its Address!

Saved Speculative
Instructions

Miss

More on AVD Prediction

n Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Address-Value Delta (AVD) Prediction: Increasing the Effectiveness of
Runahead Execution by Exploiting Regular Memory Allocation Patterns"
Proceedings of the 38th International Symposium on Microarchitecture (MICRO),
pages 233-244, Barcelona, Spain, November 2005. Slides (ppt) Slides (pdf)
One of the five papers nominated for the Best Paper Award by the
Program Committee.

198

https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05.pdf
http://pcsostres.ac.upc.edu/micro38/
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05_talk.pdf

More on AVD Prediction (II)

n Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Address-Value Delta (AVD) Prediction: A Hardware Technique
for Efficiently Parallelizing Dependent Cache Misses"
IEEE Transactions on Computers (TC), Vol. 55, No. 12, pages 1491-1508,
December 2006.

199

https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_tc06.pdf
http://www.computer.org/tc/

Even More on Runahead Execution

n Lecture video from Fall 2017
q https://www.youtube.com/watch?v=Kj3relihGF4

n Onur Mutlu,
"Efficient Runahead Execution Processors"
Ph.D. Dissertation, HPS Technical Report, TR-HPS-2006-007, July
2006. Slides (ppt)
Nominated for the ACM Doctoral Dissertation Award by
the University of Texas at Austin.

200

https://www.youtube.com/watch?v=Kj3relihGF4
https://people.inf.ethz.ch/omutlu/pub/mutlu_dissertation.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_phd_defense_talk.ppt

More on
Multi-Core Issues in Prefetching

201

Prefetching in Multi-Core (I)
n Prefetching shared data

q Coherence misses

n Prefetch efficiency is a lot more important
q Bus bandwidth more precious
q Cache space more valuable

n One cores’ prefetches interfere with other cores’ requests
q Cache conflicts
q Bus contention
q DRAM bank and row buffer contention

202

Prefetching in Multi-Core (II)
n Two key issues

q How to prioritize prefetches vs. demands (of different cores)
q How to control the aggressiveness of multiple prefetchers to

achieve high overall performance

n Need to coordinate the actions of independent prefetchers
for best system performance

n Each prefetcher has different accuracy, coverage, timeliness

203

Some Ideas

n Controlling prefetcher aggressiveness
q Feedback directed prefetching [HPCA’07]
q Coordinated control of multiple prefetchers [MICRO’09]

n How to prioritize prefetches vs. demands from cores
q Prefetch-aware memory controllers and shared resource

management [MICRO’08, ISCA’11]

n Bandwidth efficient prefetching of linked data structures
q Through hardware/software cooperation (software hints)

[HPCA’09]

204

205

Motivation
n Aggressive prefetching improves

memory latency tolerance of
many applications when they run alone

n Prefetching for concurrently-executing
applications on a CMP can lead to
o Significant system performance degradation and

bandwidth waste

n Problem:
Prefetcher-caused inter-core interference
o Prefetches of one application contend with

prefetches and demands of other applications

206

Potential Performance
System performance improvement of ideally removing all
prefetcher-caused inter-core interference in shared resources

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2

W
L1

W
L2

W
L3

W
L4

W
L5

W
L6

W
L7

W
L8

W
L9

W
L1

0

W
L1

1

W
L1

2

W
L1

3

W
L1

4

G
m

ea
n-

32Pe
rf

. N
or

m
al

iz
ed

 to
 N

o
Th

ro
ttl

in
g

56%

Exact workload combinations can be found in [Ebrahimi et al., MICRO 2009]

High Interference caused by
Accurate Prefetchers

207

DRAM

Memory Controller

Core2 Core3Core0

Dem 2
Addr:A

Dem 2
Addr:B

Pref 0
Addr:Z

Dem 0
Addr:X

Miss

Shared Cache

Pref 1
Addr:C

Pref 3
Addr:D

Dem 2
Addr:Y

Bank 0 Bank 1

Pref 3
Addr:D+64

Pref 1
Addr:C+64

Row
Buffers

Row:
C to C+8K

Row:
D to D+8K

Requests
Being

Serviced

Row Buffer
Hit
…

Dem 2
Addr:A

Core1Dem 1
Addr:C

Dem X
Addr: Y

Demand Request
From Core X

For AddrY

Legend:

Shortcoming of Local Prefetcher Throttling

208

…

Set 2

…

Core 0 Core 1 Core 2 Core 3

Dem 2 Dem 2 Dem 3 Dem 3 Dem 2 Dem 2 Dem 3 Dem 3

Dem 3 Dem 3 Dem 2 Dem 2 Dem 3 Dem 3 Dem 3 Dem 3

Dem 2 Dem 2 Dem 2 Dem 2 Dem 3 Dem 3 Dem 3 Dem 3

Pref 0Used_P Pref 0 Pref 1 Pref 1

Prefetcher
Degree:

Prefetcher
Degree:

Used_P Used_P Used_P

Pref 0Pref 0 Pref 1 Pref 1Used_P Used_P Used_P Used_P

FDP Throttle Up
24 24

Pref 0 Pref 0 Pref 0 Pref 0 Pref 1 Pref 1 Pref 1 Pref 1

Dem 2 Dem 3Dem 2 Dem 3

Local-only prefetcher control techniques
have no mechanism to detect inter-core interference

Shared Cache

Set 0

Set 1

FDP Throttle Up

209

Shortcoming of Local-Only
Prefetcher Control

0

0.2

0.4

0.6

0.8

1

lb
m

_0
6

sw
im

_0
0

cr
af

ty
_0

0

bz
ip

2_
00

Sp
ee

du
p

ov
er

 A
lo

ne
 R

un

No Prefetching
Pref. + No Throttling
Feedback-Directed Prefetching
HPAC

0

0.1

0.2

0.3

0.4

0.5

Hspeedup

Our Approach: Use both global and per-core feedback
to determine each prefetcher’s aggressiveness

4-core workload example: lbm_06 + swim_00 + crafty_00 + bzip2_00

Prefetching in Multi-Core (II)
n Ideas for coordinating different prefetchers’ actions

q Utility-based prioritization
n Prioritize prefetchers that provide the best marginal utility on

system performance

q Cost-benefit analysis
n Compute cost-benefit of each prefetcher to drive prioritization

q Heuristic based methods
n Global controller overrides local controller’s throttling decision

based on interference and accuracy of prefetchers
n Ebrahimi et al., “Coordinated Management of Multiple Prefetchers

in Multi-Core Systems,” MICRO 2009.

210

Hierarchical Prefetcher Throttling

211

Memory Controller

Cache Pollution
Feedback

Accuracy

Bandwidth Feedback

Local control’s goal:
Maximize the
prefetching performance of
core i independently

Global control’s goal: Keep
track of and control
prefetcher-caused
inter-core interference in
shared memory system

Global
Control

Global Control: accepts or
overrides decisions made by
local control to improve
overall system performance

Core i

Local
Control

Pref. i

Shared Cache

Throttling Decision

Local
Throttling Decision

Final
Throttling Decision

Hierarchical Prefetcher Throttling Example

212

Memory Controller

Pol (i)

Acc (i)

BW (i)
BWNO (i)

Global
Control

Core i

Local
Control

Pref. i

Shared Cache

Local
Throttling Decision

Final
Throttling Decision

High Acc (i)

Local
Throttle Up High Pol (i)

High BW (i)
High BWNO (i)

Pol. Filter i

- High accuracy
- High pollution
- High bandwidth consumed
while other cores need bandwidth

Enforce
Throttle Down

213

HPAC Control Policies

Causing Low
Pollution

Inaccurate

Highly
Accurate

Others’ low
BW need

throttle
down

Causing High
Pollution

ActionInterference ClassBWNO (i)

High BW
Consumption

Low BW
Consumption Others’ high

BW need

Others’ low
BW need

Inaccurate
throttle
down

Highly
Accurate

High BW
Consumption

Low BW
Consumption

Others’ low
BW need

Others’ high
BW need

Others’ low
BW need

Others’ high
BW need

throttle
downSevere interference

Severe interference

Severe interference

Pol (i) Acc (i) BW (i)

HPAC Evaluation

214

15%

9%

Normalized to system with no prefetching

More on Coordinated Prefetcher Control

n Eiman Ebrahimi, Onur Mutlu, Chang Joo Lee, and Yale N. Patt,
"Coordinated Control of Multiple Prefetchers in Multi-Core
Systems"
Proceedings of the 42nd International Symposium on
Microarchitecture (MICRO), pages 316-326, New York, NY, December
2009. Slides (ppt)

215

https://people.inf.ethz.ch/omutlu/pub/coordinated-prefetching_micro09.pdf
http://www.microarch.org/micro42/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_micro09_talk.ppt

More on Prefetching in Multi-Core (I)

n Chang Joo Lee, Onur Mutlu, Veynu Narasiman, and Yale N. Patt,
"Prefetch-Aware DRAM Controllers"
Proceedings of the 41st International Symposium on
Microarchitecture (MICRO), pages 200-209, Lake Como, Italy, November
2008. Slides (ppt)

216

https://people.inf.ethz.ch/omutlu/pub/prefetch-dram_micro08.pdf
http://www.microarch.org/micro41/
https://people.inf.ethz.ch/omutlu/pub/lee_micro08_talk.ppt

217

Problems of Prefetch Handling

n How to schedule prefetches vs demands?
n Demand-first: Always prioritizes demands over

prefetch requests
n Demand-prefetch-equal: Always treats them the same

Neither take into account both:
1. Non-uniform access latency of DRAM systems
2. Usefulness of prefetches

Neither of these perform best

218

When Prefetches are Useful

Row A

Pref Row A : X

Dem Row B : Y

Pref Row A : Z

DRAM Controller

Row Buffer

DRAM

DRAM

Processor

Ø Demand-first

Row-conflict

Row B

Row-hit

Miss Y Miss X Miss Z

Stall Execution

Processor needs Y, X, and Z

2 row-conflicts, 1 row-hit

219

When Prefetches are Useful

Row A

Pref Row A : X

Dem Row B : Y

Pref Row A : Z

DRAM Controller

Row Buffer

DRAM

DRAM

Processor

DRAM

Processor

Ø Demand-first

Ø Demand-pref-equal

Row-hitRow-conflict

Saved Cycles

Row B

Miss Y Miss X Miss Z

Miss Y Hit X Hit Z

Demand-pref-equal outperforms demand-first

Stall Execution

Processor needs Y, X, and Z

2 row-conflicts, 1 row-hit

2 row-hits, 1 row-conflict

220

When Prefetches are Useless

Row A

Pref Row A : X

Dem Row B : Y

Pref Row A : Z

DRAM Controller

Row Buffer

DRAM

DRAM

Processor

DRAM

Processor

Ø Demand-first

Ø Demand-pref-equal

Saved Cycles
Miss Y

Miss Y

Demand-first outperforms demand-pref-equal

Y X Z

X Z Y

Processor needs ONLY Y

221

Demand-first vs. Demand-pref-equal policy

Stream prefetcher enabled

0

0.5

1

1.5

2

2.5

3

galgel
ammp

art milc
swim

libquantum

bwaves

leslie3d

IP
C

 n
or

m
al

iz
ed

 to
 n

o
pr

ef
et

ch
in

g

Demand-first
Demand-pref-equal

Demand-first is betterDemand-pref-equal is betterGoal 1: Adaptively schedule prefetches based on prefetch usefulnessGoal 2: Eliminate useless prefetches

Useless prefetches:
Off-chip bandwidth
Queue resources
Cache Pollution

More on Prefetching in Multi-Core (II)

n Chang Joo Lee, Veynu Narasiman, Onur Mutlu, and Yale N. Patt,
"Improving Memory Bank-Level Parallelism in the Presence of
Prefetching"
Proceedings of the 42nd International Symposium on
Microarchitecture (MICRO), pages 327-336, New York, NY, December
2009. Slides (ppt)

222

https://people.inf.ethz.ch/omutlu/pub/dram-blp_micro09.pdf
http://www.microarch.org/micro41/
https://people.inf.ethz.ch/omutlu/pub/lee_micro09_talk.ppt

More on Prefetching in Multi-Core (III)

n Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Prefetch-Aware Shared Resource Management for Multi-Core
Systems"
Proceedings of the 38th International Symposium on Computer
Architecture (ISCA), San Jose, CA, June 2011. Slides (pptx)

223

https://people.inf.ethz.ch/omutlu/pub/prefetchaware-shared-resources_isca11.pdf
http://isca2011.umaine.edu/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_isca11_talk.pptx

More on Prefetching in Multi-Core (IV)
n Vivek Seshadri, Samihan Yedkar, Hongyi Xin, Onur Mutlu, Phillip P. Gibbons,

Michael A. Kozuch, and Todd C. Mowry,
"Mitigating Prefetcher-Caused Pollution using Informed Caching Policies
for Prefetched Blocks"
ACM Transactions on Architecture and Code Optimization (TACO), Vol. 11, No. 4,
January 2015.
Presented at the 10th HiPEAC Conference, Amsterdam, Netherlands, January
2015.
[Slides (pptx) (pdf)]
[Source Code]

224

https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_taco15.pdf
http://taco.acm.org/
https://www.hipeac.net/2015/amsterdam/
https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_seshadri_hipeac15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_seshadri_hipeac15-talk.pdf
https://github.com/CMU-SAFARI/memsim

Informed Caching Policies for Prefetched Blocks

Caching Policies for Prefetched Blocks

225

Problem: Existing caching policies for prefetched
blocks result in significant cache pollution

Cache Set

MRU LRU

Cache Miss:
Insertion Policy

Cache Hit:
Promotion Policy

Are these insertion and promotion

policies good for prefetched blocks?

Informed Caching Policies for Prefetched Blocks

Prefetch Usage Experiment

226

CPU L
1 L2 L3

Prefetcher

Off-Chip
Memory

Monitor L2 misses Prefetch into L3

Classify prefetched blocks into three categories
1. Blocks that are unused
2. Blocks that are used exactly once before evicted from cache
3. Blocks that are used more than once before evicted from cache

Informed Caching Policies for Prefetched Blocks

Usage Distribution of Prefetched Blocks

227

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

mi
lc

om
ne
tp
p

mc
f
tw
olf

bz
ip2 gc

c

xa
lan
cb
mk
so
ple
x vp

r

ap
ac
he
20

tp
ch
17 art

am
mp
tp
cc6
4
tp
ch
2

sp
hin
x3

as
tar
ga
lge
l
tp
ch
6

Ge
ms
FD
TD

sw
im
fac
ere
c

ze
us
mp

ca
ctu
sA
DM

les
lie
3d

eq
ua
ke lbm luc

as

lib
qu
an
tu
m

bw
av
es

Fr
ac

tio
n

of
 P

re
fe

tc
he

d
Bl

oc
ks

Used > Once Used Once Unused

Many applications have a

significant fraction of

inaccurate prefetches.

95% of the useful

prefetched blocks are
used only once!

Typically, large data structures

benefit repeatedly from

prefetching. Blocks of such data

structures are unlikely to be

used more than once!

Informed Caching Policies for Prefetched Blocks

Shortcoming of Traditional Promotion Policy

228

D D D P P D P D

Cache Set

MRU LRUP

Cache Hit!

Promote to MRU

This is a bad policy. The block is

unlikely to be reused in the cache.

This problem exists with state-of-the-art

replacement policies (e.g., DRRIP, DIP)

Informed Caching Policies for Prefetched Blocks

Demotion of Prefetched Block

229

D D D P P D P D

Cache Set

MRU LRUP

Cache Hit!

Demote to LRU

Ensures that the block is evicted from

the cache quickly after it is used!

Only requires the cache to distinguish between

prefetched blocks and demand-fetched blocks.

Informed Caching Policies for Prefetched Blocks

Cache Insertion Policy for Prefetched Blocks

230

Cache Set

MRU LRU

Prefetch Miss:
Insertion Policy?

Good (Accurate prefetch)
Bad (Inaccurate prefetch)

Good (Inaccurate prefetch)
Bad (accurate prefetch)

Informed Caching Policies for Prefetched Blocks

Predicting Usefulness of Prefetch

231

Cache Set

MRU LRU

Prefetch Miss
Predict Usefulness

of Prefetch
Accurate Inaccurate

Fraction of Useful Prefetches

Prefetching in GPUs
n Adwait Jog, Onur Kayiran, Asit K. Mishra, Mahmut T. Kandemir, Onur

Mutlu, Ravishankar Iyer, and Chita R. Das,
"Orchestrated Scheduling and Prefetching for GPGPUs"
Proceedings of the 40th International Symposium on Computer
Architecture (ISCA), Tel-Aviv, Israel, June 2013. Slides (pptx) Slides
(pdf)

232

https://people.inf.ethz.ch/omutlu/pub/orchestrated-gpgpu-scheduling-prefetching_isca13.pdf
http://isca2013.eew.technion.ac.il/
https://people.inf.ethz.ch/omutlu/pub/jog_isca13_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/jog_isca13_talk.pdf

Address-Value Delta Prediction

233

n Runahead execution cannot parallelize dependent misses
q wasted opportunity to improve performance
q wasted energy (useless pre-execution)

n Runahead performance would improve by 25% if this
limitation were ideally overcome

The Problem: Dependent Cache Misses

Compute

Load 1 Miss

Miss 1

Load 2 Miss

Miss 2

Load 2 Load 1 Hit

Runahead: Load 2 is dependent on Load 1

Runahead

Cannot Compute Its Address!

INV

Parallelizing Dependent Cache Misses
n Idea: Enable the parallelization of dependent L2 cache

misses in runahead mode with a low-cost mechanism

n How: Predict the values of L2-miss address (pointer)
loads

n Address load: loads an address into its destination register,
which is later used to calculate the address of another load

n as opposed to data load

n Read:
q Mutlu et al., “Address-Value Delta (AVD) Prediction,” MICRO

2005.

Parallelizing Dependent Cache Misses

Compute

Load 1 Miss

Miss 1

Load 2 Hit

Miss 2

Load 2 Load 1 Hit

Value Predicted

Runahead
Saved Cycles

Can Compute Its Address

Compute

Load 1 Miss

Miss 1

Load 2 Miss

Miss 2

Load 2 INV Load 1 Hit

Runahead

Cannot Compute Its Address!

Saved Speculative
Instructions

Miss

AVD Prediction [MICRO’05]
n Address-value delta (AVD) of a load instruction defined as:

AVD = Effective Address of Load – Data Value of Load

n For some address loads, AVD is stable
n An AVD predictor keeps track of the AVDs of address loads
n When a load is an L2 miss in runahead mode, AVD

predictor is consulted

n If the predictor returns a stable (confident) AVD for that
load, the value of the load is predicted

Predicted Value = Effective Address – Predicted AVD

Why Do Stable AVDs Occur?
n Regularity in the way data structures are

q allocated in memory AND
q traversed

n Two types of loads can have stable AVDs
q Traversal address loads

n Produce addresses consumed by address loads
q Leaf address loads

n Produce addresses consumed by data loads

Traversal Address Loads
Regularly-allocated linked list:

A

A+k

A+2k

A+3k...

A traversal address load loads the
pointer to next node:

node = nodeànext

Effective Addr Data Value AVD

A A+k -k

A+k A+2k -k
A+2k A+3k -k

Stable AVDStriding
data value

AVD = Effective Addr – Data Value

Leaf Address Loads
Sorted dictionary in parser:
Nodes point to strings (words)
String and node allocated consecutively

A+k

A C+k

C

B+k

B
D+k E+k F+k G+k

D E F G

Dictionary looked up for an input word.

A leaf address load loads the pointer to
the string of each node:

Effective Addr Data Value AVD

A+k A k

C+k C k
F+k F k

lookup (node, input) { // ...
ptr_str = nodeàstring;
m = check_match(ptr_str, input);
// …

}

Stable AVDNo stride!

AVD = Effective Addr – Data Valuestring

node

AVD Prediction 241

Identifying Address Loads in Hardware
n Insight:

q If the AVD is too large, the value that is loaded is likely not an
address

n Only keep track of loads that satisfy:
-MaxAVD ≤ AVD ≤ +MaxAVD

n This identification mechanism eliminates many loads from
consideration for prediction
q No need to value- predict the loads that will not generate

addresses
q Enables the predictor to be small

242

An Implementable AVD Predictor

n Set-associative prediction table
n Prediction table entry consists of

q Tag (Program Counter of the load)
q Last AVD seen for the load
q Confidence counter for the recorded AVD

n Updated when an address load is retired in normal mode
n Accessed when a load misses in L2 cache in runahead mode
n Recovery-free: No need to recover the state of the processor

or the predictor on misprediction
q Runahead mode is purely speculative

243

AVD Update Logic

AVD Prediction 244

AVD Prediction Logic

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

bis
ort

he
alt

h
mst

pe
rim

ete
r

tre
ea

dd tsp

vo
ron

oi mcf

pa
rse

r
tw

olf vp
r

AVG

No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e
an

d
Ex

ec
ut

ed
 In

st
ru

ct
io

ns

Execution Time

Executed Instructions

Performance of AVD Prediction
runahead

14.3%
15.5%

More on AVD Prediction

n Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Address-Value Delta (AVD) Prediction: Increasing the
Effectiveness of Runahead Execution by Exploiting Regular
Memory Allocation Patterns"
Proceedings of the 38th International Symposium on
Microarchitecture (MICRO), pages 233-244, Barcelona, Spain, November
2005. Slides (ppt)Slides (pdf)

246

https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05.pdf
http://pcsostres.ac.upc.edu/micro38/
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05_talk.pdf

More on AVD Prediction (II)

n Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Address-Value Delta (AVD) Prediction: A Hardware Technique
for Efficiently Parallelizing Dependent Cache Misses"
IEEE Transactions on Computers (TC), Vol. 55, No. 12, pages 1491-1508,
December 2006.

247

https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_tc06.pdf
http://www.computer.org/tc/

Wrong Path Events

An Observation and A Question
• In an out-of-order processor, some

instructions are executed on the
mispredicted path (wrong-path instructions).

• Is the behavior of wrong-path instructions
different from the behavior of correct-path
instructions?
– If so, we can use the difference in behavior for

early misprediction detection and recovery.

What is a Wrong Path Event?

An instance of illegal or unusual behavior
that is more likely to occur on the wrong
path than on the correct path.

Wrong Path Event = WPE
Probability (wrong path | WPE) ~ 1

Why Does a WPE Occur?

• A wrong-path instruction may be executed
before the mispredicted branch is
executed.
– Because the mispredicted branch may be

dependent on a long-latency instruction.

• The wrong-path instruction may consume
a data value that is not properly initialized.

WPE Example from eon:
NULL pointer dereference

1 : for (int i=0 ; i< length(); i++) {

2 : structure *ptr = array[i];

3 : if (ptr->x) {

4 : // . . .

5 : }

6 : }

Beginning of the loop

xEFF8B0x8ABCD0 x0 x0

Array boundary

Array of pointers
to structs

i = 0

1 : for (int i=0 ; i< length(); i++) {

2 : structure *ptr = array[i];

3 : if (ptr->x) {

4 : // . . .

5 : }

6 : }

First iteration

xEFF8B0x8ABCD0 x0 x0

Array boundary

Array of pointers
to structs

i = 0
ptr = x8ABCD0

1 : for (int i=0 ; i< length(); i++) {

2 : structure *ptr = array[i];

3 : if (ptr->x) {

4 : // . . .

5 : }

6 : }

First iteration

xEFF8B0x8ABCD0 x0 x0

Array boundary

Array of pointers
to structs

i = 0
ptr = x8ABCD0

*ptr

1 : for (int i=0 ; i< length(); i++) {

2 : structure *ptr = array[i];

3 : if (ptr->x) {

4 : // . . .

5 : }

6 : }

Loop branch correctly predicted

xEFF8B0x8ABCD0 x0 x0

Array boundary

Array of pointers
to structs

i = 1

1 : for (int i=0 ; i< length(); i++) {

2 : structure *ptr = array[i];

3 : if (ptr->x) {

4 : // . . .

5 : }

6 : }

Second iteration

xEFF8B0x8ABCD0 x0 x0

Array boundary

Array of pointers
to structs

i = 1
ptr = xEFF8B0

1 : for (int i=0 ; i< length(); i++) {

2 : structure *ptr = array[i];

3 : if (ptr->x) {

4 : // . . .

5 : }

6 : }

Second iteration

xEFF8B0x8ABCD0 x0 x0

Array boundary

Array of pointers
to structs

i = 1
ptr = xEFF8B0

*ptr

1 : for (int i=0 ; i< length(); i++) {

2 : structure *ptr = array[i];

3 : if (ptr->x) {

4 : // . . .

5 : }

6 : }

Loop exit branch mispredicted

xEFF8B0x8ABCD0 x0 x0

Array boundary

Array of pointers
to structs

i = 2

1 : for (int i=0 ; i< length(); i++) {

2 : structure *ptr = array[i];

3 : if (ptr->x) {

4 : // . . .

5 : }

6 : }

Third iteration on wrong path

xEFF8B0x8ABCD0 x0 x0

Array boundary

Array of pointers
to structs

i = 2
ptr = 0

1 : for (int i=0 ; i< length(); i++) {

2 : structure *ptr = array[i];

3 : if (ptr->x) {

4 : // . . .

5 : }

6 : }

Wrong Path Event

xEFF8B0x8ABCD0 x0 x0

Array boundary

Array of pointers
to structs

NULL pointer dereference!

i = 2
ptr = 0

*ptr

1 : for (int i=0 ; i< length(); i++) {

2 : structure *ptr = array[i];

3 : if (ptr->x) {

4 : // . . .

5 : }

6 : }

Types of WPEs

• Due to memory instructions
– NULL pointer dereference
– Write to read-only page
– Unaligned access (illegal in the Alpha ISA)
– Access to an address out of segment range
– Data access to code segment
– Multiple concurrent TLB misses

Types of WPEs (continued)
• Due to control-flow instructions

– Misprediction under misprediction
• If three branches are executed and resolved as mispredicts

while there are older unresolved branches in the processor, it
is almost certain that one of the older unresolved branches is
mispredicted.

– Return address stack underflow
– Unaligned instruction fetch address (illegal in Alpha)

• Due to arithmetic instructions
– Some arithmetic exceptions

• e.g. Divide by zero

Two Empirical Questions

1. How often do WPEs occur?

2. When do WPEs occur on the wrong path?

More on Wrong Path Events

n David N. Armstrong, Hyesoon Kim, Onur Mutlu, and Yale N. Patt,
"Wrong Path Events: Exploiting Unusual and Illegal Program
Behavior for Early Misprediction Detection and Recovery"
Proceeedings of the 37th International Symposium on
Microarchitecture (MICRO), pages 119-128, Portland, OR, December
2004. Slides (pdf)Slides (ppt)

265

https://people.inf.ethz.ch/omutlu/pub/armstrong_micro04.pdf
http://www.microarch.org/micro37/
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro04_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro04_talk.ppt

Why Is This Important?
n A modern processor spends significant amount of time

fetching/executing instructions on the wrong path

266

A Lot of Time Spent on The Wrong Path
n A runahead processor, much more so…

267

Is Wrong-Path Execution Useless/Useful/Harmful?

268

Wrong Path Is Often Useful for Performance

269

More So In Runahead Execution

270

Why is Wrong Path Useful? (I)

271

n Control-independence: e.g., wrong-path execution of future
loop iterations

Why is Wrong Path Useful? (II)

272

Why is Wrong Path Useful? (III)

273

n Same data used in different control flow paths

More on Wrong Path Execution (I)

n Onur Mutlu, Hyesoon Kim, David N. Armstrong, and Yale N. Patt,
"Understanding the Effects of Wrong-Path Memory References on
Processor Performance"
Proceedings of the 3rd Workshop on Memory Performance
Issues (WMPI), pages 56-64, Munchen, Germany, June 2004. Slides
(pdf)

274

https://people.inf.ethz.ch/omutlu/pub/mutlu_wmpi04.pdf
http://doi.acm.org/10.1145/1054943.1054951
https://people.inf.ethz.ch/omutlu/pub/mutlu_wmpi04_talk.pdf

More on Wrong Path Execution (II)

n Onur Mutlu, Hyesoon Kim, David N. Armstrong, and Yale N. Patt,
"An Analysis of the Performance Impact of Wrong-Path Memory
References on Out-of-Order and Runahead Execution Processors"
IEEE Transactions on Computers (TC), Vol. 54, No. 12, pages 1556-1571,
December 2005.

275

https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_tc05.pdf
http://doi.ieeecomputersociety.org/10.1109/TC.2005.190

What If …
n The system learned from wrong-path execution and used

that learning for better execution of the program/system?

n An open research problem…

276

