
Computer Architecture

Lecture 17a: Multiprocessors

Prof. Onur Mutlu

ETH Zürich

Fall 2022

24 November 2022

Prefetching Wrap Up

Runahead as an

Execution-Based Prefetcher

Runahead as an Execution-based Prefetcher

◼ Idea of an Execution-Based Prefetcher: Pre-execute a piece
of the (pruned) program solely for prefetching data

◼ Idea of Runahead: Pre-execute the main program solely for
prefetching data

◼ Advantages and disadvantages of runahead vs. other
execution-based prefetchers?

◼ Can you make runahead even better by pruning the
program portion executed in runahead mode?

❑ Yes → Continuous Runahead is an example of this

4

Taking Advantage of Pure Speculation

◼ Runahead mode is purely speculative

◼ The goal is to find and generate cache misses that would
otherwise stall execution later on

◼ How do we achieve this goal most efficiently and with the
highest benefit?

◼ Idea: Find and execute only those instructions that will lead
to cache misses (that cannot already be captured by the
instruction window)

◼ How? → Continuous Runahead is an example of this

5

Continuous Runahead: Much More Efficient

◼ Milad Hashemi, Onur Mutlu, and Yale N. Patt,
"Continuous Runahead: Transparent Hardware Acceleration for
Memory Intensive Workloads"
Proceedings of the 49th International Symposium on
Microarchitecture (MICRO), Taipei, Taiwan, October 2016.
[Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)]
Best paper session.

6

https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16.pdf
http://www.microarch.org/micro49/
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-lightning-session-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pdf

Execution-based Prefetchers: Pros and Cons

+ Can prefetch pretty much any access pattern

+ Can be very low cost (e.g., runahead execution)

+ Especially if it uses the same hardware context

+ Why? The processor is equipped to execute the program anyway

+ Can be bandwidth-efficient (e.g., runahead execution)

-- Depend on branch prediction and possibly value prediction
accuracy

- Mispredicted branches dependent on missing data throw the thread
off the correct execution path

-- Can be wasteful

-- speculatively execute many instructions

-- can occupy a separate thread context

-- Complexity in deciding when and what to pre-execute
7

More on Runahead Execution
◼ Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,

"Runahead Execution: An Alternative to Very Large Instruction Windows
for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance Computer
Architecture (HPCA), pages 129-140, Anaheim, CA, February 2003. Slides (pdf)

One of the 15 computer arch. papers of 2003 selected as Top Picks by IEEE Micro.
HPCA Test of Time Award (awarded in 2021).
[Lecture Slides (pptx) (pdf)]
[Lecture Video (1 hr 54 mins)]
[Retrospective HPCA Test of Time Award Talk Slides (pptx) (pdf)]
[Retrospective HPCA Test of Time Award Talk Video (14 minutes)]

8

https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
http://www.cs.arizona.edu/hpca9/
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03_talk.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=onur-comparch-fall2017-lecture17-latencytoleranceandprefetching-afterlecture.pptx
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=onur-comparch-fall2017-lecture17-latencytoleranceandprefetching-afterlecture.pdf
https://youtu.be/Kj3relihGF4?t=1162
https://people.inf.ethz.ch/omutlu/pub/onur-runahead-HPCA-ToT-Award-March-2-2021-withbackup.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-runahead-HPCA-ToT-Award-March-2-2021-withbackup.pdf
https://www.youtube.com/watch?v=KFCOecRQTIc

More on Efficient Runahead Execution

◼ Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Techniques for Efficient Processing in Runahead Execution
Engines"
Proceedings of the 32nd International Symposium on Computer
Architecture (ISCA), pages 370-381, Madison, WI, June 2005. Slides
(ppt) Slides (pdf)
One of the 13 computer architecture papers of 2005 selected as
Top Picks by IEEE Micro.

9

https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05.pdf
http://www.cs.wisc.edu/~isca2005/
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05_talk.pdf

More Effective Runahead Execution

◼ Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Address-Value Delta (AVD) Prediction: Increasing the Effectiveness of
Runahead Execution by Exploiting Regular Memory Allocation Patterns"
Proceedings of the 38th International Symposium on Microarchitecture (MICRO),
pages 233-244, Barcelona, Spain, November 2005. Slides (ppt) Slides (pdf)
One of the five papers nominated for the Best Paper Award by the
Program Committee.

10

https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05.pdf
http://pcsostres.ac.upc.edu/micro38/
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05_talk.pdf

More on Runahead Execution

◼ Lecture video from Fall 2020, Computer Architecture:

❑ https://www.youtube.com/watch?v=zPewo6IaJ_8

◼ Lecture video from Fall 2017, Computer Architecture:

❑ https://www.youtube.com/watch?v=Kj3relihGF4

◼ Onur Mutlu,
"Efficient Runahead Execution Processors"
Ph.D. Dissertation, HPS Technical Report, TR-HPS-2006-007, July
2006. Slides (ppt)
Nominated for the ACM Doctoral Dissertation Award by
the University of Texas at Austin.

11https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=zPewo6IaJ_8
https://www.youtube.com/watch?v=Kj3relihGF4
https://people.inf.ethz.ch/omutlu/pub/mutlu_dissertation.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_phd_defense_talk.ppt
https://www.youtube.com/onurmutlulectures

More on Continuous Runahead

◼ Milad Hashemi, Onur Mutlu, and Yale N. Patt,
"Continuous Runahead: Transparent Hardware Acceleration for
Memory Intensive Workloads"
Proceedings of the 49th International Symposium on
Microarchitecture (MICRO), Taipei, Taiwan, October 2016.
[Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)]
Best paper session.

12

https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16.pdf
http://www.microarch.org/micro49/
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-lightning-session-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pdf

Effect of Runahead in Sun ROCK

◼ Shailender Chaudhry talk, Aug 2008.

13

Effective prefetching can both improve performance and reduce hardware cost

More on Runahead in Sun ROCK

14Chaudhry+, “High-Performance Throughput Computing,” IEEE Micro 2005.

More on Runahead in Sun ROCK

15Chaudhry+, “Simultaneous Speculative Threading,” ISCA 2009.

Runahead Execution in IBM POWER6

16

Cain+, “Runahead Execution vs. Conventional Data Prefetching
in the IBM POWER6 Microprocessor,” ISPASS 2010.

Runahead Execution in NVIDIA Denver

17

Boggs+, “Denver: NVIDIA’s First 64-Bit ARM Processor,” IEEE Micro 2015.

Runahead Execution in NVIDIA Denver

18

Boggs+, “Denver: NVIDIA’s First 64-Bit ARM Processor,”
IEEE Micro 2015.

Gwennap, “NVIDIA’s First CPU is a Winner,” MPR 2014.

Looking to the Past

At the Time… Early 2000s…

◼ Large focus on increasing the size of the window…

❑ And, designing bigger, more complicated machines

◼ Runahead was a different way of thinking

❑ Keep the OoO core simple and small

❑ At the expense of some benefits (e.g., non-memory-related)

❑ Use aggressive “automatic speculative execution” solely for
prefetching

❑ Synergistic with prefetching and branch prediction methods

◼ A lot of interesting and innovative ideas ensued…

20

Important Precedent [Dundas & Mudge, ICS 1997]

21
Dundas+, “Improving Data Cache Performance by Pre-Executing Instructions Under a Cache Miss,” ICS 1997.

An Inspiration [Glew, ASPLOS-WACI 1998]

22
Glew, “MLP yes! ILP no!,” ASPLOS WACI 1998.

Looking to the Future

A Look into the Future…

◼ Microarchitecture (especially memory) is critically important

❑ And, fun…

❑ And, impactful…

◼ Runahead is a great example of harmonious industry-
academia collaboration

◼ Fundamental problems will remain fundamental

❑ And will require fundamental (and creative) solutions

24

Citation for the Test of Time Award

◼ Runahead Execution is a pioneering paper that opened up
new avenues in dynamic prefetching.

◼ The basic idea of runahead execution effectively increases
the instruction window very significantly, without having to
increase physical resource size (e.g. the issue queue).

◼ This seminal paper spawned off a new area of ILP-
enhancing microarchitecture research.

◼ This work has had strong industry impact as evidenced by
IBM's POWER6 - Load Lookahead, NVIDIA Denver, and Sun
ROCK's hardware scouting.

25

More on Runahead Execution

◼ Lecture video from Fall 2020, Computer Architecture:

❑ https://www.youtube.com/watch?v=zPewo6IaJ_8

◼ Lecture video from Fall 2017, Computer Architecture:

❑ https://www.youtube.com/watch?v=Kj3relihGF4

◼ Onur Mutlu,
"Efficient Runahead Execution Processors"
Ph.D. Dissertation, HPS Technical Report, TR-HPS-2006-007, July
2006. Slides (ppt)
Nominated for the ACM Doctoral Dissertation Award by
the University of Texas at Austin.

26https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=zPewo6IaJ_8
https://www.youtube.com/watch?v=Kj3relihGF4
https://people.inf.ethz.ch/omutlu/pub/mutlu_dissertation.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_phd_defense_talk.ppt
https://www.youtube.com/onurmutlulectures

More on Runahead Execution (I)

27https://www.youtube.com/watch?v=zPewo6IaJ_8&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=34

https://www.youtube.com/watch?v=zPewo6IaJ_8&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=34

More on Runahead Execution (II)

28https://www.youtube.com/watch?v=KFCOecRQTIc

https://www.youtube.com/watch?v=KFCOecRQTIc

More Recommended Material

on Prefetching

Lecture on Prefetching: Fall 2022

30https://www.youtube.com/watch?v=UjqS9iKo4Ik&list=PL5Q2soXY2Zi-cAls3cyauNzM7-74Eq31O&index=16

https://www.youtube.com/watch?v=UjqS9iKo4Ik&list=PL5Q2soXY2Zi-cAls3cyauNzM7-74Eq31O&index=16

Lectures on Prefetching (I)

31https://www.youtube.com/watch?v=xZmDyj0g3Pw&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=33

https://www.youtube.com/watch?v=xZmDyj0g3Pw&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=33

Lectures on Prefetching (II)

32https://www.youtube.com/watch?v=zPewo6IaJ_8&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=34

https://www.youtube.com/watch?v=zPewo6IaJ_8&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=34

Lectures on Prefetching (III)

33https://www.youtube.com/watch?v=KFCOecRQTIc

https://www.youtube.com/watch?v=KFCOecRQTIc

Lectures on Prefetching (IV)

34https://www.youtube.com/watch?v=ibPL7T9iEwY&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=29

https://www.youtube.com/watch?v=ibPL7T9iEwY&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=29

Lectures on Prefetching (V)

35https://www.youtube.com/watch?v=TUFins4z6o4&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=30

https://www.youtube.com/watch?v=TUFins4z6o4&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=30

Lectures on Prefetching
◼ Computer Architecture, Fall 2020, Lecture 18

❑ Prefetching (ETH, Fall 2020)

❑ https://www.youtube.com/watch?v=xZmDyj0g3Pw&list=PL5Q2soXY2Zi9xidyIgBxUz
7xRPS-wisBN&index=33

◼ Computer Architecture, Fall 2020, Lecture 19a

❑ Execution-Based Prefetching (ETH, Fall 2020)

❑ https://www.youtube.com/watch?v=zPewo6IaJ_8&list=PL5Q2soXY2Zi9xidyIgBxUz7
xRPS-wisBN&index=34

◼ Computer Architecture, Spring 2015, Lecture 25

❑ Prefetching (CMU, Spring 2015)

❑ https://www.youtube.com/watch?v=ibPL7T9iEwY&list=PL5PHm2jkkXmi5CxxI7b3JC
L1TWybTDtKq&index=29

◼ Computer Architecture, Spring 2015, Lecture 26

❑ More Prefetching (CMU, Spring 2015)

❑ https://www.youtube.com/watch?v=TUFins4z6o4&list=PL5PHm2jkkXmi5CxxI7b3JC
L1TWybTDtKq&index=30

36https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=xZmDyj0g3Pw&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=33
https://www.youtube.com/watch?v=zPewo6IaJ_8&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=34
https://www.youtube.com/watch?v=ibPL7T9iEwY&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=29
https://www.youtube.com/watch?v=TUFins4z6o4&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=30
https://www.youtube.com/onurmutlulectures

Research Opportunities

37

Computer Architecture Research

◼ If you want to do research in any of the covered topics or any
topic in Comp Arch, HW/SW Interaction & related areas

❑ We have many projects and a great environment to perform top-
notch research, bachelor’s/master’s/semester projects

❑ Talk with me (email, whatsapp, etc.) & apply online

◼ Many research topics and projects

❑ Memory (DRAM, NVM, Flash, SW/HW issues, emerging tech)

❑ Processing in Memory

❑ Hardware Security

❑ New Computing Paradigms

❑ Machine Learning for System Design

❑ System Design for AI/ML, Health, Genomics, Medicine

❑ …
38A lot of room for creativity, innovation & high impact

Computer architecture, HW/SW, systems, bioinformatics, security

Graphics and Vision Processing

Heterogeneous

Processors and

Accelerators

Hybrid Main Memory

Persistent Memory/Storage

Build fundamentally better architectures

Current Research Mission

The Transformation Hierarchy

40

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

Computer Architecture

(narrow view)

Computer Architecture

(expanded view)

SAFARI Research Mission & Major Topics

◼ Data-centric systems: memory/storage systems

❑ Proc. in Memory/Storage, emerging tech, DRAM

◼ Fundamentally secure/reliable/safe architectures

❑ RowHammer; patchable HW; secure memory

◼ Low-latency & predictable architectures

❑ Low-latency, low-energy yet low-cost memory

❑ QoS-aware and predictable memory systems

◼ Systems for ML/AI/Genomics/Health/Graphs

❑ Algorithm/architecture co-design; accelerators

◼ Data-driven and data-aware architectures

❑ ML/AI for architectural control and design

❑ Expressive memory and expressive systems

◼ Ultra-fast & efficient genome analysis

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

Build fundamentally better architectures

Broad research
spanning apps, systems, logic
with architecture at the center

https://safari.ethz.ch

https://people.inf.ethz.ch/omutlu/projects.htm
"SAFARI Research Group: Introduction & Research"

[Slides (pptx) (pdf)] [Talk Video (15 min.)]

https://safari.ethz.ch/
https://people.inf.ethz.ch/omutlu/projects.htm
https://people.inf.ethz.ch/omutlu/pub/onur-HuaweiDay-SAFARIIntroductionAndResearch-October-19-2021.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-HuaweiDay-SAFARIIntroductionAndResearch-October-19-2021.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-HuaweiDay-SAFARIIntroductionAndResearch-October-19-2021.pdf
https://www.youtube.com/watch?v=mSr1QQmYuX0&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=67

Open Source Tools: SAFARI GitHub

42https://github.com/CMU-SAFARI/

https://github.com/CMU-SAFARI/

40+ Researchers

https://safari.ethz.ch

Onur Mutlu’s SAFARI Research Group
Computer architecture, HW/SW, systems, bioinformatics, security, memory

https://safari.ethz.ch/safari-newsletter-april-2020/

http://www.safari.ethz.ch/
https://safari.ethz.ch/safari-newsletter-april-2020/

SAFARI Newsletter January 2021 Edition

◼ https://safari.ethz.ch/safari-newsletter-january-2021/

44

https://safari.ethz.ch/safari-newsletter-january-2021/

SAFARI Newsletter December 2021 Edition

◼ https://safari.ethz.ch/safari-newsletter-december-2021/

45

https://safari.ethz.ch/safari-newsletter-december-2021/

Acknowledgments

https://safari.ethz.ch

http://www.safari.ethz.ch/

A Talk on Our Research & Teaching

47
https://www.youtube.com/watch?v=83tlorht7Mc&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=54

https://www.youtube.com/watch?v=83tlorht7Mc&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=54

An Interview on Computing Futures

48https://www.youtube.com/watch?v=8ffSEKZhmvo

https://www.youtube.com/watch?v=8ffSEKZhmvo

Computer Architecture Research

◼ If you want to do research in any of the covered topics or any
topic in Comp Arch, HW/SW Interaction & related areas

❑ We have many projects and a great environment to perform top-
notch research, bachelor’s/master’s/semester projects

❑ Talk with me (email, whatsapp, etc.) & apply online

◼ Many research topics and projects

❑ Memory (DRAM, NVM, Flash, SW/HW issues, emerging tech)

❑ Processing in Memory

❑ Hardware Security

❑ New Computing Paradigms

❑ Machine Learning for System Design

❑ System Design for AI/ML, Health, Genomics, Medicine

❑ …
49A lot of room for creativity, innovation & high impact

Multiprocessors

Readings: Multiprocessing

◼ Required

❑ Amdahl, “Validity of the single processor approach to achieving large
scale computing capabilities,” AFIPS 1967.

◼ Recommended

❑ Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE,
1966

❑ Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” pp. 551-
560 in Readings in Computer Architecture.

❑ Hill, Jouppi, Sohi, “Dataflow and Multithreading,” pp. 309-314 in
Readings in Computer Architecture.

51

Memory Consistency

◼ Required

❑ Lamport, “How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs,” IEEE Transactions on Computers,
1979

52

Readings: Cache Coherence

◼ Required

❑ Papamarcos and Patel, “A low-overhead coherence solution
for multiprocessors with private cache memories,” ISCA 1984.

◼ Recommended:

❑ Culler and Singh, Parallel Computer Architecture

◼ Chapter 5.1 (pp 269 – 283), Chapter 5.3 (pp 291 – 305)

❑ P&H, Computer Organization and Design

◼ Chapter 5.8 (pp 534 – 538 in 4th and 4th revised eds.)

53

Multiprocessors and

Issues in Multiprocessing

Flynn’s Taxonomy of Computers

◼ Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

◼ SISD: Single instruction operates on single data element

◼ SIMD: Single instruction operates on multiple data elements

❑ Array processor

❑ Vector processor

◼ MISD: Multiple instructions operate on single data element

❑ Closest form: systolic array processor, streaming processor

◼ MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

❑ Multiprocessor

❑ Multithreaded processor

55

SIMD Example: Vector & Array Processors

56https://www.youtube.com/watch?v=YPLPVadgw-E&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6&index=23

https://www.youtube.com/watch?v=YPLPVadgw-E&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6&index=23

MISD Example: Systolic Arrays

57
https://youtu.be/1SSqV7Y75oU?t=2316

https://youtu.be/1SSqV7Y75oU?t=2316

Why Parallel Computers?

◼ Parallelism: Doing multiple things at a time

◼ Things: instructions, operations, tasks

◼ Main (or Original) Goal

❑ Improve performance (Execution time or task throughput)
◼ Execution time of a program governed by Amdahl’s Law

◼ Other Goals

❑ Reduce power consumption

◼ (4N units at freq F/4) consume less power than (N units at freq F)

◼ Why?

❑ Improve cost efficiency and scalability, reduce complexity

◼ Harder to design a single unit that performs as well as N simpler units

❑ Improve dependability: Redundant execution in space
58

Types of Parallelism and How to Exploit Them

◼ Instruction Level Parallelism

❑ Different instructions within a stream can be executed in parallel

❑ Pipelining, out-of-order execution, speculative execution, VLIW

❑ Dataflow

◼ Data Parallelism

❑ Different pieces of data can be operated on in parallel

❑ SIMD: Vector processing, array processing

❑ Systolic arrays, streaming processors

◼ Task Level Parallelism

❑ Different “tasks/threads” can be executed in parallel

❑ Multithreading

❑ Multiprocessing (multi-core)
59

Task-Level Parallelism: Creating Tasks

◼ Partition a single problem into multiple related tasks
(threads)

❑ Explicitly: Parallel programming

◼ Easy when tasks are natural in the problem

❑ Web/database queries

◼ Difficult when natural task boundaries are unclear

❑ Transparently/implicitly: Thread level speculation

◼ Partition a single thread speculatively

◼ Run many independent tasks (processes) together

❑ Easy when there are many processes

◼ Batch simulations, different users, cloud computing workloads

❑ Does not improve the performance of a single task

60

Multiprocessing Fundamentals

61

Multiprocessor Types

◼ Loosely coupled multiprocessors

❑ No shared global memory address space

❑ Multicomputer network

◼ Network-based multiprocessors

❑ Usually programmed via message passing

◼ Explicit calls (send, receive) for communication

◼ Tightly coupled multiprocessors

❑ Shared global memory address space

❑ Traditional multiprocessing: symmetric multiprocessing (SMP)

◼ Existing multi-core processors, multithreaded processors

❑ Programming model similar to uniprocessors (i.e., multitasking
uniprocessor) except

◼ Operations on shared data require synchronization
62

Main Design Issues in Tightly-Coupled MP

◼ Shared memory synchronization

❑ How to handle synchronization: locks, atomic operations, barriers

◼ Cache coherence

❑ How to ensure correct operation in the presence of private
caches keeping the same memory address cached

◼ Memory consistency: Ordering of all memory operations

❑ What should the programmer expect the hardware to provide?

◼ Shared resource management

◼ Communication: Interconnects

63

Main Programming Issues in Tightly-Coupled MP

◼ Load imbalance

❑ How to partition a single task into multiple tasks

◼ Synchronization

❑ How to synchronize (efficiently) between tasks

❑ How to communicate between tasks

❑ Locks, barriers, pipeline stages, condition variables,
semaphores, atomic operations, …

◼ Contention (avoidance & management)

◼ Maximizing parallelism

◼ Ensuring correct operation while optimizing for performance

64

Aside: Hardware-based Multithreading

◼ Coarse grained

❑ Quantum based

❑ Event based (switch-on-event multithreading), e.g., switch on L3 miss

◼ Fine grained

❑ Cycle by cycle

❑ Thornton, “CDC 6600: Design of a Computer,” 1970.

❑ Burton Smith, “A pipelined, shared resource MIMD computer,” ICPP
1978.

◼ Simultaneous

❑ Can dispatch instructions from multiple threads at the same time

❑ Good for improving execution unit utilization

65

Lecture on Fine-Grained Multithreading

66https://www.youtube.com/watch?v=6e5KZcCGBYw&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LlN&index=16

https://www.youtube.com/watch?v=6e5KZcCGBYw&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LlN&index=16

More on Multithreading (I)

67https://www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures

More on Multithreading (II)

68https://www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures

More on Multithreading (III)

69https://www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures

More on Multithreading (IV)

70https://www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures

Lectures on Multithreading
◼ Parallel Computer Architecture, Fall 2012, Lecture 9

❑ Multithreading I (CMU, Fall 2012)

❑ https://www.youtube.com/watch?v=iqi9wFqFiNU&list=PL5PHm2jkkXmgDN1PLwOY
_tGtUlynnyV6D&index=51

◼ Parallel Computer Architecture, Fall 2012, Lecture 10

❑ Multithreading II (CMU, Fall 2012)

❑ https://www.youtube.com/watch?v=e8lfl6MbILg&list=PL5PHm2jkkXmgDN1PLwOY_
tGtUlynnyV6D&index=52

◼ Parallel Computer Architecture, Fall 2012, Lecture 13

❑ Multithreading III (CMU, Fall 2012)

❑ https://www.youtube.com/watch?v=7vkDpZ1-
hHM&list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D&index=53

◼ Parallel Computer Architecture, Fall 2012, Lecture 15

❑ Speculation I (CMU, Fall 2012)

❑ https://www.youtube.com/watch?v=-
hbmzIDe0sA&list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D&index=54

71https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=iqi9wFqFiNU&list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D&index=51
https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23
https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23
https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23
https://www.youtube.com/onurmutlulectures

Limits of Parallel Speedup

72

Parallel Speedup Example

◼ a4x
4 + a3x

3 + a2x
2 + a1x + a0

◼ Assume given inputs: x and each ai

◼ Assume each operation 1 cycle, no communication cost,
each op can be executed in a different processor

◼ How fast is this with a single processor?

❑ Assume no pipelining or concurrent execution of instructions

◼ How fast is this with 3 processors?

73

74

75

Speedup with 3 Processors

76

Revisiting the Single-Processor Algorithm

77

Horner, “A new method of solving numerical equations of all orders, by continuous

approximation,” Philosophical Transactions of the Royal Society, 1819.

78

Superlinear Speedup

◼ Can speedup be greater than P with P processing
elements?

◼ Unfair comparisons

Compare best parallel

algorithm to wimpy serial

algorithm → unfair

◼ Cache/memory effects

More processors →

more cache or memory →

fewer misses in cache/mem

79

Utilization, Redundancy, Efficiency

◼ Traditional metrics

❑ Assume all P processors are tied up for parallel computation

◼ Utilization: How much processing capability is used

❑ U = (# Operations in parallel version) / (processors x Time)

◼ Redundancy: how much extra work is done with parallel
processing

❑ R = (# of operations in parallel version) / (# operations in best
single processor algorithm version)

◼ Efficiency

❑ E = (Time with 1 processor) / (processors x Time with P processors)

❑ E = U/R
80

Utilization of a Multiprocessor

81

82

Amdahl’s Law and

Caveats of Parallelism

83

Amdahl’s Law

◼ Amdahl’s Law

❑ f: Parallelizable fraction of a program

❑ N: Number of processors

❑ Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

◼ Maximum speedup limited by serial portion: Serial bottleneck

84

Speedup =
1

+1 - f
f

N

Caveats of Parallelism (I)

85

Amdahl’s Law

86

Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” AFIPS 1967.

Amdahl’s Law Implication 1

87

Amdahl’s Law Implication 2

88

Caveats of Parallelism (II)

◼ Amdahl’s Law

❑ f: Parallelizable fraction of a program

❑ N: Number of processors

❑ Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

◼ Maximum speedup limited by serial portion: Serial bottleneck

◼ Parallel portion is usually not perfectly parallel

❑ Synchronization overhead (e.g., updates to shared data)

❑ Load imbalance overhead (imperfect parallelization)

❑ Resource sharing overhead (contention among N processors)
89

Speedup =
1

+1 - f
f

N

Sequential Bottleneck

90

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200

0

0
.0

4

0
.0

8

0
.1

2

0
.1

6

0
.2

0
.2

4

0
.2

8

0
.3

2

0
.3

6

0
.4

0
.4

4

0
.4

8

0
.5

2

0
.5

6

0
.6

0
.6

4

0
.6

8

0
.7

2

0
.7

6

0
.8

0
.8

4

0
.8

8

0
.9

2

0
.9

6 1

N=10

N=100

N=1000

f (parallel fraction)

Why the Sequential Bottleneck?

◼ Parallel machines have the
sequential bottleneck

◼ Main cause: Non-parallelizable
operations on data (e.g. non-
parallelizable loops)

for (i = 0 ; i < N; i++)

A[i] = (A[i] + A[i-1]) / 2

◼ There are other causes as well:

❑ Single thread prepares data and
spawns parallel tasks (usually
sequential)

91

Another Example of Sequential Bottleneck (I)

92Suleman+, “Accelerating Critical Section Execution with Asymmetric Multi-Core Architectures,” ASPLOS 2009.

Another Example of Sequential Bottleneck (II)

93Suleman+, “Accelerating Critical Section Execution with Asymmetric Multi-Core Architectures,” ASPLOS 2009.

Bottlenecks in Parallel Portion

◼ Synchronization: Operations manipulating shared data
cannot be parallelized

❑ Locks, mutual exclusion, barrier synchronization

❑ Communication: Tasks may need values from each other

- Causes thread serialization when shared data is contended

◼ Load Imbalance: Parallel tasks may have different lengths

❑ Due to imperfect parallelization or microarchitectural effects

- Reduces speedup in parallel portion

◼ Resource Contention: Parallel tasks can share hardware
resources, delaying each other

❑ Replicating all resources (e.g., memory) expensive

- Additional latency not present when each task runs alone

94

Bottlenecks in Parallel Portion: Another View

◼ Threads in a multi-threaded application can be inter-
dependent

❑ As opposed to threads from different applications

◼ Such threads can synchronize with each other

❑ Locks, barriers, pipeline stages, condition variables,
semaphores, …

◼ Some threads can be on the critical path of execution due
to synchronization; some threads are not

◼ Within a thread, some “code segments” may be on the
critical path of execution; some are not

95

Remember: Critical Sections

◼ Enforce mutually exclusive access to shared data

◼ Only one thread can be executing it at a time

◼ Contended critical sections make threads wait → threads

causing serialization can be on the critical path

96

Each thread:

loop {

Compute

lock(A)

Update shared data

unlock(A)

}

N

C

Critical Section Example from MySQL

97

Open database tables

Perform the operations
….

Critical

Section

Parallel

Access Open Tables Cache

0

1

2

3

4

5

6

7

8

0 8 16 24 32
0

1

2

3

4

5

6

7

8

0 8 16 24 32

Chip Area (cores)

S
p

e
e

d
u

p

Symmetric

Asymmetric

Remember: Barriers

◼ Synchronization point

◼ Threads have to wait until all threads reach the barrier

◼ Last thread arriving to the barrier is on the critical path

98

Each thread:

loop1 {

Compute

}

barrier

loop2 {

Compute

}

Remember: Stages of Pipelined Programs

◼ Loop iterations are statically divided into code segments called stages

◼ Threads execute stages on different cores

◼ Thread executing the slowest stage is on the critical path

99

loop {

Compute1

Compute2

Compute3

}

A

B

C

A B C

Difficulty in Parallel Programming

◼ Little difficulty if parallelism is natural

❑ “Embarrassingly parallel” applications

❑ Multimedia, physical simulation, graphics

❑ Large web servers, databases?

◼ Difficulty is in

❑ Getting parallel programs to work correctly

❑ Optimizing performance in the presence of bottlenecks

◼ Much of parallel computer architecture is about

❑ Designing machines that overcome the sequential and parallel
bottlenecks to achieve higher performance and efficiency

❑ Making programmer’s job easier in writing correct and high-
performance parallel programs

100

Some Readings on Bottlenecks &

Bottleneck Acceleration

101

Parallel Application Memory Scheduling

◼ Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin, Chang Joo
Lee, Onur Mutlu, and Yale N. Patt,
"Parallel Application Memory Scheduling"
Proceedings of the 44th International Symposium on
Microarchitecture (MICRO), Porto Alegre, Brazil, December
2011. Slides (pptx)

102

http://users.ece.cmu.edu/~omutlu/pub/parallel-memory-scheduling_micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_micro11_talk.pptx

Accelerated Critical Sections
◼ M. Aater Suleman, Onur Mutlu, Moinuddin K. Qureshi, and Yale N. Patt,

"Accelerating Critical Section Execution with Asymmetric
Multi-Core Architectures"
Proceedings of the 14th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), pages 253-264, Washington, DC, March
2009. Slides (ppt)
One of the 13 computer architecture papers of 2009 selected
as Top Picks by IEEE Micro.

103

https://people.inf.ethz.ch/omutlu/pub/acs_asplos09.pdf
http://www.cs.virginia.edu/asplos09/
https://people.inf.ethz.ch/omutlu/pub/suleman_asplos09_talk.ppt

Bottleneck Identification & Scheduling
◼ Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt,

"Bottleneck Identification and Scheduling in Multithreaded
Applications"
Proceedings of the 17th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), London, UK, March 2012. Slides (ppt) (pdf)

104

https://people.inf.ethz.ch/omutlu/pub/bottleneck-identification-and-scheduling_asplos12.pdf
http://research.microsoft.com/en-us/um/cambridge/events/asplos_2012/
https://people.inf.ethz.ch/omutlu/pub/mutlu_asplos12_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_asplos12_talk.pdf

Utility-Based Acceleration

◼ Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt,
"Utility-Based Acceleration of Multithreaded Applications
on Asymmetric CMPs"
Proceedings of the 40th International Symposium on Computer
Architecture (ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt)
Slides (pdf)

105

http://users.ece.cmu.edu/~omutlu/pub/utility-based-acceleration-acmp_isca13.pdf
http://isca2013.eew.technion.ac.il/
http://users.ece.cmu.edu/~omutlu/pub/joao_isca13_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/joao_isca13_talk.pdf

Data Marshaling

◼ M. Aater Suleman, Onur Mutlu, Jose A. Joao, Khubaib, and Yale N. Patt,
"Data Marshaling for Multi-core Architectures"
Proceedings of the 37th International Symposium on Computer
Architecture (ISCA), pages 441-450, Saint-Malo, France, June
2010. Slides (ppt)
One of the 11 computer architecture papers of 2010 selected
as Top Picks by IEEE Micro.

106

https://people.inf.ethz.ch/omutlu/pub/dm_isca10.pdf
http://isca2010.inria.fr/
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca10_talk.ppt

Lectures on Bottleneck Acceleration

◼ Lecture 17b: Parallelism and Heterogeneity

❑ Comp Arch, ETH Zurich, Fall 2021

❑ https://www.youtube.com/watch?v=GLzG_rEDn9A&list=PL5Q
2soXY2Zi-Mnk1PxjEIG32HAGILkTOF&index=18

◼ Lecture 18a: Bottleneck Acceleration

❑ Comp Arch, ETH Zurich, Fall 2021

❑ https://www.youtube.com/watch?v=P8l3SMAbyYw&list=PL5Q
2soXY2Zi-Mnk1PxjEIG32HAGILkTOF&index=19

107

https://www.youtube.com/watch?v=GLzG_rEDn9A&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF&index=18
https://www.youtube.com/watch?v=P8l3SMAbyYw&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF&index=19

Lecture on Parallelism & Heterogeneity

108https://www.youtube.com/watch?v=GLzG_rEDn9A&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF&index=19

https://www.youtube.com/watch?v=GLzG_rEDn9A&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF&index=19

Lecture on Bottleneck Acceleration

109https://www.youtube.com/watch?v=P8l3SMAbyYw&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF&index=19

https://www.youtube.com/watch?v=P8l3SMAbyYw&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF&index=19

Computer Architecture

Lecture 17a: Multiprocessors

Prof. Onur Mutlu

ETH Zürich

Fall 2022

24 November 2022

An Example Parallel Problem:

Task Assignment to Processors

Static versus Dynamic Scheduling

◼ Static: Done at compile time or parallel task creation time

❑ Schedule does not change based on runtime information

◼ Dynamic: Done at run time (e.g., after tasks are created)

❑ Schedule changes based on runtime information

◼ Example: Instruction scheduling

❑ Why would you like to do dynamic scheduling?

❑ What pieces of information are not available to the static
scheduler?

112

Parallel Task Assignment: Tradeoffs
◼ Problem: N tasks, P processors, N>P. Do we assign tasks to

processors statically (fixed) or dynamically (adaptive)?

◼ Static assignment

+ Simpler: No movement of tasks.

- Inefficient: Underutilizes resources when load is not balanced

When can load not be balanced?

◼ Dynamic assignment

+ Efficient: Better utilizes processors when load is not balanced

- More complex: Need to move tasks to balance processor load

- Higher overhead: Task movement takes time, can disrupt
locality

113

Parallel Task Assignment: Example

◼ Compute histogram of a large set of values

◼ Parallelization:

❑ Divide the values across T tasks

❑ Each task computes a local histogram for its value set

❑ Local histograms merged with global histograms in the end

114

Parallel Task Assignment: Example (II)

◼ How to schedule tasks updating local histograms?

❑ Static: Assign equal number of tasks to each processor

❑ Dynamic: Assign tasks to a processor that is available

❑ When does static work as well as dynamic?

◼ Implementation of Dynamic Assignment with Task Queues

115

Software Task Queues

◼ What are the advantages and disadvantages of each?

❑ Centralized

❑ Distributed

❑ Hierarchical

116

Task Stealing

◼ Idea: When a processor’s task queue is empty it steals a
task from another processor’s task queue

❑ Whom to steal from? (Randomized stealing works well)

❑ How many tasks to steal?

+ Dynamic balancing of computation load

- Additional communication/synchronization overhead
between processors

- Need to stop stealing if no tasks to steal

117

Parallel Task Assignment: Tradeoffs

◼ Who does the assignment? Hardware versus software?

◼ Software

+ Better scope

- More time overhead

- Slow to adapt to dynamic events (e.g., a processor becoming
idle)

◼ Hardware

+ Low time overhead

+ Can adjust to dynamic events faster

- Requires hardware changes (area and possibly energy
overhead)

118

How Can the Hardware Help?

◼ Managing task queues in software has overhead

❑ Especially high when task sizes are small

◼ An idea: Hardware Task Queues

❑ Each processor has a dedicated task queue

❑ Software fills the task queues (on demand)

❑ Hardware manages movement of tasks from queue to queue

❑ There can be a global task queue as well → hierarchical

tasking in hardware

❑ Kumar et al., “Carbon: Architectural Support for Fine-Grained
Parallelism on Chip Multiprocessors,” ISCA 2007.

◼ Optional reading

119

Dynamic Task Generation

◼ Does static task assignment work in this case?

◼ Problem: Searching the exit of a maze

120

Programming Model vs.

Hardware Execution Model

Programming Models vs. Architectures

◼ Five major models

❑ (Sequential)

❑ Shared memory

❑ Message passing

❑ Data parallel (SIMD)

❑ Dataflow

❑ Systolic

◼ Hybrid models?

122

Shared Memory vs. Message Passing

◼ Are these programming models or execution models
supported by the hardware architecture?

◼ Does a multiprocessor that is programmed by “shared
memory programming model” have to support a shared
address space processors?

◼ Does a multiprocessor that is programmed by “message
passing programming model” have to have no shared
address space between processors?

123

Programming Models: Message Passing vs. Shared Memory

◼ Difference: how communication is achieved between tasks

◼ Message passing programming model

❑ Explicit communication via messages

❑ Loose coupling of program components

❑ Analogy: telephone call or letter, no shared location accessible to
all

◼ Shared memory programming model

❑ Implicit communication via memory operations (load/store)

❑ Tight coupling of program components

❑ Analogy: bulletin board, post information at a shared space

◼ Suitability of the programming model depends on the
problem to be solved. Issues affected by the model include:

❑ Overhead, scalability, ease of programming, bugs, match to
underlying hardware, …

124

Message Passing vs. Shared Memory Hardware

◼ Difference: how task communication is supported in
hardware

◼ Shared memory hardware (or machine model)

❑ All processors see a global shared address space

◼ Ability to access all memory from each processor

❑ A write to a location is visible to the reads of other processors

◼ Message passing hardware (machine model)

❑ No global shared address space

❑ Send and receive variants are the only method of
communication between processors (much like networks of
workstations today, i.e. clusters)

◼ Suitability of the hardware depends on the problem to be
solved as well as the programming model.

125

Programming Model vs. Hardware

◼ Most of parallel computing history, there was no separation
between programming model and hardware

❑ Message passing: Caltech Cosmic Cube, Intel Hypercube, Intel
Paragon

❑ Shared memory: CMU C.mmp, Sequent Balance, SGI Origin.

❑ SIMD: ILLIAC IV, CM-1

◼ However, any hardware can really support any
programming model

◼ Why?

❑ Application → compiler/library → OS services → hardware

126

