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Runahead as an Execution-based Prefetcher

Idea of an Execution-Based Prefetcher: Pre-execute a piece
of the (pruned) program solely for prefetching data

Idea of Runahead: Pre-execute the main program solely for
prefetching data

Advantages and disadvantages of runahead vs. other
execution-based prefetchers?

Can you make runahead even better by pruning the
program portion executed in runahead mode?

o Yes = Continuous Runahead is an example of this



Taking Advantage of Pure Speculation

Runahead mode is purely speculative

The goal is to find and generate cache misses that would
otherwise stall execution later on

How do we achieve this goal most efficiently and with the
highest benefit?

Idea: Find and execute only those instructions that will lead
to cache misses (that cannot already be captured by the
instruction window)

How? - Continuous Runahead is an example of this



Continuous Runahead: Much More Efficient

= Milad Hashemi, Onur Mutlu, and Yale N. Patt,
"Continuous Runahead: Transparent Hardware Acceleration for
Memory Intensive Workloads"
Proceedings of the 49th International Symposium on
Microarchitecture (MICRO), Taipei, Taiwan, October 2016.
[Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)]
Best paper session.

Continuous Runahead: Transparent Hardware Acceleration
for Memory Intensive Workloads

Milad Hashemi*, Onur Mutlu$, Yale N. Patt*

*The University of Texas at Austin SETH Ziirich



https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16.pdf
http://www.microarch.org/micro49/
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-lightning-session-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pdf

Execution-based Prefetchers: Pros and Cons

+ Can prefetch pretty much any access pattern

+ Can be very low cost (e.g., runahead execution)
+ Especially if it uses the same hardware context
+ Why? The processor is equipped to execute the program anyway

+ Can be bandwidth-efficient (e.g., runahead execution)

-- Depend on branch prediction and possibly value prediction
accuracy

- Mispredicted branches dependent on missing data throw the thread
off the correct execution path

-- Can be wasteful

-- speculatively execute many instructions
-- Can occupy a separate thread context

-- Complexity in deciding when and what to pre-execute



More on Runahead Execution

= Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Alternative to Very Large Instruction Windows

for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance Computer
Architecture (HPCA), pages 129-140, Anaheim, CA, February 2003. Slides (pdf)

One of the 15 computer arch. papers of 2003 selected as Top Picks by IEEE Micro.

HPCA Test of Time Award (awarded in 2021).
[Lecture Slides (pptx) (pdf)]

[Lecture Video (1 hr 54 mins)]

[Retrospective HPCA Test of Time Award Talk Slides (pptx) (pdf)]
[Retrospective HPCA Test of Time Award Talk Video (14 minutes)]

Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors

Onur Mutlu § Jared Stark { Chris Wilkerson I Yale N. Patt §

SECE Department TMicroprocessor Research IDesktop Platforms Group
The University of Texas at Austin Intel Labs Intel Corporation
{onur,patt} @ece.utexas.edu jared.w.stark @intel.com chris.wilkerson @intel.com
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https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
http://www.cs.arizona.edu/hpca9/
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03_talk.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=onur-comparch-fall2017-lecture17-latencytoleranceandprefetching-afterlecture.pptx
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=onur-comparch-fall2017-lecture17-latencytoleranceandprefetching-afterlecture.pdf
https://youtu.be/Kj3relihGF4?t=1162
https://people.inf.ethz.ch/omutlu/pub/onur-runahead-HPCA-ToT-Award-March-2-2021-withbackup.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-runahead-HPCA-ToT-Award-March-2-2021-withbackup.pdf
https://www.youtube.com/watch?v=KFCOecRQTIc

More on Efficient Runahead Execution

= Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Techniques for Efficient Processing in Runahead Execution
Engines”
Proceedings of the 32nd International Symposium on Computer
Architecture (ISCA), pages 370-381, Madison, WI, June 2005. Slides
(ppt) Slides (pdf)
One of the 13 computer architecture papers of 2005 selected as
Top Picks by IEEE Micro.

Techniques for Efficient Processing in Runahead Execution Engines

Onur Mutlu Hyesoon Kim Yale N. Patt

Department of Electrical and Computer Engineering
University of Texas at Austin
{onur,hyesoon,patt} @ece.utexas.edu


https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05.pdf
http://www.cs.wisc.edu/~isca2005/
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05_talk.pdf

More Effective Runahead Execution

Onur Mutlu, Hyesoon Kim, and Yale N. Patt,

"Address-Value Delta (AVD) Prediction: Increasing the Effectiveness of
Runahead Execution by Exploiting Reqgular Memory Allocation Patterns"
Proceedings of the 38th International Symposium on Microarchitecture (MICRO),
pages 233-244, Barcelona, Spain, November 2005. Slides (ppt) Slides (pdf)

One of the five papers nominated for the Best Paper Award by the
Program Committee.

Address-Value Delta (AVD) Prediction: Increasing the Effectiveness of Runahead
Execution by Exploiting Regular Memory Allocation Patterns

Onur Mutlu Hyesoon Kim Yale N. Patt

Department of Electrical and Computer Engineering
University of Texas at Austin
{onur,hyesoon,patt } @ece.utexas.edu
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https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05.pdf
http://pcsostres.ac.upc.edu/micro38/
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05_talk.pdf

More on Runahead Execution

= Lecture video from Fall 2020, Computer Architecture:
o https://www.youtube.com/watch?v=zPewo6Ial 8

= Lecture video from Fall 2017, Computer Architecture:
a https://www.youtube.com/watch?v=Kj3relihGF4

= Onur Mutluy,
"Efficient Runahead Execution Processors"
Ph.D. Dissertation, HPS Technical Report, TR-HPS-2006-007, July
2006. Slides (ppt)
Nominated for the ACM Doctoral Dissertation Award by
the University of Texas at Austin.

https: / /www.youtube.com/onurmutlulectures 11



https://www.youtube.com/watch?v=zPewo6IaJ_8
https://www.youtube.com/watch?v=Kj3relihGF4
https://people.inf.ethz.ch/omutlu/pub/mutlu_dissertation.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_phd_defense_talk.ppt
https://www.youtube.com/onurmutlulectures

More on Continuous Runahead

= Milad Hashemi, Onur Mutlu, and Yale N. Patt,
"Continuous Runahead: Transparent Hardware Acceleration for
Memory Intensive Workloads"
Proceedings of the 49th International Symposium on
Microarchitecture (MICRO), Taipei, Taiwan, October 2016.
[Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)]
Best paper session.

Continuous Runahead: Transparent Hardware Acceleration
for Memory Intensive Workloads

Milad Hashemi*, Onur Mutlu$, Yale N. Patt*

*The University of Texas at Austin SETH Ziirich

12


https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16.pdf
http://www.microarch.org/micro49/
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-lightning-session-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pdf

Effect of Runahead in Sun ROCK

= Shailender Chaudhry talk, Aug 2008.
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More on Runahead in Sun ROCK

HIGH-PERFORMANCE
THROUGHPUT COMPUTING

................................................................................................................................................................................................................

THROUGHPUT COMPUTING, ACHIEVED THROUGH MULTITHREADING AND
MULTICORE TECHNOLOGY, CAN LEAD TO PERFORMANCE IMPROVEMENTS
THAT ARE 10 TO 30x THOSE OF CONVENTIONAL PROCESSORS AND SYSTEMS.
HOWEVER, SUCH SYSTEMS SHOULD ALSO OFFER GOQOD SINGLE-THREAD
PERFORMANCE. HERE, THE AUTHORS SHOW THAT HARDWARE SCOUTING
INCREASES THE PERFORMANCE OF AN ALREADY ROBUST CORE BY UP TO 40

PERCENT FOR COMMERCIAL BENCHMARKS.

Chaudhry+, “High-Performance Throughput Computing,” IEEE Micro 2005. !4



More on Runahead in Sun ROCK

Simultaneous Speculative Threading: A Novel Pipeline
Architecture Implemented in Sun’s ROCK Processor

Shailender Chaudhry, Robert Cypher, Magnus Ekman, Martin Karlsson,

Anders Landin, Sherman Yip, Hakan Zeffer, and Marc Tremblay
Sun Microsystems, Inc.
4180 Network Circle, Mailstop SCA18-211
_ Santa Clara, CA 95054, USA _
{shailender.chaudhry, robert.cypher, magnus.ekman, martin.karlsson,

anders.landin, sherman.yip, haakan.zeffer, marc.tremblay}@sun.com

Chaudhry+, “Simultaneous Speculative Threading,” ISCA 2009. 15



Runahead Execution in IBM POWERG

Runahead Execution vs. Conventional Data Prefetching
in the IBM POWERG6 Microprocessor

Harold W. Cain Priya Nagpurkar

IBM T.J. Watson Research Center
Yorktown Heights, NY
{tcain, pnagpurkar}Qus.ibm.com

Cain+, “"Runahead Execution vs. Conventional Data Prefetching
in the IBM POWER6 Microprocessor,” ISPASS 2010.
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Runahead Execution in NVIDIA Denver

DENVER: NVIDIA'S FIRST 64-BIT ARM
PROCESSOR

NVIDIA'S FIRST 64-BIT ARM PROCESSOR, CODE-NAMED DENVER, LEVERAGES A HOST OF
NEW TECHNOLOGIES, SUCH AS DYNAMIC CODE OPTIMIZATION, TO ENABLE HIGH-
PERFORMANCE MOBILE COMPUTING. IMPLEMENTED IN A 28-NM PROCESS, THE DENVER
CPU CAN ATTAIN CLOCK SPEEDS OF UP TO 2.5 GHZ. THIS ARTICLE OUTLINES THE DENVER
ARCHITECTURE, DESCRIBES ITS TECHNOLOGICAL INNOVATIONS, AND PROVIDES RELEVANT

COMPARISONS AGAINST COMPETING MOBILE PROCESSORS.

Boggs+, “"Denver: NVIDIA's First 64-Bit ARM Processor,” IEEE Micro 2015.
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Runahead Execution in NVIDIA Denver

Reducing the effects of long cache-miss
penalties has been a major focus of the micro-
architecture, using techniques like prefetch-
ing and run-ahead. An aggressive hardware
prefetcher implementation detects L2 cache
requests and tracks up to 32 streams, each
with complex stride patterns.

Run-ahead uses the idle time that a CPU
spends waiting on a long latency operation to
discover cache and DTLB misses further
down the instruction stream and generates
prefetch requests for these misses." These pre-
fetch requests warm up the data cache and

the instructions that require the data Run-
ahead complements the hardware prefetcher
because it’s better at prefetching nonstrided

streams, and it trains the hardware prefetcher
faster than normal execution to yield a com-
bined benefit of 13 percent on SPECint2000
and up to 60 percent on SPEC{p2000.

Boggs+, “"Denver: NVIDIA's First 64-Bit ARM Processor,”
IEEE Micro 2015.

Gwennap, “NVIDIA's First CPU is a Winner,” MPR 2014.

The core includes a hardware prefetch unit that Boggs
describes as aggresswe in pre]oadmg the data cache but

1mplements a “run-ahead” feature that continues to execute
microcode speculatively after a data-cache miss; this exe-
cution can trigger additional cache misses that resolve in
the shadow of the first miss. Once the data from the original
miss returns, the results of this speculative execution are

discarded and execution restarts with the bundle containing
the original miss, but run-ahead can preload subsequent
data into the cache, thus avoiding a string of time-wasting
cache misses. These and other features help Denver out-
score Cortex-A15 by more than 2.6x on a memory-read test
even when both use the same SoC framework (Tegra K1).
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Looking to the Past




At the Time... Early 2000s...

Large focus on increasing the size of the window...
o And, designing bigger, more complicated machines

Runahead was a different way of thinking
o Keep the 000 core simple and small
o At the expense of some benefits (e.g., nhon-memory-related)

o Use aggressive “automatic speculative execution” solely for
prefetching

o Synergistic with prefetching and branch prediction methods

A lot of interesting and innovative ideas ensued...

SAFARI 20



Important Precedent [Dundas & Mudge, ICS 1997]

Improving Data Cache Performance by Pre-executing Instructions Under a Cache Miss

James Dundas and Trevor Mudge
Department of Electrical Engineering and Computer Science
The University of Michigan

Ann Arbor, Michigan 48109-2122
{dundas, thm} @eecs.umich.edu

Abstract

In this paper we propose and evaluate a technique that
improves first level data cache performance by pre-executing future
instructions under a data cache miss. We show that these pre-
executed instructions can generate highly accurate data prefetches,
particularly when the first level cache is small. The technique is
referred to as runahead processing. The hardware required to
implement runahead is modest, because, when a miss occurs, it
makes use of an otherwise idle resource, the execution logic. The
principal hardware cost is an extra register file. To measure the
impact of runahead, we simulated a processor executing five integer
Spec95 benchmarks. Our results show that runahead was able to
significantly reduce data cache CPI for four of the five benchmarks.
We also compared runahead to a simple form of prefetching,
sequential prefetching, which would seem to be suitable for
scientific benchmarks. We confirm this by enlarging the scope of
our experiments to include a scientific benchmark. However, we
show that runahead was also able to outperform sequential
prefetching on the scientific benchmark. We also conduct studics
that demonstrate that runahead can generate many useful prefetches
for lines that show little spatial locality with the misses that initiate
runahead episodes. Finally, we discuss some further enhancements
of our baseline runahead prefetching scheme.

are allocated by the software. This hybrid hardware-software tech-
nique was presented in [8]. Their instruction stride table (IST) selec-
tively generates cache miss initiated prefetches for accesses chosen
beforehand by the compiler. This resulted in multiprocessor perfor-
mance for scientific benchmarks comparable in some cases to soft-
ware prefetching, with an instruction stride table as small as 4
entries. The IST concept was subsequently combined with the
prefetch predicates of [2] in [9]. Another hardware prefetching
scheme that avoids the need for significant amounts of hardware is
the “wrong path” prefetching described in [10]. This actually
prefetches instructions from the not-taken path, in the expectation
that they will be executed during a later iteration.

Most prefetching techniques, software- or hardware-based,
tend to perform poorly on an important class of applications having
recursive data structures such as linked-lists, A software technique
that overcomes this limitation was presented recently in [11], in
which software prefetches were inserted at subroutine call sites that
passed pointers as arguments. Another pointer-based approach was
described in [12}]. This approach uses pointers stored within the data
structures to generate software prefetches.

The runahead prefetching approach presented in this paper is a
hardware approach, that requires only a modest amount of hard-
ware, because, when a miss occurs, it makes use of an otherwise

SAFARI
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Dundas+, “Improving Data Cache Performance by Pre-Executing Instructions Under a Cache Miss,” ICS 1997.



An Inspiration [Glew, ASPLOS-WACI 1998]

MLP yes! ILP no!

Memory Level Parallelism, or why I no longer care about Instruction Level Parallelism

Andrew Glew
Intel Microcomputer Research Labs and University of Wisconsin, Madison

Problem Description: It should be well known that processors are outstripping memory performance: specifically that memory
latencies are not improving as fast as processor cycle time or IPC or memory bandwidth.

Thought experiment: imagine that a cache miss takes 10000 cycles to execute. For such a processor instruction level
parallelism is useless, because most of the time is spent waiting for memory. Branch prediction is also less effective, since most
branches can be determined with data already in registers or in the cache; branch prediction only helps for branches which depend on
outstanding cache misses.

At the same time, pressures for reduced power consumption mount.

Given such trends, some computer architects in industry (although not Intel EPIC) are talking seriously about retreating from
out-of-order superscalar processor architecture, and instead building simpler, faster, dumber, 1-wide in-order processors with high
degrees of speculation. Sometimes this is proposed in combination with multiprocessing and multithreading: tolerate long memory
latencies by switching to other processes or threads.

I propose something different: build narrow fast machines but use intelligent logic inside the CPU to increase the number of
outstanding cache misses that can be generated from a single program.

Solution: First, change the mindset: MLP, Memory Level Parallelism, is what matters, not ILP, Instruction Level

and executed in an overlapped manner. It does not matter what sort of execution engine generates the multiple outstandmg cache
misses. An out-of-order superscalar ILP CPU may generate multiple outstanding cache misses, but 1-wide processors can be just as
effective.

Change the metrics: total execution time remains the overall goal, but instead of reporting IPC as an approximation to this, we
must report MLP. Limit studies should be in terms of total number of non-overlapped cache misses on critical path.

Now do the research: Many present-day hot topics in computer architecture help ILP, but do not help MLP. As mentioned
above, predicting branch directions for branches that can be determined from data already in the cache or in registers does not help
MLP for extremely long latencies. Similarly, prefetching of data cache misses for array processing codes does not help MLP — it just

Instead, investigate microarchitectures that help MLP:

0) Trivial case — explicit multithreading, like SMT.

(1) Slightly less trivial case — implicitly multithread single programs, either by compiler software on an MT machine, or by a
hybrid, such as Wisconsin Multiscalar, or entirely in hardware, as in Intel’s Dynamic Multi-Threading.

?2) Build 1-wide processors that are as fast as possible: use circuit tricks, as well as logic tricks such as redundant encoding
for numeric computation and memory addressing.

3) Allow the hardware dynamic scheduli hanisms to use sequential algorithms impl, d by this narrow, fast,
processor, rather than limiting it to parallel algomhms implementable in associative logic.

Build very large instruction windows allowing speculation tens of thousands of instructions ahead. Avoid circuit speed

issues by caching the instruction window. Remove small arbitrary limits on the number of cache misses outstanding allowed.

Further reduce the cost of very large instruction windows by throwing away anything that can be recomputed based on
data in registers or cache.

Don’t stall speculation because the oldest instruction in the machine is a cache miss. Let the front of the machine continug
executing branches, forgetting data dependent on cache misses.

Parallelize linked data structure traversals by building skip lists in hardware — converting sequential data structures into
parallel ones. Store thesc extra Sklp pomters in main memory

2 Iy y
Barring a revoluuon in memory technology, the Memory Wall is real and getting closer. Multithreading and multiprocessing have
some hope of tolerating memory latency, but only if there are parallel workloads. If single thread performance is still an issue, the only
potentially MLP enhancing technologies are what I describe here, or data value prediction — and data value prediction seems to only do
well for stuff that fits in the cache.

“Super-non-blocking” processors extends dynamic, out-of-order, execution to maximize MLP, but simplifies it by discarding
superscalar ILP as unnecessary.

SAFARI

Glew, “"MLP yes! ILP no!,” ASPLOS WACI 1998.

22



Looking to the Future




A Look into the Future...

= Microarchitecture (especially memory) is critically important
o And, fun...
o And, impactful...

= Runahead is a great example of harmonious industry-
academia collaboration

= Fundamental problems will remain fundamental
a And will require fundamental (and creative) solutions

SAFARI 24



Citation for the Test of Time Award

Runahead Execution is a pioneering paper that opened up
new avenues in dynamic prefetching.

The basic idea of runahead execution effectively increases
the instruction window very significantly, without having to
increase physical resource size (e.g. the issue queue).

This seminal paper spawned off a new area of ILP-
enhancing microarchitecture research.

This work has had strong industry impact as evidenced by
IBM's POWERS6 - Load Lookahead, NVIDIA Denver, and Sun
ROCK's hardware scouting.
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More on Runahead Execution

= Lecture video from Fall 2020, Computer Architecture:
o https://www.youtube.com/watch?v=zPewo6Ial 8

= Lecture video from Fall 2017, Computer Architecture:
a https://www.youtube.com/watch?v=Kj3relihGF4

= Onur Mutluy,
"Efficient Runahead Execution Processors"
Ph.D. Dissertation, HPS Technical Report, TR-HPS-2006-007, July
2006. Slides (ppt)
Nominated for the ACM Doctoral Dissertation Award by
the University of Texas at Austin.

https:/ /www.youtube.com/onurmutlulectures 26



https://www.youtube.com/watch?v=zPewo6IaJ_8
https://www.youtube.com/watch?v=Kj3relihGF4
https://people.inf.ethz.ch/omutlu/pub/mutlu_dissertation.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_phd_defense_talk.ppt
https://www.youtube.com/onurmutlulectures

More on Runahead Execution (I)

Review: Runahead Execution (Mutlu et al.. HPCA 2003

Small Window:
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Computer Architecture - Lecture 19a: Execution-Based Prefetching (ETH Ziirich, Fall 2020)

395 views * Nov 29, 2020 iy 14 0 SHARE SAVE
e ?6“‘5‘; Mutlu Lectures ANALYTICS | EDIT VIDEO
&b 5K subscribers

https://www.youtube.com/watch?v=zPewo6laJ 8&list=PL50Q2s0XY2Zi9xidylgBxUz7xRPS-wisBN&index=34 27



https://www.youtube.com/watch?v=zPewo6IaJ_8&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=34

ore on Runahead Execution (II)

Runahead Execution in NVIDIA Denver

the effects of long cache-miss The core includes a hardware prefetch unit that Boggs
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faster than normal execution to yield a com
bined benefit of 13 percent on SPECint2000
and up to 60 percent on SPECfp2000.

Boggs+, "Denver: NVIDIA's First 64-Bit ARM Processor,”
IEEE Micro 2015.

Gwennap, “NVIDIA’s First CPU is a Winner,” MPR 2014.

Onur Mutlu - Runahead Execution: A Short Retrospective (HPCA Test of Time Award Talk @ HPCA 2021)

1,162 views * Premiered Mar 6, 2021 |. 50 3l 0 ~» SHARE =4 SAVE

@ ?nur Mutlu Lectures ANALYTICS EDIT VIDEO
&> 6.5K subscribers

https://www.youtube.com/watch?v=KFCOecRQTIc 28



https://www.youtube.com/watch?v=KFCOecRQTIc

More Recommended Material
on Prefetching




Lecture on Prefetching: Fall 2022

Performance with Varying DRAM Bandwidth
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Livestream - Computer Architecture - ETH Ziirich (Fall 2022)

Computer Architecture - Lecture 16: Prefetching (Fall 2022)

6.) Onur Mutlu Lectures . - ) _
1 2 QD h L D load ¢ cl =
>  29.2K subscribers Alsliice Edit video il 3 /> Share ¥ Downloa & clip + Save

6.2K views Streamed 5 days ago
Computer Architecture, ETH Zrich, Fall 2022 (https://safari.ethz.ch/architecture/f...)

https://www.youtube.com/watch?v=UjgS9iKo4Ik&list=PL502s0XY2Zi-cAls3cyauNzM7-74Eg310&index=16 30
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Lectures on Pretetching (I)
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o Pentium Il processor—2 evel cache

for different cache ,
Pentium 4 and Intel Xeon processors—2nd-level cache
|eVelS NTA (non-temporal data with respect to all cache levels)—prefetch data into non

temporal cache structure and into a location close to the processor, minimizing
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cache pollution
— Pentium lli processor— 1st-level cache
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Computer Architecture - Lecture 18: Prefetching (ETH Zirich, Fall 2020)
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Lectures on Pretetching (1I)

Thread-Based Pre-Execution

Dubois and Song, “Assisted
Execution,” USC Tech
Report 1998.

Chappell et al.,
“Simultanaous Subordinate
Microthreading (SSMT),”
ISCA 1999.

Zilles and Sohi, “Execution-
based Prediction Using
Speculative Slices”, ISCA
2001.
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Computer Architecture - Lecture 19a: Execution-Based Prefetching (ETH Zdrich, Fall 2020)
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ectures on Prefetching (I1I)

the effects of long cache-miss

0.1
Reducing
‘mt,‘.'.w!m\!uu 2 major tocus of the micro

architecture, using techniques like preferct

ing and run-ahead. An aggressive hardware
prefetcher implementation detects L2 cache
requests and tracks up to 32 streams, each
with complex stride patterns

R

)
Run-ahead uses

the idle time that a CPl
spends waiting en a long latency operation to
discover cache and DTLB misses further
down the instruction stream and generates

prefetch requests for these misses.” These pre
fetch requests warm up the data cache and

DTLB well before the acmual execurion of

Runahead Execution in NVIDIA Denver

The core includes a hardware prefetch unit that Boggs

describes as “aggressive” in preloading the data cache but

less ageressive in preloading the instruction cache It also

the instructions that require the data. Run
thead complements the hardware prefetcher
because it's better at prefetching nonstrided
streams, and it trains the hardware prefetcher
faster than normal execution to yield a com
bined benefit of 13 percent on SPECint2000
and up to 60 percent on SPECfp2000.

implements a “run-ahead” feature that continues to execute
microcode speculatively after a data-cache miss; this exe

cution can trigger additional cache misses that resolve in
the shadow of the first miss. Once the data from the original
miss returns, the results of this speculative execution are
discarded and execution restarts with the bundle containing
the original miss, but run-ahead can preload subsequent
data into the cache, thus avoiding a string of time-wasting
cache misses. These and other features help Denver out

score Cortex-A15 by more than 2.6x on a memory-read test
even when both use the same SoC framework (Tegra K1

IEEE Micro 2015.

Boggs+, "Denver: NVIDIA's First 64-Bit ARM Processor,”

Gwennap, “NVIDIA’s First CPU is a Winner,” MPR 2014.

128K8B Instruction Cache (4 way) ~

T 32 byes
Fetch Queve

- 1 ’

ARM | ARM Hw

Onur Mutlu - Runahead Execution: A Short Retrospective (HPCA Test of Time Award Talk @ HPCA 2021)

1,162 views * Premiered Mar 6, 2021
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Lectures on Prefetching (IV)

Lecture 25: Prefetching - Carnegie Mellon - Computer Architecture 2015 - Onur Mutlu

5,216 views * Apr 3,2015 i35 &lo ) SHARE =y SAVE
Carnegie Mellon Computer Architecture 1da\
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Lectures on Pretetching (V)
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Lecture 26. More Prefetching and Emerging Memory Technologies - CMU - Comp. Arch. 2015 - Onur Mutlu
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Lectures on Pretetching

= Computer Architecture, Fall 2020, Lecture 18

o Prefetching (ETH, Fall 2020)

o https://www.youtube.com/watch?v=xZmDyj0g3Pw&list=PL50Q2s0XY2Zi9xidyIgBxUz
7XRPS-wisBN&index=33

= Computer Architecture, Fall 2020, Lecture 19a

o Execution-Based Prefetching (ETH, Fall 2020)

o https://www.youtube.com/watch?v=zPewo6Ial 8&list=PL50Q2s0XY?2Zi9xidyIgBxUz7
XRPS-wisBN&index=34

= Computer Architecture, Spring 2015, Lecture 25

o Prefetching (CMU, Spring 2015)

o https://www.youtube.com/watch?v=ibPL7T9IEwY&list=PL5PHmM?2jkkXmi5CxxI7b3JC
L1TWybTDtKg&index=29

= Computer Architecture, Spring 2015, Lecture 26

o More Prefetching (CMU, Spring 2015)

o https://www.youtube.com/watch?v=TUFins4z604&list=PL5PHM2jkkXmi5CxxI7b3]C
L1TWybTDtKg&index=30

https:/ /www.youtube.com/onurmutlulectures 36
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Research Opportunities
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Computer Architecture Research

If you want to do research in any of the covered topics or any
topic in Comp Arch, HW/SW Interaction & related areas

o We have many projects and a great environment to perform top-
notch research, bachelor's/master’'s/semester projects

o Talk with me (email, whatsapp, etc.) & apply online

Many research topics and projects

Memory (DRAM, NVM, Flash, SW/HW issues, emerging tech)
Processing in Memory

Hardware Security

New Computing Paradigms

Machine Learning for System Design

System Design for AI/ML, Health, Genomics, Medicine

o o 0o 0o 0O o o

A lot of room for creativity, innovation & high impact 38



Current Research Mission

Computer architecture, HW/SW, systems, bioinformatics, security

Hterogeneus Persistent Memory/Storage

Processors and
Accelerators

Graphics and Vision Processing

Build fundamentally better architectures

SAFARI



The Transtormation Hierarchy

(expanded view) (narrow view)

Computer Architecture SW/HW Interface I Computer Architecture

SAFARI
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SAFARI Research Mission & Major Topics

Build fundamentally better architectures
Problem = Data-centric systems: memory/storage systems

o Proc. in Memory/Storage, emerging tech, DRAM

Program/Language|| = Fundamentally secure/reliable/safe architectures
System Software o RowHammer; patchable HW; secure memory

SW/HW Interface || , | ow-latency & predictable architectures

o Low-latency, low-energy yet low-cost memory
o QoS-aware and predictable memory systems

= Systems for ML/AI/Genomics/Health/Graphs
o Algorithm/architecture co-design; accelerators

Broad research

spanning apps, systems, logic . Data-driven and data-aware architectures

with architecture at the center

| o ML/AI for architectural control and design
@ o Expressive memory and expressive systems
‘F/‘ = Ultra-fast & efficient genome analysis
SAFARI https://safari.ethz.ch "SAFARI Research Group: Introduction & Research"

https://people.inf.ethz.ch/omutlu/projects.htm [Slides (pptx) (pdf)] [Talk Video (15 min.)]
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https://people.inf.ethz.ch/omutlu/pub/onur-HuaweiDay-SAFARIIntroductionAndResearch-October-19-2021.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-HuaweiDay-SAFARIIntroductionAndResearch-October-19-2021.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-HuaweiDay-SAFARIIntroductionAndResearch-October-19-2021.pdf
https://www.youtube.com/watch?v=mSr1QQmYuX0&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=67

Open Source Tools: SAFARI GitHub

SAFARI Research Group at ETH Zurich and Carnegie Mellon University

SAFAR' Site for source code and tools distribution from SAFARI Research Group at ETH Zurich and Carnegie Mellon University.

SAFARI Research Group

@ ETH Zurich and Carnegie Mellon U... c9 https://safari.ethz.ch/ [ omutlu@gmail.com

(0 Overview [J] Repositories 71 f Projects @ Packages A Teams 1 2 People 44 33 Settings

Pinned Customize pins

] ramulator Public

A Fast and Extensible DRAM Simulator, with built-in support for modeling
many different DRAM technologies including DDRx, LPDDRx, GDDRX,
WIOx, HBMXx, and various academic proposals. Described in the...

@c++ w3n %61

& DAMOV  Public

DAMOV is a benchmark suite and a methodical framework targeting the
study of data movement bottlenecks in modern applications. It is
intended to study new architectures, such as near-data processin...

@c++ w2 %4

& MQSim  Public

MQSim is a fast and accurate simulator modeling the performance of
modern multi-queue (MQ) SSDs as well as traditional SATA based SSDs.
MQSim faithfully models new high-bandwidth protocol implement...

@c++ Yr146 %93

& prim-benchmarks Public

PrIM (Processing-In-Memory benchmarks) is the first benchmark suite for
a real-world processing-in-memory (PIM) architecture. PrIM is developed
to evaluate, analyze, and characterize the first publ...

®c W53 ¥

] SneakySnake Public

SneakySnake 2, is the first and the only pre-alignment filtering algorithm
that works efficiently and fast on modern CPU, FPGA, and GPU
architectures. It greatly (by more than two orders of magnitude...

@OVHDL Yy41 %8

] rowhammer Public

Source code for testing the Row Hammer error mechanism in DRAM
devices. Described in the ISCA 2014 paper by Kim et al. at
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_iscal4.pdf.

®c Yr189 ¥ a1

https://github.com/CMU-SAFARI/
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Onur Mutlu’s SAFARI Research Group

Computer architecture, HW/SW, systems, bioinformatics, security, memory
https://safari.ethz.ch/safari-newsletter-april-2020/

SSSSSSSSSSSSSSSSSSS
safari.ethz.ch

Think BI&, Alm HIGH]

SAFARI https://safari.ethz.ch



http://www.safari.ethz.ch/
https://safari.ethz.ch/safari-newsletter-april-2020/

SAFARI Newsletter January 2021 Edition

= https://safari.ethz.ch/safari-newsletter-january-2021/
SAFARI

.
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Think Big, Aim High, and
Have a Wonderful 2021!

Dear SAFARI friends,

Happy New Year! We are excited to share our group highlights with you in this second edition 44
of the SAFARI newsletter (You can find the first edition from April 2020 here). 2020 has
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SAFARI Newsletter December 2021 Edition

= https://safari.ethz.ch/safari-newsletter-december-2021/
SAFARI

SAFARI Researc h Group

Think Big, Aim High
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A Talk on Our Research & Teaching

-y

Applying to Grad School

& Doing Impactful Research

Onur Mutlu

omutiu@gmail.com
https://people.inf.ethz.ch/omutlu
13 June 2020
Undergraduate Architecture Mentoring Workshop @ ISCA 2021

B SAFARI ETHzurich CarnegieMellon

PR,

Arch. Mentoring Workshop @ISCA21 - Applying to Grad School & Doing Impactful Research - Onur Mutlu

1,563 views * Premiered Jun 16, 2021 |. 74 gl 1 SHARE =3 SAVE

@ Onur Mutlu Lectures ANALYTICS EDIT VIDEO
&> 17.2K subscribers

Panel talk at Undergraduate Architecture Mentoring Workshop at ISCA 2021
(https://sites.google.com/wisc.edu/uar...)

SA FA R' https://www.youtube.com/watch?v=83tlorht7Mc&list=PL5Q2s0XY2Zi8D 5MGV6EnNXEJHNV2YFBJI&index=54
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An Interview on Computing Futures

/ »
P Pl N 3202/1:0601

Interview with Onur Mutlu @ ISCA 2019 on computing research & education (after Maurice Wilkes Award)

6,749 views + Oct 19, 2019 ik 195 GP 0 ) SHARE =+ SAVE ...

e Onur Mutlu Lectures ANALYTICS EDIT VIDEO
&> 19K subscribers

SAFARI https://www.youtube.com/watch?v=8ffSEKZhmvo 48
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Computer Architecture Research

If you want to do research in any of the covered topics or any
topic in Comp Arch, HW/SW Interaction & related areas

o We have many projects and a great environment to perform top-
notch research, bachelor's/master’'s/semester projects

o Talk with me (email, whatsapp, etc.) & apply online

Many research topics and projects

Memory (DRAM, NVM, Flash, SW/HW issues, emerging tech)
Processing in Memory

Hardware Security

New Computing Paradigms

Machine Learning for System Design

System Design for AI/ML, Health, Genomics, Medicine

o o 0o 0o 0O o o

A lot of room for creativity, innovation & high impact 49



Multiprocessors




Readings: Multiprocessing

Required

o Amdahl, “Validity of the single processor approach to achieving large
scale computing capabilities,” AFIPS 1967.

Recommended

o Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE,
1966

a Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” pp. 551-
560 in Readings in Computer Architecture.

o Hill, Jouppi, Sohi, “Dataflow and Multithreading,” pp. 309-314 in
Readings in Computer Architecture.
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Memory Consistency

= Required

o Lamport, "How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs,” IEEE Transactions on Computers,
1979
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Readings: Cache Coherence

Required

o Papamarcos and Patel, “A low-overhead coherence solution
for multiprocessors with private cache memories,” ISCA 1984.

Recommended:

o Culler and Singh, Parallel Computer Architecture
Chapter 5.1 (pp 269 — 283), Chapter 5.3 (pp 291 — 305)

o P&H, Computer Organization and Design
Chapter 5.8 (pp 534 — 538 in 4t and 4t revised eds.)
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Multiprocessors and
Issues 1n Multiprocessing




Flynn’s Taxonomy ot Computers

Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

SISD: Single instruction operates on single data element
SIMD: Single instruction operates on multiple data elements
o Array processor

o Vector processor

MISD: Multiple instructions operate on single data element
o Closest form: systolic array processor, streaming processor

MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

o Multiprocessor
o Multithreaded processor
55



SIMD Example: Vector & Array Processors

Array vs. Vector Processors -

Juan GomezL...
ARRAY PROCESSOR VECTOR PROCESSOR

PEO| | PE1] | PE2] | PE3 LD ADD} fMUL} | ST

Instruction Stream Same op @ same time

Diff t ti
LD VR € A[3:0] oo LDt [Lp2 LD3 Lpg Different ops @ time

ADD VR €« VR, 1

MUL VR € VR 2 ADO| AD1 |AD2 AD3 LD1| ADO

ST A[3:0] € VR MUO| MU1 (MU2 MU3 LD2 | AD1 |MUO

STO | ST1 |ST2 ST3 [LD3 AD2 |MU1 STO]
T

AD3 |[MU2 ST1

Different ops @ same space

MU3 ST2
Same op @ space ST3

<«——Space—> +—8pace——>

Livestream - Digital Design and Computer Architecture - ETH Ziirich (Spring 2022)

Digital Design & Computer Arch. - Lecture 20: SIMD Processing (Vector and Array Processors) (S 2022)

GJ Onur Mutlu Lectures . s , -
2 GD h L D load ¢ cl =
>  29.3K subscribers Alsliice Edit video i 28 /> Share ¥ Downloa & clip + Save

1,124 views Streamed live on May 12, 2022
Digital Design and Computer Architecture, ETH Ziirich, Spring 2022 (https://safari.ethz.ch/digitaltechnik...)

https://www.youtube.com/watch?v=YPLPVadgw-E&list=PL50Q2s0XY2Zi97YaSDEUpMpO2bbAoaG7c6&index=23 56
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MISD Example: Systolic Arrays

An Example Modern Systolic Array: TPU (II)

As reading a large SRAM uses much more power than arithmetic, the matrix unit uses systolic execution to save energy
by reducing reads and writes of the Unified Buffer [Kun80|[Ram91 |[Ovt15b]. Figure 4 shows that data flows in from the left
and the weights are loaded from the top. A given 256-element multiply-accumulate operation moves through the matrix as a
diagonal wavefront. The weights are preloaded, and take effect with the advancing wave alongside the first data of a new
block. Control and data are pipelined to give the illusion that the 256 inputs are read at once, and that they instantly update
one location of each of 256 accumulators. From a correctness perspective, software is unaware of the systolic nature of the

matrix unit, but for performance, it does worry about the latency of the unit

> > » Data
Y
Y
Y Y
v '

Partial Sums

FENE

Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit", ISCA 2017.

Digital Design & Computer Arch. - Lecture 19: VLIW and Systolic Array Architectures (Spring 2022)

842 views * Premiered May 6, 2022 [ﬁ 35 g] DISLIKE > SHARE

A Onur Mutlu Lectures

l» 245K subscribers

Digital Design and Computer Architecture, ETH Ziirich, Spring 2022 (
https://safari.ethz.ch/digitaltechnik...)

Lecture 19a: VLIW Architectures

Lecture 19b: Systolic Array Architectures

Lecturer: Professor Onur Mutlu (https:/people.inf.ethz.ch/omutlu/)
Date: May 6, 2022

https://youtu.be/1SSqgV7Y750U?t=2316
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Why Parallel Computers?

Parallelism: Doing multiple things at a time
Things: instructions, operations, tasks

Main (or Original) Goal

a Improve performance (Execution time or task throughput)
Execution time of a program governed by Amdahl’ s Law

Other Goals

a Reduce power consumption
(4N units at freq F/4) consume less power than (N units at freq F)
Why?

a Improve cost efficiency and scalability, reduce complexity
Harder to design a single unit that performs as well as N simpler units

o Improve dependability: Redundant execution in space
58



Types of Parallelism and How to Exploit Them

Instruction Level Parallelism

o Different instructions within a stream can be executed in parallel
o Pipelining, out-of-order execution, speculative execution, VLIW
o Dataflow

Data Parallelism

o Different pieces of data can be operated on in parallel
o SIMD: Vector processing, array processing

o Systolic arrays, streaming processors

Task Level Parallelism
o Different “tasks/threads” can be executed in parallel
o Multithreading

o Multiprocessing (multi-core)
59



Task-Level Parallelism: Creating Tasks

Partition a single problem into multiple related tasks
(threads)
o Explicitly: Parallel programming

Easy when tasks are natural in the problem
o Web/database queries

Difficult when natural task boundaries are unclear

o Transparently/implicitly: Thread level speculation
Partition a single thread speculatively

Run many independent tasks (processes) together
o Easy when there are many processes
Batch simulations, different users, cloud computing workloads

o Does not improve the performance of a single task
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Multiprocessing Fundamentals

61



Multiprocessor Types

Loosely coupled multiprocessors
a No shared global memory address space
o Multicomputer network

Network-based multiprocessors

o Usually programmed via message passing
Explicit calls (send, receive) for communication

Tightly coupled multiprocessors

o Shared global memory address space

o Traditional multiprocessing: symmetric multiprocessing (SMP)
Existing multi-core processors, multithreaded processors

o Programming model similar to uniprocessors (i.e., multitasking
uniprocessor) except

Operations on shared data require synchronization
62



Main Design Issues in Tightly-Coupled MP

Shared memory synchronization
o How to handle synchronization: locks, atomic operations, barriers

Cache coherence

o How to ensure correct operation in the presence of private
caches keeping the same memory address cached

Memory consistency: Ordering of all memory operations
o What should the programmer expect the hardware to provide?

Shared resource management

Communication: Interconnects
63



Main Programming Issues in Tightly-Coupled MP

Load imbalance
o How to partition a single task into multiple tasks

Synchronization
o How to synchronize (efficiently) between tasks
o How to communicate between tasks

o Locks, barriers, pipeline stages, condition variables,
semaphores, atomic operations, ...

Contention (avoidance & management)
Maximizing parallelism
Ensuring correct operation while optimizing for performance
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Aside: Hardware-based Multithreading

Coarse grained
o Quantum based
o Event based (switch-on-event multithreading), e.g., switch on L3 miss

Fine grained
o Cycle by cycle
o Thornton, “CDC 6600: Design of a Computer,” 1970.

o Burton Smith, “A pipelined, shared resource MIMD computer,” ICPP
1978.

Simultaneous
o Can dispatch instructions from multiple threads at the same time
o Good for improving execution unit utilization
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Lecture on Fine-Grained Multithreading

Fine-Grained Multithreading

Idea: Hardware has multiple thread contexts (PC+register
Each cycle, fetch engine fetches from a different thread.

o By the time the fetched branch/instruction resolves, no
instruction is fetched from the same thread

o Branch/instruction resolution latency overlapped with execution
of other threads’ instructions

Instruction Operands

Stream 3 Instruction

+ No logic needed for handling control and [ nstruction Feteh
ream 2 Instruction
ithi 0 d Fetch
data dependences within a thread uegﬁfﬁnsﬁfcuon
-- Single thread performance suffers e e
. . Execution Ph
-- Extra logic for keeping thread contexts e
-- Does not overlap latency if not enough L :
< . Stream 4 Instruction
threads to cover the whole pipeline Result Store

Onur Mutlu - Digital Design & Comp Arch - Lecture 14: Pipelined Processor Design (Spring 2021)

3,058 views * Streamed live on Apr 22, 2021 e 63 GJ DISLIKE /> SHARE =+ SAVE
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More on Multithreading (I

Coarse-grained Muli

Idea: When a thread is st

Switch-on-event muitithred

4 P Pl o) 1:1921/1:3543

Carnegie Mellon - Parallel Computer Architecture 2013 - Onur Mutlu - Lec 9 - Multithreading

1,252 views * Nov 19, 2013 |. 10 { 0 SHARE + SAVE

Carnegie Mellon Computer Architecture
@ 23K subscribers ANALYTICS EDIT VIDEO

Lecture 9: Multithreading
Lecturer: Prof. Onur Mutlu (http://users.ece.cmu.edu/~omutlu/)
Date: September 26, 2013.

https:/ /www.youtube.com/onurmutlulectures
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More on Multithreading (11)
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Carnegie Mellon -Parallel Computer Architecture 2012 - Onur Mutlu - Lecture 10 - Multithreading |1

1,594 views - Sep 21,2013 i1 &lo ) SHARE SAVE
o Carnegie Mellon Computer Architecture SUBSCRIBED
1.81K subscribers

Lecture 10: Multithreading Il
Lecturer: Prof. Onur Mutlu (http://users.ece.cmu.edu/~omutlu/)
Date: September 28, 2012.

https:/ /www.youtube.com/onurmutlulectures
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More on Multithreading (111)

< P Pl o) 2630713713

Carnegie Mellon - Parallel Computer Architecture 2013 - Onur Mutlu - Lec 13-Multi-threading Il

1,132 views * Sep 21,2013 e ®o P SHARE =i SAVE
Py Carnegie Mellon Computer Architecture
@ 1.81K subscribers SUBSCRIBED

Lecture 13: Multi-threading Ill
Lecturer: Prof. Onur Mutlu (http://users.ece.cmu.edu/~omutlu/)
Date: October 5, 2012.

https:/ /www.youtube.com/onurmutlulectures
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More on Multithreading (IV)

P »l o 3:26/1:3829

Carnegie Mellon - Parallel Computer Architecture 2013 - Onur Mutlu - Lec 15 - Speculation 1

915 views * Sep 21,2013 o Mo ) SHARE =i SAVE
Carnegie Mellon Computer Architecture
@ 1.81K subscribers SUBSCRIBED

Lecture 15: Speculation |
Lecturer: Prof. Onur Mutlu (http://users.ece.cmu.edu/~omutlu/)
Date: October 10, 2012.

https:/ /www.youtube.com/onurmutlulectures

Q
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Lectures on Multithreading

= Parallel Computer Architecture, Fall 2012, Lecture 9

o Multithreading I (CMU, Fall 2012)

o https://www.youtube.com/watch?v=igi9wFgFiNU&Iist=PL5PHmM?2jkkXmgDN1PLWQOY
tGtUlynnyV6D&index=51

= Parallel Computer Architecture, Fall 2012, Lecture 10

o Multithreading II (CMU, Fall 2012)
o https://www.youtube.com/watch?v=e8IfloMbILg&list=PL5PHM2jkkXmgDN1PLWQY

tGtUlynnyV6D&index=52
= Parallel Computer Architecture, Fall 2012, Lecture 13

o Multithreading III (CMU, Fall 2012)

o https://www.youtube.com/watch?v=7vkDpZ1-
hHM&list=PL5PHM2jkkXmgDN1PLwWQY tGtUlynnyV6D&index=53

= Parallel Computer Architecture, Fall 2012, Lecture 15

o Speculation I (CMU, Fall 2012)

o https://www.youtube.com/watch?v=-
hbmzIDe0sA&list=PL5PHmM2jkkXmgDN1PLWOY tGtUlynnyV6D&index=54

https:/ /www.youtube.com/onurmutlulectures 71



https://www.youtube.com/watch?v=iqi9wFqFiNU&list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D&index=51
https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23
https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23
https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23
https://www.youtube.com/onurmutlulectures

Limits of Parallel Speedup




Parallel Speedup Example

ax* + asx® + ax? + a;x + a,
Assume given inputs: x and each a,

Assume each operation 1 cycle, no communication cost,
each op can be executed in a different processor

How fast is this with a single processor?
o Assume no pipelining or concurrent execution of instructions

How fast is this with 3 processors?

73



R — auxt + ax® + I R o 5 10, OO
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R. = ay,x"™ + GX?+ 0,X*¥r ax + Qg
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Speedup with 3 Processors

Ty =5 cycles
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Revisiting the Single-Processor Algorithm

Rewsit Tt

Bete— s\%\e’—pmaésw a\,s(/mv\:

28

|

OLN“ 3= 03X3 3 az_xl = 0,|>6 ""ao

=S :<<(a«x+a3§x + o,_JX + a.)x + Qo

(,"}orf\(f"$ et e ch )

Horner, “A new method of solving numerical equations of all orders, by continuous
approximation,” Philosophical Transactions of the Royal Society, 1819.
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Superlinear Speedup

Can speedup be greater than P with P processing
elements?

Parallel
Speedup

Unfair comparisons
Compare best parallel
algorithm to wimpy serial
algorithm - unfair

Cache/memory effects
More processors -

more cache or memory -
fewer misses in cache/mem

4

Superlinear ‘

P Typical
Success

Sublinear

r—# H# Processors
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Utilization, Redundancy, Etficiency

Traditional metrics
o Assume all P processors are tied up for parallel computation

Utilization: How much processing capability is used
o U = (# Operations in parallel version) / (processors x Time)

Redundancy: how much extra work is done with parallel
processing

o R = (# of operations in parallel version) / (# operations in best
single processor algorithm version)

Efficiency

o E = (Time with 1 processor) / (processors x Time with P processors)

o E=U/R
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Utilization of a Multiprocessor
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Amdahl’s L.aw and
Caveats of Parallelism




Amdahl’s Law

Amdahl’ s Law

a f: Parallelizable fraction of a program
a N: Number of processors

Speedup =

1-f + L

o Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

Maximum speedup limited by serial portion: Serial bottleneck
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Caveats of Parallelism (I)
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Amdahl’s Law
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Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” AFIPS 1967.
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Amdahl’s Law Implication 1
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Amdahl’s Law Implication 2
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Caveats of Parallelism (1)

Amdahl’ s Law

a f: Parallelizable fraction of a program
a N: Number of processors

Speedup = f

N

1-f 4+

o Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

Maximum speedup limited by serial portion: Serial bottleneck

Parallel portion is usually not perfectly parallel
o Synchronization overhead (e.g., updates to shared data)
o Load imbalance overhead (imperfect parallelization)

o Resource sharing overhead (contention among N processors)
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Sequential Bottleneck

=—N=10

—N=100

N=1000

e —
B I I ]

™ 0.36

(parallel fraction)
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Why the Sequential Bottleneck?

Parallel machines have the
sequential bottleneck

2 Main cause: Non-parallelizable
operations on data (e.g. non-
parallelizable loops)
for(i=0;i<N;i++)
Ali] = (A[i] + A[i-1]) / 2

<

There are other causes as well:

o Single thread prepares data and
spawns parallel tasks (usually
sequential)
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Another Example of Sequential Bottleneck (I)

InitPriorityQueue(PQ); LEGEND
) A.E: Amdahl’s serial part
SpawnThreads(); @ B: Parallel Portion
ForEach Thread: C1,C2: _Criticz_;ll_ Section_s
D: Outside critical section

while (problem not solved)

Lock (X)
SubProblem = PQ.remove(); @
Unlock(X);

Solve(SubProblem);
If(problem solved) break;
NewSubProblems = Partition(SubProblem);

Lock(X)
PQ.insert(NewSubProblems); @

Unlock(X)

.

PrintSolution(); @

Suleman+, “Accelerating Critical Section Execution with Asymmetric Multi-Core Architectures,” ASPLOS 2009. 92




Another Example of Sequential Bottleneck (II)

time

. T2 C o2y @ b1 X Jummnnnn @ .
A T3 C 1) AR D 2] X ) C
X X
I }

begin 0 1 2 3 4 5 6 end

Suleman+, “Accelerating Critical Section Execution with Asymmetric Multi-Core Architectures,” ASPLOS 2009. 93



Bottlenecks in Parallel Portion

Synchronization: Operations manipulating shared data
cannot be parallelized

o Locks, mutual exclusion, barrier synchronization

o Communication: Tasks may need values from each other

- Causes thread serialization when shared data is contended

Load Imbalance: Parallel tasks may have different lengths
o Due to imperfect parallelization or microarchitectural effects
- Reduces speedup in parallel portion

Resource Contention: Parallel tasks can share hardware
resources, delaying each other
o Replicating all resources (e.g., memory) expensive

- Additional latency not present when each task runs alone
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Bottlenecks in Parallel Portion: Another View

Threads in a multi-threaded application can be inter-
dependent

o As opposed to threads from different applications

Such threads can synchronize with each other

o Locks, barriers, pipeline stages, condition variables,
semaphores, ...

Some threads can be on the critical path of execution due
to synchronization; some threads are not

Within a thread, some “code segments” may be on the
critical path of execution; some are not
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Remember: Critical Sections

Enforce mutually exclusive access to shared data

Only one thread can be executing it at a time

Contended critical sections make threads wait = threads
causing serialization can be on the critical path

Each thread:

loop {

Compute

lock(A)
Update shared data|

unlock(A)

N

C

T1[
T2 [
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Critical Section Example from MySQL

Asymmetric
Critical
Section Access Open Tables Cache g -
/ 7
o ©
3 s
2 4
EER
2 Symmetric
1 -
0 T T T T
\ Parallel 0 8 16 24 32

Chip Area (cores)
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Remember: Barriers

Synchronization point
Threads have to wait until all threads reach the barrier
Last thread arriving to the barrier is on the critical path

Each thread: ldle barrier
loop1 {
 ompute T
} T2 ¢ ;
barrier
loop2 { | I ! timE

Compute

}
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Remember: Stages of Pipelined Programs

loop {

Loop iterations are statically divided into code segments called stages
Threads execute stages on different cores
Thread executing the slowest stage is on the critical path

Computel| A

Compute2 | B

Compute3| C

}
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Ditticulty in Parallel Programming

Little difficulty if parallelism is natural
o “Embarrassingly parallel” applications

o Multimedia, physical simulation, graphics
o Large web servers, databases?

Difficulty is in
o Getting parallel programs to work correctly
a Optimizing performance in the presence of bottlenecks

Much of parallel computer architecture is about

o Designing machines that overcome the sequential and parallel
bottlenecks to achieve higher performance and efficiency

o Making programmer’s job easier in writing correct and high-

performance parallel programs
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Some Readings on Bottlenecks &
Bottleneck Acceleration




Parallel Application Memory Scheduling

= Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin, Chang Joo
Lee, Onur Mutlu, and Yale N. Patt,
"Parallel Application Memory Scheduling”
Proceedings of the 44th International Symposium on
Microarchitecture (MICRO), Porto Alegre, Brazil, December
2011. Slides (pptx)

Parallel Application Memory Scheduling

Eiman Ebrahimi+ Rustam Miftakhutdinovi Chris Fallin§
Chang Joo Lee; José A. Joaot Onur Mutlu§ Yale N. Patt;

tDepartment of Electrical and Computer Engineering
The University of Texas at Austin
{ebrahimi, rustam, joao, patt}@ece.utexas.edu

§Carnegie Mellon University iIntel Corporation
{cfallin,onur } @cmu.edu chang.joo.lee@intel.com
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http://users.ece.cmu.edu/~omutlu/pub/parallel-memory-scheduling_micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_micro11_talk.pptx

Accelerated Critical Sections

= M. Aater Suleman, Onur Mutlu, Moinuddin K. Qureshi, and Yale N. Patt,
"Accelerating Critical Section Execution with Asymmetric
Multi-Core Architectures”
Proceedings of the 14th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), pages 253-264, Washington, DC, March
2009. Slides (ppt)
One of the 13 computer architecture papers of 2009 selected
as Top Picks by IEEE Micro.

Accelerating Critical Section Execution
with Asymmetric Multi-Core Architectures

M. Aater Suleman Onur Mutlu Moinuddin K. Qureshi Yale N. Patt

University of Texas at Austin ~ Carnegie Mellon University IBM Research University of Texas at Austin
suleman@hps.utexas.edu onur@cmu.edu mkquresh@us.ibm.com patt@ece.utexas.edu
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https://people.inf.ethz.ch/omutlu/pub/acs_asplos09.pdf
http://www.cs.virginia.edu/asplos09/
https://people.inf.ethz.ch/omutlu/pub/suleman_asplos09_talk.ppt

Bottleneck Identification & Scheduling

Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt,
"Bottleneck Identification and Scheduling in Multithreaded
Applications”

Proceedings of the 17th International Conference on Architectural
Support for Programming Languages and Operating

Systems (ASPLOS), London, UK, March 2012. Slides (ppt) (pdf)

Bottleneck Identification and Scheduling
in Multithreaded Applications

José A. Joao M. Aater Suleman Onur Mutlu Yale N. Patt
ECE Department Calxeda Inc. Computer Architecture Lab. ECE Department
The University of Texas at Austin  g3ter.suleman®calxeda.com Carnegie Mellon University =~ The University of Texas at Austin
joao@ece.utexas.edu onur@cmu.edu patt@ece.utexas.edu
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https://people.inf.ethz.ch/omutlu/pub/bottleneck-identification-and-scheduling_asplos12.pdf
http://research.microsoft.com/en-us/um/cambridge/events/asplos_2012/
https://people.inf.ethz.ch/omutlu/pub/mutlu_asplos12_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_asplos12_talk.pdf

Utlity-Based Acceleration

Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt,
"Utility-Based Acceleration of Multithreaded Applications
on Asymmetric CMPs"

Proceedings of the 40th International Symposium on Computer
Architecture (ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt)
Slides (pdf)

Utility-Based Acceleration of Multithreaded Applications
on Asymmetric CMPs

José A. Joao ' M. Aater Suleman # Onur Mutlu ¢ Yale N. Patt

" ECE Department t - § Computer Architecture Laboratory
The University of Texas at Austn AT GOneing Carnegie Mellon, University
foao G ece gu Suleman@hps.utexas.edu itsburgh, FA,
, patt}@ece.utexas.edu onur@cmu.edu

105


http://users.ece.cmu.edu/~omutlu/pub/utility-based-acceleration-acmp_isca13.pdf
http://isca2013.eew.technion.ac.il/
http://users.ece.cmu.edu/~omutlu/pub/joao_isca13_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/joao_isca13_talk.pdf

Data Marshaling

M. Aater Suleman, Onur Mutlu, Jose A. Joao, Khubaib, and Yale N. Patt,
"Data Marshaling for Multi-core Architectures”

Proceedings of the 3/th International Symposium on Computer
Architecture (ISCA), pages 441-450, Saint-Malo, France, June

2010. Slides (ppt)

One of the 11 computer architecture papers of 2010 selected
as Top Picks by IEEE Micro.

Data Marshaling for Multi-core Architectures

M. Aater Suleman+ Onur Mutlu§ José A. Joaot Khubaibt Yale N. Patty

TThe University of Texas at Austin §Carnegie Mellon University
{suleman, joao, khubaib, patt}@hps.utexas.edu onur@cmu.edu
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https://people.inf.ethz.ch/omutlu/pub/dm_isca10.pdf
http://isca2010.inria.fr/
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca10_talk.ppt

Lectures on Bottleneck Acceleration

Lecture 17b: Parallelism and Heterogeneity
o Comp Arch, ETH Zurich, Fall 2021

o https://www.youtube.com/watch?v=GLzG rEDn9A&list=PL50
250XY2Zi-Mnk1PxjiEIG32HAGILKTOF&index=18

Lecture 18a: Bottleneck Acceleration
o Comp Arch, ETH Zurich, Fall 2021

o https://www.youtube.com/watch?v=P8I3SMAbyYw&list=PL50
250XY2Zi-Mnk1PxjEIG32HAGILKTOF&index=19
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https://www.youtube.com/watch?v=GLzG_rEDn9A&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF&index=18
https://www.youtube.com/watch?v=P8l3SMAbyYw&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF&index=19

Lecture on Parallelism & Heterogeneity

ACMP Performance vs. Parallelism

Area-budget = 16 small cores
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core | core
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Livestream - Computer Architecture - ETH Ziirich (Fall 2021)

Computer Architecture - Lecture 17: Parallelism & Heterogeneity (Fall 2021)

EA Onur Mutlu Lectures ECaiies
«T»> 29.2K subscribers

1,589 views Streamed live on Nov 25, 2021

Computer Architecture, ETH Zrich, Fall 2021 (https://safari.ethz.ch/architecture/f...)
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Lecture on Bottleneck Acceleration

Bottleneck Acceleration

Small Core 1 Large Core 0

Acceleration
Index Table (AIT)
bid=x4700 , large core 0 ¥ Scheduling Buffer (SB)

Small CoreR , ,‘g;«:‘,, m
Bottleneck
Table (BT)

AIT

v

Livestream - Computer Architecture - ETH Ziirich (Fall 2021)

Computer Architecture - Lecture 18: Parallelism & Heterogeneity Il (Fall 2021)

6.) Onur Mutlu Lectures . - ) _
1 42 QD h L D load ¢ cl =
<> 29.2K subscribers Aalgice o " A> Share ¥ Downloa & Clip + Save

2,058 views Streamed live on Nov 26, 2021
Computer Architecture, ETH Zrich, Fall 2021 (https://safari.ethz.ch/architecture/f...)
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An Example Parallel Problem:
Task Assignment to Processors




Static versus Dynamic Scheduling

Static: Done at compile time or parallel task creation time
o Schedule does not change based on runtime information

Dynamic: Done at run time (e.qg., after tasks are created)
o Schedule changes based on runtime information

Example: Instruction scheduling
o Why would you like to do dynamic scheduling?

o What pieces of information are not available to the static
scheduler?
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Parallel Task Assignment: Tradeoffs

Problem: N tasks, P processors, N>P. Do we assign tasks to
processors statically (fixed) or dynamically (adaptive)?

Static assignment

+ Simpler: No movement of tasks.

- Inefficient: Underutilizes resources when load is not balanced
When can load not be balanced?

Dynamic assignment
+ Efficient: Better utilizes processors when load is not balanced
- More complex: Need to move tasks to balance processor load

- Higher overhead: Task movement takes time, can disrupt
locality
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Parallel Task Assignment: Example

Compute histogram of a large set of values

Parallelization:

o Divide the values across T tasks

o Each task computes a local histogram for its value set

o Local histograms merged with global histograms in the end

i ™y

GetPageHistogram(Page *P)

For each thread: {
s ™
/" Parallel part of the function */

UpdatelocalHistogram(Fraction of Page)
. A

-

/" Serial part of the function */
Critical Section:
Add local histogram to global histogram

Barrier

¥

Return global histogram
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Parallel Task Assignment: Example (11

How to schedule tasks updating local histograms?

o Static: Assign equal number of tasks to each processor
o Dynamic: Assign tasks to a processor that is available
o When does static work as well as dynamic?

Implementation of Dynamic Assignment with Task Queues

Shared

Task Stealing

© ©

B

(a) Distributed Task Stealing

AT

6

66 ©

(b) Hierarchical Task Queuing
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Sottware Task Queues

What are the advantages and disadvantages of each?
o Centralized

o Distributed
o Hierarchical

Shared Sharad
Task Stealing l // ‘\
SR
(a) Distributed Task Stealing (b) Hierarchical Task Queuing
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Task Stealing

Idea: When a processor’ s task queue is empty it steals a
task from another processor’ s task queue

o Whom to steal from? (Randomized stealing works well)
o How many tasks to steal?

+ Dynamic balancing of computation load

- Additional communication/synchronization overhead
between processors

- Need to stop stealing if no tasks to steal
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Parallel Task Assignment: Tradeoffs

Who does the assignment? Hardware versus software?

Software
+ Better scope
- More time overhead

- Slow to adapt to dynamic events (e.qg., a processor becoming
idle)

Hardware
+ Low time overhead
+ Can adjust to dynamic events faster

- Requires hardware changes (area and possibly energy
overhead)
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How Can the Hardware Help?

Managing task queues in software has overhead

Q

Especially high when task sizes are small

An idea: Hardware Task Queues

Q

Q
Q
Q

Each processor has a dedicated task queue
Software fills the task queues (on demand)
Hardware manages movement of tasks from queue to queue

There can be a global task queue as well = hierarchical
tasking in hardware

Kumar et al., “Carbon: Architectural Support for Fine-Grained
Parallelism on Chip Multiprocessors,” ISCA 2007.

Optional reading
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Dynamic Task Generation

Does static task assignment work in this case?

Problem: Searching the exit of a maze

r/;hiIra(;:-r:::l::uler'rn not solved) \\

_» SubProblem = PriorityQ.remove()

Solve(SubProblem)
if(solved)
break

|~
\ NewSubProblems = Partition(SubProblem)

PriorityQ.insert(NewSubProblems) Y
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Programming Model vs.
Hardware Execution Model




Programming Models vs. Architectures

Five major models
(Sequential)

Shared memory
Message passing
Data parallel (SIMD)
Dataflow

Systolic

o oo 0O 0O O O

Hybrid models?
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Shared Memory vs. Message Passing

Are these programming models or execution models
supported by the hardware architecture?

Does a multiprocessor that is programmed by “shared

memory programming model” have to support a shared
address space processors?

Does a multiprocessor that is programmed by “message

passing programming model” have to have no shared
address space between processors?
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Programming Models: Message Passing vs. Shared Memory

Difference: how communication is achieved between tasks

Message passing programming model

o Explicit communication via messages

o Loose coupling of program components

o Analogy: telephone call or letter, no shared location accessible to
all

Shared memory programming model

o Implicit communication via memory operations (load/store)

a Tight coupling of program components

o Analogy: bulletin board, post information at a shared space

Suitability of the programming model depends on the
problem to be solved. Issues affected by the model include:

o Overhead, scalability, ease of programming, bugs, match to

underlying hardware, ...
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Message Passing vs. Shared Memory Hardware

Difference: how task communication is supported in
hardware
Shared memory hardware (or machine model)

o All processors see a global shared address space
Ability to access all memory from each processor

o A write to a location is visible to the reads of other processors

Message passing hardware (machine model)
o No global shared address space

o Send and receive variants are the only method of
communication between processors (much like networks of
workstations today, i.e. clusters)

Suitability of the hardware depends on the problem to be
solved as well as the programming model.
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Programming Model vs. Hardware

Most of parallel computing history, there was no separation
between programming model and hardware

o Message passing: Caltech Cosmic Cube, Intel Hypercube, Intel
Paragon

a Shared memory: CMU C.mmp, Sequent Balance, SGI Origin.
o SIMD: ILLIAC IV, CM-1

However, any hardware can really support any
programming model

Why?
o Application - compiler/library - OS services = hardware
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