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Summary of Last Few Lectures

◼ Multiprocessing Fundamentals

◼ Memory Ordering (Consistency)

◼ Cache Coherence
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Recall: Two Cache Coherence Methods 

❑ How do we ensure that the proper caches are updated?

❑ Snoopy Bus [Goodman ISCA 1983, Papamarcos+ ISCA 1984]

◼ Bus-based, single point of serialization for all memory requests

◼ Processors observe other processors’ actions

❑ E.g.: P1 makes “read-exclusive” request for A on bus, P0 sees this 
and invalidates its own copy of A

❑ Directory [Censier and Feautrier, IEEE ToC 1978]

◼ Single point of serialization per block, distributed among nodes

◼ Processors make explicit requests for blocks

◼ Directory tracks which caches have each block

◼ Directory coordinates invalidation and updates

❑ E.g.: P1 asks directory for exclusive copy, directory asks P0 to 
invalidate, waits for ACK, then responds to P1
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Recall: Snoopy Cache vs. Directory Coherence

◼ Snoopy Cache

+ Miss latency (critical path) is short: request → bus transaction to mem.

+ Global serialization is easy: bus provides this already (arbitration)

+ Simple: can adapt bus-based uniprocessors easily

- Relies on broadcast messages to be seen by all caches (in same order): 

→ single point of serialization (bus): not scalable

→ need a virtual bus (or a totally-ordered interconnect)

◼ Directory

- Adds indirection to miss latency (critical path): request → dir. → mem.

- Requires extra storage space to track sharer sets

◼ Can be approximate (false positives are OK for correctness)

- Protocols and race conditions are more complex (for high-performance)

+ Does not require broadcast to all caches

+ Exactly as scalable as interconnect and directory storage

(much more scalable than bus)
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Interconnection Networks
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Readings

◼ Required

❑ Moscibroda & Mutlu, “A Case for Bufferless Routing in On-Chip 
Networks,” ISCA 2009.

❑ Das et al., “Aergia: Exploiting Packet Latency Slack in On-Chip 
Networks,” ISCA 2010.

◼ Recommended

❑ Das et al., “Application-Aware Prioritization Mechanisms for On-Chip 
Networks,” MICRO 2009.

❑ Dally & Towles, “Route Packets, Not Wires: On-Chip Interconnection 
Networks,” DAC 2001.

❑ Janak H. Patel,“Processor-Memory Interconnections for 
Multiprocessors,” ISCA 1979.

❑ Gottlieb et al. “The NYU Ultracomputer - Designing an MIMD Shared 
Memory Parallel Computer,” IEEE Trans. On Comp., 1983.
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Interconnection Network Basics
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Where Is Interconnect Used?

◼ To connect & communicate between components

◼ Many examples

❑ Processors and processors

❑ Processors and memories (banks)

❑ Processors and caches (banks)

❑ Caches and caches

❑ I/O devices
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Interconnects Enable Communication

9Seitz, “The Cosmic Cube,” CACM 1985.



Why Is It Important?

◼ Affects the scalability and cost of the system

❑ How large of a system can you build?

❑ How easily can you add more processors?

◼ Affects performance and energy efficiency

❑ How fast can processors, caches, and memory communicate?

❑ How long are the latencies to memory?

❑ How much energy is spent on communication?

◼ Affects reliability and security

❑ Can you guarantee messages are delivered or your protocol 
works?
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Many Parameters & Goals in a Network

11Dally & Towles, “Principles and Practices of Interconnection Networks,” 2004.



A Recommended Book

12Dally & Towles, “Principles and Practices of Interconnection Networks,” 2004.



Another Example: Clock Distribution Network

◼ Problem: Clock signal arrives non-uniformly late to different 
parts of a chip, causing potential timing issues

◼ Solution: Design the interconnect to equalize the arrival time 
of the clock signal to all parts of a chip

◼ This specialized interconnect communicates  the “clock” signal

Image Source: Tawfik & Kursun, “Clock Distribution Networks with Gradual Signal Transition Time Relaxation for Reduced Power Consumption,” JCSS 2008.



Recall: Clock Skew: Summary

◼ Clock Skew effectively increases both tsetup and thold

❑ Increased sequencing overhead 

❑ i.e., less useful work done per cycle

◼ Designers must keep clock skew to a minimum

❑ Requires intelligent “clock network” across a chip

❑ Goal: clock arrives at all locations at roughly the same time
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Source: Abdelhadi, Ameer, et al. "Timing-driven variation-aware nonuniform clock mesh synthesis." GLSVLSI’10.



Recall: Clock Skew Example

◼ Example of the Alpha 21264 clock skew spatial distribution 

15P. E. Gronowski+, "High-performance Microprocessor Design," JSSC’98.



Recall: Timing & Verification

16https://www.youtube.com/watch?v=4AcwBBwiNlQ&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LlN&index=8

https://www.youtube.com/watch?v=4AcwBBwiNlQ&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LlN&index=8


Interconnection Network Basics

◼ Topology

❑ Specifies the way switches are wired

❑ Affects routing, reliability, throughput, latency, building ease

◼ Routing (algorithm)

❑ How does a message get from source to destination

❑ Static or adaptive 

◼ Buffering and Flow Control

❑ What do we store within the routers & links?

◼ Entire packets, parts of packets, etc?

❑ How do we throttle during oversubscription?

❑ Tightly coupled with routing strategy
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Terminology 

◼ Network interface

❑ Module that connects endpoints (e.g. processors) to network 

❑ Decouples computation/communication

◼ Link

❑ Bundle of wires that carry a signal

◼ Switch/router

❑ Connects fixed number of input channels to fixed number of 
output channels

◼ Channel

❑ A single logical connection between routers/switches
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More Terminology

◼ Node

❑ A router/switch within a network

◼ Message

❑ Unit of transfer for network’s clients (processors, memory)

◼ Packet

❑ Unit of transfer for network 

◼ Flit

❑ Flow control digit

❑ Unit of flow control within network
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Some More Terminology
◼ Direct or Indirect Networks

❑ Endpoints sit “inside” (direct) or “outside” (indirect) the network

❑ E.g. mesh is direct; every node is both endpoint and switch
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Interconnection Network

Topology
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Properties of a Topology/Network

◼ Regular or Irregular

❑ Regular if topology is a regular graph (e.g., ring, mesh).

◼ Routing Distance 

❑ number of links/hops along a route 

◼ Diameter 

❑ maximum routing distance within the network

◼ Average Distance

❑ Average number of hops across all valid routes
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Properties of a Topology/Network

◼ Bisection Bandwidth

❑ Often used to describe network performance

❑ Cut network in half and sum bandwidth of links severed

◼ (Min # channels spanning two halves) * (BW of each channel)

❑ Meaningful only for recursive topologies

❑ Can be misleading, because does not account for switch and 
routing efficiency (and certainly not execution time)

◼ Blocking vs. Non-Blocking

❑ If connecting any permutation of sources & destinations is 
possible, network is non-blocking; otherwise network is blocking.

❑ Rearrangeable non-blocking: Same as non-blocking but might 
require rearranging connections when switching from one 
permutation to another.
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Topology

◼ Bus (simplest)

◼ Point-to-point connections (most costly)

◼ Crossbar 

◼ Ring

◼ Tree

◼ Omega

◼ Hypercube

◼ Mesh

◼ Torus

◼ Butterfly

◼ …
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Metrics to Evaluate Interconnect Topology

◼ Cost

◼ Latency (in hops, in nanoseconds)

◼ Contention

◼ Many others exist you should think about

❑ Energy

❑ Bandwidth

❑ Overall system performance
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Bus

All nodes connected to a single link

+ Simple + Cost effective for a small number of nodes

+ Easy to implement coherence (snooping and serialization)

- Not scalable to large number of nodes (limited bandwidth, 
electrical loading → reduced frequency)

- High contention → fast saturation
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Point-to-Point 

Every node connected to every other

with direct/isolated links

+ Lowest contention

+ Potentially lowest latency

+ Ideal, if cost is no issue

-- Highest cost

O(N) connections/ports 

per node

O(N2) links

-- Not scalable

-- How to lay out on chip?
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Crossbar

◼ Every node connected to every other with a shared link for 
each destination

◼ Enables concurrent transfers to non-conflicting destinations 

◼ Could be cost-effective for small number of nodes

+ Low latency and high throughput

- Expensive

- Not scalable → O(N2) cost

- Difficult to arbitrate as N increases

Used in core-to-cache-bank

networks in

- IBM POWER5

- Sun Niagara I/II
28
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Another Crossbar Design
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Sun UltraSPARC T2 Core-to-Cache Crossbar

◼ High bandwidth 
interface between 8 
cores and 8 L2 
banks & NCU

◼ 4-stage pipeline: 
req, arbitration, 
selection, 
transmission

◼ 2-deep queue for 
each requestor to 
hold data transfer 
request
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Sun UltraSPARC T2 Core-to-Cache Crossbar

Nawathe+, “Implementation of an 8-Core, 64-Thread, Power-Efficient SPARC Server on a Chip,” JSSC 2008.



Bufferless and Buffered Crossbars
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Can We Get Lower Cost than A Crossbar?

◼ Yet still have low contention compared to a bus?

◼ Idea: Multistage networks
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Multistage Logarithmic Networks

◼ Idea: Indirect networks with multiple layers of switches 
between terminals/nodes

◼ Cost: O(NlogN), Latency: O(logN)

◼ Many variations (Omega, Butterfly, Benes, Banyan, …)

◼ Omega Network:
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Multistage Networks

◼ A multistage network restricts concurrent Tx-Rx pairs vs. a crossbar

◼ But, it is less costly than crossbar, e.g., O(N logN) for Butterfly
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Multistage Networks (Circuit Switched)

◼ Source-destination path completely set up (i.e., switches configured) 
to transmit data before data is transmitted – pre-configure switches

◼ No need for buffering since switching is static once path is set up
36
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Multistage Networks (Packet Switched)

◼ Packets “hop” from router to router, pending availability of 
the next-required switch and buffer
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Circuit vs. Packet Switching
◼ Circuit switching sets up full path before transmission

❑ Establish route then send data

❑ Noone else can use those links while “circuit” is set

+ faster arbitration

+ no buffering

-- setting up and bringing down “path” takes time

-- path cannot be used by multiple flows concurrently

◼ Packet switching performs routing per packet in each router

❑ Route each packet individually (possibly via different paths)

❑ If link is free, any packet can use it

-- potentially slower --- must dynamically switch

-- need handling contention (e.g., via buffering)

+ no setup, bring down time

+ more flexible, does not underutilize links
38



Switching vs. Topology

◼ Circuit/packet switching choice independent of topology

◼ It is a higher-level protocol on how a message gets sent to 
a destination

◼ However, some topologies are more amenable to circuit vs. 
packet switching
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Heterogeneous Interconnects (in Tilera)

◼ Topology: 2D Mesh

◼ Five networks

◼ Four packet switched
❑ Dimension order routing, 

wormhole flow control

❑ TDN: Cache request 
packets

❑ MDN: Response packets

❑ IDN: I/O packets

❑ UDN: Core to core 
messaging

◼ One circuit switched
❑ STN: Low-latency, high-

bandwidth static network

❑ Streaming data
40Wentzlaff et al., “On-Chip Interconnection Architecture of the Tile Processor,” IEEE Micro 2007.



Another Multistage Network: Delta Network

◼ Single path from source to 
destination

◼ Each stage has different 
routers

◼ Proposed to replace costly 
crossbars as processor-memory 
interconnect

◼ Janak H. Patel,“Processor-
Memory Interconnections for 
Multiprocessors,” ISCA 1979.
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Another Multistage Network: Omega Network

◼ Single path from source to 
destination

◼ All stages are the same

◼ Used in NYU 
Ultracomputer

◼ Gottlieb et al. “The NYU 
Ultracomputer - Designing 
an MIMD Shared Memory 
Parallel Computer,” IEEE 
Trans. On Comp., 1983.
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Combining Operations in the Network

◼ Idea: Combine multiple operations on a shared memory 
location

◼ Example: Omega network switches combine fetch-and-add 
operations in NYU Ultracomputer

◼ Fetch-and-add(M, I): return M, replace M with M+I

❑ Common when parallel processors modify a shared variable, 
e.g., obtain a chunk of the array 

◼ Combining reduces synchronization latency
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Butterfly

◼ Equivalent to Omega Network

◼ Indirect

◼ Used in BBN Butterfly 

◼ Conflicts can cause “tree saturation”

❑ Randomization of route selection helps
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Direct

Review: Topologies
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Ring

Each node connected to exactly two other nodes. Nodes form 
a continuous pathway such that packets can reach any 
node.

+ Cheap: O(N) cost

- High latency: O(N)

- Not easy to scale

- Bisection bandwidth remains constant

Used in Intel Haswell, 

Intel Larrabee, IBM Cell, 

many commercial systems today
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Unidirectional Ring

◼ Single directional pathway

◼ Simple topology and implementation

❑ Reasonable performance if N and performance needs 
(bandwidth & latency) still moderately low

❑ O(N) cost

❑ N/2 average hops; latency depends on utilization
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Bidirectional Rings

Multi-directional pathways, or multiple rings

+ Reduces latency

+ Improves scalability

- Slightly more complex injection policy (need to select which 
ring to inject a packet into)
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Rings in Existing Systems

49Source: https://twitter.com/Locuza_/status/1454152714930331652

Intel Alder Lake,

2021

https://twitter.com/Locuza_/status/1454152714930331652


Hierarchical Rings

+ More scalable

+ Lower latency

- More complex
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More on Hierarchical Rings

◼ Rachata Ausavarungnirun, Chris Fallin, Xiangyao Yu, Kevin Chang, Greg Nazario, 
Reetuparna Das, Gabriel Loh, and Onur Mutlu,
"Design and Evaluation of Hierarchical Rings with Deflection Routing"
Proceedings of the 26th International Symposium on Computer Architecture and 
High Performance Computing (SBAC-PAD), Paris, France, October 2014. [Slides 
(pptx) (pdf)] [Source Code]

◼ Describes the design and implementation of a mostly-bufferless hierarchical ring
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https://people.inf.ethz.ch/omutlu/pub/hierarchical-rings-with-deflection_sbacpad14.pdf
http://sbac.lip6.fr/2014/
https://people.inf.ethz.ch/omutlu/pub/hierarchical-rings-with-deflection_rachata_sbacpad14-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/hierarchical-rings-with-deflection_rachata_sbacpad14-talk.pdf
https://github.com/CMU-SAFARI/NOCulator


More on Hierarchical Rings (II)

◼ Rachata Ausavarungnirun, Chris Fallin, Xiangyao Yu, Kevin Chang, Greg 
Nazario, Reetuparna Das, Gabriel Loh, and Onur Mutlu,
"A Case for Hierarchical Rings with Deflection Routing: An 
Energy-Efficient On-Chip Communication Substrate"
Parallel Computing (PARCO), 2016. arXiv.org version, February 
2016.
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http://dx.doi.org/10.1016/j.parco.2016.01.009
http://arxiv.org/pdf/1602.06005.pdf


Hierarchical Rings in Real Systems

53

https://ieeexplore.ieee.org/abstract/document/9444893

https://ieeexplore.ieee.org/document/9773184/

https://ieeexplore.ieee.org/abstract/document/9444893
https://ieeexplore.ieee.org/document/9773184/


◼ Each node connected to 4 neighbors (N, E, S, W)

◼ O(N) cost

◼ Average latency: O(sqrt(N))

◼ Easy to layout on-chip: regular and equal-length links

◼ Path diversity: many ways to get from one node to another

◼ Used in Tilera 100-core

◼ And many on-chip network

prototypes

Mesh
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Torus

◼ Mesh is not symmetric on edges: performance very 
sensitive to placement of task on edge vs. middle

◼ Torus avoids this problem

+ Higher path diversity (and bisection bandwidth) than mesh

- Higher cost

- Harder to lay out on-chip

- Unequal link lengths
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Torus, continued

◼ Weave nodes to make inter-node latencies ~constant
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Planar, hierarchical topology

Latency: O(logN)

Good for local traffic

+ Cheap: O(N) cost

+ Easy to Layout

- Root can become a bottleneck

Fat trees avoid this problem (CM-5)

Trees

57
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CM-5 Fat Tree

◼ Fat tree based on 4x2 switches, packet switched

◼ Randomized routing on the way up

◼ Combining, multicast, reduction operators supported in 
hardware

❑ Thinking Machines Corp., “The Connection Machine CM-5 
Technical Summary,” Jan. 1992.
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CM-5 Fat Tree

59
Hillis & Tucker, “The CM-5 Connection Machine: A Scalable Supercomputer,” CACM 1993.



Hypercube

◼ “N-dimensional cube” or “N-cube”

◼ Latency: O(logN)

◼ Radix: O(logN)

◼ #links: O(NlogN)

+ Low latency

- Hard to lay out in 2D/3D
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Caltech Cosmic Cube

◼ 64-node message passing 
machine

◼ Seitz, “The Cosmic Cube,”
CACM 1985.
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Caltech Cosmic Cube Motivation

62Seitz, “The Cosmic Cube,” CACM 1985.



Routing
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Routing Mechanism

◼ Arithmetic

❑ Simple arithmetic to determine route in regular topologies

❑ Dimension order routing in meshes/tori

◼ Source Based
❑ Source specifies output port for each switch in route

+ Simple switches 

◼ no control state: strip output port off header

- Large header

◼ Table Lookup Based
❑ Index into table for output port

+ Small header

- More complex switches
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Routing Algorithm

◼ Three Types

❑ Deterministic: always chooses the same path for a 
communicating source-destination pair

❑ Oblivious: chooses different paths, without considering 
network state

❑ Adaptive: can choose different paths, adapting to the state of 
the network

◼ How to adapt

❑ Local/global feedback

❑ Minimal or non-minimal paths

65



Deterministic Routing

◼ All packets between the same (source, dest) pair take the 
same path

◼ Dimension-order routing

❑ First traverse dimension X, then traverse dimension Y

❑ E.g., XY routing (used in Cray T3D, and many on-chip 
networks)

+ Simple

+ Deadlock freedom (no cycles in resource allocation)

- Could lead to high contention

- Does not exploit path diversity
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Deadlock

◼ No forward progress

◼ Caused by circular dependencies on resources

◼ Each packet waits for a buffer occupied by another packet 
downstream
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Handling Deadlock

◼ Avoid cycles in routing

❑ Dimension order routing

◼ Cannot build a circular dependency

❑ Restrict the “turns” each packet can take

◼ Avoid deadlock by adding more buffering (escape paths)

◼ Detect and break deadlock

❑ Preemption of buffers

68



Turn Model to Avoid Deadlock

◼ Idea

❑ Analyze directions in which packets can turn in the network

❑ Determine the cycles that such turns can form

❑ Prohibit just enough turns to break possible cycles

◼ Glass and Ni, “The Turn Model for Adaptive Routing,” ISCA 
1992.
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Oblivious Routing: Valiant’s Algorithm

◼ Goal: Balance network load 

◼ Idea: Randomly choose an intermediate destination, route 
to it first, then route from there to destination

❑ Between source-intermediate and intermediate-dest, can use 
dimension order routing

+ Randomizes/balances network load

- Non minimal (packet latency can increase)

◼ Optimizations:

❑ Do this on high load

❑ Restrict the intermediate node to be close (in the same quadrant)

70Valiant, “A Scheme for Fast Parallel Communication,” SIAM Journal of Computing, 1982.



More on Valiant’s Algorithm

◼ Valiant and Brebner, “Universal Schemes for Parallel 
Communication,” STOC 1981.

◼ Valiant, “A Scheme for Fast Parallel Communication,” SIAM 
Journal of Computing, 1982.
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Adaptive Routing

◼ Minimal adaptive

❑ Router uses network state (e.g., downstream buffer 
occupancy) to pick which “productive” output port to send a 
packet to

❑ Productive output port: port that gets the packet closer to its 
destination

+ Aware of local congestion

- Minimality restricts achievable link utilization (load balance)

◼ Non-minimal (fully) adaptive

❑ “Misroute” packets to non-productive output ports based on 
network state

+ Can achieve better network utilization and load balance

- Need to guarantee livelock freedom
72



More on Adaptive Routing

◼ Can avoid faulty links/routers

◼ Idea: Route around faults

+ Deterministic routing cannot handle faulty components

- Need to change the routing table to disable faulty routes

- Assuming the faulty link/router is detected

One relatively recent example:

Fattah et al., "A Low-Overhead, Fully-Distributed, 
Guaranteed-Delivery Routing Algorithm for Faulty 
Network-on-Chips", NOCS 2015.

73

https://users.ece.cmu.edu/~omutlu/pub/maze-routing_nocs15.pdf


Fault Tolerance & Guaranteed Delivery

◼ Mohammad Fattah, Antti Airola, Rachata Ausavarungnirun, Nima Mirzaei, Pasi Liljeberg, 
Juha Plosila, Siamak Mohammadi, Tapio Pahikkala, Onur Mutlu, and Hannu Tenhunen,
"A Low-Overhead, Fully-Distributed, Guaranteed-Delivery Routing Algorithm 
for Faulty Network-on-Chips"
Proceedings of the 9th ACM/IEEE International Symposium on Networks on 
Chip (NOCS), Vancouver, BC, Canada, September 2015.
[Slides (pptx) (pdf)]
[Source Code]
One of the three papers nominated for the Best Paper Award by the Program 
Committee.
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https://people.inf.ethz.ch/omutlu/pub/maze-routing_nocs15.pdf
http://nocs2015.eecs.wsu.edu/
https://people.inf.ethz.ch/omutlu/pub/maze-routing_fattah_nocs15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/maze-routing_fattah_nocs15-talk.pdf
https://github.com/CMU-SAFARI/NOCulator/tree/Maze-routing


Buffering and Flow Control
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Recall: Circuit vs. Packet Switching
◼ Circuit switching sets up full path before transmission

❑ Establish route then send data

❑ Noone else can use those links while “circuit” is set

+ faster arbitration

+ no buffering

-- setting up and bringing down “path” takes time

-- path cannot be used by multiple flows concurrently

◼ Packet switching performs routing per packet in each router

❑ Route each packet individually (possibly via different paths)

❑ If link is free, any packet can use it

-- potentially slower --- must dynamically switch

-- need handling contention (e.g., via buffering)

+ no setup, bring down time

+ more flexible, does not underutilize links
76



Recall: Heterogeneous Interconnects (in Tilera)

◼ Topology: 2D Mesh

◼ Five networks

◼ Four packet switched
❑ Dimension order routing, 

wormhole flow control

❑ TDN: Cache request 
packets

❑ MDN: Response packets

❑ IDN: I/O packets

❑ UDN: Core to core 
messaging

◼ One circuit switched
❑ STN: Low-latency, high-

bandwidth static network

❑ Streaming data
77Wentzlaff et al., “On-Chip Interconnection Architecture of the Tile Processor,” IEEE Micro 2007.



Packet Switched Networks: Packet Format

◼ Header

❑ routing and control information

◼ Payload

❑ carries data (non HW specific information)

❑ can be further divided (framing, protocol stacks…)

◼ Error Code

❑ generally at tail of packet so it can be generated on the way 
out

78
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Handling Contention

◼ Two packets trying to use the same link at the same time

◼ What do you do?

❑ Buffer one

❑ Drop one

❑ Misroute one (deflection)

◼ Tradeoffs?
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Flow Control Methods

◼ Circuit switching

◼ Bufferless (Packet/flit based)

◼ Store and forward (Packet based)

◼ Virtual cut through (Packet based)

◼ Wormhole (Flit based)
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Circuit Switching Revisited

◼ Resource allocation granularity is large

◼ Idea: Pre-allocate resources across multiple switches for a 
given “flow”

◼ Need to send a probe to set up the path for pre-allocation

+ No need for buffering

+ No contention (flow’s performance is isolated)

+ Can handle arbitrary message sizes

- Lower link utilization: two flows cannot use the same link

- Handshake overhead to set up a “circuit”
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Destination

Bufferless Deflection Routing

◼ Key idea: Packets are never buffered in the network. When 
two packets contend for the same link, one is deflected.1

82
1Baran, “On Distributed Communication Networks.” RAND Tech. Report., 1962 / IEEE Trans.Comm., 1964.

New traffic can be injected
whenever there is a free
output link.



Bufferless Deflection Routing

◼ Input buffers are eliminated: packets are buffered in
pipeline latches and on network links
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Moscibroda and Mutlu, “A Case for Bufferless Routing in On-Chip Networks,” ISCA 2009.



Issues In Bufferless Deflection Routing

◼ Livelock

◼ Resulting Router Complexity

◼ Performance & Congestion at High Loads

◼ Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, 
Rachata Ausavarungnirun, and Onur Mutlu,
"Bufferless and Minimally-Buffered Deflection 
Routing"
Invited Book Chapter in Routing Algorithms in Networks-on-
Chip, pp. 241-275, Springer, 2014.

84

https://people.inf.ethz.ch/omutlu/pub/bufferless-and-minimally-buffered-deflection-routing_springer14.pdf
http://www.springer.com/engineering/circuits+&+systems/book/978-1-4614-8273-4


Bufferless Deflection Routing in NoCs

◼ Thomas Moscibroda and Onur Mutlu,
"A Case for Bufferless Routing in On-Chip Networks"
Proceedings of the 36th International Symposium on 
Computer Architecture (ISCA), pages 196-207, Austin, TX, 
June 2009. Slides (pptx)
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https://people.inf.ethz.ch/omutlu/pub/bless_isca09.pdf
http://isca09.cs.columbia.edu/
https://people.inf.ethz.ch/omutlu/pub/moscibroda_isca09_talk.pptx


Low-Complexity Bufferless Routing

◼ Chris Fallin, Chris Craik, and Onur Mutlu,
"CHIPPER: A Low-Complexity Bufferless Deflection 
Router"
Proceedings of the 17th International Symposium on High-
Performance Computer Architecture (HPCA), pages 144-155, 
San Antonio, TX, February 2011. Slides (pptx)
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https://people.inf.ethz.ch/omutlu/pub/chipper_hpca11.pdf
http://hpca17.ac.upc.edu/web/
https://people.inf.ethz.ch/omutlu/pub/fallin_hpca11_talk.pptx


Minimally-Buffered Deflection Routing

◼ Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata
Ausavarungnirun, and Onur Mutlu,
"MinBD: Minimally-Buffered Deflection Routing for Energy-Efficient 
Interconnect"
Proceedings of the 6th ACM/IEEE International Symposium on Networks on 
Chip (NOCS), Lyngby, Denmark, May 2012. Slides (pptx) (pdf)
One of the five papers nominated for the Best Paper Award by the 
Program Committee.
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https://people.inf.ethz.ch/omutlu/pub/minimally-buffered-deflection-router_nocs12.pdf
http://www2.imm.dtu.dk/projects/nocs_2012/nocs/Home.html
https://people.inf.ethz.ch/omutlu/pub/fallin_nocs12_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/fallin_nocs12_talk.pdf


“Bufferless” Hierarchical Rings

◼ Rachata Ausavarungnirun, Chris Fallin, Xiangyao Yu, Kevin Chang, Greg Nazario, 
Reetuparna Das, Gabriel Loh, and Onur Mutlu,
"Design and Evaluation of Hierarchical Rings with Deflection Routing"
Proceedings of the 26th International Symposium on Computer Architecture and 
High Performance Computing (SBAC-PAD), Paris, France, October 2014. [Slides 
(pptx) (pdf)] [Source Code]

◼ Describes the design and implementation of a mostly-bufferless hierarchical ring
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https://people.inf.ethz.ch/omutlu/pub/hierarchical-rings-with-deflection_sbacpad14.pdf
http://sbac.lip6.fr/2014/
https://people.inf.ethz.ch/omutlu/pub/hierarchical-rings-with-deflection_rachata_sbacpad14-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/hierarchical-rings-with-deflection_rachata_sbacpad14-talk.pdf
https://github.com/CMU-SAFARI/NOCulator


“Bufferless” Hierarchical Rings (II)

◼ Rachata Ausavarungnirun, Chris Fallin, Xiangyao Yu, Kevin Chang, 
Greg Nazario, Reetuparna Das, Gabriel Loh, and Onur Mutlu,
"A Case for Hierarchical Rings with Deflection Routing: An 
Energy-Efficient On-Chip Communication Substrate"
Parallel Computing (PARCO), 2016.

❑ arXiv.org version, February 2016.
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http://dx.doi.org/10.1016/j.parco.2016.01.009
http://arxiv.org/pdf/1602.06005.pdf


A Review of Bufferless Interconnects

◼ Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata
Ausavarungnirun, and Onur Mutlu,
"Bufferless and Minimally-Buffered Deflection Routing"
Invited Book Chapter in Routing Algorithms in Networks-on-Chip, pp. 
241-275, Springer, 2014.
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https://people.inf.ethz.ch/omutlu/pub/bufferless-and-minimally-buffered-deflection-routing_springer14.pdf
http://www.springer.com/engineering/circuits+&+systems/book/978-1-4614-8273-4


Summary of Eight Years of Research

91https://arxiv.org/pdf/2112.02516.pdf

https://arxiv.org/pdf/2112.02516.pdf


Bufferless Interconnects in Real Systems
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https://ieeexplore.ieee.org/abstract/document/9444893

https://ieeexplore.ieee.org/document/9773184/

https://ieeexplore.ieee.org/abstract/document/9444893
https://ieeexplore.ieee.org/document/9773184/


Bufferless Interconnects in Real Systems
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https://ieeexplore.ieee.org/document/9773184/

https://ieeexplore.ieee.org/document/9773184/


Store and Forward Flow Control

◼ Packet-based flow control

◼ Store and Forward

❑ Packet copied entirely into network router before moving to 
the next node

❑ Flow control unit is the entire packet

◼ Leads to high per-packet latency

◼ Requires buffering for entire packet in each node

94
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Cut-Through Flow Control

◼ Another form of packet-based flow control

◼ Start forwarding as soon as header is received and resources 
(buffer, channel, etc) allocated

❑ Large reduction in latency

◼ Still allocates buffers and channel bandwidth for full packets

◼ What if packets are large?

95
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Cut-Through Flow Control

◼ What to do if output port is blocked?

◼ Lets the tail continue when the head is blocked, absorbing 
the whole message into a single switch. 

❑ Requires a buffer large enough to hold the largest packet.

◼ Degenerates to store-and-forward with high contention

◼ Can we do better?

96



Wormhole Flow Control

◼ Packets broken into (potentially) 
smaller flits (buffer/bw allocation unit)

◼ Flits are sent across the fabric in a 
wormhole fashion

❑ Body follows head, tail follows body

❑ Pipelined

❑ If head blocked, rest of packet stops

❑ Routing (src/dest) information only in 
head

◼ How does body/tail know where to go?

❑ Follow the head (need state in router)

◼ Latency almost independent of distance 
for long messages
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Wormhole Flow Control

◼ Advantages over “store and forward” flow control

+ Lower latency

+ More efficient buffer utilization

◼ Limitations

- Suffers from head of line blocking

- If head flit cannot move due to contention, another worm 
cannot proceed even though links may be idle 

12
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Head of Line Blocking

◼ A worm can be before another in the router input buffer

◼ Due to FIFO nature, the second worm cannot be scheduled 
even though it may need to access another output port 
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Head of Line Blocking

100

Blocked by other 
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Virtual Channel Flow Control

◼ Idea: Multiplex multiple channels over one physical channel

◼ Divide up the input buffer into multiple buffers sharing a 
single physical channel

◼ Dally, “Virtual Channel Flow Control,” ISCA 1990.
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Virtual Channel Flow Control

◼ Idea: Multiplex multiple channels over one physical channel

◼ Divide up the input buffer into multiple buffers sharing a 
single physical channel

◼ Dally, “Virtual Channel Flow Control,” ISCA 1990.
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Virtual Channel Flow Control

103

Blocked by other 
packets

Buffer full: blue 
cannot proceed



A Modern Virtual Channel Based Router
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Other Uses of Virtual Channels

◼ Deadlock avoidance

❑ Enforcing switching to a different set of virtual channels on 
some “turns” can break the cyclic dependency of resources

◼ Enforce order on VCs

❑ Escape VCs: Have at least one VC that uses deadlock-free 
routing. Ensure each flit has fair access to that VC. 

❑ Protocol level deadlock: Ensure address and data packets use 
different VCs → prevent cycles due to intermixing of different 

packet classes

◼ Prioritization of traffic classes

❑ Some virtual channels can have higher priority than others
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Review: Flow Control
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Review: Flow Control

107

Store and Forward
S

D

Cut Through / Wormhole
S

D

Shrink Buffers 

Reduce latency

Any other 

issues? 

Head-of-Line

Blocking

Use Virtual

Channels

Blocked by other 
packets

Buffer full: blue 
cannot proceed



Communicating Buffer Availability

◼ Credit-based flow control

❑ Upstream knows how many buffers are downstream

❑ Downstream passes back credits to upstream

❑ Significant upstream signaling (esp. for small flits)

◼ On/Off (XON/XOFF) flow control

❑ Downstream has on/off signal to upstream

◼ ACK/NACK flow control

❑ Upstream optimistically sends downstream

❑ Buffer cannot be deallocated until ACK/NACK received

❑ Inefficiently utilizes buffer space
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Credit-based Flow Control

◼ Round-trip credit delay: 

❑ Time between when buffer empties and when next flit can be 
processed from that buffer entry

◼ Significant throughput degradation if there are few buffers

◼ Important to size buffers to tolerate credit turn-around
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On/Off (XON/XOFF) Flow Control

◼ Downstream has on/off signal to upstream
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We Covered Until Here 

in Lecture
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Interconnection Network

Performance
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Interconnection Network Performance

113

Latency

Injection rate into the network

(or amount of load on the network)

Min latency 
given by 
topology

Min latency 
given by 
routing 

algorithm

Zero load latency
(topology+routing+ 

flow control)

Throughput 
given by 
topology

Throughput 
given by 
routing

Throughput 
given by flow 

control

Saturation throughput: Injection rate at which latency asymptotes



Ideal Latency

◼ Ideal latency

❑ Solely due to wire delay between source and destination

❑ D = Manhattan distance

◼ The distance between two points measured along axes at right 
angles.

❑ v = propagation velocity

❑ L = packet size

❑ b = channel bandwidth
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Actual Latency

◼ Dedicated wiring impractical

❑ Long wires segmented with insertion of routers

❑ D = Manhattan distance

❑ v = propagation velocity

❑ L = packet size

❑ b = channel bandwidth

❑ H = hops

❑ Trouter = router latency

❑ Tc = latency due to contention
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Load-Latency Curve
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Load-Latency Curve Examples

117Grot+, “Express Cube Topologies for On-Chip Interconnects,” HPCA 2009.



Examined Topologies in Prior Slide

118Grot+, “Express Cube Topologies for On-Chip Interconnects,” HPCA 2009.



Multi-Drop Express Channels (MECS)

◼ Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu,
"Express Cube Topologies for On-Chip Interconnects"
Proceedings of the 15th International Symposium on High-Performance 
Computer Architecture (HPCA), pages 163-174, Raleigh, NC, February 
2009. Slides (ppt)
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https://people.inf.ethz.ch/omutlu/pub/mecs_hpca09.pdf
http://www.comparch.ncsu.edu/hpca/
https://people.inf.ethz.ch/omutlu/pub/grot_hpca09_talk.ppt


Kilo-NoC Building on MECS

◼ Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu,
"Kilo-NOC: A Heterogeneous Network-on-Chip Architecture for 
Scalability and Service Guarantees"
Proceedings of the 38th International Symposium on Computer 
Architecture (ISCA), San Jose, CA, June 2011. Slides (pptx)
One of the 12 computer architecture papers of 2011 selected 
as Top Picks by IEEE Micro.
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https://people.inf.ethz.ch/omutlu/pub/kilonoc_isca11.pdf
http://isca2011.umaine.edu/
https://people.inf.ethz.ch/omutlu/pub/grot_isca11_talk.pptx


Kilo-NoC Building on MECS

◼ Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu,
"A QoS-Enabled On-Die Interconnect Fabric for Kilo-Node Chips"
IEEE Micro, Special Issue: Micro's Top Picks from 2011 Computer 
Architecture Conferences (MICRO TOP PICKS), Vol. 32, No. 3, 
May/June 2012.

121

https://people.inf.ethz.ch/omutlu/pub/kilonoc-QoS_ieee_micro12.pdf
http://www.computer.org/micro/


Network Performance Metrics

◼ Packet latency (avg/max)

◼ Round trip latency (avg/max)

◼ Saturation throughput

◼ Application-level performance: execution time

◼ System performance: job throughput

❑ Affected by interference among threads/applications
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