
Computer Architecture

Lecture 20: Interconnects

Prof. Onur Mutlu

ETH Zürich

Fall 2022

2 December 2022

Summary of Last Few Lectures

◼ Multiprocessing Fundamentals

◼ Memory Ordering (Consistency)

◼ Cache Coherence

2

Recall: Two Cache Coherence Methods

❑ How do we ensure that the proper caches are updated?

❑ Snoopy Bus [Goodman ISCA 1983, Papamarcos+ ISCA 1984]

◼ Bus-based, single point of serialization for all memory requests

◼ Processors observe other processors’ actions

❑ E.g.: P1 makes “read-exclusive” request for A on bus, P0 sees this
and invalidates its own copy of A

❑ Directory [Censier and Feautrier, IEEE ToC 1978]

◼ Single point of serialization per block, distributed among nodes

◼ Processors make explicit requests for blocks

◼ Directory tracks which caches have each block

◼ Directory coordinates invalidation and updates

❑ E.g.: P1 asks directory for exclusive copy, directory asks P0 to
invalidate, waits for ACK, then responds to P1

3

Recall: Snoopy Cache vs. Directory Coherence

◼ Snoopy Cache

+ Miss latency (critical path) is short: request → bus transaction to mem.

+ Global serialization is easy: bus provides this already (arbitration)

+ Simple: can adapt bus-based uniprocessors easily

- Relies on broadcast messages to be seen by all caches (in same order):

→ single point of serialization (bus): not scalable

→ need a virtual bus (or a totally-ordered interconnect)

◼ Directory

- Adds indirection to miss latency (critical path): request → dir. → mem.

- Requires extra storage space to track sharer sets

◼ Can be approximate (false positives are OK for correctness)

- Protocols and race conditions are more complex (for high-performance)

+ Does not require broadcast to all caches

+ Exactly as scalable as interconnect and directory storage

(much more scalable than bus)
4

Interconnection Networks

5

Readings

◼ Required

❑ Moscibroda & Mutlu, “A Case for Bufferless Routing in On-Chip
Networks,” ISCA 2009.

❑ Das et al., “Aergia: Exploiting Packet Latency Slack in On-Chip
Networks,” ISCA 2010.

◼ Recommended

❑ Das et al., “Application-Aware Prioritization Mechanisms for On-Chip
Networks,” MICRO 2009.

❑ Dally & Towles, “Route Packets, Not Wires: On-Chip Interconnection
Networks,” DAC 2001.

❑ Janak H. Patel,“Processor-Memory Interconnections for
Multiprocessors,” ISCA 1979.

❑ Gottlieb et al. “The NYU Ultracomputer - Designing an MIMD Shared
Memory Parallel Computer,” IEEE Trans. On Comp., 1983.

6

Interconnection Network Basics

7

Where Is Interconnect Used?

◼ To connect & communicate between components

◼ Many examples

❑ Processors and processors

❑ Processors and memories (banks)

❑ Processors and caches (banks)

❑ Caches and caches

❑ I/O devices

8

Interconnection network

Interconnects Enable Communication

9Seitz, “The Cosmic Cube,” CACM 1985.

Why Is It Important?

◼ Affects the scalability and cost of the system

❑ How large of a system can you build?

❑ How easily can you add more processors?

◼ Affects performance and energy efficiency

❑ How fast can processors, caches, and memory communicate?

❑ How long are the latencies to memory?

❑ How much energy is spent on communication?

◼ Affects reliability and security

❑ Can you guarantee messages are delivered or your protocol
works?

10

Many Parameters & Goals in a Network

11Dally & Towles, “Principles and Practices of Interconnection Networks,” 2004.

A Recommended Book

12Dally & Towles, “Principles and Practices of Interconnection Networks,” 2004.

Another Example: Clock Distribution Network

◼ Problem: Clock signal arrives non-uniformly late to different
parts of a chip, causing potential timing issues

◼ Solution: Design the interconnect to equalize the arrival time
of the clock signal to all parts of a chip

◼ This specialized interconnect communicates the “clock” signal

Image Source: Tawfik & Kursun, “Clock Distribution Networks with Gradual Signal Transition Time Relaxation for Reduced Power Consumption,” JCSS 2008.

Recall: Clock Skew: Summary

◼ Clock Skew effectively increases both tsetup and thold

❑ Increased sequencing overhead

❑ i.e., less useful work done per cycle

◼ Designers must keep clock skew to a minimum

❑ Requires intelligent “clock network” across a chip

❑ Goal: clock arrives at all locations at roughly the same time

14

Source: Abdelhadi, Ameer, et al. "Timing-driven variation-aware nonuniform clock mesh synthesis." GLSVLSI’10.

Recall: Clock Skew Example

◼ Example of the Alpha 21264 clock skew spatial distribution

15P. E. Gronowski+, "High-performance Microprocessor Design," JSSC’98.

Recall: Timing & Verification

16https://www.youtube.com/watch?v=4AcwBBwiNlQ&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LlN&index=8

https://www.youtube.com/watch?v=4AcwBBwiNlQ&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LlN&index=8

Interconnection Network Basics

◼ Topology

❑ Specifies the way switches are wired

❑ Affects routing, reliability, throughput, latency, building ease

◼ Routing (algorithm)

❑ How does a message get from source to destination

❑ Static or adaptive

◼ Buffering and Flow Control

❑ What do we store within the routers & links?

◼ Entire packets, parts of packets, etc?

❑ How do we throttle during oversubscription?

❑ Tightly coupled with routing strategy

17

Terminology

◼ Network interface

❑ Module that connects endpoints (e.g. processors) to network

❑ Decouples computation/communication

◼ Link

❑ Bundle of wires that carry a signal

◼ Switch/router

❑ Connects fixed number of input channels to fixed number of
output channels

◼ Channel

❑ A single logical connection between routers/switches

18

More Terminology

◼ Node

❑ A router/switch within a network

◼ Message

❑ Unit of transfer for network’s clients (processors, memory)

◼ Packet

❑ Unit of transfer for network

◼ Flit

❑ Flow control digit

❑ Unit of flow control within network

19

Some More Terminology
◼ Direct or Indirect Networks

❑ Endpoints sit “inside” (direct) or “outside” (indirect) the network

❑ E.g. mesh is direct; every node is both endpoint and switch

20

1

0

3

2

5

4

7

6

9

8

11

10

13

12

15

14

1

0

3

2

5

4

7

6

9

8

11

10

13

12

15

14

Router (switch), Radix of 2 (2 inputs, 2 outputs)

Abbreviation: Radix-ary

These routers are 2-ary

Indirect Direct

Interconnection Network

Topology

21

Properties of a Topology/Network

◼ Regular or Irregular

❑ Regular if topology is a regular graph (e.g., ring, mesh).

◼ Routing Distance

❑ number of links/hops along a route

◼ Diameter

❑ maximum routing distance within the network

◼ Average Distance

❑ Average number of hops across all valid routes

22

Properties of a Topology/Network

◼ Bisection Bandwidth

❑ Often used to describe network performance

❑ Cut network in half and sum bandwidth of links severed

◼ (Min # channels spanning two halves) * (BW of each channel)

❑ Meaningful only for recursive topologies

❑ Can be misleading, because does not account for switch and
routing efficiency (and certainly not execution time)

◼ Blocking vs. Non-Blocking

❑ If connecting any permutation of sources & destinations is
possible, network is non-blocking; otherwise network is blocking.

❑ Rearrangeable non-blocking: Same as non-blocking but might
require rearranging connections when switching from one
permutation to another.

23

Topology

◼ Bus (simplest)

◼ Point-to-point connections (most costly)

◼ Crossbar

◼ Ring

◼ Tree

◼ Omega

◼ Hypercube

◼ Mesh

◼ Torus

◼ Butterfly

◼ …

24

Metrics to Evaluate Interconnect Topology

◼ Cost

◼ Latency (in hops, in nanoseconds)

◼ Contention

◼ Many others exist you should think about

❑ Energy

❑ Bandwidth

❑ Overall system performance

25

Bus

All nodes connected to a single link

+ Simple + Cost effective for a small number of nodes

+ Easy to implement coherence (snooping and serialization)

- Not scalable to large number of nodes (limited bandwidth,
electrical loading → reduced frequency)

- High contention → fast saturation

26

MemoryMemoryMemoryMemory

Proc

cache

Proc

cache

Proc

cache

Proc

cache

0 1 2 3 4 5 6 7

Point-to-Point

Every node connected to every other

with direct/isolated links

+ Lowest contention

+ Potentially lowest latency

+ Ideal, if cost is no issue

-- Highest cost

O(N) connections/ports

per node

O(N2) links

-- Not scalable

-- How to lay out on chip?
27

0

1

2

3

4

5

6

7

Crossbar

◼ Every node connected to every other with a shared link for
each destination

◼ Enables concurrent transfers to non-conflicting destinations

◼ Could be cost-effective for small number of nodes

+ Low latency and high throughput

- Expensive

- Not scalable → O(N2) cost

- Difficult to arbitrate as N increases

Used in core-to-cache-bank

networks in

- IBM POWER5

- Sun Niagara I/II
28

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Another Crossbar Design

29

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Sun UltraSPARC T2 Core-to-Cache Crossbar

◼ High bandwidth
interface between 8
cores and 8 L2
banks & NCU

◼ 4-stage pipeline:
req, arbitration,
selection,
transmission

◼ 2-deep queue for
each requestor to
hold data transfer
request

30

Sun UltraSPARC T2 Core-to-Cache Crossbar

Nawathe+, “Implementation of an 8-Core, 64-Thread, Power-Efficient SPARC Server on a Chip,” JSSC 2008.

Bufferless and Buffered Crossbars

32

Output
Arbiter

Output
Arbiter

Output
Arbiter

Output
Arbiter

Flow
Control

Flow
Control

Flow
Control

Flow
Control

N
I

N
I

N
I

N
I

Buffered

Crossbar

0

1

2

3

N
I

N
I

N
I

N
I

Bufferless

Crossbar

0

1

2

3

+ Simpler
arbitration/
scheduling

+ Efficient
support for
variable-size
packets

- Requires
N2 buffers

Can We Get Lower Cost than A Crossbar?

◼ Yet still have low contention compared to a bus?

◼ Idea: Multistage networks

33

Multistage Logarithmic Networks

◼ Idea: Indirect networks with multiple layers of switches
between terminals/nodes

◼ Cost: O(NlogN), Latency: O(logN)

◼ Many variations (Omega, Butterfly, Benes, Banyan, …)

◼ Omega Network:

34

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

Omega Net w or k

conflict

Multistage Networks

◼ A multistage network restricts concurrent Tx-Rx pairs vs. a crossbar

◼ But, it is less costly than crossbar, e.g., O(N logN) for Butterfly

35

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

2-by-2 crossbar

Multistage Networks (Circuit Switched)

◼ Source-destination path completely set up (i.e., switches configured)
to transmit data before data is transmitted – pre-configure switches

◼ No need for buffering since switching is static once path is set up
36

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

2-by-2 crossbar

Multistage Networks (Packet Switched)

◼ Packets “hop” from router to router, pending availability of
the next-required switch and buffer

37

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

2-by-2 router

Circuit vs. Packet Switching
◼ Circuit switching sets up full path before transmission

❑ Establish route then send data

❑ Noone else can use those links while “circuit” is set

+ faster arbitration

+ no buffering

-- setting up and bringing down “path” takes time

-- path cannot be used by multiple flows concurrently

◼ Packet switching performs routing per packet in each router

❑ Route each packet individually (possibly via different paths)

❑ If link is free, any packet can use it

-- potentially slower --- must dynamically switch

-- need handling contention (e.g., via buffering)

+ no setup, bring down time

+ more flexible, does not underutilize links
38

Switching vs. Topology

◼ Circuit/packet switching choice independent of topology

◼ It is a higher-level protocol on how a message gets sent to
a destination

◼ However, some topologies are more amenable to circuit vs.
packet switching

39

Heterogeneous Interconnects (in Tilera)

◼ Topology: 2D Mesh

◼ Five networks

◼ Four packet switched
❑ Dimension order routing,

wormhole flow control

❑ TDN: Cache request
packets

❑ MDN: Response packets

❑ IDN: I/O packets

❑ UDN: Core to core
messaging

◼ One circuit switched
❑ STN: Low-latency, high-

bandwidth static network

❑ Streaming data
40Wentzlaff et al., “On-Chip Interconnection Architecture of the Tile Processor,” IEEE Micro 2007.

Another Multistage Network: Delta Network

◼ Single path from source to
destination

◼ Each stage has different
routers

◼ Proposed to replace costly
crossbars as processor-memory
interconnect

◼ Janak H. Patel,“Processor-
Memory Interconnections for
Multiprocessors,” ISCA 1979.

41

8x8 Delta network

Another Multistage Network: Omega Network

◼ Single path from source to
destination

◼ All stages are the same

◼ Used in NYU
Ultracomputer

◼ Gottlieb et al. “The NYU
Ultracomputer - Designing
an MIMD Shared Memory
Parallel Computer,” IEEE
Trans. On Comp., 1983.

42

Combining Operations in the Network

◼ Idea: Combine multiple operations on a shared memory
location

◼ Example: Omega network switches combine fetch-and-add
operations in NYU Ultracomputer

◼ Fetch-and-add(M, I): return M, replace M with M+I

❑ Common when parallel processors modify a shared variable,
e.g., obtain a chunk of the array

◼ Combining reduces synchronization latency

43

Butterfly

◼ Equivalent to Omega Network

◼ Indirect

◼ Used in BBN Butterfly

◼ Conflicts can cause “tree saturation”

❑ Randomization of route selection helps

44

1

0

3

2

5

4

7

6

9

8

11

10

13

12

15

14

1

0

3

2

5

4

7

6

9

8

11

10

13

12

15

14

Direct

Review: Topologies

45

Topology Crossbar Mesh

IndirectDirect/Indirect

Blocking/

Non-blocking

2

1

0

3

210 3

1

0

3

2

5

4

7

6

1

0

3

2

5

4

7

6

Non-blocking Blocking Blocking

Multistage Logarith.

Indirect

Cost

Latency

O(N2) O(NlogN) O(N)

O(sqrt(N))O(1) O(logN)

Ring

Each node connected to exactly two other nodes. Nodes form
a continuous pathway such that packets can reach any
node.

+ Cheap: O(N) cost

- High latency: O(N)

- Not easy to scale

- Bisection bandwidth remains constant

Used in Intel Haswell,

Intel Larrabee, IBM Cell,

many commercial systems today

46

M

P

RING

S

M

P

S

M

P

S

Unidirectional Ring

◼ Single directional pathway

◼ Simple topology and implementation

❑ Reasonable performance if N and performance needs
(bandwidth & latency) still moderately low

❑ O(N) cost

❑ N/2 average hops; latency depends on utilization

47

R

0

R

1

R

N-2

R

N-1

2

2x2 router

Bidirectional Rings

Multi-directional pathways, or multiple rings

+ Reduces latency

+ Improves scalability

- Slightly more complex injection policy (need to select which
ring to inject a packet into)

48

Rings in Existing Systems

49Source: https://twitter.com/Locuza_/status/1454152714930331652

Intel Alder Lake,

2021

https://twitter.com/Locuza_/status/1454152714930331652

Hierarchical Rings

+ More scalable

+ Lower latency

- More complex

50

More on Hierarchical Rings

◼ Rachata Ausavarungnirun, Chris Fallin, Xiangyao Yu, Kevin Chang, Greg Nazario,
Reetuparna Das, Gabriel Loh, and Onur Mutlu,
"Design and Evaluation of Hierarchical Rings with Deflection Routing"
Proceedings of the 26th International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD), Paris, France, October 2014. [Slides
(pptx) (pdf)] [Source Code]

◼ Describes the design and implementation of a mostly-bufferless hierarchical ring

51

https://people.inf.ethz.ch/omutlu/pub/hierarchical-rings-with-deflection_sbacpad14.pdf
http://sbac.lip6.fr/2014/
https://people.inf.ethz.ch/omutlu/pub/hierarchical-rings-with-deflection_rachata_sbacpad14-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/hierarchical-rings-with-deflection_rachata_sbacpad14-talk.pdf
https://github.com/CMU-SAFARI/NOCulator

More on Hierarchical Rings (II)

◼ Rachata Ausavarungnirun, Chris Fallin, Xiangyao Yu, Kevin Chang, Greg
Nazario, Reetuparna Das, Gabriel Loh, and Onur Mutlu,
"A Case for Hierarchical Rings with Deflection Routing: An
Energy-Efficient On-Chip Communication Substrate"
Parallel Computing (PARCO), 2016. arXiv.org version, February
2016.

52

http://dx.doi.org/10.1016/j.parco.2016.01.009
http://arxiv.org/pdf/1602.06005.pdf

Hierarchical Rings in Real Systems

53

https://ieeexplore.ieee.org/abstract/document/9444893

https://ieeexplore.ieee.org/document/9773184/

https://ieeexplore.ieee.org/abstract/document/9444893
https://ieeexplore.ieee.org/document/9773184/

◼ Each node connected to 4 neighbors (N, E, S, W)

◼ O(N) cost

◼ Average latency: O(sqrt(N))

◼ Easy to layout on-chip: regular and equal-length links

◼ Path diversity: many ways to get from one node to another

◼ Used in Tilera 100-core

◼ And many on-chip network

prototypes

Mesh

54

Torus

◼ Mesh is not symmetric on edges: performance very
sensitive to placement of task on edge vs. middle

◼ Torus avoids this problem

+ Higher path diversity (and bisection bandwidth) than mesh

- Higher cost

- Harder to lay out on-chip

- Unequal link lengths

55

Torus, continued

◼ Weave nodes to make inter-node latencies ~constant

56

S
M P

S
M P

S
M P

S
M P

S
M P

S
M P

S
M P

S
M P

Planar, hierarchical topology

Latency: O(logN)

Good for local traffic

+ Cheap: O(N) cost

+ Easy to Layout

- Root can become a bottleneck

Fat trees avoid this problem (CM-5)

Trees

57

Fat Tree

CM-5 Fat Tree

◼ Fat tree based on 4x2 switches, packet switched

◼ Randomized routing on the way up

◼ Combining, multicast, reduction operators supported in
hardware

❑ Thinking Machines Corp., “The Connection Machine CM-5
Technical Summary,” Jan. 1992.

58

CM-5 Fat Tree

59
Hillis & Tucker, “The CM-5 Connection Machine: A Scalable Supercomputer,” CACM 1993.

Hypercube

◼ “N-dimensional cube” or “N-cube”

◼ Latency: O(logN)

◼ Radix: O(logN)

◼ #links: O(NlogN)

+ Low latency

- Hard to lay out in 2D/3D

60

00
00

01
01

01
00

00
01

00
11

00
10

01
10

01
11

10
00

11
01

11
00

10
01

10
11

10
10

11
10

11
11

Caltech Cosmic Cube

◼ 64-node message passing
machine

◼ Seitz, “The Cosmic Cube,”
CACM 1985.

61

Caltech Cosmic Cube Motivation

62Seitz, “The Cosmic Cube,” CACM 1985.

Routing

63

Routing Mechanism

◼ Arithmetic

❑ Simple arithmetic to determine route in regular topologies

❑ Dimension order routing in meshes/tori

◼ Source Based
❑ Source specifies output port for each switch in route

+ Simple switches

◼ no control state: strip output port off header

- Large header

◼ Table Lookup Based
❑ Index into table for output port

+ Small header

- More complex switches

64

Routing Algorithm

◼ Three Types

❑ Deterministic: always chooses the same path for a
communicating source-destination pair

❑ Oblivious: chooses different paths, without considering
network state

❑ Adaptive: can choose different paths, adapting to the state of
the network

◼ How to adapt

❑ Local/global feedback

❑ Minimal or non-minimal paths

65

Deterministic Routing

◼ All packets between the same (source, dest) pair take the
same path

◼ Dimension-order routing

❑ First traverse dimension X, then traverse dimension Y

❑ E.g., XY routing (used in Cray T3D, and many on-chip
networks)

+ Simple

+ Deadlock freedom (no cycles in resource allocation)

- Could lead to high contention

- Does not exploit path diversity

66

Deadlock

◼ No forward progress

◼ Caused by circular dependencies on resources

◼ Each packet waits for a buffer occupied by another packet
downstream

67

Handling Deadlock

◼ Avoid cycles in routing

❑ Dimension order routing

◼ Cannot build a circular dependency

❑ Restrict the “turns” each packet can take

◼ Avoid deadlock by adding more buffering (escape paths)

◼ Detect and break deadlock

❑ Preemption of buffers

68

Turn Model to Avoid Deadlock

◼ Idea

❑ Analyze directions in which packets can turn in the network

❑ Determine the cycles that such turns can form

❑ Prohibit just enough turns to break possible cycles

◼ Glass and Ni, “The Turn Model for Adaptive Routing,” ISCA
1992.

69

Oblivious Routing: Valiant’s Algorithm

◼ Goal: Balance network load

◼ Idea: Randomly choose an intermediate destination, route
to it first, then route from there to destination

❑ Between source-intermediate and intermediate-dest, can use
dimension order routing

+ Randomizes/balances network load

- Non minimal (packet latency can increase)

◼ Optimizations:

❑ Do this on high load

❑ Restrict the intermediate node to be close (in the same quadrant)

70Valiant, “A Scheme for Fast Parallel Communication,” SIAM Journal of Computing, 1982.

More on Valiant’s Algorithm

◼ Valiant and Brebner, “Universal Schemes for Parallel
Communication,” STOC 1981.

◼ Valiant, “A Scheme for Fast Parallel Communication,” SIAM
Journal of Computing, 1982.

71

Adaptive Routing

◼ Minimal adaptive

❑ Router uses network state (e.g., downstream buffer
occupancy) to pick which “productive” output port to send a
packet to

❑ Productive output port: port that gets the packet closer to its
destination

+ Aware of local congestion

- Minimality restricts achievable link utilization (load balance)

◼ Non-minimal (fully) adaptive

❑ “Misroute” packets to non-productive output ports based on
network state

+ Can achieve better network utilization and load balance

- Need to guarantee livelock freedom
72

More on Adaptive Routing

◼ Can avoid faulty links/routers

◼ Idea: Route around faults

+ Deterministic routing cannot handle faulty components

- Need to change the routing table to disable faulty routes

- Assuming the faulty link/router is detected

One relatively recent example:

Fattah et al., "A Low-Overhead, Fully-Distributed,
Guaranteed-Delivery Routing Algorithm for Faulty
Network-on-Chips", NOCS 2015.

73

https://users.ece.cmu.edu/~omutlu/pub/maze-routing_nocs15.pdf

Fault Tolerance & Guaranteed Delivery

◼ Mohammad Fattah, Antti Airola, Rachata Ausavarungnirun, Nima Mirzaei, Pasi Liljeberg,
Juha Plosila, Siamak Mohammadi, Tapio Pahikkala, Onur Mutlu, and Hannu Tenhunen,
"A Low-Overhead, Fully-Distributed, Guaranteed-Delivery Routing Algorithm
for Faulty Network-on-Chips"
Proceedings of the 9th ACM/IEEE International Symposium on Networks on
Chip (NOCS), Vancouver, BC, Canada, September 2015.
[Slides (pptx) (pdf)]
[Source Code]
One of the three papers nominated for the Best Paper Award by the Program
Committee.

74

https://people.inf.ethz.ch/omutlu/pub/maze-routing_nocs15.pdf
http://nocs2015.eecs.wsu.edu/
https://people.inf.ethz.ch/omutlu/pub/maze-routing_fattah_nocs15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/maze-routing_fattah_nocs15-talk.pdf
https://github.com/CMU-SAFARI/NOCulator/tree/Maze-routing

Buffering and Flow Control

75

Recall: Circuit vs. Packet Switching
◼ Circuit switching sets up full path before transmission

❑ Establish route then send data

❑ Noone else can use those links while “circuit” is set

+ faster arbitration

+ no buffering

-- setting up and bringing down “path” takes time

-- path cannot be used by multiple flows concurrently

◼ Packet switching performs routing per packet in each router

❑ Route each packet individually (possibly via different paths)

❑ If link is free, any packet can use it

-- potentially slower --- must dynamically switch

-- need handling contention (e.g., via buffering)

+ no setup, bring down time

+ more flexible, does not underutilize links
76

Recall: Heterogeneous Interconnects (in Tilera)

◼ Topology: 2D Mesh

◼ Five networks

◼ Four packet switched
❑ Dimension order routing,

wormhole flow control

❑ TDN: Cache request
packets

❑ MDN: Response packets

❑ IDN: I/O packets

❑ UDN: Core to core
messaging

◼ One circuit switched
❑ STN: Low-latency, high-

bandwidth static network

❑ Streaming data
77Wentzlaff et al., “On-Chip Interconnection Architecture of the Tile Processor,” IEEE Micro 2007.

Packet Switched Networks: Packet Format

◼ Header

❑ routing and control information

◼ Payload

❑ carries data (non HW specific information)

❑ can be further divided (framing, protocol stacks…)

◼ Error Code

❑ generally at tail of packet so it can be generated on the way
out

78

Header Payload Error Code

Handling Contention

◼ Two packets trying to use the same link at the same time

◼ What do you do?

❑ Buffer one

❑ Drop one

❑ Misroute one (deflection)

◼ Tradeoffs?

79

Flow Control Methods

◼ Circuit switching

◼ Bufferless (Packet/flit based)

◼ Store and forward (Packet based)

◼ Virtual cut through (Packet based)

◼ Wormhole (Flit based)

80

Circuit Switching Revisited

◼ Resource allocation granularity is large

◼ Idea: Pre-allocate resources across multiple switches for a
given “flow”

◼ Need to send a probe to set up the path for pre-allocation

+ No need for buffering

+ No contention (flow’s performance is isolated)

+ Can handle arbitrary message sizes

- Lower link utilization: two flows cannot use the same link

- Handshake overhead to set up a “circuit”

81

Destination

Bufferless Deflection Routing

◼ Key idea: Packets are never buffered in the network. When
two packets contend for the same link, one is deflected.1

82
1Baran, “On Distributed Communication Networks.” RAND Tech. Report., 1962 / IEEE Trans.Comm., 1964.

New traffic can be injected
whenever there is a free
output link.

Bufferless Deflection Routing

◼ Input buffers are eliminated: packets are buffered in
pipeline latches and on network links

83

North

South

East

West

Local

North

South

East

West

Local

Deflection Routing Logic

Input Buffers

Moscibroda and Mutlu, “A Case for Bufferless Routing in On-Chip Networks,” ISCA 2009.

Issues In Bufferless Deflection Routing

◼ Livelock

◼ Resulting Router Complexity

◼ Performance & Congestion at High Loads

◼ Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang,
Rachata Ausavarungnirun, and Onur Mutlu,
"Bufferless and Minimally-Buffered Deflection
Routing"
Invited Book Chapter in Routing Algorithms in Networks-on-
Chip, pp. 241-275, Springer, 2014.

84

https://people.inf.ethz.ch/omutlu/pub/bufferless-and-minimally-buffered-deflection-routing_springer14.pdf
http://www.springer.com/engineering/circuits+&+systems/book/978-1-4614-8273-4

Bufferless Deflection Routing in NoCs

◼ Thomas Moscibroda and Onur Mutlu,
"A Case for Bufferless Routing in On-Chip Networks"
Proceedings of the 36th International Symposium on
Computer Architecture (ISCA), pages 196-207, Austin, TX,
June 2009. Slides (pptx)

85

https://people.inf.ethz.ch/omutlu/pub/bless_isca09.pdf
http://isca09.cs.columbia.edu/
https://people.inf.ethz.ch/omutlu/pub/moscibroda_isca09_talk.pptx

Low-Complexity Bufferless Routing

◼ Chris Fallin, Chris Craik, and Onur Mutlu,
"CHIPPER: A Low-Complexity Bufferless Deflection
Router"
Proceedings of the 17th International Symposium on High-
Performance Computer Architecture (HPCA), pages 144-155,
San Antonio, TX, February 2011. Slides (pptx)

86

https://people.inf.ethz.ch/omutlu/pub/chipper_hpca11.pdf
http://hpca17.ac.upc.edu/web/
https://people.inf.ethz.ch/omutlu/pub/fallin_hpca11_talk.pptx

Minimally-Buffered Deflection Routing

◼ Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata
Ausavarungnirun, and Onur Mutlu,
"MinBD: Minimally-Buffered Deflection Routing for Energy-Efficient
Interconnect"
Proceedings of the 6th ACM/IEEE International Symposium on Networks on
Chip (NOCS), Lyngby, Denmark, May 2012. Slides (pptx) (pdf)
One of the five papers nominated for the Best Paper Award by the
Program Committee.

87

https://people.inf.ethz.ch/omutlu/pub/minimally-buffered-deflection-router_nocs12.pdf
http://www2.imm.dtu.dk/projects/nocs_2012/nocs/Home.html
https://people.inf.ethz.ch/omutlu/pub/fallin_nocs12_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/fallin_nocs12_talk.pdf

“Bufferless” Hierarchical Rings

◼ Rachata Ausavarungnirun, Chris Fallin, Xiangyao Yu, Kevin Chang, Greg Nazario,
Reetuparna Das, Gabriel Loh, and Onur Mutlu,
"Design and Evaluation of Hierarchical Rings with Deflection Routing"
Proceedings of the 26th International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD), Paris, France, October 2014. [Slides
(pptx) (pdf)] [Source Code]

◼ Describes the design and implementation of a mostly-bufferless hierarchical ring

88

https://people.inf.ethz.ch/omutlu/pub/hierarchical-rings-with-deflection_sbacpad14.pdf
http://sbac.lip6.fr/2014/
https://people.inf.ethz.ch/omutlu/pub/hierarchical-rings-with-deflection_rachata_sbacpad14-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/hierarchical-rings-with-deflection_rachata_sbacpad14-talk.pdf
https://github.com/CMU-SAFARI/NOCulator

“Bufferless” Hierarchical Rings (II)

◼ Rachata Ausavarungnirun, Chris Fallin, Xiangyao Yu, Kevin Chang,
Greg Nazario, Reetuparna Das, Gabriel Loh, and Onur Mutlu,
"A Case for Hierarchical Rings with Deflection Routing: An
Energy-Efficient On-Chip Communication Substrate"
Parallel Computing (PARCO), 2016.

❑ arXiv.org version, February 2016.

89

http://dx.doi.org/10.1016/j.parco.2016.01.009
http://arxiv.org/pdf/1602.06005.pdf

A Review of Bufferless Interconnects

◼ Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata
Ausavarungnirun, and Onur Mutlu,
"Bufferless and Minimally-Buffered Deflection Routing"
Invited Book Chapter in Routing Algorithms in Networks-on-Chip, pp.
241-275, Springer, 2014.

90

https://people.inf.ethz.ch/omutlu/pub/bufferless-and-minimally-buffered-deflection-routing_springer14.pdf
http://www.springer.com/engineering/circuits+&+systems/book/978-1-4614-8273-4

Summary of Eight Years of Research

91https://arxiv.org/pdf/2112.02516.pdf

https://arxiv.org/pdf/2112.02516.pdf

Bufferless Interconnects in Real Systems

92

https://ieeexplore.ieee.org/abstract/document/9444893

https://ieeexplore.ieee.org/document/9773184/

https://ieeexplore.ieee.org/abstract/document/9444893
https://ieeexplore.ieee.org/document/9773184/

Bufferless Interconnects in Real Systems

93

https://ieeexplore.ieee.org/document/9773184/

https://ieeexplore.ieee.org/document/9773184/

Store and Forward Flow Control

◼ Packet-based flow control

◼ Store and Forward

❑ Packet copied entirely into network router before moving to
the next node

❑ Flow control unit is the entire packet

◼ Leads to high per-packet latency

◼ Requires buffering for entire packet in each node

94

Can we do better?

S

D

Cut-Through Flow Control

◼ Another form of packet-based flow control

◼ Start forwarding as soon as header is received and resources
(buffer, channel, etc) allocated

❑ Large reduction in latency

◼ Still allocates buffers and channel bandwidth for full packets

◼ What if packets are large?

95

S

D

Cut-Through Flow Control

◼ What to do if output port is blocked?

◼ Lets the tail continue when the head is blocked, absorbing
the whole message into a single switch.

❑ Requires a buffer large enough to hold the largest packet.

◼ Degenerates to store-and-forward with high contention

◼ Can we do better?

96

Wormhole Flow Control

◼ Packets broken into (potentially)
smaller flits (buffer/bw allocation unit)

◼ Flits are sent across the fabric in a
wormhole fashion

❑ Body follows head, tail follows body

❑ Pipelined

❑ If head blocked, rest of packet stops

❑ Routing (src/dest) information only in
head

◼ How does body/tail know where to go?

❑ Follow the head (need state in router)

◼ Latency almost independent of distance
for long messages

97

H

B

B

T

Wormhole Flow Control

◼ Advantages over “store and forward” flow control

+ Lower latency

+ More efficient buffer utilization

◼ Limitations

- Suffers from head of line blocking

- If head flit cannot move due to contention, another worm
cannot proceed even though links may be idle

12

121

2

Switching FabricInput Queues Outputs

1

2

1

2
HOL Blocking

Idle!

Head of Line Blocking

◼ A worm can be before another in the router input buffer

◼ Due to FIFO nature, the second worm cannot be scheduled
even though it may need to access another output port

99

Head of Line Blocking

100

Blocked by other
packets

Channel idle but
red packet blocked

behind blue

Buffer full: blue
cannot proceed

Red holds this channel:
channel remains idle
until read proceeds

Virtual Channel Flow Control

◼ Idea: Multiplex multiple channels over one physical channel

◼ Divide up the input buffer into multiple buffers sharing a
single physical channel

◼ Dally, “Virtual Channel Flow Control,” ISCA 1990.

101

Virtual Channel Flow Control

◼ Idea: Multiplex multiple channels over one physical channel

◼ Divide up the input buffer into multiple buffers sharing a
single physical channel

◼ Dally, “Virtual Channel Flow Control,” ISCA 1990.

102

Virtual Channel Flow Control

103

Blocked by other
packets

Buffer full: blue
cannot proceed

A Modern Virtual Channel Based Router

104

Other Uses of Virtual Channels

◼ Deadlock avoidance

❑ Enforcing switching to a different set of virtual channels on
some “turns” can break the cyclic dependency of resources

◼ Enforce order on VCs

❑ Escape VCs: Have at least one VC that uses deadlock-free
routing. Ensure each flit has fair access to that VC.

❑ Protocol level deadlock: Ensure address and data packets use
different VCs → prevent cycles due to intermixing of different

packet classes

◼ Prioritization of traffic classes

❑ Some virtual channels can have higher priority than others

105

Review: Flow Control

106

Store and Forward
S

D

Cut Through / Wormhole
S

D

Blocked by other
packets

Channel idle but
red packet blocked

behind blue

Buffer full: blue
cannot proceed

Red holds this channel:
channel remains idle
until read proceeds

Shrink Buffers

Reduce latency

Any other

issues?

Head-of-Line

Blocking

Use Virtual

Channels

Review: Flow Control

107

Store and Forward
S

D

Cut Through / Wormhole
S

D

Shrink Buffers

Reduce latency

Any other

issues?

Head-of-Line

Blocking

Use Virtual

Channels

Blocked by other
packets

Buffer full: blue
cannot proceed

Communicating Buffer Availability

◼ Credit-based flow control

❑ Upstream knows how many buffers are downstream

❑ Downstream passes back credits to upstream

❑ Significant upstream signaling (esp. for small flits)

◼ On/Off (XON/XOFF) flow control

❑ Downstream has on/off signal to upstream

◼ ACK/NACK flow control

❑ Upstream optimistically sends downstream

❑ Buffer cannot be deallocated until ACK/NACK received

❑ Inefficiently utilizes buffer space

108

Credit-based Flow Control

◼ Round-trip credit delay:

❑ Time between when buffer empties and when next flit can be
processed from that buffer entry

◼ Significant throughput degradation if there are few buffers

◼ Important to size buffers to tolerate credit turn-around

109

Node 1 Node 2

Flit departs

router

t1

Process
t2

t3

Process
t4

t5

Credit round

trip delay

On/Off (XON/XOFF) Flow Control

◼ Downstream has on/off signal to upstream

110

Proces

s

Node 1 Node 2
t1

t2

Foff threshold
reached

Proces

s

t3
t4

t5

t6

t7

t8

Foff set to
prevent flits

arriving before
t4 from

overflowing

Fon threshold
reached

Fon set so that
Node 2 does
not run out of
flits between

t5 and t8

We Covered Until Here

in Lecture

111

Interconnection Network

Performance

112

Interconnection Network Performance

113

Latency

Injection rate into the network

(or amount of load on the network)

Min latency
given by
topology

Min latency
given by
routing

algorithm

Zero load latency
(topology+routing+

flow control)

Throughput
given by
topology

Throughput
given by
routing

Throughput
given by flow

control

Saturation throughput: Injection rate at which latency asymptotes

Ideal Latency

◼ Ideal latency

❑ Solely due to wire delay between source and destination

❑ D = Manhattan distance

◼ The distance between two points measured along axes at right
angles.

❑ v = propagation velocity

❑ L = packet size

❑ b = channel bandwidth

114

Tideal =
D

v
+
L

b

Actual Latency

◼ Dedicated wiring impractical

❑ Long wires segmented with insertion of routers

❑ D = Manhattan distance

❑ v = propagation velocity

❑ L = packet size

❑ b = channel bandwidth

❑ H = hops

❑ Trouter = router latency

❑ Tc = latency due to contention

115

crouteractual TTH
b

L

v

D
T +++=

Load-Latency Curve

116

0

10

20

30

40

50

60

0.1 0.3 0.5 0.7 0.9

L
a

te
n

c
y
 (

c
y
c
le

s
)

Injected load (fraction of capacity)

Ideal On-chip Network

Load-Latency Curve Examples

117Grot+, “Express Cube Topologies for On-Chip Interconnects,” HPCA 2009.

Examined Topologies in Prior Slide

118Grot+, “Express Cube Topologies for On-Chip Interconnects,” HPCA 2009.

Multi-Drop Express Channels (MECS)

◼ Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu,
"Express Cube Topologies for On-Chip Interconnects"
Proceedings of the 15th International Symposium on High-Performance
Computer Architecture (HPCA), pages 163-174, Raleigh, NC, February
2009. Slides (ppt)

119

https://people.inf.ethz.ch/omutlu/pub/mecs_hpca09.pdf
http://www.comparch.ncsu.edu/hpca/
https://people.inf.ethz.ch/omutlu/pub/grot_hpca09_talk.ppt

Kilo-NoC Building on MECS

◼ Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu,
"Kilo-NOC: A Heterogeneous Network-on-Chip Architecture for
Scalability and Service Guarantees"
Proceedings of the 38th International Symposium on Computer
Architecture (ISCA), San Jose, CA, June 2011. Slides (pptx)
One of the 12 computer architecture papers of 2011 selected
as Top Picks by IEEE Micro.

120

https://people.inf.ethz.ch/omutlu/pub/kilonoc_isca11.pdf
http://isca2011.umaine.edu/
https://people.inf.ethz.ch/omutlu/pub/grot_isca11_talk.pptx

Kilo-NoC Building on MECS

◼ Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu,
"A QoS-Enabled On-Die Interconnect Fabric for Kilo-Node Chips"
IEEE Micro, Special Issue: Micro's Top Picks from 2011 Computer
Architecture Conferences (MICRO TOP PICKS), Vol. 32, No. 3,
May/June 2012.

121

https://people.inf.ethz.ch/omutlu/pub/kilonoc-QoS_ieee_micro12.pdf
http://www.computer.org/micro/

Network Performance Metrics

◼ Packet latency (avg/max)

◼ Round trip latency (avg/max)

◼ Saturation throughput

◼ Application-level performance: execution time

◼ System performance: job throughput

❑ Affected by interference among threads/applications

122

Computer Architecture

Lecture 20: Interconnects

Prof. Onur Mutlu

ETH Zürich

Fall 2022

2 December 2022

