Computer Architecture
Lecture 25: SIMD Processors
and GPUs

Dr. Juan Gomez Luna
Prof. Onur Mutlu
ETH Zurich
Fall 2022
05 January 2023

Agenda for This Lecture

SIMD Processing
o Vector and Array Processors

Graphics Processing Units (GPUSs)

Recommended Readings

= Peleg and Weiser, "MMX Technology Extension to the Intel
Architecture,” IEEE Micro 1996.

= Lindholm et al., "NVIDIA Tesla: A Unified Graphics and
Computing Architecture,” IEEE Micro 2008.

Exploiting Data Para.

lelism:

SIMD Processors anc

 GPUs

SIMD Processing:
Exploiting Regular (Data) Parallelism

Flynn’s Taxonomy ot Computers

Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

SISD: Single instruction operates on single data element
SIMD: Single instruction operates on multiple data elements
o Array processor

o Vector processor

MISD: Multiple instructions operate on single data element
o Closest form: systolic array processor, streaming processor

MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

o Multiprocessor
o Multithreaded processor

Flynn’s Taxonomy ot Computers

Mike Flynn, “Very High-Speed Computing Systems,” Proc.

of IEEE, 1966

Very High-Speed Computing Systems

MICHAEL J. FLYNN, MEMBER, IEEE

Abstract—Very high-speed computers may be classified as follows:

1) Single Instruction Stream—Single Data Stream (SISD)

2) Single Instruction Stream—Maultiple Data Stream (SIMD)

3) Multiple Instruction Stream-Single Data Stream (MISD)

4) Multiple Instruction Stream—Maultiple Data Stream (MIMD).

“Stream,” as used here, refers to the sequence of data or instructions as seen
by the machine during the execution of a program.

The constituents of a system : storage, execution, and instruction handling
(branching) are discussed with regard to recent developmeats and/or systems
limitations. The constituents are discussed in terms of concurrent SISD

Manuscript received June 30, 1966; revised August 16, 1966. This work
was performed under the auspices of the U. S. Atomic Energy Commission.

The author is with Northwestern University, Evanston, Ill., and
Argonne National Laboratory, Argonne, IIl.

systems (CDC 6600 series and, in particular, IBM Model 90 series), since
multiple stream organizations usually do not require any more elaborate
components.

Representative organizations are selected from each class and the
arrangement of the constituents is shown.

INTRODUCTION

ANY SIGNIFICANT scientific problems require
M the use of prodigious amounts of computing time.

In order to handle these problems adequately, the
large-scale scientific computer has been developed. This
computer addresses itself to a class of problems character-
ized by having a high ratio of computing requirement to
input/output requirements (a partially de facto situation

7

MISD Example from Flynn

INSTRUCTION INSTRUCTION
STORAGE STORAGE
i N
A4 i JL
INSTRUCTION INSTRUCTION
UNIT | UNIT
o N
4 Y Y
EXECUTION EXECUTION EXECUTION
OATA UNIT UNIT U —— > UNIT
STORAGE : 5 N
' / /)
i DERIYEO Similar to a “generalized” systolic array
STREAM STREAM

Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE, 1966 8

Lecture on Systolic Arrays

J——
An Example Modern Systolic Array: TPU (I g =)

— | DDR3 DRAM Chips Onur Mutlu " B
) w0 ciars T -

4ciers oY) 0 GiBls e
& > Interk =D (w.ngm Fetcher)

o

G
e \
) Unified ‘157 Matrix Multiply
2 8 10 GiB/s Buffer Systolic [GiB/s Unit
14 GiBls | §| 1oceis| g & > (Local Data v | (64K por cycle)
s 4
2= 4:; Activatios Setup
< J‘> g < £ | Storage)
g
z

‘ Activation

1
El \Q\ 167 GiBls I -
J
& 3

are lhe blueel t FlFO and (he blue Uni led B

| I L DR ik w0 m

(UB)

o i

Digital Design & Computer Arch. - Lecture 19: VLIW, Systolic Arrays, DAE (ETH Ziirich,
Spring 2021)

2,724 views * Streamed live on May 7, 2021 75 63 CJ DISLIKE ;{) SHARE =+ SAVE

@ Onur Mutlu Lectures SUBSCRIBED Q
< ‘ iy 20.1K subscribers i

https://youtu.be/UtLy4Yagdys?t=2948

https://youtu.be/UtLy4Yagdys?t=2948

SIMD Example from Flynn

INSTRUCTION OPERAND
STORAGE STOR!GE EXECUTION
- o UNITS
v AN

INSTRUCTION ?
UNIT

— LIMITED COMMUNICATION

Similar to an “array processor”

Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE, 1966 10

Flynn’s Taxonomy of Computers

Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

SISD: Single instruction operates on single data element
SIMD: Single instruction operates on multiple data elements

o Array processor

o Vector processor

MISD: Multiple instructions operate on single data element
o Closest form: systolic array processor, streaming processor

MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

o Multiprocessor
o Multithreaded processor

11

Data Parallelism

Concurrency arises from performing the same operation on
different pieces of data

o Single instruction multiple data (SIMD)

o E.g., dot product of two vectors

Contrast with data flow

o Concurrency arises from executing different operations in parallel (in
a data driven manner)

Contrast with thread (“control™) parallelism

o Concurrency arises from executing different threads of control in
parallel

SIMD exploits operation-level parallelism on different data
o Same operation concurrently applied to different pieces of data

o A form of ILP where instruction happens to be the same across data
12

SIMD Processing

Single instruction operates on multiple data elements
o In time or in space

Multiple processing elements (PEs), i.e., execution units

Time-space duality

o Array processor: Instruction operates on multiple data
elements at the same time using different spaces (PESs)

o Vector processor: Instruction operates on multiple data
elements in consecutive time steps using the same space (PE)

13

Storing Multiple Data Elements: Vector Registers

Each vector data register holds N M-bit values
o Each register stores a vector
a Not a (single) scalar value as we saw before

M-bit wide M-bit wide
V0,0 V1,0
V0,1 V1,1
VO V1 V2
VO,N-1 V1,N-1

PE

14

Array vs. Vector Processors

Instruction Stream

LD VR < A[3:0]
ADD VR € VR, 1
MUL VR € VR, 2
ST A[3:0] € VR

ARRAY PROCESSOR VECTOR PROCESSOR

Same op @ same time

Different ops @ time

po| b1 [LD2 b3 LDO
)
ADO| AD1 [AD2 AD3 LD1 | ADO
MUO| MU1 [MU2 MU3 LD2 | AD1 |MUO
STO| ST1 |ST2 ST3 LD3| AD2 [MUL STO|
—
Different ops @ same space AD3 JMU2 ST1
v MU3 ST2
Time Same op @ space ST3

€«—Space——> €«<—Space—>

15

SIMD Array Processing vs. VLIW

VLIW: Multiple independent operations packed together into a “long inst.”

Programl

9 addr1.r2r3 | load r4.r5+4 mul r7.r8.r9
ounter

Instruction

Execution

16

SIMD Atrray Processing vs. VLIW

Array processor: Single operation on multiple (different) data elements

Program
ounter

VLEN = 4|

add VR[O],VR[0],1 add VR[1],VR[1],1 add VR[2],VR[2],1 add VR[3],VR[3],1

Instruction

Execution
PE PE PE PE

17

Lecture on VLIW

> >l

VLIW (Very Long Instruction Word)

) 645

\

. . . . a'l ld 4
A very long instruction word consists of multiple b b~ L

independent instructions packed together by the compiler

o Packed instructions can be logically unrelated (contrast with
SIMD/vector processors, which we will see soon)

Idea: Compiler finds independent instructions and statically
schedules (i.e. packs/bundles) them into a single VLIW
instruction

Traditional VLIW Characteristics
o Multiple instruction fetch/execute, multiple functional units
o All instructions in a Bundle are executed in lock step

o Instructions in a bundle statically aligned to be directly fed
_into the functional units

:53:53 « Lecture 19z

D @ & [@ O

Digital Design & Computer Arch. - Lecture 19: VLIW, Systolic Arrays, DAE (ETH Ziirich, Spring 2021)

2,846 views * Streamed live on May 7, 2021 [6 63 9] DISLIKE A} SHARE =+ SAVE
@ Onur Mutlu_Lectures SUBSCRIBED Q
&> 20.8K subscribers =

https://youtu.be/UtLy4Yaqgdys

18

https://youtu.be/UtLy4Yagdys

Vector Processors (1)

A vector is a one-dimensional array of numbers

Many scientific/commercial programs use vectors
for (i = 0; i<=49; i++)
ClLi] = (Ali] + B[i]) / 2

A vector processor is one whose instructions operate on
vectors rather than scalar (single data) values

Basic requirements
o Need to load/store vectors - vector registers (contain vectors)

o Need to operate on vectors of different lengths - vector length
register (VLEN)

o Elements of a vector might be stored apart from each other in
memory - vector stride register (VSTR)

Stride: distance in memory between two elements of a vector

19

Vector Stride Example: Matrix Multiply

A and B matrices, both stored in memory in row-major order fneariemory

P

A 0
Aol O 1 2 3 4 5 Bol O 1 2 3 4 5 6 7 8 9 1
6 7 8 9 10 | 11 10 | 11 12 113 |14 | 15|16 | 17 | 18 | 19 2
3

20
4
30 5
40 6

A4x6 B6x10 - C4x10 50

v

Dot product of each row vector of
A with each column vector of B

Load A's row 0 (A, through A,c) into vector register V4
o Each time, increment address by 1 to access the next column
o Accesses have a stride of 1

Load B’s column 0 (B, through B.,) into vector register V,
o Each time, increment address by 10 to access the next row
o Accesses have a stride of 10

o

w
|I@oo\1mm-l>wN>H

Vector Processors (11)

A vector instruction performs an operation on each element
in consecutive cycles

o Vector functional units are pipelined
o Each pipeline stage operates on a different data element

Vector instructions allow deeper pipelines

o No intra-vector dependencies - no hardware interlocking
needed within a vector

o No control flow within a vector

o Known stride allows easy address calculation for all vector
elements

Enables easy loading (or even early loading, i.e., prefetching) of
vectors into registers/cache/memory

21

Vector Processor Advantages

+ No dependencies within a vector
o Pipelining & parallelization work really well
o Can have very deep pipelines (without the penalty of deep pipelines)

+ Each instruction generates a lot of work (i.e., operations)
o Reduces instruction fetch bandwidth requirements

o Amortizes instruction fetch and control overhead over many data
--> Leads to high energy efficiency per operation

+ No need to explicitly code loops
o Fewer branches in the instruction sequence

+ Highly regular memory access pattern

22

Vector Processor Disadvantages

-- Works (only) if parallelism is regular (data/SIMD parallelism)

++ Vector operations
-- Very inefficient if parallelism is irregular
-- How about searching for a key in a linked list?

To program a vector machine, the compiler or hand coder
must make the data structures in the code fit nearly exactly the
regular structure built intc the hardware. That’s hard to do in
first place, and just as hard to change. One tweak, and the
Jow-level code has to be rewritten by a very smart and
dedicated programmer who knows the hardware and often the
subtleties of the application area. Often the rewriting is

Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983. 23

Recommended Paper

Fisher,

VERY LONG INSTRUCTION WORD
ARCHITECTURES
AND THE ELI-512

JOSEPH A. FISHER
YALE UNIVERSITY
NEW HAVEN, CONNECTICUT 06520

ABSTRACT

By compiling ordinary scientific applications programs with a
radical technique called trace scheduling, we are generating
code for a parallel machine that will run these programs faster
than an equivalent sequential machine — we expect 10 to 30

times faster.

Trace scheduling generates code for machines called Very
Long Instruction Word architectures. In Very Long Instruction
Word machines, many statically scheduled, tightly coupled,
fine-grained operations execute in parallel within a single
instruction stream. VLIWs are more parallel extensions of

several current architectures.

These current architectures have never cracked a
fundamental barrier. The speedup they get from parallelism is
never more than a factor of 2 to 3. Not that we couldn’t build
more parallel machines of this type; but until trace scheduling
we didn't know how to generate code for them. Trace
scheduling finds sufficient parallelism in ordinary code to
justify thinking about a highly parallel] VLIW.

At Yale we are actually building ome. Our machine, the
ELI-512, has a horizontal instruction word of over 500 bits and

DT T 2 L IaT o [NG R SN P | » SO T]

“Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.

are presented in this paper. How do we put enough tests in
each cycle without making the machine too big! How do we
put enough memory references in each cycle without making
the machine too slow?

WHAT IS A VLIW?

Everyone wants to use cheap hardware in parallel to speed
up computation. One obvious approach would be to take your
favorite Reduced Instruction Set Computer, let it be capable of
executing 10 to 30 RISC-level operations per cycle controlled by
a very long instruction word. (In fact, call it a VLIW.} A
VLIW looks like very parallel horizontal microcode.

More formally, VLIW architectures have the following
properties:

There is one central control unit issuing a single long

instruction per cycle.

Each long instruction consists of many tightly coupled
independent operations.

Each operation requires a small, statically predictable
number of cycles to execute.

Operations can be pipelined. These properties distinguish

24

Amdahl’s Law

Amdahl’s Law

a f: Parallelizable fraction of a program
o N: Number of processors

Speedup =

1-f + L

o Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

Maximum speedup limited by serial portion: Serial bottleneck

All parallel machines “suffer from” the serial bottleneck

25

Vector Processor Limitations

-- Memory (bandwidth) can easily become a bottleneck,
especially if
1. compute/memory operation balance is not maintained
2. data is not mapped appropriately to memory banks

26

Vector Processing in More Depth

Vector Registers

Each vector data register holds N M-bit values
Vector control registers: VLEN, VSTR, VMASK

Maximum VLEN can be N
o Maximum number of elements stored in a vector register
Vector Mask Register (VMASK)
o Indicates which elements of vector to operate on
o Set by vector test instructions
e.g., VMASK[i] = (V,[i] == 0)
M-bit wide M-bit wide

V0,0 V1,0
V0,1 V11

VO,N-1 VI,N-1

28

Vector Functional Units

Use a deep pipeline to execute
element operations

- fast clock cycle

Control of deep pipeline is
simple because elements in
vector are independent

Six stage multiply pipeline

Slide credit: Krste Asanovic

V V|V
1 12 3
Ay
G
Ll
.
m \\ /L
e

V1 *V2->V3

29

Vector Machine Organization (CRAY-1)

MEMOR |

VECTOR REGISTERS

1111111

uuuuuu

51| FLOATING

) POINT

s

INSTRUCTION BUFFERS

ADDRESS

FUNCTIONAL UNITS

CRAY-1

Russell, “The CRAY-1
computer system,”
CACM 1978.

Scalar and vector modes

8 64-element vector
registers

64 bits per element

16 memory banks

8 64-bit scalar registers
8 24-bit address registers

30

Recommended Paper

Russell,
“The CRAY-1 computer system,”
CACM 1978.

The CRAY-1
Computer System

Richard M. Russell
Cray Research, Inc.

~ This paper describes the CRAY-1, discusses the
evolution of its architecture, and gives an account of
some of the problems that were overcome during its
manufacture.

The CRAY-1 is the only computer to have been
built to date that satisfies ERDA’s Class VI
requirement (a computer capable of processing from
20 to 60 million floating point operations per second)
11.

The CRAY-1’s Fortran compiler (cFr) is designed
to give the scientific user inmediate access to the
benefits of the CRAY-1’s vector processing
architecture. An optimizing compiler, crr,
“vectorizes” innermost DO loops. Compatible with
the anst 1966 Fortran Standard and with many
commonly supported Fortran extensions, CFT does not
require any source program modifications or the use
of additional nonstandard Fortran statements to
achieve vectorization. Thus the user’s investment of
hundreds of man months of effort to develop Fortran
programs for other contemporary computers is
protected.

Key Words and Phrases: architecture, computer
systems
CR Categories: 1.2, 6.2, 6.3

Introduction

Vector processors are not yet commonplace ma-
chines in the larger-scale computer market. At the
time of this writing we know of only 12 non-CRAY-1
vector processor installations worldwide. Of these 12,
the most powerful processor is the ILLIAC IV (1
installation), the most populous is the Texas Instru-
ments Advanced Scientific Computer (7 installations)
and the most publicized is Control Data’s STAR 100

31

CRAY X-MP-28 @ ETH (CAB, E Floor)

CRAY X-MP System Organization

CRAY X-MP system organization

CPU 1

Vregisters. Vector functional =
8 registers units
64 64-bit A
elements per Shift
register ~ Logical (2)
Population
135 = (64-bit arithmetic)
= Vector mask Vector
(64-bits) - section
Floating point
Vector length
(7 bits)
Scalar
section
— -
B Address
section
CPU4 Instruction
section
S—

Cray Research Inc., “The
CRAY X-MP Series of
Computer Systems,” 1985

AN 33

CRAY X-MP Design Detail

CRAY X-MP design detail

Mainframe

CRAY X-MP single- and
multiprocessor systems are
designed to offer users outstanding
performance on large-scale,
compute-intensive and I/O-bound
jobs.

CRAY X-MP mainframes consist of
six (X-MP/1), eight (X-MP/2) or
twelve (X-MP/4) vertical columns
arranged in an arc. Power supplies
and cooling are clustered around the
base and extend outward.

Hardware features:

O 9.5 nsec clock

1 One, two or four CPUs, each
with its own computation and
control sections

O Large multiport central memory

0 Memory bank cycle time of 38
nsec on X-MP/4 systems, 76
nsec on X-MP/1 and X-MP/2
models

0O Memory bandwidth of 25-100
gigabits, depending on model

O 1/O section

0 Proven cooling and packaging
technologies

Memory size

(millions of Number
Model Number of CPUs 64-bit words) of banks
CRAY X-MP/416 4 16 64
CRAY X-MP/48 4 8 32
CRAY X-MP/216 2 16 32
CRAY X-MP/28 2 8 32
CRAY X-MP/24 2 4 16
CRAY X-MP/18 1 8 32
CRAY X-MP/14 1 4 16
CRAY X-MP/12 1 2 16
CRAY X-MP/11 1 1 16

A description of the major system
components and their functions
follows.

CPU computation section

Within the computation section of
each CPU are operating registers,
functional units and an instruction
control network — hardware
elements that cooperate in executing
sequences of instructions. The
instruction control network makes all
decisions related to instruction issue
as well as coordinating the three
types of processing within each
CPU: vector, scalar and address.
Each of the processing modes has
its associated registers and
functional units.

The block diagram of a CRAY
X-MP/4 (opposite page) illustrates
the relationship of the registers to the
functional units, instruction buffers,
1/0 channel control registers,
interprocessor communications
section and memory. For
multiple-processor CRAY X-MP
models, the interprocessor

communications section coordinates
processing between CPUs, and
central memory is shared.

Registers
The basic set of programmable
registers is composed of:

Eight 24-bit address (A) registers
Sixty-four 24-bit intermediate address
(B) registers
Eight 64-bit scalar (S) registers
Sixty-four 64-bit scalar-save
(T) registers
Eight 64-element (4096-bit) vector (V)
registers with 64 bits per element

The 24-bit A registers are generally
used for addressing and counting
operations. Associated with them are
64 B registers, also 24 bits wide.
Since the transfer between an A and
a B register takes only one clock
period, the B registers assume the
role of data cache, storing
information for fast access without
tying up the A registers for relatively
long periods.

Cray Research Inc., “The
CRAY X-MP Series of
Computer Systems,” 1985

34

CRAY X-MP CPU Functional Units

CRAY X-MP CPU functional units

Register Time in
usage clock periods
Address functional units
Addition A 2
Multiplication A 4
Scalar functional units
Addition S 3
Shift-single S 2
Shift-double i3] 3
Logical S5 1
Population, parity and leading zero S 3or4
Vector functional units
Addition \ 3
Shift Vv 3or4
Full vertor Inaical V 2

Cray Research Inc., “The
CRAY X-MP Series of
Computer Systems,” 1985

35

CRAY X-MP System Contiguration

System configuration options

X-MP/1 X-MP/2 X-MP/4

Mainframe

CPUs 1 2 4
Bipolar memory (64-bit words) N/A N/A 8 or 16M
MOS memory (64-bit words) 1,2,4 or 8M 4,8 0or 16M N/A
6-Mbyte channels 20r4 4 4
100-Mbyte channels 1or2 2 4
1000-Mbyte channels 1 1 2
1/0 Subsystem

|/O processors 2,30r4 2,30r4 4
Disk storage units 2-32 2-32 2-32
Magnetic tape channels 1-8 1-8 1-8
Front-end interfaces 1-7 1-7 1-7
Buffer memory (Mbytes) 8,32 or 64 8,320r64 64

Solid-state Storage Device
Memory size (Mbytes)

N/A signifies option is not available on the madel

256, 512 0r 1024

256, 512 0r 1024

256, 512 0r 1024

Cray Research Inc., “The
CRAY X-MP Series of
Computer Systems,” 1985

36

Seymour Cray, Leader in Supercomputer Design

"If you were plowing a field, which would you
rather use: Two strong oxen or 1024 chickens?"

1 e - TN S8

amityrebecca / Pinterest. https://\MNw.pintees .Cl pin/7301876708840801/

-

© Scott Sinklier / Corbis. http://americaaljazeera.com/articles/2015/2/20/the—short-b_rutal-Iife-of-male-(;hickens.html)

https://en.wikipedia.org/wiki/Seymour_Cray 37

Vector Machine Organization (CRAY-1)

VECTOR REGISTERS

= CRAY-1
S = = Russell, “The CRAY-1
= |||llbx | [computer system,”
| — CACM 1978.
MEMORY| Li'm_% 1 : FIF_:;J::'IFH
: 1| = Scalar and vector modes
ol = 8 64-element vector
h registers

= 64 bits per element
L [rooeess = 8 64-bit scalar registers
= 8 24-bit address registers

FUNCTIONAL UNITS

s

INSTRUCTION BUFFERS 38

Loading/Storing Vectors from/to Memory

Requires loading/storing multiple elements

Elements separated from each other by a constant distance
(stride)
o Assume stride = 1 for now

Elements can be loaded in consecutive cycles if we can
start the load of one element per cycle

o Can sustain a throughput of one element per cycle

Question: How do we achieve this with a memory that
takes more than 1 cycle to access?
Answer: Bank the memory; interleave the elements across

banks
39

Memory Banking

Memory is divided into banks that can be accessed independently;
banks share address and data buses (to minimize pin cost)

Can start and complete one bank access per cycle
Can sustain N concurrent accesses if all N go to different banks

Bank Bank Bank E EEEEEEEEEEEEEEEEEEEEEETSRm Bank

0 1 2 15

MDR|| MAR || MDR|| MAR || MDR|| MAR MDR|| MAR
Data bus

A

Address bus

CPU

40

Picture credit: Derek Chiou

Vector Memory System

Next address = Previous address + Stride

If (stride == 1) && (consecutive elements interleaved
across banks) && (number of banks >= bank latency), then

o we can sustain 1 element/cycle throughput

Base Stride

Vector Registers

\ 4

&

<’,

Address

Generator

A 4 4
A

A
L <&

Memory Bank

Picture credit: Krste Asanovic

41

Scalar Code Example: Element-Wise Avg.

ForI = 0 to 49
o C[i] = (A[i] + B[i]) / 2

Scalar code (instruction and its latency)

MOVI RO = 50
MOVA R1 = A
MOVA R2 = B
MOVA R3 = C

X: LD R4 = MEM[R1++]
LD R5 = MEM[R2++]
ADD R6 = R4 + R5
SHFR R7 = R6 >> 1
ST MEM[R3++] = R7
DECBNZ RO, X

1

1 304 dynamic instructions

1

1

11 ;autoincrement addressing
11

4

1

11

2 :decrement and branch if NZ

42

Scalar Code Execution Time (In Order)

Scalar execution time on an in-order processor with 1 bank

o First two loads in the loop cannot be pipelined: 2*11 cycles
o 4 + 50*%40 = 2004 cycles

Scalar execution time on an in-order processor with 16
banks (word-interleaved: consecutive words are stored in
consecutive banks)

a First two loads in the loop can be pipelined
o 4 + 50*30 = 1504 cycles

Why 16 banks?
o 11-cycle memory access latency

o Having 16 (>11) banks ensures there are enough banks to

overlap enough memory operations to cover memory latency
43

Vectorizable L.oops

A loop is vectorizable if each iteration is independent of any
other

For I = 0to 49

o C[i] = (A[i] + B[i]) / 2

Vectorized loop (each instruction and its latency):
MOVI VLEN = 50

7 dynamic instructions

MOVI VSTR =1

VLD VO = A 11 + VLEN -1
VLD V1 =B 11 + VLEN - 1
VADD V2 = V0 + V1 4 + VLEN - 1
VSHFR V3 =V2 >> 1 1+ VLEN -1

VST C=V3 11 + VLEN -1

44

Basic Vector Code Performance

Assume no chaining (no vector data forwarding)

o i.e., output of a vector functional unit cannot be used as the
direct input of another

a The entire vector register needs to be ready before any
element of it can be used as part of another operation

One memory port (one address generator)
16 memory banks (word-interleaved)

1 1 11 49 11 49 4 49 1 49 11 49
L \\ - | \\ |
N o] | o |

| vo=AD.49] | vi=B[0.49] | ADD . SHIFT STORE |
VLD VO=A VLD V1=B VADD V2=V0+V1 VSHFRV3=V2>>1 VST C=V3

285 cycles

45

Vector Chaining

Vector chaining: Data forwarding from one vector
functional unit to another

<

V V IV V
LV vl\ 1 2 || 3 4
MULV v3,vl,v2
ADDV v5,\‘v3, v4
Chain Chain
Load . 4 “\1 3

Unit I I

Memory

Slide credit: Krste Asanovic

Vector Code Pertormance - Chaining

= Vector chaining: Data forwarding from one vector
functional unit to another

1 l 11 49 11 49

Strict assumption:

VLD 0=A v V1 B : Each memory bank
has a single port
(memory bandwidth

y DD Vo V0+\,1 bottleneck)

VSH LRV3 \?2>>1 ‘
vo11 49

VLD and VST cannot be Kﬁ; ‘
pipelined. WHY?

These two VLDs cannot be
pipelined. WHY?

= 182 cycles

47

Vector Code Performance — Multiple Memory Ports

Chaining and 2 load ports, 1 store port in each bank

1 1 11 49

VSHFR V3=V2>>1

11 49

79 cycles
19X perf. improvement! | ety |

48

Questions (I)

What if # data elements > # elements in a vector register?

o Idea: Break loops so that each iteration operates on #
elements in a vector register
E.g., 527 data elements, 64-element VREGs
8 iterations where VLEN = 64
1 iteration where VLEN = 15 (need to change value of VLEN)

o Called vector stripmining

49

(Vector) Stripmining

Surface mining, including strip mining,
open-pit mining and mountaintop removal

-

mining, is a broad category of mining in
which soil and rock overlying the mineral
deposit (the overburden) are removed, in
contrast to underground mining, in which
the overlying rock is left in place, and the
mineral removed through shafts or tunnels.

Surface mining began in the mid-sixteenth
century!'! and is practiced throughout the ‘ g »
world, although the majority of surface coal e e
mining occurs in North America.l?! It gained ~ Coal strip mine in Wyoming =

Source: https://en.wikipedia.org/wiki/Surface mining 50

https://en.wikipedia.org/wiki/Surface_mining

Questions (11)

What if vector data is not stored in a strided fashion in
memory? (irregular memory access to a vector)

o Idea: Use indirection to combine/pack elements into vector
registers

o Called scatter/gather operations

o Doing so also helps with avoiding useless computation on
sparse vectors (i.e., vectors where many elements are 0)

51

Gather/Scatter Operations

Want to vectorize loops with indirect accesses:
for (i=0; i<N; i++)
A[i] = B[i] + C[D[1]]

Indexed load instruction (Gather)

LV vD, D # Load indices in D vector
[LVI vC, rC, vD # Load indirect from rC base]
LV vB, rB # Load B vector

ADDV.D vA,vB,vC # Do add
SV vA, rA # Store result

52

Gather/Scatter Operations

Gather/scatter operations often implemented in hardware
to handle sparse vectors (matrices) or indirect indexing

Vector loads and stores use an index vector which is added
to the base register to generate the addresses

Scatter example
Index Vector Data Vector (to Store) Stored Vector (in Memory)
0 3.14 Base+t0 3.14
2 6.5 Base+tl X
6 71.2 Baset2 6.5
[2.71 Base+3 X
Base+4 X
Base+5 X
Baset6 71.2

Base+7 2.71
53

Conditional Operations in a L.oop

What if some operations should not be executed on a vector
(based on a dynamically-determined condition)?

loop: for (i=0; i<N; i++)
if (a[i] !'= 0) then b[i]=a[i]*bl[i]

Idea: Masked operations

o VMASK register is a bit mask determining which data element
should not be acted upon

VLD VO = A
VLD V1 = B
VMASK = (VO != 0)
VMUL V1 = VO * V1
VST B = V1

o This is predicated execution. Execution is predicated on mask bit.
54

Another Example with Masking

for (i=0; i < 64; ++i)

if (a[i] >= b[i]) Steps to execute the loop in SIMD code
c[i] = a[i]
1. Compare A, B to get
else " VMASK ’
c[i] = bl[i]
2. Masked store of Ainto C
A B VMASK 3. Complement VMASK
1 2 0
2 2 1 4. Masked store of B into C
3 2 1
4 10 0
-5 -4 0
0 -3 1
6 5 1
-7 -8 1

55

Masked Vector Instructions

Simple Implementation Density-Time Implementation
— execute all N operations, turn off — scan mask vector and only execute
result writeback according to mask elements with non-zero masks
M[7]1=1 A[7] B[7] M[7]=1
M[6]=0 A[6] B[6] M[6]=0 T~ A7l BL7]
M[5]=1 A[5] B[5] M[5]=1 ! !
M[4]=1 A[4] B[4] M[4]=1\ | 1
M[3]=0 A[3] B[3] M[3]=0\ Cl5] |
! l/ M[2]=0 C[4] /
o e M[1]=1 | "
M[21=0 | C[2] | M[O]:O\
M[1]=1 C[1]/ C[1]

<]7

] Write data port

M[0]=0 _l C[O]
Write Enable Write data port

Which one iIs better?

Tradeoffs?

Slide credit: Krste Asanovic 56

Some Issues

Stride and banking

o As long as they are relatively prime to each other and there
are enough banks to cover bank access latency, we can
sustain 1 element/cycle throughput

Storage format of a matrix

o Row major: Consecutive elements in a row are laid out
consecutively in memory

o Column major: Consecutive elements in a column are laid out
consecutively in memory

o You need to change the stride when accessing a row versus
column

57

Bank Conftlicts in Matrix Multiplication

A and B matrices, both stored in memory in row-major order

>

Alo|1|2]3]4]s Bolo|1|2]|3|a4|5]|6|7]8]0o
6 7 8 9 10 | 11 10 | 11 |12 | 13 | 14 |15 | 16 | 17 | 18 | 19
20
30
40
Asxe Boxio — Caxio 50
v

Dot product of each row vector of
A with each column vector of B

Load A’s row 0 into vector register V,
o Each time, increment address by 1 to access the next column

o Accesses have a stride of 1 Different strides can lead

) : _ . to bank conflicts
Load B’s column 0 into vector register,

o Each time, increment address by 10

L -
2 Accesses have a stride of 10 How do we minimize them®

58

Minimizing Bank Contflicts

= More banks
= More ports in each bank

= Better data layout to match the access pattern
o Is this always possible?

= Better mapping of address to bank
o E.g., randomized mapping
o Rau, “Pseudo-randomly interleaved memory,” ISCA 1991.

59

Minimizing Bank Conflicts: Recommended Reading

PSEUDO-RANDOMLY INTERLEAVED MEMORY

B. Ramakrishna Rau
Hewlett Packard Laboratories
1501 Page Mill Road

Palo Alto,

ABSTRACT

Interleaved memories are often used to provide the high
bandwidth needed by multiprocessors and high performance
uniprocessors such as vector and VLIW processors. The manner
in which memory locations are distributed across the memory
modules has a significant influence on whether, and for which
types of reference patterns, the full bandwidth of the memory
system is achieved. The most common interleaved memory
architecture is the sequentially interleaved memory in which
successive memory locations are assigned to successive
memory modules. Although such an architecture is the simplest
to implement and provides good performance with strides that
are odd integers, it can degrade badly in the face of even strides,
especially strides that are a power of two.

In a pseudo-randomly interleaved memory architecture,
memory locations are assigned to the memory modules in some
pseudo-random fashion in the hope that those sequences of
references, which are likely to occur in practice, will end up
being evenly distributed across the memory modules. The
notion of polynomial interleaving modulo an irreducible
polynomial is introduced as a way of achieving pseudo-random
interleaving with certain attractive and provable properties.
The theory behind this scheme is developed and the results of
simulations are presented.

Keywords: supercomputer memory, parallel memory,

interleaved memory, hashed memory, pseudo-random
interleaving, memory buffering.

CA 94303

The conventional solution is to provide each processor
with a data cache constructed out of SRAM. The problem is
maintaining cache coherency, at high request rates, across
multiple private caches in a multiprocessor system. The
alternative is to use a shared cache if the additional delay
incurred in going through the processor-cache interconnect is
acceptable. The problem here is that the bandwidth, even with
SRAM chips, is inadequate unless some form of interleaving is
employed in the cache. So once again, the interleaving scheme
used is an issue. Furthermore, data caches are susceptible to
problems arising out of the lack of spatial andfor data locality
in the data reference pattern of many applications. This
phenomenon has been studied and reported elsewhere, e.g., in
[4,5]. Since data caches are essential to achieving good
performance on scalar computations with little parallelism, the
right compromise is to provide a data cache that can be
bypassed when referencing data structures with poor locality.
This is the solution employed in various recent products such
as the Convex C-1 and Intel's i860.

Interleaved memory systems. Whether or not a data
cache is present, it is important to provide a memory system
with bandwidth to match the processors. This is done by
organizing the memory system as multiple memory modules
which can operate in parallel. The manner in which memory
locations are distributed across the memory modules has a
significant influence on whether, and for which types of
reference patterns, the full bandwidth of the memory system is
achieved.

Engineering and scientific applications include

Rau, “Pseudo-randomly Interleaved Memory,” ISCA 1991.

60

Array vs. Vector Processors, Revisited

Array vs. vector processor distinction is a “purist’s”
distinction

Most "modern” SIMD processors are a combination of both
o They exploit data parallelism in both time and space
o GPUs are a prime example we will cover in a bit more detail

01

Recall: Array vs. Vector Processors

Instruction Stream

LD VR < A[3:0]
ADD VR € VR, 1
MUL VR € VR, 2
ST A[3:0] € VR

ARRAY PROCESSOR VECTOR PROCESSOR

Same op @ same time

Different ops @ time

po| b1 [LD2 b3 LDO
)
ADO| AD1 [AD2 AD3 LD1 | ADO
MUO| MU1 [MU2 MU3 LD2 | AD1 |MUO
STO| ST1 |ST2 ST3 LD3| AD2 [MUL STO|
—
Different ops @ same space AD3 JMU2 ST1
v MU3 ST2
Time Same op @ space ST3

€«—Space——> €«<—Space—>

62

Vector Instruction Execution

A[6]
A[5]
Al4]
A[3]

Execution using
one pipelined
functional unit

B[6]
B[5]
B[4]
B[3]

|
\

|
/

e

]

4

1

4

Time

-

C[0]

Slide credit: Krste Asanovic

VADD A,B > C

A[24]
A[20]
A[16]
A[12]

B[24]

B[20]
B[16]
B[12]

|
\

|
/

<

\

C[8] /

2

Execution using
four pipelined
functional units

A[25]
A[21]
A[17]
A[13]

B[25] A[26]
B[21] A[22]
B[17] A[18]
B[13] A[14]

B[26] A[27]
B[22] A[23]
B[18] A[19]
B[14] A[15]

|
\

| |
|

B[27]
B[23]
B[19]
B[15]

| |
|

<} \

|
/

<1- \

o]

\C[lO] /

<]7

\C[ll] /

Iy

ECIN

1

Ti‘rvneT¢ T¢ T<F TQ

<€

C[0]

C[1]

C[2]

C[3]

Space

>

Vector Unit Structure

(T

Partitiondd_ |

Vector

Functional Unit
/

T
Y

[

—4

[—

Registers

~

Elements O,
4,8, ..

Lane

Elements 1,
59, ..

Elements 2,
6, 10, ...

Elements 3,
7,11, ..

Memory Subsystem

Slide credit: Krste Asanovic

04

Vector Instruction Level Parallelism

Can overlap execution of multiple vector instructions
o Example machine has 32 elements per vector register and 8 lanes
o Completes 24 operations/cycle while issuing 1 vector instruction/cycle

Load Unit Multiply Unit Add Unit

s
> =

=3

Q

Ol0|0|0|® & @ @
Ol0|0|0|® & @ @
Ol0|0|0|® & @ @
Ol0|0|0|® & @ @
Ol0|0|0|® & @ @

‘_m
@
@
[m
O
O

—
O
O

> >|> > > >
> >
> >
> >
> >
> —p > >
> o bl > |

> |l

a
HEEEEEEN

Instruction
issue

Slide credit: Krste Asanovic 65

Automatic Code Vectorization

for (i=0; i < N; i++)
C[i] = A[i] + B[i]; .
Scalar Sequential Code Vectorized Code

1 2 Vector Instruction

: Vectorization is a compile-time reordering of
: operation sequencing
: = requires extensive loop dependence analysis

Slide credit: Krste Asanovic 66

Vector/SIMD Processing Summary

Vector/SIMD machines are good at exploiting regular data-
level parallelism

o Same operation performed on many data elements

o Improve performance, simplify design (no intra-vector
dependencies)

Performance improvement limited by vectorizability of code
o Scalar operations limit vector machine performance

o Remember Amdahl’s Law

o CRAY-1 was the fastest SCALAR machine at its timel!

Many existing ISAs include (vector-like) SIMD operations
o Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD

67

Recall: Amdahl’s Law

Amdahl’s Law

a f: Parallelizable fraction of a program
o N: Number of processors

Speedup =

1-f + L

o Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

Maximum speedup limited by serial portion: Serial bottleneck

All parallel machines “suffer from” the serial bottleneck

068

SIMD Operations in Modern ISAs

SIMD ISA Extensions

Single Instruction Multiple Data (SIMD) extension
instructions

o Single instruction acts on multiple pieces of data at once
o Common application: graphics

o Perform short arithmetic operations (also called packed
arithmetic)

For example: add four 8-bit numbers
Must modify ALU to eliminate carries between 8-bit values

padd8 $s2, $s0, Ssl

32 24 23 16 15 87 0 Bit position

L a, $s0

b, $s1

a;+b, | a,+b, | a,+b, | a;+b, | $s2

70

Intel Penttum MMX Operations

Idea: One instruction operates on multiple data elements

simultaneously

2 A /aarray processing (yet much more limited)
o Designed with multimedia (graphics) operations in mind

63 8 7

0

(@

63 16 15

(b)

63 . -32 31

(c)
63

(d)

Figure 1. MMX technology data types: packed byte (a),

packed word (b), packed doubleword (c), and quadword (d).

No VLEN register

Opcode determines data type:
8 8-bit bytes

4 16-bit words

2 32-bit doublewords

1 64-bit quadword

Stride is always equal to 1.

Peleg and Weiser, “MMX Technology

Extension to the Intel Architecture,”
|IEEE Micro, 1996.

71

MMX Example: Image Overlaying (I)

= Goal: Overlay the human in image X on top of the background in image y

Figure 8. Chroma keying: image overlay using a background color.

PCMPEQB MM1, MM3

MM1

Image x| | MMm3

Bit mask mm1

Image new_image

if (xli] == Blue) new _imagclil =ylil:

for (i=0; i<image size; i+4+)

clse new imageii] = x(i);

Blue Blue Blue Blue Blue | Biue Blue Blue
X7!=blue | X6!=blue | X5=blue | Xd4=blue | X3!=blue|X2!=blue | X1=blue | X0=blue
0x0000 | 0x0000 | OxFFFF | OxFFFF | Ox0000 | 0x0000 | OxFFFF OxFFFF

Bitmask

Figure 9. Generating the selection bit mask.

Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996. 72

MMX Example: Image Overlaying (1)

PAND MM4, MM1 _ Y = Blossom image PANDN MM1, MM3 X =Woman’s image
Mva [@ Y, a[@Y, df v dle Yl YEP YEP Y,@F V.8 MM1[0x0000]0x0000]0xFFFF [0xFFFF [0x0000]0~0000]0xFFFFJ0xFFFF|
MM1 [0x0000 | 0x0000[0xFFFF[OxFFFF [0x0000]0x0000[OxFFFFJOXFFFF] MM3] Xz | Xo [X5 | Xa [X [X | X] X |
MM4 [0x0000[0<0000]F Y5 9% Y, 410-0000[0>0000(% Y49 Yo& MM1| X, | Xg [0x00000x0000] X3 | X, [0x000d|0x000b|

POR MM4, MM |
MMa[X, | Xe [PY P Yal] X | Xo [PV, Yoo

rode oparation s

for (i=0; i<image size; i++)
if (xli] == Blue) new_imagclil =v[il;
clse new imageli] = x[i;

Figure 10. Using the mask with logical MMX instructions to perform a conditional select.

| Movg B ~mm3, mem1.* /" Load .éighl pixels from
‘Movg ~~ mm4,mem2 /" Load eight pixels from the

o _ "blossom image
- Pcmpegb. mm1, mm3 ' -

Pand mmd, mmi.
Pandn mm1, mm3

Por - mmé4,mmt .

Figure 11. MMX code sequence for performing a condi-
tional select.

Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996. 73

SIMD Operations 1n
Modern (Machine Learning) Accelerators

Cerebras’s Water Scale Engine (2019)

= The largest ML
accelerator chip (2019

= 400,000 cores

J £}
T TAIWAN 1723A1

PFBY82.M00 &t

Cerebras WSE Largest GPU
1.2 Trillion transistors 21.1 Billion transistors
46,225 mm?2 815 mm?

NVIDIA TITAN V
https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/ 75

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Cerebras’s Water Scale Engine-2 (2021)

= The largest ML
accelerator chip (2021)

= 850,000 cores

Cerebras WSE-2 Largest GPU

2.6 Trillion transistors 54.2 Billion transistors
46,225 mm?2 826 mm?

NVIDIA Ampere GA100
https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-bhig-chips-for-deep-learning/ 76

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Size, Place, and Route in Cerebras’s WSE

Neural network mapping onto the whole wafer is a

Cha”enge An example mapping

Kernel graph with layers

Multiple possible mappings
LT L

o~ o~
) B
x x
0 <
~ - -
| x | x % x <
«© | < <
| N 5 BN 3 = ot
[S| [7]
| | "
2
| o |
—))
— “
% \ “
— X \ |

X5x1x32

Convl =

:

Different dies of the wafer work
on different layers of the neural
network: MIMD machine

Layers mapped on Wafer Scale Engine

James et al., “ISPD 2020 Physical Mapping of Neural Networks on a Wafer-Scale Deep Learning Accelerator.” 77

Recall: Flynn’s Taxonomy of Computers

Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

SISD: Single instruction operates on single data element
SIMD: Single instruction operates on multiple data elements
o Array processor

o Vector processor

MISD: Multiple instructions operate on single data element
o Closest form: systolic array processor, streaming processor

MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

o Multiprocessor
o Multithreaded processor

78

A MIMD Machine with SIMD Processors (I)

MIMD machine
o Distributed memory (no shared memory)
o 2D-mesh interconnection fabric

Single tile Single die Wafer Scale Engine
A
l I_ -] ------------- |
! :
|
|
| DSR
: Control i | e | E
Router : ,[I.]. :
! X . _|Memory|,
T T :
| =
| FMAC | o))
: Scheduler ')_/\ | ® \
|
| N
I y :
J I
l l Core |_—
hisd 51 tiles * 12 dies g
45309 tiles 84 dies

Rocki et al., “Fast stencil-code computation on a wafer-scale processor.” SC 2020.

7 dies

79

A MIMD Machine with SIMD Processors (II)

SIMD processors
o 4-way SIMD for 16-bit floating point operands
o 48 KB of local SRAM

NSEW

M Single tile

”II[T ____________ | Address registers

Control | ;

Router

~ ___—| Local memory
n_qMemory L.
W

1 FMAC
IScheduler]

|

|

|

|

|

|

|

|

I X
| |—b
|

|

|

|

|

|

|

|

|

4-way SIMD fused-multiply

I Core accumulate (FMAC) units.
AXPY.y=a*x+y

NSEW

Rocki et al., “Fast stencil-code computation on a wafer-scale processor.” SC 2020. 30

Fine-Grained Multithreading

Fine-Grained Multithreading

= Idea: Hardware has multiple thread contexts (PC+registers).
Each cycle, fetch engine fetches from a different thread.

o By the time the fetched branch/instruction resolves, no
instruction is fetched from the same thread

o Branch/instruction resolution latency overlapped with execution
of other threads’ instructions

Instruction Operands

¥

Stream 3 Instruction

+ No logic needed for handling control and | struction Fetch

Stream 2 Instruction

data dependences within a thread gtrggg"ﬁﬁﬁ;m
-- Single thread performance suffers e e

Execution Phase

-- Extra logic for keeping thread contexts
-- Does not overlap latency if not enough I —
threads to cover the whole pipeline Result Store

82

Fine-Grained Multithreading (11)

Idea: Switch to another thread every cycle such that no two
instructions from a thread are in the pipeline concurrently

Tolerates the control and data dependence latencies by
overlapping the latency with useful work from other threads

Improves pipeline utilization by taking advantage of multiple
threads

Thornton, “Parallel Operation in the Control Data 6600,” AFIPS
1964.

Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

83

Multithreaded Pipeline Example

select

Slide credit: Joel Emer

:x >
15 —|IR— GpPR1 =
A > >
Y
N
[- [1
N "2 W

84

Fine-grained Multithreading (I11)

Advantages

+ No need for dependency checking between instructions
(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic

+ Otherwise-bubble cycles used for executing useful instructions from
different threads

+ Improved system throughput, latency tolerance, utilization

Disadvantages

- Extra hardware complexity: multiple hardware contexts (PCs, register
files, ...), thread selection logic

- Reduced single thread performance (one instruction fetched every N
cycles from the same thread)

- Resource contention between threads in caches and memory

- Some dependency checking logic between threads remains (load/store)
85

Lecture on Fine-Grained Multithreading

Fine-Grained Multithreading

Idea: Hardware has multiple thread contexts (PC+register
Each cycle, fetch engine fetches from a different thread.

o By the time the fetched branch/instruction resolves, no
instruction is fetched from the same thread

o Branch/instruction resolution latency overlapped with execution
of other threads’ instructions

Instruction Operands

Stream 3 Instruction

+ No logic needed for handling control and | Instruction Feten
ream 2 Instruction
ithi Operand Fetch
data dependences within a thread mg;fl‘lnstmuon
-- Single thread performance suffers O e s
-- Extra logic for keeping thread contexts
-- Does not overlap latency if not enough :
Stream 4 Instruction

Execution Phase
threads to cover the whole pipeline Result Store

Onur Mutlu - Digital Design & Comp Arch - Lecture 14: Pipelined Processor Design (Spring 2021)

1,193 views * Streamed live on Apr 22, 2021 42 Mo) SHARE =i SAVE

@ ?:;I; Mutlu Lectures ANALYTICS EDIT VIDEO
& subscribers

https://www.youtube.com/watch?v=6e5KZcCGBYw&list=PL5Q2s0XY2Zi_uej3aY39YB5pfW4SJ7LIN&index=16 86

Lectures on Fine-Grained Multithreading

= Digital Design & Computer Architecture, Spring 2021, Lecture 14

o Pipelined Processor Design (ETH, Spring 2021)

o https://www.youtube.com/watch?v=6e5KZcCGBYw&list=PL50Q2s0oXY2Zi uej3aY39Y
B5pfW4SJ7LIN&index=16

= Digital Design & Computer Architecture, Spring 2020, Lecture 18c

o Fine-Grained Multithreading (ETH, Spring 2020)

o https://www.youtube.com/watch?v=bu5dxKTvQVs&list=PL50Q2s0XY2Zi FRrloMa2fU
YWPGIiZUBQo2&index=26

https:/ /www.youtube.com/onurmutlulectures 87

https://www.youtube.com/watch?v=6e5KZcCGBYw&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LlN&index=16
https://www.youtube.com/watch?v=bu5dxKTvQVs&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=26
https://www.youtube.com/onurmutlulectures

GPUs (Graphics Processing Units)

GPUs are SIMD Engines Underneath

= The instruction pipeline operates like a SIMD pipeline (e.q.,
an array processor)

= However, the programming is done using threads, NOT
SIMD instructions

= To understand this, let's go back to our parallelizable code
example

= But, before that, let’s distinguish between
a Programming Model (Software)
VS.
o Execution Model (Hardware)

89

Programming Model vs. Hardware Execution Model

Programming Model refers to how the programmer expresses
the code

o E.g., Sequential (von Neumann), Data Parallel (SIMD), Dataflow,
Multi-threaded (MIMD, SPMD), ...

Execution Model refers to how the hardware executes the
code underneath

o E.g., Out-of-order execution, Vector processor, Array processor,
Dataflow processor, Multiprocessor, Multithreaded processor, ...

Execution Model can be very different from the Programming
Model

o E.g., von Neumann model implemented by an OoO processor
o E.g., SPMD model implemented by a SIMD processor (a GPU)

90

How Can You Exploit Parallelism Here?

for (i=0; i < N; i++)
Scalar Sequential Code C[1l = A[1] + B[1];

Let's examine three programming
options to exploit instruction-level
parallelism present in this sequential
code:

1. Sequential (SISD)

2. Data-Parallel (SIMD)

3. Multithreaded (MIMD/SPMD)

91

Prog. Model 1: Sequential (SISD) ™ iz} = atsy + s1i1;

Scalar Sequential Code ™ Can be executed on a:

= Pipelined processor

= Out-of-order execution processor

o Independent instructions executed
when ready

o Different iterations are present in the
instruction window and can execute in
parallel in multiple functional units

o In other words, the loop is dynamically
unrolled by the hardware

= Superscalar or VLIW processor

o Can fetch and execute multiple
instructions per cycle

92

Prog. Model 2: Data Parallel (SIMDJ™ i) = ati) + aii1;

Vectorized Code

Scalar Sequential Code

VLD A->V1

VLD B—>V2

VADD V1+V2->V3

VST V3->C

Realization: Each iteration is independent

Idea: Programmer or compiler generates a SIMD
instruction to execute the same instruction from
all iterations across different data

Best executed by a SIMD processor (vector, array)
93

for (i=0; i < N; i++)

Prog. Model 3: Multithreaded = ca1'= a1 + a1

Sca/ar Sequential Code

" Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

94

for (i=0; i < N; i++)

Prog. Model 3: Multithreaded = ca1'= a1 + a1

1 > Realization: Each iteration is independent

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMT machine

Single Instruction Multiple Thread

A GPU 1s a SIMD (SIMT) Machine

Except it is not programmed using SIMD instructions

It is programmed using threads (SPMD programming model)

o Each thread executes the same code but operates a different
piece of data

o Each thread has its own context (i.e., can be
treated/restarted/executed independently)

A set of threads executing the same instruction are
dynamically grouped into a warp (wavefront) by the
hardware

o A warp is essentially a SIMD operation formed by hardware!

96

. for (i=0; i < N; i++)
SPMD on SIMT Machme C[i] = A[i] + BI[i];

Vs

~N

(i.e., at the same PC)

This particular model is also called:

SPMD: Single Program Multiple Data

A GPU executes it using the SIMT model:

Single Instruction Multiple Thread

Graphics Processing Units

SIMD not |

“xposed to Programmer (SIMT)

SIMD vs. SIMT Execution Model

SIMD: A single sequential instruction stream of SIMD
instructions = each instruction specifies multiple data inputs

5 [VLD, VLD, VADD, VST], VLEN

SIMT: Multiple instruction streams of scalar instructions >
threads grouped dynamically into warps

o [LD, LD, ADD, ST], NumThreads

Two Major SIMT Advantages:

o Can treat each thread separately = i.e., can execute each thread
independently (on any type of scalar pipeline) > MIMD processing

o Can group threads Into warps flexibly - I.e., can group threads
that are supposed to fruly execute the same instruction =2

dynamically obtain and maximize benefits of SIMD processing
99

Fine-Grained Multithreading of = for (i=0; 1 < 57 144
C[i] = A[i] + BJ[1i];

Warps
= Assume a warp consists of 32 threads

= If you have 32K iterations, and 1 iteration/thread - 1K warps

= Warps can be interleaved on the same pipeline = Fine grained
multithreading of warps

Warp 20 at PC X+2

Iter. Iter.
29*32 + 1 20*32 + 2

100

Warps and Warp-Level FGMT

Warp: A set of threads that execute the same instruction
(on different data elements) > SIMT (Nvidia-speak)

All threads run the same code
Warp: The threads that run lengthwise in a woven fabric ...

-~ | Thread Warp 3

- ‘I Thread Warp 8
)4
Thread Warp Common PC 7 :
Scalan Scalar| Scalar Scalan ! Thread Warp 7
ThreadThread Thread+ ¢ ¢ |Threag ' ¢
W X Y Z . .
SIMD Pipeline

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.

High-ILevel View of a GPU

;’ (PC, Mask) H

' I-Cache

Shader| |Shader| |Shader| ,,, | Shader *

Core Core Core Core
Decode

b4 |
Interconnection Network '1.1 g Q| [:
3 3 o e e |e
L |
Memory | | Memory Memory | | :_;_u -:au' -;,—q .;,—':! |
Controller| |Controller Controller| % | ! % '751. % % ;
¢ t ses t ! :m @ | @ | |®|]
‘| 1 SIMD Execution !
GDDR3 GDDR3 GDDR3 | Tm === !

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 28b8.

Latency Hiding via Warp-Level FGMT

Warp: A set of threads that
execute the same instruction ;

Y .

(on different data elements) N Wf?)rrpssciveagllualibrllz
Fine-grained multithreading l Threadiwarpﬂ SIMD Pipefine
2 One instruction per thread in | MRgen

pipeline at a time (No |* Decode *|

interlocking))l X
o Interleave warp execution to vy Y Y | Warps accessing

hide latencies % ? ié memory hierarchy
Register values of all threads stay [D-Cache H/T=hread Warp 1
in register file AIHIR] [pam i Thread Warp 2
Eﬁgflrgnecréables long latency —wripa— | U iz VET & |

o Millions of pixels

Slide credit: Tor Aamodt 103

Warp Execution (Recall the Slide)

Execution using
one pipelined
functional unit

Execution using
four pipelined
functional units

32-thread warp executing ADD A[tid],B[tid] = C[tid]

A[6] B[6]
A[5] B[5]
Al4] B[4]
A[3] B[3]
’ ’
Cvy
| cl21
O
Time T

C[0]

Slide credit: Krste Asanovic

A[24] B[24] A[25] B[25] A[26] B[26] A[27] B[27]

A[20] B[20] A[21] B[21] A[22] B[22] A[23] B[23]

A[16] B[16] A[17] B[17] A[18] B[18] A[19] B[19]

A[12] B[12] A[13] B[13] A[14] B[14] A[15] B[15]
b b b b

> TR]]]] 1

\ C[8] / \ C[9] / \C[lO] / \C[ll] /

| aw as o ae) an
C[0] C[1] C[2] C[3]

< Space >

104

SIMD Execution Unit Structure

p / Functional Unit
4 L] e e)
[\ [[\ [T

R Y

Registers \/T T\" /T T\,, /T T\,, /T T\v)

for each

Thread Registers for Registers for Registers for Registers for
thread IDs thread IDs thread IDs thread IDs
0, 4,8, .. 1,5,9, .. 2, 6,10, .. 3,7,11, ...

Lane

Memory Subsystem

105

Slide credit: Krste Asanovic

Warp Instruction Level Parallelism

Can overlap execution of multiple instructions
o Example machine has 32 threads per warp and 8 lanes
o Completes 24 operations/cycle while issuing 1 warp/cycle

Load Unit Multiply Unit Add Unit
00 0 e A A A A A
time oo o000 AAAAAAVYZ fame e mEEE
00 0 e AAAAAAA A EEEEEE
0100 |0|0 A A A A AAAANEEEEEEDE
0100 |0|0 AAAA A A \|HEEEEEEENE
O|0|0|0|0 AAAAALVE_IIIIIIIII
0100 |0|0 AAAAAAA A EEE EEEE
A A AAAAAAINEEEEEEDE
H EEEENENEN

I Warp issue >

Slide credit: Krste Asanovic 106

SIMT Memory Access

= Same instruction in different threads uses thread id to
index and access different data elements

Let's assume N=16, 4 threads per warp - 4 warps

10 11 12 13 14 15 Threads

10 11 12 13 14 15 Data elements

Slide credit: Hyesoon Kim 107

Warps not Exposed to GPU Programmers

= CPU threads and GPU kernels

o Sequential or modestly parallel sections on CPU

o Massively parallel sections on GPU: Blocks of threads

Serial Code (host)

. SOUSSUNTSY BYOOIMOIMHY OO OO
Parallel Kernel (device)
(Ll Ll Ll 7{ccccccl
KernelA<<<nBlk , nThr>>> (args) ;))()()) DD >3 >>>>>>> > >)())) DD
Serial Code (host)
. DI BYOOIMMOMHY OO YOOI
Parallel Kernel (device)
Ll Ll Ll 7{ccccccl
KernelB<<<nBlk , nThr>>> (args) ; 2 OSSSSSSSSSS OO SSSSSSSSSSS

Slide credit: Hwu & Kirk

108

Sample GPU SIMT Code (Simplified)

CPU code

for (ii = 0; ii < 100000; ++ii)
C[ii] = Aii] + BIii];

¥
CUDA code I

f// there are 100000 threads \
__global__ void KernelFunction(...) {
int tid = blockDim.x * blockIdx.x + threadIdx.x;
int varA = aa[tid];
int varB = bb[tid];
C[tid] = varA + varB;

J J

Slide credit: Hyesoon Kim 109

Sample GPU Program (Less Simplified)

CPU Program GPU Program

__global __ add_matrix

(float *a, float *b, float *c, int N) {
int 1 = blockldx.x * blockDim.x + threadldx.x;
Int] = blockldx.y * blockDim.y + threadldx.y;
int index =1+ j*N;
if(1<N&&j<N)

c[index] = a[index]+b[index];

}

Int main() {
dim3 dimBlock(blocksize, blocksize) ;
dim3 dimGrid (N/dimBlock.x, N/dimBlock.y);
add_matrix<<<dimGrid, dimBlock>>>(a, b, c, N);

}

Slide credit: Hyesoon Kim 110

Lecture on GPU Programming

Data Reuse: Tiling

To take advantage of data reu:::e, we divide the input into tiles
that can be loaded into shared memory

__shared _ int 1 _data[(L_SIZE+2)*(L_SIZE+2)];

Load tile into shared memory
__syncthreads();
for (int i = 0; i < 3; i++){
for (int j = 0; j < 3; j++){
sum += gauss[i][j] * 1_data[(i+l_row-1)*(L_SIZE+2)+j+l col-1];

1:27:42 / 2:33:03

© ETH ZURICH HAUPTGEBAUDE
Computer Architecture - Lecture 25: GPU Programming (ETH Ziirich, Fall 2020)

2,497 views * Dec 29, 2020 [6 46 gl DISLIKE A} SHARE =+ SAVE
@ Onur MutIu.Lectures SUBSCRIBED Q
20.8K subscribers =

>

https://youtu.be/AkYnuqVpCug 111

https://youtu.be/AkYnuqVpCug

Heterogeneous Systems Course (Fall 2021)

= Short weekly lectures
= Hands-on projects

. mwumewestumhwvedmaﬂ
« Increased p ang energy

Livestream - P&S Hands-on
Acceleration on
Heterogeneous Computing
Systems (Fall 2021)

10 videos * 566 views * Updated 6 days ago

= I’) 2

@ OnurMutly g\ pccriBen
> Lectures

https://youtube.com/playlist?list=PL5Q2s0XY2Zi OwkTgEyA6tk3UsoPBH737

H Y Course: \

Hetero. Computing Systems (Fal|21)

Onur Mutlu Lectures

&y 2021)

Trace: * start +

:»L. f SAFARI Project & Seminars Courses (Fall

Recent Changes Media Manager Sitemap

Home
Projects

SoftMC

Ramulator

Accelerating Genomics
Mobile Genomics
Processing-in-Memory
Heterogeneous Systems
SSD Simulator

g 1: Hands-on Acceleration on

H g Y Course: M g 2: SIMD pi and GPU
architecture (Fall21)

Onur Mutlu Lectures

H g Y Course: A g 3: GPU Soft Hi hy (Fall
2021)

Onur Mutlu Lectures

Heterog Y Course: M
L 2021)

Onur Mutlu Lectures

g 4: GPU Memory Hierarchy (Fall

H Course: A
Con5|derat|ons (FaII 2021)

Onur Mutlu Lectures

- H g Y Course:

(Fall 2021)

Onur Mutlu Lectures

H g Y Course: M

(Fall 2021)

Onur Mutlu Lectures

H g Y Course: Meeti
(Fall 2021)

g 5: GPU Perf

g 6: Parallel Patterns: Reduction

g 7: Parallel Patterns: Histogram

g 8: Parallel Patterns: Convolution

_in_memory *

_systems

jen systems
Table of Contents

Hands-on Acceleration on Heterogeneous

Hands-on Acceleration on

Computing Systems B neous LORAD
Edit Course Description
Course Description Mentors
Lecture Video Playlist on
The increasing difficulty of scaling the performance and efficiency of YouTube
CPUs every year has created the need for turning computers into Fal 2021 Mostinge/Sofiedily
heterogeneous ie., of multiple types of Laerning Materials

Assignments
processors that can suit better different types of workloads or parts of

them. More than a decade ago, Graphics Processing Units (GPUs)

became general-purpose parallel processors, in order to make their outstanding processing capabilities
available to many workloads beyond graphics. GPUs have been critical key to the recent rise of Machine
Learning and Artificial Intelligence, which took unrealistic training times before the use of GPUs. Field-
Programmable Gate Arrays (FPGAs) are another example computing device that can deliver impressive
benefits in terms of performance and energy efficiency. More specific examples are (1) a plethora of
specialized accelerators (e.g., Tensor Processing Units for neural), and (2) r data pr
architectures (i.e., placing compute capabilities near or inside memory/storage).

Despite the great advances in the of heter)

challenges to tackle, for example:

in recent years, there are still many

« F i 1s (using GPUs, FPGAs, TPUs) of modern applications from
mponant fields such as bioinformatics, machine learning, graph processing, medical imaging,
personalized medicine, robotics, virtual reality, etc.

. ing i for systems with different general-purpose processors and
, e.9., kernel memory scheduling, etc.
. d ization and prog g tools that enable easier and more efficient use of

heterogeneous systems.

If you are enthusiastic about working hands-on with different software, hardware, and architecture
projects for heterogeneous systems, this is your P&S. You will have the opportunity to program
heterogeneous systems with different types of devices (CPUs, GPUs, FPGAs, TPUs), propose
algorithmic changes to important to better ge the power of heterogeneous
systems, understand different workloads and identify the most suitable device for their execution, design
optimized scheduling techniques, etc. In general, the goal will be to reach the highest performance
reported for a given important application.

Prerequisites of the course:

« Digital Design and Computer Architecture (or equivalent course).
Familiarity with C/C++ programming and strong codlng skills.

Interest in future computer i and i

Interest in discovering why things do or do not work and sclvmg problems
Interest in making systems efficient and usable

The course is conducted in English.

The course has two main parts:
1. Short weekly lectures on GPU and heterogeneous programming.
2. Hands-on project: Each student develops his/her own project.

https://safari.ethz.ch/projects and seminars/fall2021/doku.php?id

=heterogeneous _systems

112

https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=processing_in_memory
https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=heterogeneous_systems
https://youtube.com/playlist?list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://youtube.com/playlist?list=PL5Q2soXY2Zi_OwkTgEyA6tk3UsoPBH737

From Blocks to Warps

= GPU cores: SIMD pipelines
o Streaming Multiprocessors (SM)
o Streaming Processors (SP)

= Blocks are divided into warps

o SIMD unit (32 threads)

Block O’s warps
]

Block 1’s warps

tOtlt2..1t31
NNNNNNNNARN

Block 2’s warps

t0tlt2.. 131
NNNNNNNNARN
)

tOtlt2.. 131
NN

Warp Scheduler

Dispatch Unit

= ()
@ =
o
O o
@
S || € =
= @
=l a o
)]
@
L
(0] =
L
@ 3
Q
[0
(72}
(7]
o
=

NVIDIA Fermi architecture

113

Warp-based SIMD vs. Traditional SIMD

Traditional SIMD contains a single thread

o Sequential instruction execution; lock-step operations in a SIMD instruction

o Programming model is SIMD (no extra threads) > SW needs to know
vector length

o ISA contains vector/SIMD instructions

Warp-based SIMD consists of multiple scalar threads executing in a
SIMD manner (i.e., same instruction executed by all threads)

o Does not have to be lock step

o Each thread can be treated individually (i.e., placed in a different warp)
- programming model not SIMD

SW does not need to know vector length
Enables multithreading and flexible dynamic grouping of threads
o ISA is scalar > SIMD operations can be formed dynamically

o Essentially, it is SPMD programming model implemented on SIMD

hardware
114

SPMD

Single procedure/program, multiple data
a This is a programming model rather than computer organization

Each processing element executes the same procedure, except on
different data elements

o Procedures can synchronize at certain points in program, e.g. barriers

Essentially, multiple instruction streams execute the same
program

o Each program/procedure 1) works on different data, 2) can execute a
different control-flow path, at run-time

o Many scientific applications are programmed this way and run on MIMD
hardware (multiprocessors)

o Modern GPUs programmed in a similar way on a SIMD hardware

115

SIMD vs. SIMT Execution Model

SIMD: A single sequential instruction stream of SIMD
instructions = each instruction specifies multiple data inputs

5 [VLD, VLD, VADD, VST], VLEN

SIMT: Multiple instruction streams of scalar instructions >
threads grouped dynamically into warps

o [LD, LD, ADD, ST], NumThreads

Two Major SIMT Advantages:

o Can treat each thread separately = i.e., can execute each thread
independently on any type of scalar pipeline > MIMD processing

a Can group threads into warps flexibly - i.e., can group threads

that are supposed to fruly execute the same instruction =2
dynamically obtain and maximize benefits of SIMD processing

116

Threads Can Take Different Paths in Warp-based SIMD

Each thread can have conditional control flow instructions
Threads can execute different control flow paths

Slide credit: Tor Aamodt

Thread Warp

Common PC

Thread

1

Thread
2

Thread
3

Thread
4

117

Control Flow Problem in GPUs/SIMT

A GPU uses a SIMD
pipeline to save area

on control logic 1 1 1 1 1 1 1 1

o Groups scalar threads

into warps Branch 1 1 1 1 1 1 1 1
Path A
Branch divergence i 1 1 1 1
occurs when threads Patﬂ 1 1 1 1

inside warps branch to
different execution 1 1 1 1 1 1 1 1
paths

This is the same as conditional/predicated/masked execution.
Recall the Vector Mask and Masked Vector Operations?

Slide credit: Tor Aamodt 118

Remember: Fach Thread Is Independent

Two Major SIMT Advantages:

o Can treat each thread separately = i.e., can execute each thread
independently on any type of scalar pipeline > MIMD processing

o Can group threads into warps flexibly - i.e., can group threads
that are supposed to fruly execute the same instruction =2

dynamically obtain and maximize benefits of SIMD processing

If we have many threads
We can find individual threads that are at the same PC
And, group them together into a single warp dynamically

This reduces “divergence” - improves SIMD utilization

a SIMD utilization: fraction of SIMD lanes executing a useful
operation (i.e., executing an active thread)
119

Dynamic Warp Formation/Merging

Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

Form new warps from warps that are waiting

o Enough threads branching to each path enables the creation
of full new warps

WarpX 4 ¥ 4 \ - Vidd e v Wwapz

120

Dynamic Warp Formation/Merging

= Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

RN
RN
RN
EERRNER
TXIE RN
e oy T } !

Path B

= Fung et al., “Dynamic Warp Formation and Scheduling for
Efficient GPU Control Flow,” MICRO 2007.

121

Dynamic Warp Formation Example

x/1111
A y/1111
Legend
x/1110 A_ A
B y/0011 Ir__:l Execution of Warp x Ir_’| Execution of Warp y
I_>| at Basic Block A I_>| at Basic Block A
¢ %/1000] [5 x/0110] [= x/0001 = =
y/0010 y/0001 y/1100 D
A new warp created from scalar
x/1110 3| threads of both Warp x and y
—» | executing at Basic Block D
p—

E
: I
Baseline °*°° |_>|
>,
. >
Dynamic G
5 5 > > > >l
Warp oool"II_VI > nd | nd > |—>I
: i< idld| s E< E<lg |—>|
Formation > 1> |> ->[ll> >l >

Slide credit: Tor Aamodt

Hardware Constraints Limit Flexibility of Warp Grouping

/ Functional Unit
[f I — B B 1)
[[[[
[\ [[\ [\

Registers \/T T\ i /T T\ v /T T\ ¥ /T T\ '
for each
Thread Registers for Registers for Registers for Registers for
thread IDs thread IDs thread IDs thread IDs
0, 4,8, .. 1,5,9, .. 2, 6,10, .. 3,7,11, ...

A A A A A A A A
\ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4

| \ | \ | \ |
4

<= I <= I <= I

" Can you move any thread \é
Al flexibly to any lane?

Il

\ 4 \ 4 \ 4 \ 4

Memory Subsystem

123

Slide credit: Krste Asanovic

Large Warps and Two-Level Warp Scheduling

Two main reasons for GPU resources be underutilized
o Branch divergence

a Long latency operations

Core A” Warps Compute} ... [A” Warps Compute]
Req Warp 0 < >
Memory Req Warp 1+— >
System e
Reg Warp 15« >

»time

Round Robin Scheduling, 16 total warps

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp
Scheduling,” MICRO 2011. 124

Large Warp Microarchitecture Example

Reduce branch divergence by having large warps
Dynamically break down a large warp into sub-warps

Decode Stage

Sub-warp @ mask
1({1]1(1

OoOIB|0|I0IB|IOC(O0|2
BIOB|I0|0|I0|2|0
O|I0OIOIP|IO0O|I2|0 |0
OB|0|I0|0I2|O0|2

Sub-warp D mask
1(1]1(1

Sub-warp 0 mask
1(1]1(1

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp

Scheduling,” MICRO 2011.

Two-Level Round Robin

Scheduling in two levels to deal with long latency operations

Core A” Warps Compute} ... [A” Warps Compute]
Req Warp 0 < > :
Memory Req Warp 1 «—¢ >
System Y
Req Warp 15« >

=t‘§ime
Round Robin Scheduling, 16 total warps :

Group 0 Group 1 Group 0 Group 1 :
Core Computelcompute] .. [Compute ComputeL »:
5 Saved Cycles
Req Warp 0 < >
Req Warp 1 < o >
Req Warp 7 : >
Memory
System Req Warp 8« >

Req Warp 9 < °

v

Req Warp 154 > »time
Two Level Round Robin Scheduling, 2 fetch groups, 8 warps each

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp
Scheduling,” MICRO 2011.

An Example GPU

NVIDIA GeForce GTX 285

NVIDIA-speak:
o 240 stream processors
o “SIMT execution”

Generic speak:
o 30 cores
o 8 SIMD functional units per core

NVIDIA, "NVIDIA GeForce GTX 200 GPU. Architectural Overview. White Paper,” 2008.

Slide credit: Kayvon Fatahalian 128

NVIDIA GeForce GTX 285 “core’’

64 KB of storage
for thread contexts

= multiply-add
= multiply

o = SIMD functional unit, control
shared across 8 units

(registers)

= instruction stream decode

= execution context storage

Slide credit: Kayvon Fatahalian

129

NVIDIA GeForce GTX 285 “core’’

64 KB of storage
for thread contexts
(registers)

= Groups of 32 threads share instruction stream (each group is

a Warp)

= Up to 32 warps are simultaneously interleaved

= Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian

130

NVIDIA GeForce GTX 285

[=T=])| (ST=]{ [<T=] | =[=]|

| [=]=]| [=]=] | [=[=]{ [=]=]|

 [=]=]|[=]=] [=[=]| [=]=]|

[=[=]] (ST=]{ [ST=]{ [ST=])

| [T=] | (=T (]| (=]

=[] | (=[] | (S[=] | (=[=],

INEREnEEER

[=T=]| (ST=]| [<T=] | T=]|

| [=[=] | [=]=]{ [=]=] | [=[=]]

| [=]=]) [=]=]{[=[=]1| [=1=]]

 [=]=]{[=I=] [=I=] | [=]=]|

| [S[=] | [wT] | [wT] | [wT]|

=[] | ([=] | (S[=] (=[=],

HERNEDEEER

CLrrr--T177]

CLiir---T770]

|[=T=] | [=[=]}| [=T=]{ [=I=1 ¥ [=T=] | [=[=]) (== E) EE] =E EE EE) (08][oo||oo||oo|| | [Oe][0s][os][oe] | | (0] [oe][oa][oa]
 [w]=] | [=]=]) [=[=]1| [=I=] {§ § =T=]| [=T=]1| [=I=1{ [=I=] i [=I=] | [=I=] | [=I=] | =T=]] | [n]=] | [=]=]{ [=[=1) [=T=1 |)i [=[=] | =I=] | == | == EE EE EEH EE)|
-t e -1 ety I -1t
[=T=]| (=[]} [=T=]{ [=I=1 ¥ [=T=] | [=T=]) [=T=]{ [sI=1§) (=T=]) [=[=1}| [sT=]{ [=]=]] =] EE EE EE I EE| EE| EE EE Y EE EE EE EE
EE|EE|EE | EE N EE EE | EE EE N EE EE EE] EEEE|EE|EEEE EE EE EEEE EE EE EE
et r---Trr iy ferrr---11rti -ty I 11Tt
(0o][og||oo||oa|| | [oe][0s][os][oa] | | (o] [oa][oa][oa] EEEEEEEEE EE EE EE N EE EE EE EE
(0o][og||oo||oa|| | [Oe][0s][0s][o] | | (o] [oa][oa][oa] EEEEE EE EE EE EE EEINEE EE EE EE

CLifr--T101]

INNEEn R

CLiff--T111]

INNEEn R

 [=]=]{[=]=] [=[=]{ [=]=]|

| [T=] [T [wT=] | [<T]|

=[] | I=] | [S[=] | [=])

 [=]=]{[=]=] [=[=]{ [=]=]|

| [=]=]{[=I=]{[=[=]| [=]=]|

 [=]=]|[=]=] [=[=]| [=]=]|

INNEED R

 [=]=]{[=I=] [=I=] | [=]=]|

| [=[=]|[=]=]|[=[=]| [=]=]|

 [=]=]{[=]=] [=[=] | [=]=]|

 [=]=] | [=]=] [=[=] | [=]=]|

[=[=]|[==1|[=I=]|[=]=]|

[=[=]|[=I=]|[=I=] | [=]=]|

CLrrr--T111]

INNEEn R

30 cores on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian

131

Evolution of NVIDIA GPUs

H#HFunctional Units

8000

7000

6000

5000

4000

3000

2000

1000

=@=Functional units (stream processors)

-9-GFLOPS

GTX 285 GTX 480 GTX 780 GTX 980 P100 (2016) V100 (2017) A100 (2020)
(2009) (2010) (2013) (2014)

25000.0

20000.0

15000.0

10000.0

5000.0

0.0

GFLOPS

132

NVIDIA V100

NVIDIA-speak:
o 5120 stream processors
o “SIMT execution”

Generic speak:
o 80 cores
a 64 SIMD functional units per core

a Tensor cores for Machine Learning

NVIDIA, “"NVIDIA Tesla V100 GPU Architecture. White Paper,” 2017.

133

NVIDIA V100 Block Diagram

PCI Express 3.0 Host Interface

Memory Controller
Joljonuoy Asowaw

Memory Controller
Jononuog Aowew

1olonu0n Loway

5
o
-]
[
-]
(&
2
§
=

Memory Controlier
Jojjonuos Aowonm

https://devblogs.nvidia.com/inside-volta/

80 cores on the V100

NVIDIA V100 Core

—————— 4 157 TFLOPS Single Precision

Dispatch Unit (32 thread/clk) Dispatch Unit (32 threadiclk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit 7.8 TFLOPS Double Precision
Ly | v 125 TFLOPS for Deep Learning (Tensor cores)

INT FPa3 FPaz INT FP33 FP2
INT m: ¥Paz INT FPS PPR
i FARFES tensor TENSOR T, B2 PP TENSOR| TENSOR
- Fpaz vy CORE CORE wt o3 i) | ‘CORE || | CORE
FRa3 PR32 INT FP33 PP
g faa]
FF32 FEa2 Sum with
- - FP16 Full precision FP32 Convert to
storage/input product accumulator FP32 result

more products

Dispatch Uit (32 thread/cik) Dispatch Unit {32 thread/ctk) -_l_.. . -

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) -

INT INT s pea) INT INT FPa2 PRE

INT FPa2 PR T EPa2 Fpad
Fraz e WT FPas Feal

PR EER TENSOR TENSOR INT| BER PP TENSOR TENSOR

FPO2 FPYI CORE CORE W PP Fead CORE CORE

FP33 PR32 Pt Fed D -

FP3Y FR3Z FP32 FP2

P32 7R3y P32 PN

FP16 or FP32

FP16 FP16 or FP32

Lo/ LD Lo/ Lo/
8T ST 57 ST SFU

Data Cache

https://devblogs.nvidia.com/inside-volta/

135

Tensor Core Microarchitecture (Volta)

= Each warp utilizes two tensor cores
= Each tensor core contains two “octets”
o 16 SIMD units per tensor core (8 per octet)
o 4x4 matrix-multiply and accumulate each cycle per tensor core

FP16 Multiplier

W FP32 Adder
Accumulator Buffer

Pipeline
Registers

SIMD unit

DP

Proposed* tensor core microarchitecture

v (Dot Pr?duct)
] Register File oot
g | - | | |
<I\:4§ - - Operand Bus 1 — \]
% — | IOnerand Bus 2 = ok —]
5 7 - MnerandBus3 & g_g_: \\ o]
5] 2 T P] - -
X S —TENSOR ,3,7 X_,U/ 5 Vi N7 \\E Unlike conventional SIMD,
S CORE . P Vi A atrix Vi A .
Hﬂ?ﬂ I*EFJH register contents are not
Octet 3 Octet 2 Octet 1 DEDEER private to each thread, but
Threadgroup 0 Threaderoup 4 1 :
i |] B 3] ouweto oo shared inside the warp
§ It Sd T~ z =
4y v~~~
Writeback

* M. A. Raihan, N. Goli and T. M. Aamodt, "Modeling Deep Learning Accelerator Enabled GPUs," ISPASS 2019.

136

Edge TPU: Baseline Accelerator

ML Model

SAFARI

TPU and Model Characterization
[]

\

— % —

Input
Activation

Output
Parameter Activation

‘ Dataflow

PE Array

=mm

B EEm
e

4MB
on-chip buffer

-7

’/

v
64x64 array
2TFLOPIs

137

Research Lecture on Edge TPU

Root Cause of Accelerator Challenges

The key components of Google Edge TPU are completel
oblivious to layer heterogeneity

* Dataflow

w P E A"ay
bandwidth ‘

Edge accelerators typically take a monolithic approach:
equip the accelerator with an over-provisioned PE array and
on-chip buffer, a rigid dataflow, and fixed off-chip bandwidth

Computer Architecture - Lecture 15: Cutting-edge Research in Computer Architecture | (Fall 2021)

689 views * Streamed live on Nov 18, 2021 75 28 CJ DISLIKE A) SHARE =+ SAVE
@ Onur MutIu'Lectures SUBSCRIBED N
&> 20.8K subscribers =

https://youtu.be/KPPfRRPENQgQO?t=2999 138

https://youtu.be/KPPfRRPENgQ?t=2999

Lecture on Systolic Arrays

J——
An Example Modern Systolic Array: TPU (I g =)

— | DDR3 DRAM Chips Onur Mutlu " B
) w0 ciars T -

4ciers oY) 0 GiBls e
& > Interk =D (w.ngm Fetcher)

o

G
e \
) Unified ‘157 Matrix Multiply
2 8 10 GiB/s Buffer Systolic [GiB/s Unit
14 GiBls | §| 1oceis| g & > (Local Data v | (64K por cycle)
s 4
2= 4:; Activatios Setup
< J‘> g < £ | Storage)
g
z

‘ Activation

1
El \Q\ 167 GiBls I -
J
& 3

are lhe blueel t FlFO and (he blue Uni led B

| I L DR ik w0 m

(UB)

o i

Digital Design & Computer Arch. - Lecture 19: VLIW, Systolic Arrays, DAE (ETH Ziirich,
Spring 2021)

2,724 views * Streamed live on May 7, 2021 75 63 CJ DISLIKE ;{) SHARE =+ SAVE

@ Onur Mutlu Lectures SUBSCRIBED Q
< ‘ iy 20.1K subscribers i

https://youtu.be/UtLy4Yagdys?t=2948 139

https://youtu.be/UtLy4Yagdys?t=2948

NVIDIA A100

= NVIDIA-speak:
0o 6912 stream processors
o “SIMT execution”

=3
NVIDIA.)
l

= Generic speak:
o 108 cores
a 64 SIMD functional units per core

a Tensor cores for Machine Learning
= Support for sparsity
= New floating point data type (TF32)

s https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/ 140

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

NVIDIA A100 Block Diagram

PCI Express 4.0 Host Interface

1l

Memory C

1l

Memory C

1l

Memory C

Memory C:

131]03u09 Aiowsyy | J3jj0u0g KlowRp

Memory C

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

108 cores on the A100

(Up to 128 cores in the full-blown chip)
40MB L2 cache

NVIDIA A100 Core

L1 Instruction Cache

19.5 TFLOPS Single Precision
9.7 TFLOPS Double Precision
312 TFLOPS for Deep Learning (Tensor cores)

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

L0 Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (84 x 32-bit) Register File (16,384 x 32-bit)

INT32 INT32 FP32 FP32 FP64 INT32 INT32 [FP32 FP32 FP64

INT32INT32 FP32 FP32 FP64 INT32 INT32 |[FP32 FP32 FP64
INT32INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32INT32 FP32 FP32 FP64 INT32 INT32 [FP32 FP32 FP64

TENSOR CORE TENSOR CORE
INT32INT32 FP32|FP32 FP64 INT32INT32 FP32 FP32 FP64
INT32INT32 FP32(FP32 FP64 INT32INT32 FP32 FP32 FP64 Sparse Tensor I
Input activations
Core P
INT32INT32 FP32|FP32 FP64 INT32INT32 FP32 FP32 FP64
Select

INT32INT32 FP32 FP32 FP&4 INT32 INT32 FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

f o

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

LD/ LD/
ST ST

LO Instruction Cache

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32 FP64

FP32 FP32 FP64

FP32 FP32 FP64

FP32 FP32 FP64

TENSOR CORE

FP32 FP32 FP64

FP32 FP32 FP64

FP32 FP32 FP64

FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST

SFU

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

LD/ LD/
ST ST

LO Instruction Cache

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FP64

FP32 FP32 FP64

TENSOR CORE

FP32 FP32 FP64

FP32 FP32 FP64

FP32 FP32 FP64

FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST

192KB L1 Data Cache / Shared Memory

Tex

Tex

Dense trained
weights

Dot-product

= zero entry

Fine-grained
structured pruning

—

2:4 sparsity: 2 non-
zero out of 4 entries

Compress

D

Fine-tune weights

v/
d.

Output activations

Non-zero
data values
Fine-tuned sparse and
compressed weights

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

142

Food tor Thought

Compare and contrast GPUs vs Systolic Arrays
o Which one is better for machine learning?

o Which one is better for image/vision processing?
o What types of parallelism each one exploits?

o What are the tradeoffs?

143

Heterogeneous Systems Course (Fall 2021)

= Short weekly lectures
= Hands-on projects

. mwumewestumhwvedmaﬂ
« Increased p ang energy

Livestream - P&S Hands-on
Acceleration on
Heterogeneous Computing
Systems (Fall 2021)

10 videos * 566 views * Updated 6 days ago

= I’) 2

@ OnurMutly g\ pccriBen
> Lectures

https://youtube.com/playlist?list=PL5Q2s0XY2Zi OwkTgEyA6tk3UsoPBH737

H Y Course: \

Hetero. Computing Systems (Fal|21)

Onur Mutlu Lectures

&y 2021)

Trace: * start +

:»L. f SAFARI Project & Seminars Courses (Fall

Recent Changes Media Manager Sitemap

Home
Projects

SoftMC

Ramulator

Accelerating Genomics
Mobile Genomics
Processing-in-Memory
Heterogeneous Systems
SSD Simulator

g 1: Hands-on Acceleration on

H g Y Course: M g 2: SIMD pi and GPU
architecture (Fall21)

Onur Mutlu Lectures

H g Y Course: A g 3: GPU Soft Hi hy (Fall
2021)

Onur Mutlu Lectures

Heterog Y Course: M
L 2021)

Onur Mutlu Lectures

g 4: GPU Memory Hierarchy (Fall

H Course: A
Con5|derat|ons (FaII 2021)

Onur Mutlu Lectures

- H g Y Course:

(Fall 2021)

Onur Mutlu Lectures

H g Y Course: M

(Fall 2021)

Onur Mutlu Lectures

H g Y Course: Meeti
(Fall 2021)

g 5: GPU Perf

g 6: Parallel Patterns: Reduction

g 7: Parallel Patterns: Histogram

g 8: Parallel Patterns: Convolution

_in_memory *

_systems

jen systems
Table of Contents

Hands-on Acceleration on Heterogeneous

Hands-on Acceleration on

Computing Systems B neous LORAD
Edit Course Description
Course Description Mentors
Lecture Video Playlist on
The increasing difficulty of scaling the performance and efficiency of YouTube
CPUs every year has created the need for turning computers into Fal 2021 Mostinge/Sofiedily
heterogeneous ie., of multiple types of Laerning Materials

Assignments
processors that can suit better different types of workloads or parts of

them. More than a decade ago, Graphics Processing Units (GPUs)

became general-purpose parallel processors, in order to make their outstanding processing capabilities
available to many workloads beyond graphics. GPUs have been critical key to the recent rise of Machine
Learning and Artificial Intelligence, which took unrealistic training times before the use of GPUs. Field-
Programmable Gate Arrays (FPGAs) are another example computing device that can deliver impressive
benefits in terms of performance and energy efficiency. More specific examples are (1) a plethora of
specialized accelerators (e.g., Tensor Processing Units for neural), and (2) r data pr
architectures (i.e., placing compute capabilities near or inside memory/storage).

Despite the great advances in the of heter)

challenges to tackle, for example:

in recent years, there are still many

« F i 1s (using GPUs, FPGAs, TPUs) of modern applications from
mponant fields such as bioinformatics, machine learning, graph processing, medical imaging,
personalized medicine, robotics, virtual reality, etc.

. ing i for systems with different general-purpose processors and
, e.9., kernel memory scheduling, etc.
. d ization and prog g tools that enable easier and more efficient use of

heterogeneous systems.

If you are enthusiastic about working hands-on with different software, hardware, and architecture
projects for heterogeneous systems, this is your P&S. You will have the opportunity to program
heterogeneous systems with different types of devices (CPUs, GPUs, FPGAs, TPUs), propose
algorithmic changes to important to better ge the power of heterogeneous
systems, understand different workloads and identify the most suitable device for their execution, design
optimized scheduling techniques, etc. In general, the goal will be to reach the highest performance
reported for a given important application.

Prerequisites of the course:

« Digital Design and Computer Architecture (or equivalent course).
Familiarity with C/C++ programming and strong codlng skills.

Interest in future computer i and i

Interest in discovering why things do or do not work and sclvmg problems
Interest in making systems efficient and usable

The course is conducted in English.

The course has two main parts:
1. Short weekly lectures on GPU and heterogeneous programming.
2. Hands-on project: Each student develops his/her own project.

https://safari.ethz.ch/projects and seminars/fall2021/doku.php?id

=heterogeneous _systems

144

https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=processing_in_memory
https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=heterogeneous_systems
https://youtube.com/playlist?list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://youtube.com/playlist?list=PL5Q2soXY2Zi_OwkTgEyA6tk3UsoPBH737

Computer Architecture
Lecture 25: SIMD Processors
and GPUs

Dr. Juan Gomez Luna
Prof. Onur Mutlu
ETH Zurich
Fall 2022
05 January 2023

Clarification of Some GPU Terms

Vector length

Pipelined
functional unit /
Scalar pipeline

SIMD functional
unit /
SIMD pipeline

GPU core

Warp size

Streaming
processor /
CUDA core

Group of N
streaming
processors (e.g.,
N=8 in GTX 285,
N=16 in Fermi)

Streaming
multiprocessor

Wavefront size

Vector ALU

Compute unit

Number of threads that run in parallel (lock-step)
on a SIMD functional unit

Functional unit that executes instructions for one
GPU thread

SIMD functional unit that executes instructions for
an entire warp

It contains one or more warp schedulers and one
or several SIMD pipelines

146

	Slide 1: Computer Architecture Lecture 25: SIMD Processors and GPUs
	Slide 2: Agenda for This Lecture
	Slide 3: Recommended Readings
	Slide 4: Exploiting Data Parallelism: SIMD Processors and GPUs
	Slide 5: SIMD Processing: Exploiting Regular (Data) Parallelism
	Slide 6: Flynn’s Taxonomy of Computers
	Slide 7: Flynn’s Taxonomy of Computers
	Slide 8: MISD Example from Flynn
	Slide 9: Lecture on Systolic Arrays
	Slide 10: SIMD Example from Flynn
	Slide 11: Flynn’s Taxonomy of Computers
	Slide 12: Data Parallelism
	Slide 13: SIMD Processing
	Slide 14: Storing Multiple Data Elements: Vector Registers
	Slide 15: Array vs. Vector Processors
	Slide 16: SIMD Array Processing vs. VLIW
	Slide 17: SIMD Array Processing vs. VLIW
	Slide 18: Lecture on VLIW
	Slide 19: Vector Processors (I)
	Slide 20: Vector Stride Example: Matrix Multiply
	Slide 21: Vector Processors (II)
	Slide 22: Vector Processor Advantages
	Slide 23: Vector Processor Disadvantages
	Slide 24: Recommended Paper
	Slide 25: Amdahl’s Law
	Slide 26: Vector Processor Limitations
	Slide 27: Vector Processing in More Depth
	Slide 28: Vector Registers
	Slide 29: Vector Functional Units
	Slide 30: Vector Machine Organization (CRAY-1)
	Slide 31: Recommended Paper
	Slide 32: CRAY X-MP-28 @ ETH (CAB, E Floor)
	Slide 33: CRAY X-MP System Organization
	Slide 34: CRAY X-MP Design Detail
	Slide 35: CRAY X-MP CPU Functional Units
	Slide 36: CRAY X-MP System Configuration
	Slide 37: Seymour Cray, Leader in Supercomputer Design
	Slide 38: Vector Machine Organization (CRAY-1)
	Slide 39: Loading/Storing Vectors from/to Memory
	Slide 40: Memory Banking
	Slide 41: Vector Memory System
	Slide 42: Scalar Code Example: Element-Wise Avg.
	Slide 43: Scalar Code Execution Time (In Order)
	Slide 44: Vectorizable Loops
	Slide 45: Basic Vector Code Performance
	Slide 46: Vector Chaining
	Slide 47: Vector Code Performance - Chaining
	Slide 48: Vector Code Performance – Multiple Memory Ports
	Slide 49: Questions (I)
	Slide 50: (Vector) Stripmining
	Slide 51: Questions (II)
	Slide 52: Gather/Scatter Operations
	Slide 53: Gather/Scatter Operations
	Slide 54: Conditional Operations in a Loop
	Slide 55: Another Example with Masking
	Slide 56: Masked Vector Instructions
	Slide 57: Some Issues
	Slide 58: Bank Conflicts in Matrix Multiplication
	Slide 59: Minimizing Bank Conflicts
	Slide 60: Minimizing Bank Conflicts: Recommended Reading
	Slide 61: Array vs. Vector Processors, Revisited
	Slide 62: Recall: Array vs. Vector Processors
	Slide 63: Vector Instruction Execution
	Slide 64: Vector Unit Structure
	Slide 65: Vector Instruction Level Parallelism
	Slide 66: Automatic Code Vectorization
	Slide 67: Vector/SIMD Processing Summary
	Slide 68: Recall: Amdahl’s Law
	Slide 69: SIMD Operations in Modern ISAs
	Slide 70: SIMD ISA Extensions
	Slide 71: Intel Pentium MMX Operations
	Slide 72: MMX Example: Image Overlaying (I)
	Slide 73: MMX Example: Image Overlaying (II)
	Slide 74: SIMD Operations in Modern (Machine Learning) Accelerators
	Slide 75: Cerebras’s Wafer Scale Engine (2019)
	Slide 76: Cerebras’s Wafer Scale Engine-2 (2021)
	Slide 77: Size, Place, and Route in Cerebras’s WSE
	Slide 78: Recall: Flynn’s Taxonomy of Computers
	Slide 79: A MIMD Machine with SIMD Processors (I)
	Slide 80: A MIMD Machine with SIMD Processors (II)
	Slide 81: Fine-Grained Multithreading
	Slide 82: Fine-Grained Multithreading
	Slide 83: Fine-Grained Multithreading (II)
	Slide 84: Multithreaded Pipeline Example
	Slide 85: Fine-grained Multithreading (III)
	Slide 86: Lecture on Fine-Grained Multithreading
	Slide 87: Lectures on Fine-Grained Multithreading
	Slide 88: GPUs (Graphics Processing Units)
	Slide 89: GPUs are SIMD Engines Underneath
	Slide 90: Programming Model vs. Hardware Execution Model
	Slide 91: How Can You Exploit Parallelism Here?
	Slide 92: Prog. Model 1: Sequential (SISD)
	Slide 93: Prog. Model 2: Data Parallel (SIMD)
	Slide 94: Prog. Model 3: Multithreaded
	Slide 95: Prog. Model 3: Multithreaded
	Slide 96: A GPU is a SIMD (SIMT) Machine
	Slide 97: SPMD on SIMT Machine
	Slide 98: Graphics Processing Units SIMD not Exposed to Programmer (SIMT)
	Slide 99: SIMD vs. SIMT Execution Model
	Slide 100: Fine-Grained Multithreading of Warps
	Slide 101: Warps and Warp-Level FGMT
	Slide 102: High-Level View of a GPU
	Slide 103: Latency Hiding via Warp-Level FGMT
	Slide 104: Warp Execution (Recall the Slide)
	Slide 105
	Slide 106: Warp Instruction Level Parallelism
	Slide 107: SIMT Memory Access
	Slide 108: Warps not Exposed to GPU Programmers
	Slide 109: Sample GPU SIMT Code (Simplified)
	Slide 110: Sample GPU Program (Less Simplified)
	Slide 111: Lecture on GPU Programming
	Slide 112: Heterogeneous Systems Course (Fall 2021)
	Slide 113: From Blocks to Warps
	Slide 114: Warp-based SIMD vs. Traditional SIMD
	Slide 115: SPMD
	Slide 116: SIMD vs. SIMT Execution Model
	Slide 117: Threads Can Take Different Paths in Warp-based SIMD
	Slide 118: Control Flow Problem in GPUs/SIMT
	Slide 119: Remember: Each Thread Is Independent
	Slide 120: Dynamic Warp Formation/Merging
	Slide 121: Dynamic Warp Formation/Merging
	Slide 122: Dynamic Warp Formation Example
	Slide 123: Hardware Constraints Limit Flexibility of Warp Grouping
	Slide 124: Large Warps and Two-Level Warp Scheduling
	Slide 125: Large Warp Microarchitecture Example
	Slide 126: Two-Level Round Robin
	Slide 127: An Example GPU
	Slide 128: NVIDIA GeForce GTX 285
	Slide 129: NVIDIA GeForce GTX 285 “core”
	Slide 130: NVIDIA GeForce GTX 285 “core”
	Slide 131: NVIDIA GeForce GTX 285
	Slide 132: Evolution of NVIDIA GPUs
	Slide 133: NVIDIA V100
	Slide 134: NVIDIA V100 Block Diagram
	Slide 135: NVIDIA V100 Core
	Slide 136: Tensor Core Microarchitecture (Volta)
	Slide 137: Edge TPU: Baseline Accelerator
	Slide 138: Research Lecture on Edge TPU
	Slide 139: Lecture on Systolic Arrays
	Slide 140: NVIDIA A100
	Slide 141: NVIDIA A100 Block Diagram
	Slide 142: NVIDIA A100 Core
	Slide 143: Food for Thought
	Slide 144: Heterogeneous Systems Course (Fall 2021)
	Slide 145: Computer Architecture Lecture 25: SIMD Processors and GPUs
	Slide 146: Clarification of Some GPU Terms

