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Agenda for This Lecture

◼ SIMD Processing

❑ Vector and Array Processors

◼ Graphics Processing Units (GPUs)
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Recommended Readings

◼ Peleg and Weiser, “MMX Technology Extension to the Intel 
Architecture,” IEEE Micro 1996.

◼ Lindholm et al., "NVIDIA Tesla: A Unified Graphics and 
Computing Architecture," IEEE Micro 2008.
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Exploiting Data Parallelism:

SIMD Processors and GPUs



SIMD Processing:

Exploiting Regular (Data) Parallelism



Flynn’s Taxonomy of Computers

◼ Mike Flynn, “Very High-Speed Computing Systems,” Proc. 
of IEEE, 1966

◼ SISD: Single instruction operates on single data element

◼ SIMD: Single instruction operates on multiple data elements

❑ Array processor

❑ Vector processor

◼ MISD: Multiple instructions operate on single data element

❑ Closest form: systolic array processor, streaming processor

◼ MIMD: Multiple instructions operate on multiple data 
elements (multiple instruction streams)

❑ Multiprocessor

❑ Multithreaded processor
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Flynn’s Taxonomy of Computers

◼ Mike Flynn, “Very High-Speed Computing Systems,” Proc. 
of IEEE, 1966
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MISD Example from Flynn

8Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE, 1966

Similar to a “generalized” systolic array



Lecture on Systolic Arrays

9https://youtu.be/UtLy4Yagdys?t=2948

https://youtu.be/UtLy4Yagdys?t=2948


SIMD Example from Flynn

10Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE, 1966

Similar to an “array processor”



Flynn’s Taxonomy of Computers

◼ Mike Flynn, “Very High-Speed Computing Systems,” Proc. 
of IEEE, 1966

◼ SISD: Single instruction operates on single data element

◼ SIMD: Single instruction operates on multiple data elements

❑ Array processor

❑ Vector processor

◼ MISD: Multiple instructions operate on single data element

❑ Closest form: systolic array processor, streaming processor

◼ MIMD: Multiple instructions operate on multiple data 
elements (multiple instruction streams)

❑ Multiprocessor

❑ Multithreaded processor
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Data Parallelism

◼ Concurrency arises from performing the same operation on 
different pieces of data

❑ Single instruction multiple data (SIMD)

❑ E.g., dot product of two vectors

◼ Contrast with data flow

❑ Concurrency arises from executing different operations in parallel (in 
a data driven manner)

◼ Contrast with thread (“control”) parallelism

❑ Concurrency arises from executing different threads of control in 
parallel

◼ SIMD exploits operation-level parallelism on different data

❑ Same operation concurrently applied to different pieces of data

❑ A form of ILP where instruction happens to be the same across data
12



SIMD Processing

◼ Single instruction operates on multiple data elements

❑ In time or in space

◼ Multiple processing elements (PEs), i.e., execution units

◼ Time-space duality

❑ Array processor: Instruction operates on multiple data 
elements at the same time using different spaces (PEs)

❑ Vector processor: Instruction operates on multiple data 
elements in consecutive time steps using the same space (PE)
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Storing Multiple Data Elements: Vector Registers

◼ Each vector data register holds N M-bit values

❑ Each register stores a vector 

❑ Not a (single) scalar value as we saw before
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V0,0
V0,1

V0,N-1

V1,0
V1,1

V1,N-1

V0

M-bit wide

V1 V2

M-bit wide

PE



Array vs. Vector Processors
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ARRAY PROCESSOR VECTOR PROCESSOR

LD     VR  A[3:0]

ADD  VR  VR, 1 

MUL  VR  VR, 2

ST     A[3:0]  VR

Instruction Stream

Time

LD0 LD1 LD2 LD3

AD0 AD1 AD2 AD3

MU0 MU1 MU2 MU3

ST0 ST1 ST2 ST3

LD0

LD1 AD0

LD2 AD1 MU0

LD3 AD2 MU1 ST0

AD3 MU2 ST1

MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space



SIMD Array Processing vs. VLIW

◼ VLIW: Multiple independent operations packed together into a “long inst.”
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SIMD Array Processing vs. VLIW

◼ Array processor: Single operation on multiple (different) data elements
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Lecture on VLIW

18https://youtu.be/UtLy4Yagdys

https://youtu.be/UtLy4Yagdys


Vector Processors (I)

◼ A vector is a one-dimensional array of numbers

◼ Many scientific/commercial programs use vectors

for (i = 0; i<=49; i++)

C[i] = (A[i] + B[i]) / 2

◼ A vector processor is one whose instructions operate on 
vectors rather than scalar (single data) values

◼ Basic requirements

❑ Need to load/store vectors → vector registers (contain vectors)

❑ Need to operate on vectors of different lengths → vector length 

register (VLEN)

❑ Elements of a vector might be stored apart from each other in 
memory → vector stride register (VSTR)

◼ Stride: distance in memory between two elements of a vector
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◼ A and B matrices, both stored in memory in row-major order

◼ Load A’s row 0 (A00 through A05) into vector register V1

❑ Each time, increment address by 1 to access the next column

❑ Accesses have a stride of 1

◼ Load B’s column 0 (B00 through B50) into vector register V2

❑ Each time, increment address by 10 to access the next row

❑ Accesses have a stride of 10

Vector Stride Example: Matrix Multiply

A4x6 B6x10 → C4x10

Dot product of each row vector of 

A with each column vector of B

A

Linear Memory

B

0

1

2

3

4

5

6

0

1

2

3

4

5

6

7

8

9
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Vector Processors (II)

◼ A vector instruction performs an operation on each element 
in consecutive cycles

❑ Vector functional units are pipelined

❑ Each pipeline stage operates on a different data element

◼ Vector instructions allow deeper pipelines

❑ No intra-vector dependencies → no hardware interlocking 

needed within a vector

❑ No control flow within a vector

❑ Known stride allows easy address calculation for all vector 
elements

◼ Enables easy loading (or even early loading, i.e., prefetching) of 
vectors into registers/cache/memory
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Vector Processor Advantages

+ No dependencies within a vector 

❑ Pipelining & parallelization work really well

❑ Can have very deep pipelines (without the penalty of deep pipelines) 

+ Each instruction generates a lot of work (i.e., operations) 

❑ Reduces instruction fetch bandwidth requirements

❑ Amortizes instruction fetch and control overhead over many data

--> Leads to high energy efficiency per operation

+ No need to explicitly code loops 

❑ Fewer branches in the instruction sequence

+ Highly regular memory access pattern 

22



Vector Processor Disadvantages

-- Works (only) if parallelism is regular (data/SIMD parallelism)

++ Vector operations

-- Very inefficient if parallelism is irregular

-- How about searching for a key in a linked list?

23Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.



Recommended Paper

24Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.



Amdahl’s Law

◼ Amdahl’s Law

❑ f: Parallelizable fraction of a program

❑ N: Number of processors

❑ Amdahl, “Validity of the single processor approach to achieving large scale 
computing capabilities,” AFIPS 1967. 

◼ Maximum speedup limited by serial portion: Serial bottleneck

◼ All parallel machines “suffer from” the serial bottleneck

25

Speedup =
1

+1 - f
f

N



Vector Processor Limitations

-- Memory (bandwidth) can easily become a bottleneck, 
especially if

1. compute/memory operation balance is not maintained

2. data is not mapped appropriately to memory banks
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Vector Processing in More Depth



Vector Registers

◼ Each vector data register holds N M-bit values

◼ Vector control registers: VLEN, VSTR, VMASK

◼ Maximum VLEN can be N

❑ Maximum number of elements stored in a vector register

◼ Vector Mask Register (VMASK)

❑ Indicates which elements of vector to operate on

❑ Set by vector test instructions

◼ e.g., VMASK[i] = (V
k
[i] == 0)
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V0,0
V0,1

V0,N-1

V1,0
V1,1

V1,N-1

M-bit wide M-bit wide



Vector Functional Units

◼ Use a deep pipeline to execute 
element operations

→ fast clock cycle

◼ Control of deep pipeline is 
simple because elements in 
vector are independent  

29

V
1

V
2

V
3

V1 * V2 → V3

Six stage multiply pipeline

Slide credit: Krste Asanovic



Vector Machine Organization (CRAY-1)

◼ CRAY-1

◼ Russell, “The CRAY-1 
computer system,”
CACM 1978.

◼ Scalar and vector modes

◼ 8 64-element vector 
registers

◼ 64 bits per element

◼ 16 memory banks

◼ 8 64-bit scalar registers

◼ 8 24-bit address registers
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Recommended Paper

Russell, 

“The CRAY-1 computer system,”

CACM 1978.
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CRAY X-MP-28 @ ETH (CAB, E Floor)
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CRAY X-MP System Organization

33

Cray Research Inc., “The 

CRAY X-MP Series of 

Computer Systems,” 1985



CRAY X-MP Design Detail
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Cray Research Inc., “The 

CRAY X-MP Series of 

Computer Systems,” 1985



CRAY X-MP CPU Functional Units
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Cray Research Inc., “The 

CRAY X-MP Series of 

Computer Systems,” 1985



CRAY X-MP System Configuration
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Cray Research Inc., “The 

CRAY X-MP Series of 

Computer Systems,” 1985



Seymour Cray, Leader in Supercomputer Design
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"If you were plowing a field, which would you 
rather use: Two strong oxen or 1024 chickens?"

© amityrebecca / Pinterest. https://www.pinterest.ch/pin/473018767088408061/

© Scott Sinklier / Corbis. http://america.aljazeera.com/articles/2015/2/20/the-short-brutal-life-of-male-chickens.html

https://en.wikipedia.org/wiki/Seymour_Cray



Vector Machine Organization (CRAY-1)

◼ CRAY-1

◼ Russell, “The CRAY-1 
computer system,”
CACM 1978.

◼ Scalar and vector modes

◼ 8 64-element vector 
registers

◼ 64 bits per element

◼ 16 memory banks

◼ 8 64-bit scalar registers

◼ 8 24-bit address registers
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Loading/Storing Vectors from/to Memory

◼ Requires loading/storing multiple elements

◼ Elements separated from each other by a constant distance 
(stride)

❑ Assume stride = 1 for now

◼ Elements can be loaded in consecutive cycles if we can 
start the load of one element per cycle

❑ Can sustain a throughput of one element per cycle

◼ Question: How do we achieve this with a memory that 
takes more than 1 cycle to access?

◼ Answer: Bank the memory; interleave the elements across 
banks

39



Memory Banking
◼ Memory is divided into banks that can be accessed independently; 

banks share address and data buses (to minimize pin cost)

◼ Can start and complete one bank access per cycle

◼ Can sustain N concurrent accesses if all N go to different banks

40

Bank

0

Bank

1

MDR MAR

Bank

2

Bank

15

MDR MAR MDR MAR MDR MAR

Data bus

Address bus

CPU

Picture credit: Derek Chiou



Vector Memory System

◼ Next address = Previous address + Stride

◼ If (stride == 1) && (consecutive elements interleaved 
across banks) && (number of banks >= bank latency), then

❑ we can sustain 1 element/cycle throughput

41

0 1 2 3 4 5 6 7 8 9 A B C D E F

+

Base Stride
Vector Registers

Memory Banks

Address 
Generator

Picture credit: Krste Asanovic



Scalar Code Example: Element-Wise Avg.

◼ For I = 0 to 49

❑ C[i] = (A[i] + B[i]) / 2

◼ Scalar code (instruction and its latency)

MOVI R0 = 50 1

MOVA R1 = A 1

MOVA R2 = B 1

MOVA R3 = C 1

X:  LD R4 = MEM[R1++] 11  ;autoincrement addressing

LD R5 = MEM[R2++] 11

ADD R6 = R4 + R5 4

SHFR R7 = R6 >> 1 1

ST MEM[R3++] = R7 11

DECBNZ R0, X 2   ;decrement and branch if NZ

42

304 dynamic instructions



Scalar Code Execution Time (In Order)
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◼ Scalar execution time on an in-order processor with 1 bank

❑ First two loads in the loop cannot be pipelined: 2*11 cycles

❑ 4 + 50*40 = 2004 cycles

◼ Scalar execution time on an in-order processor with 16 
banks (word-interleaved: consecutive words are stored in 
consecutive banks)

❑ First two loads in the loop can be pipelined

❑ 4 + 50*30 = 1504 cycles

◼ Why 16 banks?

❑ 11-cycle memory access latency

❑ Having 16 (>11) banks ensures there are enough banks to 
overlap enough memory operations to cover memory latency



Vectorizable Loops

◼ A loop is vectorizable if each iteration is independent of any 
other

◼ For I = 0 to 49

❑ C[i] = (A[i] + B[i]) / 2

◼ Vectorized loop (each instruction and its latency):

MOVI VLEN = 50 1

MOVI VSTR = 1 1

VLD V0 = A 11 + VLEN – 1

VLD V1 = B 11 + VLEN – 1

VADD V2 = V0 + V1 4 + VLEN – 1

VSHFR V3 = V2 >> 1 1 + VLEN – 1

VST C = V3 11 + VLEN – 1

44

7 dynamic instructions



Basic Vector Code Performance

◼ Assume no chaining (no vector data forwarding)

❑ i.e., output of a vector functional unit cannot be used as the 
direct input of another 

❑ The entire vector register needs to be ready before any 
element of it can be used as part of another operation

◼ One memory port (one address generator)

◼ 16 memory banks (word-interleaved)

◼ 285 cycles

45

1 1 11 49 11 49 4 49 1 49 11 49

V0 = A[0..49] V1 = B[0..49] ADD SHIFT STORE

VLD V0=A VLD V1=B VADD V2=V0+V1 VSHFR V3=V2>>1 VST C=V3



Vector Chaining

◼ Vector chaining: Data forwarding from one vector 
functional unit to another

46

Memory

V
1

Load 
Unit

Mult.

V
2

V
3

Chain

Add

V
4

V
5

Chain

LV   v1

MULV v3,v1,v2

ADDV v5, v3, v4

Slide credit: Krste Asanovic



Vector Code Performance - Chaining

◼ Vector chaining: Data forwarding from one vector 
functional unit to another

◼ 182 cycles

47

1 1 11 49 11 49

4 49

1 49

11 49

These two VLDs cannot be 

pipelined. WHY?

VLD and VST cannot be 

pipelined. WHY?

Strict assumption:

Each memory bank 

has a single port 

(memory bandwidth

bottleneck)

VLD V0=A VLD V1=B

VADD V2=V0+V1

VSHFR V3=V2>>1

VST C=V3



Vector Code Performance – Multiple Memory Ports

◼ Chaining and 2 load ports, 1 store port in each bank

◼ 79 cycles

◼ 19X perf. improvement!

48

1 1 11 49

4 49

1 49

11 49

11 491

VLD V0=A

VLD V1=B

VADD V2=V0+V1

VSHFR V3=V2>>1

VST C=V3



Questions (I)

◼ What if # data elements > # elements in a vector register?

❑ Idea: Break loops so that each iteration operates on # 
elements in a vector register

◼ E.g., 527 data elements, 64-element VREGs

◼ 8 iterations where VLEN = 64

◼ 1 iteration where VLEN = 15 (need to change value of VLEN)

❑ Called vector stripmining

49



(Vector) Stripmining

50Source: https://en.wikipedia.org/wiki/Surface_mining

https://en.wikipedia.org/wiki/Surface_mining


Questions (II)

◼ What if vector data is not stored in a strided fashion in 
memory? (irregular memory access to a vector)

❑ Idea: Use indirection to combine/pack elements into vector 
registers

❑ Called scatter/gather operations

❑ Doing so also helps with avoiding useless computation on 
sparse vectors (i.e., vectors where many elements are 0)

51



Gather/Scatter Operations

52

Want to vectorize loops with indirect accesses:

for (i=0; i<N; i++)

A[i] = B[i] + C[D[i]]

Indexed load instruction (Gather)

LV vD, rD       # Load indices in D vector

LVI vC, rC, vD  # Load indirect from rC base

LV vB, rB       # Load B vector

ADDV.D vA,vB,vC # Do add

SV vA, rA       # Store result



Gather/Scatter Operations

◼ Gather/scatter operations often implemented in hardware 
to handle sparse vectors (matrices) or indirect indexing

◼ Vector loads and stores use an index vector which is added 
to the base register to generate the addresses

◼ Scatter example

53

Index Vector                 Data Vector (to Store)            Stored Vector (in Memory)

0 3.14 Base+0      3.14

2 6.5 Base+1      X

6 71.2 Base+2      6.5

7 2.71 Base+3      X

Base+4      X

Base+5      X

Base+6    71.2

Base+7      2.71 



Conditional Operations in a Loop

◼ What if some operations should not be executed on a vector 
(based on a dynamically-determined condition)?

loop: for (i=0; i<N; i++)

if (a[i] != 0) then b[i]=a[i]*b[i]

◼ Idea: Masked operations 

❑ VMASK register is a bit mask determining which data element 
should not be acted upon

VLD V0 = A

VLD V1 = B

VMASK = (V0 != 0)

VMUL V1 = V0 * V1

VST B = V1

❑ This is predicated execution. Execution is predicated on mask bit.
54



Another Example with Masking
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for (i = 0; i < 64; ++i)

if (a[i] >= b[i]) 

c[i] = a[i]

else 

c[i] = b[i]

A B VMASK    

1 2 0                 

2 2 1

3 2 1

4 10 0

-5 -4 0

0 -3 1

6 5 1

-7 -8 1

Steps to execute the loop in SIMD code

1. Compare A, B to get 

VMASK

2. Masked store of A into C

3. Complement VMASK

4. Masked store of B into C



Masked Vector Instructions
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C[4]

C[5]

C[1]

Write data port

A[7] B[7]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

Density-Time Implementation

– scan mask vector and only execute 
elements with non-zero masks

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

Write data portWrite Enable

A[7] B[7]M[7]=1

Simple Implementation

– execute all N operations, turn off 
result writeback according to mask

Slide credit: Krste Asanovic

Which one is better?

Tradeoffs?



Some Issues

◼ Stride and banking

❑ As long as they are relatively prime to each other and there 
are enough banks to cover bank access latency, we can 
sustain 1 element/cycle throughput

◼ Storage format of a matrix

❑ Row major: Consecutive elements in a row are laid out 
consecutively in memory

❑ Column major: Consecutive elements in a column are laid out 
consecutively in memory

❑ You need to change the stride when accessing a row versus 
column

57



◼ A and B matrices, both stored in memory in row-major order

◼ Load A’s row 0 into vector register V1

❑ Each time, increment address by 1 to access the next column

❑ Accesses have a stride of 1

◼ Load B’s column 0 into vector register V2

❑ Each time, increment address by 10

❑ Accesses have a stride of 10

Bank Conflicts in Matrix Multiplication

58

A4x6 B6x10 → C4x10

Dot product of each row vector of 

A with each column vector of B

Different strides can lead 

to bank conflicts

How do we minimize them?



Minimizing Bank Conflicts

◼ More banks

◼ More ports in each bank

◼ Better data layout to match the access pattern

❑ Is this always possible?

◼ Better mapping of address to bank

❑ E.g., randomized mapping

❑ Rau, “Pseudo-randomly interleaved memory,” ISCA 1991.

59



Minimizing Bank Conflicts: Recommended Reading

60Rau, “Pseudo-randomly Interleaved Memory,” ISCA 1991.



Array vs. Vector Processors, Revisited

◼ Array vs. vector processor distinction is a “purist’s” 
distinction

◼ Most “modern” SIMD processors are a combination of both

❑ They exploit data parallelism in both time and space

❑ GPUs are a prime example we will cover in a bit more detail

61



Recall: Array vs. Vector Processors

62

ARRAY PROCESSOR VECTOR PROCESSOR

LD     VR  A[3:0]

ADD  VR  VR, 1 

MUL  VR  VR, 2

ST     A[3:0]  VR

Instruction Stream

Time

LD0 LD1 LD2 LD3

AD0 AD1 AD2 AD3

MU0 MU1 MU2 MU3

ST0 ST1 ST2 ST3

LD0

LD1 AD0

LD2 AD1 MU0

LD3 AD2 MU1 ST0

AD3 MU2 ST1

MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space



Vector Instruction Execution
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VADD A,B → C

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using 
one pipelined 
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using 
four pipelined 
functional units

Slide credit: Krste Asanovic

Time

Space

Time



Vector Unit Structure

64

Lane

Functional Unit

Partitioned
Vector
Registers

Memory Subsystem

Elements 0, 
4, 8, …

Elements 1, 
5, 9, …

Elements 2, 
6, 10, …

Elements 3, 
7, 11, …

Slide credit: Krste Asanovic



Vector Instruction Level Parallelism

Can overlap execution of multiple vector instructions
❑ Example machine has 32 elements per vector register and 8 lanes

❑ Completes 24 operations/cycle while issuing 1 vector instruction/cycle

65

load

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

Instruction 
issue

Slide credit: Krste Asanovic



Automatic Code Vectorization

66

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vectorization is a compile-time reordering of 
operation sequencing
 requires extensive loop dependence analysis

Vector Instruction

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2

Vectorized Code

T
im

e

Slide credit: Krste Asanovic



Vector/SIMD Processing Summary

◼ Vector/SIMD machines are good at exploiting regular data-
level parallelism

❑ Same operation performed on many data elements

❑ Improve performance, simplify design (no intra-vector 
dependencies)

◼ Performance improvement limited by vectorizability of code

❑ Scalar operations limit vector machine performance

❑ Remember Amdahl’s Law

❑ CRAY-1 was the fastest SCALAR machine at its time!

◼ Many existing ISAs include (vector-like) SIMD operations

❑ Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD

67



Recall: Amdahl’s Law

◼ Amdahl’s Law

❑ f: Parallelizable fraction of a program

❑ N: Number of processors

❑ Amdahl, “Validity of the single processor approach to achieving large scale 
computing capabilities,” AFIPS 1967. 

◼ Maximum speedup limited by serial portion: Serial bottleneck

◼ All parallel machines “suffer from” the serial bottleneck

68

Speedup =
1

+1 - f
f

N



SIMD Operations in Modern ISAs



SIMD ISA Extensions

◼ Single Instruction Multiple Data (SIMD) extension 
instructions

❑ Single instruction acts on multiple pieces of data at once

❑ Common application: graphics

❑ Perform short arithmetic operations (also called packed 
arithmetic)

◼ For example: add four 8-bit numbers

◼ Must modify ALU to eliminate carries between 8-bit values

padd8 $s2, $s0, $s1

a
0

0781516232432 Bit position

$s0a
1

a
2

a
3

b
0

$s1b
1

b
2

b
3

a
0
 + b

0
$s2a

1
 + b

1
a

2
 + b

2
a

3
 + b

3

+

70



Intel Pentium MMX Operations

◼ Idea: One instruction operates on multiple data elements 
simultaneously

❑ À la array processing (yet much more limited)

❑ Designed with multimedia (graphics) operations in mind

71

Peleg and Weiser, “MMX Technology

Extension to the Intel Architecture,”
IEEE Micro, 1996.

No VLEN register

Opcode determines data type:

8 8-bit bytes

4 16-bit words

2 32-bit doublewords

1 64-bit quadword

Stride is always equal to 1.



MMX Example: Image Overlaying (I)

◼ Goal: Overlay the human in image x on top of the background in image y

72Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.

Image x[ ]

Image y[ ] Image new_image[ ]

Blue 

background

Image x[ ]

Bit mask

Blossom 

background



MMX Example: Image Overlaying (II)

73Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.

Y = Blossom image X = Woman’s image



SIMD Operations in 

Modern (Machine Learning) Accelerators



Cerebras’s Wafer Scale Engine (2019)

75

Cerebras WSE               

1.2 Trillion transistors

46,225 mm2

Largest GPU               

21.1 Billion transistors

815 mm2

◼ The largest ML 

accelerator chip (2019)

◼ 400,000 cores 

NVIDIA TITAN V

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/


Cerebras’s Wafer Scale Engine-2 (2021)

76

Cerebras WSE-2               

2.6 Trillion transistors

46,225 mm2

Largest GPU               

54.2 Billion transistors

826 mm2

◼ The largest ML 

accelerator chip (2021)

◼ 850,000 cores 

NVIDIA Ampere GA100

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/


Size, Place, and Route in Cerebras’s WSE

◼ Neural network mapping onto the whole wafer is a 
challenge

77James et al., “ISPD 2020 Physical Mapping of Neural Networks on a Wafer-Scale Deep Learning Accelerator.”

Multiple possible mappings

An example mapping

Different dies of the wafer work 
on different layers of the neural 
network: MIMD machine



Recall: Flynn’s Taxonomy of Computers

◼ Mike Flynn, “Very High-Speed Computing Systems,” Proc. 
of IEEE, 1966

◼ SISD: Single instruction operates on single data element

◼ SIMD: Single instruction operates on multiple data elements

❑ Array processor

❑ Vector processor

◼ MISD: Multiple instructions operate on single data element

❑ Closest form: systolic array processor, streaming processor

◼ MIMD: Multiple instructions operate on multiple data 
elements (multiple instruction streams)

❑ Multiprocessor

❑ Multithreaded processor

78



A MIMD Machine with SIMD Processors (I)

◼ MIMD machine

❑ Distributed memory (no shared memory)

❑ 2D-mesh interconnection fabric

79Rocki et al., “Fast stencil-code computation on a wafer-scale processor.” SC 2020.

84 dies4539 tiles



A MIMD Machine with SIMD Processors (II)

◼ SIMD processors

❑ 4-way SIMD for 16-bit floating point operands

❑ 48 KB of local SRAM

80Rocki et al., “Fast stencil-code computation on a wafer-scale processor.” SC 2020.

4-way SIMD fused-multiply 

accumulate (FMAC) units.
AXPY: y = a * x + y

Address registers

Local memory



Fine-Grained Multithreading

81



Fine-Grained Multithreading

◼ Idea: Hardware has multiple thread contexts (PC+registers). 
Each cycle, fetch engine fetches from a different thread.

❑ By the time the fetched branch/instruction resolves, no 
instruction is fetched from the same thread

❑ Branch/instruction resolution latency overlapped with execution 
of other threads’ instructions

+ No logic needed for handling control and

data dependences within a thread 

-- Single thread performance suffers 

-- Extra logic for keeping thread contexts

-- Does not overlap latency if not enough 

threads to cover the whole pipeline

82



Fine-Grained Multithreading (II)

◼ Idea: Switch to another thread every cycle such that no two 
instructions from a thread are in the pipeline concurrently

◼ Tolerates the control and data dependence latencies by 
overlapping the latency with useful work from other threads

◼ Improves pipeline utilization by taking advantage of multiple 
threads

◼ Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 
1964.

◼ Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

83



Multithreaded Pipeline Example

84Slide credit: Joel Emer



Fine-grained Multithreading (III)

◼ Advantages

+ No need for dependency checking between instructions

(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic

+ Otherwise-bubble cycles used for executing useful instructions from 
different threads

+ Improved system throughput, latency tolerance, utilization

◼ Disadvantages

- Extra hardware complexity: multiple hardware contexts (PCs, register 
files, …), thread selection logic

- Reduced single thread performance (one instruction fetched every N 
cycles from the same thread) 

- Resource contention between threads in caches and memory

- Some dependency checking logic between threads remains (load/store)
85



Lecture on Fine-Grained Multithreading

86https://www.youtube.com/watch?v=6e5KZcCGBYw&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LlN&index=16



Lectures on Fine-Grained Multithreading

◼ Digital Design & Computer Architecture, Spring 2021, Lecture 14

❑ Pipelined Processor Design (ETH, Spring 2021)

❑ https://www.youtube.com/watch?v=6e5KZcCGBYw&list=PL5Q2soXY2Zi_uej3aY39Y
B5pfW4SJ7LlN&index=16

◼ Digital Design & Computer Architecture, Spring 2020, Lecture 18c

❑ Fine-Grained Multithreading (ETH, Spring 2020)

❑ https://www.youtube.com/watch?v=bu5dxKTvQVs&list=PL5Q2soXY2Zi_FRrloMa2fU
YWPGiZUBQo2&index=26

87https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=6e5KZcCGBYw&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LlN&index=16
https://www.youtube.com/watch?v=bu5dxKTvQVs&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=26
https://www.youtube.com/onurmutlulectures


GPUs (Graphics Processing Units)



GPUs are SIMD Engines Underneath

◼ The instruction pipeline operates like a SIMD pipeline (e.g., 
an array processor)

◼ However, the programming is done using threads, NOT 
SIMD instructions

◼ To understand this, let’s go back to our parallelizable code 
example

◼ But, before that, let’s distinguish between 

❑ Programming Model (Software)

vs.

❑ Execution Model (Hardware)

89



Programming Model vs. Hardware Execution Model

◼ Programming Model refers to how the programmer expresses 
the code

❑ E.g., Sequential (von Neumann), Data Parallel (SIMD), Dataflow, 
Multi-threaded (MIMD, SPMD), …

◼ Execution Model refers to how the hardware executes the 
code underneath

❑ E.g., Out-of-order execution, Vector processor, Array processor, 
Dataflow processor, Multiprocessor, Multithreaded processor, …

◼ Execution Model can be very different from the Programming 
Model

❑ E.g., von Neumann model implemented by an OoO processor

❑ E.g., SPMD model implemented by a SIMD processor (a GPU)
90



How Can You Exploit Parallelism Here?

91

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Let’s examine three programming 
options to exploit instruction-level 

parallelism present in this sequential 
code:

1. Sequential (SISD)

2. Data-Parallel (SIMD)

3. Multithreaded (MIMD/SPMD)



Prog. Model 1: Sequential (SISD)
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load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code ◼ Can be executed on a:

◼ Pipelined processor

◼ Out-of-order execution processor

❑ Independent instructions executed 
when ready

❑ Different iterations are present in the 
instruction window and can execute in 
parallel in multiple functional units

❑ In other words, the loop is dynamically 
unrolled by the hardware

◼ Superscalar or VLIW processor

❑ Can fetch and execute multiple 
instructions per cycle

for (i=0; i < N; i++)

C[i] = A[i] + B[i];



load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 2: Data Parallel (SIMD)
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for (i=0; i < N; i++)

C[i] = A[i] + B[i];

Vector Instruction

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2

Vectorized Code

Realization: Each iteration is independent

Idea: Programmer or compiler generates a SIMD 
instruction to execute the same instruction from 
all iterations across different data

Best executed by a SIMD processor (vector, array)

VLD     A → V1

VLD     B → V2

VADD     V1 + V2 → V3

VST     V3 → C



load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 3: Multithreaded
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for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread 
to execute each iteration. Each thread does the 
same thing (but on different data)

Can be executed on a MIMD machine



Prog. Model 3: Multithreaded
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for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread 
to execute each iteration. Each thread does the 
same thing (but on different data)

Can be executed on a MIMD machine

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMD machineCan be executed on a SIMT machine

Single Instruction Multiple Thread



A GPU is a SIMD (SIMT) Machine

◼ Except it is not programmed using SIMD instructions

◼ It is programmed using threads (SPMD programming model)

❑ Each thread executes the same code but operates a different 
piece of data

❑ Each thread has its own context (i.e., can be 
treated/restarted/executed independently)

◼ A set of threads executing the same instruction are 
dynamically grouped into a warp (wavefront) by the 
hardware

❑ A warp is essentially a SIMD operation formed by hardware!

96



Warp 0 at PC X+3

Warp 0 at PC X+2

Warp 0 at PC X+1

SPMD on SIMT Machine

97

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2

Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread 
to execute each iteration. Each thread does the 
same thing (but on different data)

Can be executed on a MIMD machine

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMD machineA GPU executes it using the SIMT model:

Single Instruction Multiple Thread

Warp 0 at PC X

Warp: A set of threads that execute

the same instruction (i.e., at the same PC)



Graphics Processing Units
SIMD not Exposed to Programmer (SIMT)



SIMD vs. SIMT Execution Model

◼ SIMD: A single sequential instruction stream of SIMD 
instructions → each instruction specifies multiple data inputs

❑ [VLD, VLD, VADD, VST], VLEN

◼ SIMT: Multiple instruction streams of scalar instructions →

threads grouped dynamically into warps

❑ [LD, LD, ADD, ST], NumThreads

◼ Two Major SIMT Advantages: 

❑ Can treat each thread separately → i.e., can execute each thread 
independently (on any type of scalar pipeline) → MIMD processing

❑ Can group threads into warps flexibly → i.e., can group threads 
that are supposed to truly execute the same instruction →

dynamically obtain and maximize benefits of SIMD processing
99



Fine-Grained Multithreading of 

Warps 

100

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2

Warp 0 at PC X

◼ Assume a warp consists of 32 threads

◼ If you have 32K iterations, and 1 iteration/thread → 1K warps

◼ Warps can be interleaved on the same pipeline → Fine grained 

multithreading of warps

Warp 1 at PC X

Iter. 
33

Iter. 
34

Warp 20 at PC X+2

Iter.
20*32 + 1

Iter.
20*32 + 2



Warps and Warp-Level FGMT

◼ Warp: A set of threads that execute the same instruction 
(on different data elements) → SIMT (Nvidia-speak)

◼ All threads run the same code
◼ Warp: The threads that run lengthwise in a woven fabric …

101

Thread Warp 3
Thread Warp 8

Thread Warp 7

Thread Warp

Scalar
Thread

W

Scalar
Thread

X

Scalar
Thread

Y

Scalar
Thread

Z

Common PC

SIMD Pipeline

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.



High-Level View of a GPU

102Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.



Latency Hiding via Warp-Level FGMT

◼ Warp: A set of threads that 
execute the same instruction 
(on different data elements)

◼ Fine-grained multithreading

❑ One instruction per thread in 
pipeline at a time (No 
interlocking)

❑ Interleave warp execution to 
hide latencies

◼ Register values of all threads stay 
in register file

◼ FGMT enables long latency 
tolerance

❑ Millions of pixels 
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Decode

R
F

R
F

R
F

A
LU

A
LU

A
LU

D-Cache

Thread Warp 6

Thread Warp 1
Thread Warp 2DataAll Hit?

Miss?

Warps accessing
memory hierarchy

Thread Warp 3
Thread Warp 8

Writeback

Warps available
for scheduling

Thread Warp 7

I-Fetch

SIMD Pipeline

Slide credit: Tor Aamodt



Warp Execution (Recall the Slide)

104

32-thread warp executing ADD A[tid],B[tid] → C[tid]

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using 
one pipelined 
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using 
four pipelined 
functional units

Slide credit: Krste Asanovic

Time

Space

Time
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Lane

Functional Unit

Registers
for each 
Thread

Memory Subsystem

Registers for 
thread IDs
0, 4, 8, …

Registers for 
thread IDs
1, 5, 9, …

Registers for 
thread IDs
2, 6, 10, …

Registers for 
thread IDs
3, 7, 11, …

Slide credit: Krste Asanovic

SIMD Execution Unit Structure



Warp Instruction Level Parallelism

Can overlap execution of multiple instructions
❑ Example machine has 32 threads per warp and 8 lanes

❑ Completes 24 operations/cycle while issuing 1 warp/cycle

106

W3

W0
W1

W4

W2

W5

Load Unit Multiply Unit Add Unit

time

Warp issue

Slide credit: Krste Asanovic



◼ Same instruction in different threads uses thread id to 
index and access different data elements

SIMT Memory Access

Let’s assume N=16, 4 threads per warp → 4 warps 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+

+ + + +

Slide credit: Hyesoon Kim

Threads

Data elements

Warp 0 Warp 1 Warp 2 Warp 3

107



◼ CPU threads and GPU kernels

❑ Sequential or modestly parallel sections on CPU

❑ Massively parallel sections on GPU: Blocks of threads

Serial Code (host)

. . .

. . .

Parallel Kernel (device)

KernelA<<<nBlk, nThr>>>(args);

Serial Code (host)

Parallel Kernel (device)

KernelB<<<nBlk, nThr>>>(args);

Warps not Exposed to GPU Programmers

108

Slide credit: Hwu & Kirk



Sample GPU SIMT Code (Simplified)

for (ii = 0; ii < 100000; ++ii) {
C[ii] = A[ii] + B[ii];
}

// there are 100000 threads
__global__ void KernelFunction(…) {
int tid = blockDim.x * blockIdx.x + threadIdx.x;
int varA = aa[tid];
int varB = bb[tid];
C[tid] = varA + varB;

}

CPU code

CUDA code

Slide credit: Hyesoon Kim 109



Sample GPU Program (Less Simplified)

110Slide credit: Hyesoon Kim



Lecture on GPU Programming

111https://youtu.be/AkYnuqVpCug

https://youtu.be/AkYnuqVpCug


Heterogeneous Systems Course (Fall 2021)

https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id
=heterogeneous_systems

https://youtube.com/playlist?list=PL5Q2soXY2Zi_OwkTgEyA6tk3UsoPBH737

◼ Short weekly lectures

◼ Hands-on projects

112

https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=processing_in_memory
https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=heterogeneous_systems
https://youtube.com/playlist?list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://youtube.com/playlist?list=PL5Q2soXY2Zi_OwkTgEyA6tk3UsoPBH737


From Blocks to Warps

◼ GPU cores: SIMD pipelines

❑ Streaming Multiprocessors (SM)

❑ Streaming Processors (SP)

◼ Blocks are divided into warps

❑ SIMD unit (32 threads)

…
t0 t1 t2 … t31

…

…
t0 t1 t2 … t31

…

Block 0’s warps Block 1’s warps

…
t0 t1 t2 … t31

…

Block 2’s warps

113

NVIDIA Fermi architecture



Warp-based SIMD vs. Traditional SIMD
◼ Traditional SIMD contains a single thread 

❑ Sequential instruction execution; lock-step operations in a SIMD instruction

❑ Programming model is SIMD (no extra threads) → SW needs to know 

vector length

❑ ISA contains vector/SIMD instructions

◼ Warp-based SIMD consists of multiple scalar threads executing in a 
SIMD manner (i.e., same instruction executed by all threads)

❑ Does not have to be lock step

❑ Each thread can be treated individually (i.e., placed in a different warp) 
→ programming model not SIMD

◼ SW does not need to know vector length

◼ Enables multithreading and flexible dynamic grouping of threads

❑ ISA is scalar → SIMD operations can be formed dynamically

❑ Essentially, it is SPMD programming model implemented on SIMD 
hardware

114



SPMD
◼ Single procedure/program, multiple data 

❑ This is a programming model rather than computer organization

◼ Each processing element executes the same procedure, except on 
different data elements

❑ Procedures can synchronize at certain points in program, e.g. barriers

◼ Essentially, multiple instruction streams execute the same 
program

❑ Each program/procedure 1) works on different data, 2) can execute a 
different control-flow path, at run-time

❑ Many scientific applications are programmed this way and run on MIMD 
hardware (multiprocessors)

❑ Modern GPUs programmed in a similar way on a SIMD hardware

115



SIMD vs. SIMT Execution Model

◼ SIMD: A single sequential instruction stream of SIMD 
instructions → each instruction specifies multiple data inputs

❑ [VLD, VLD, VADD, VST], VLEN

◼ SIMT: Multiple instruction streams of scalar instructions →

threads grouped dynamically into warps

❑ [LD, LD, ADD, ST], NumThreads

◼ Two Major SIMT Advantages: 

❑ Can treat each thread separately → i.e., can execute each thread 
independently on any type of scalar pipeline → MIMD processing

❑ Can group threads into warps flexibly → i.e., can group threads 
that are supposed to truly execute the same instruction →

dynamically obtain and maximize benefits of SIMD processing
116



Threads Can Take Different Paths in Warp-based SIMD

◼ Each thread can have conditional control flow instructions

◼ Threads can execute different control flow paths

117

Thread Warp Common PC

Thread

2

Thread

3

Thread

4

Thread

1

B

C D

E

F

A

G

Slide credit: Tor Aamodt



Control Flow Problem in GPUs/SIMT

◼ A GPU uses a SIMD 
pipeline to save area 
on control logic

❑ Groups scalar threads 
into warps

◼ Branch divergence 
occurs when threads 
inside warps branch to 
different execution 
paths

118

Branch

Path A

Path B

Branch

Path A

Path B

Slide credit: Tor Aamodt

This is the same as conditional/predicated/masked execution. 

Recall the Vector Mask and Masked Vector Operations?



Remember: Each Thread Is Independent

◼ Two Major SIMT Advantages: 

❑ Can treat each thread separately → i.e., can execute each thread 
independently on any type of scalar pipeline → MIMD processing

❑ Can group threads into warps flexibly → i.e., can group threads 
that are supposed to truly execute the same instruction →

dynamically obtain and maximize benefits of SIMD processing

◼ If we have many threads

◼ We can find individual threads that are at the same PC

◼ And, group them together into a single warp dynamically

◼ This reduces “divergence” → improves SIMD utilization

❑ SIMD utilization: fraction of SIMD lanes executing a useful 
operation (i.e., executing an active thread)

119



Dynamic Warp Formation/Merging

◼ Idea: Dynamically merge threads executing the same 
instruction (after branch divergence)

◼ Form new warps from warps that are waiting

❑ Enough threads branching to each path enables the creation 
of full new warps

120

Warp X

Warp Y

Warp Z



Dynamic Warp Formation/Merging

◼ Idea: Dynamically merge threads executing the same 
instruction (after branch divergence)

◼ Fung et al., “Dynamic Warp Formation and Scheduling for 
Efficient GPU Control Flow,” MICRO 2007.
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Branch

Path A

Path B

Branch

Path A



Dynamic Warp Formation Example
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A A B B G G A AC C D D E E F F

Time

A A B B G G A AC D E E F

Time

A
x/1111
y/1111

B
x/1110
y/0011

C
x/1000
y/0010 D

x/0110
y/0001 F

x/0001
y/1100

E
x/1110
y/0011

G
x/1111
y/1111

A new warp created from scalar 

threads of both Warp x and y 

executing at Basic Block D

D

Execution of Warp x

at Basic Block A

Execution of Warp y

at Basic Block A

Legend
AA

Baseline

Dynamic

Warp

Formation

Slide credit: Tor Aamodt



Hardware Constraints Limit Flexibility of Warp Grouping
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Lane

Functional Unit

Registers
for each 
Thread

Memory Subsystem

Registers for 
thread IDs
0, 4, 8, …

Registers for 
thread IDs
1, 5, 9, …

Registers for 
thread IDs
2, 6, 10, …

Registers for 
thread IDs
3, 7, 11, …

Slide credit: Krste Asanovic

Can you move any thread 
flexibly to any lane?



Large Warps and Two-Level Warp Scheduling

◼ Two main reasons for GPU resources be underutilized

❑ Branch divergence

❑ Long latency operations

124

time

Core

Memory
System

All Warps Compute

Req Warp 0

All Warps Compute

Req Warp 1

Req Warp 15

Round Robin Scheduling, 16 total warps

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp 

Scheduling,” MICRO 2011.



Large Warp Microarchitecture Example

Decode Stage

1 0 0 1

0 1 0 0

0 0 1 1

1 0 0 0

0 0 1 0

0 1 0 0

1 0 0 1

0 1 0 0

0 0

0

0
1 1 1 1

0

0

0

0

1 1 1 1

0 0

0

1 1 1 11 1 0 1

Sub-warp 0 mask Sub-warp 0 maskSub-warp 1 mask Sub-warp 0 maskSub-warp 1 maskSub-warp 2 mask

1 1 1 1 1 1 1 1

◼ Reduce branch divergence by having large warps

◼ Dynamically break down a large warp into sub-warps

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp 

Scheduling,” MICRO 2011.



Two-Level Round Robin

◼ Scheduling in two levels to deal with long latency operations

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp 

Scheduling,” MICRO 2011.

time

Core

Memory
System

All Warps Compute

Req Warp 0

All Warps Compute

Req Warp 1

Req Warp 15

Round Robin Scheduling, 16 total warps

time

Core

Memory
System

Compute

Req Warp 0
Req Warp 1

Req Warp 7

Two Level Round Robin Scheduling, 2 fetch groups, 8 warps each

Group 0

Compute

Group 1

Req Warp 8
Req Warp 9

Req Warp 15

Compute

Group 0

Compute

Group 1

Saved Cycles



An Example GPU



NVIDIA GeForce GTX 285

◼ NVIDIA-speak:

❑ 240 stream processors

❑ “SIMT execution”

◼ Generic speak:

❑ 30 cores

❑ 8 SIMD functional units per core

◼ NVIDIA, “NVIDIA GeForce GTX 200 GPU. Architectural Overview. White Paper,” 2008.

Slide credit: Kayvon Fatahalian 128



NVIDIA GeForce GTX 285 “core”

…

= instruction stream decode= SIMD functional unit, control 

shared across 8 units

= execution context storage = multiply-add
= multiply

64 KB of storage 

for thread contexts 

(registers)

Slide credit: Kayvon Fatahalian 129



NVIDIA GeForce GTX 285 “core”

…
64 KB of storage 

for thread contexts 

(registers)

◼ Groups of 32 threads share instruction stream (each group is 
a Warp)

◼ Up to 32 warps are simultaneously interleaved

◼ Up to 1024 thread contexts can be stored   

Slide credit: Kayvon Fatahalian 130



NVIDIA GeForce GTX 285

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

… … …

………

………

………

………

………

………

………

………

………

30 cores on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian 131
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NVIDIA V100

◼ NVIDIA-speak:

❑ 5120 stream processors

❑ “SIMT execution”

◼ Generic speak:

❑ 80 cores

❑ 64 SIMD functional units per core

❑ Tensor cores for Machine Learning

◼ NVIDIA, “NVIDIA Tesla V100 GPU Architecture. White Paper,” 2017.
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NVIDIA V100 Block Diagram

80 cores on the V100
https://devblogs.nvidia.com/inside-volta/

134



NVIDIA V100 Core

15.7 TFLOPS Single Precision

7.8 TFLOPS Double Precision

125 TFLOPS for Deep Learning (Tensor cores)

135

https://devblogs.nvidia.com/inside-volta/



Tensor Core Microarchitecture (Volta)
◼ Each warp utilizes two tensor cores

◼ Each tensor core contains two “octets”

❑ 16 SIMD units per tensor core (8 per octet)

❑ 4x4 matrix-multiply and accumulate each cycle per tensor core

136
* M. A. Raihan, N. Goli and T. M. Aamodt, "Modeling Deep Learning Accelerator Enabled GPUs," ISPASS 2019.

Proposed* tensor core microarchitecture

SIMD unit

Unlike conventional SIMD, 

register contents are not

private to each thread, but 

shared inside the warp



Edge TPU: Baseline Accelerator
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137Introduction TPU and Model Characterization Mensa Framework Mensa-G Evaluation Conclusion 
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Research Lecture on Edge TPU

138https://youtu.be/KPPfRRPENgQ?t=2999

https://youtu.be/KPPfRRPENgQ?t=2999


Lecture on Systolic Arrays

139https://youtu.be/UtLy4Yagdys?t=2948

https://youtu.be/UtLy4Yagdys?t=2948


NVIDIA A100

◼ NVIDIA-speak:

❑ 6912 stream processors

❑ “SIMT execution”

◼ Generic speak:

❑ 108 cores

❑ 64 SIMD functional units per core

❑ Tensor cores for Machine Learning
◼ Support for sparsity

◼ New floating point data type (TF32)

◼ https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/ 140

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/


NVIDIA A100 Block Diagram

108 cores on the A100
(Up to 128 cores in the full-blown chip)

40MB L2 cache

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
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NVIDIA A100 Core

19.5 TFLOPS Single Precision

9.7 TFLOPS Double Precision

312 TFLOPS for Deep Learning (Tensor cores)

142

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/



Food for Thought

◼ Compare and contrast GPUs vs Systolic Arrays

❑ Which one is better for machine learning?

❑ Which one is better for image/vision processing?

❑ What types of parallelism each one exploits?

❑ What are the tradeoffs?

143



Heterogeneous Systems Course (Fall 2021)

https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id
=heterogeneous_systems

https://youtube.com/playlist?list=PL5Q2soXY2Zi_OwkTgEyA6tk3UsoPBH737

◼ Short weekly lectures

◼ Hands-on projects

144

https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=processing_in_memory
https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=heterogeneous_systems
https://youtube.com/playlist?list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://youtube.com/playlist?list=PL5Q2soXY2Zi_OwkTgEyA6tk3UsoPBH737
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Clarification of Some GPU Terms

146

Generic Term NVIDIA Term AMD Term Comments

Vector length Warp size Wavefront size Number of threads that run in parallel (lock-step) 
on a SIMD functional unit

Pipelined 
functional unit /
Scalar pipeline

Streaming 
processor /
CUDA core

- Functional unit that executes instructions for one 
GPU thread

SIMD functional 
unit /
SIMD pipeline

Group of N 
streaming 
processors (e.g., 
N=8 in GTX 285, 
N=16 in Fermi)

Vector ALU SIMD functional unit that executes instructions for 
an entire warp

GPU core Streaming 
multiprocessor

Compute unit It contains one or more warp schedulers and one 
or several SIMD pipelines
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