
Computer Architecture

Lecture 25: SIMD Processors

and GPUs

Dr. Juan Gómez Luna

Prof. Onur Mutlu

ETH Zürich

Fall 2022

05 January 2023

Agenda for This Lecture

◼ SIMD Processing

❑ Vector and Array Processors

◼ Graphics Processing Units (GPUs)

2

Recommended Readings

◼ Peleg and Weiser, “MMX Technology Extension to the Intel
Architecture,” IEEE Micro 1996.

◼ Lindholm et al., "NVIDIA Tesla: A Unified Graphics and
Computing Architecture," IEEE Micro 2008.

3

Exploiting Data Parallelism:

SIMD Processors and GPUs

SIMD Processing:

Exploiting Regular (Data) Parallelism

Flynn’s Taxonomy of Computers

◼ Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

◼ SISD: Single instruction operates on single data element

◼ SIMD: Single instruction operates on multiple data elements

❑ Array processor

❑ Vector processor

◼ MISD: Multiple instructions operate on single data element

❑ Closest form: systolic array processor, streaming processor

◼ MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

❑ Multiprocessor

❑ Multithreaded processor

6

Flynn’s Taxonomy of Computers

◼ Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

7

MISD Example from Flynn

8Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE, 1966

Similar to a “generalized” systolic array

Lecture on Systolic Arrays

9https://youtu.be/UtLy4Yagdys?t=2948

https://youtu.be/UtLy4Yagdys?t=2948

SIMD Example from Flynn

10Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE, 1966

Similar to an “array processor”

Flynn’s Taxonomy of Computers

◼ Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

◼ SISD: Single instruction operates on single data element

◼ SIMD: Single instruction operates on multiple data elements

❑ Array processor

❑ Vector processor

◼ MISD: Multiple instructions operate on single data element

❑ Closest form: systolic array processor, streaming processor

◼ MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

❑ Multiprocessor

❑ Multithreaded processor

11

Data Parallelism

◼ Concurrency arises from performing the same operation on
different pieces of data

❑ Single instruction multiple data (SIMD)

❑ E.g., dot product of two vectors

◼ Contrast with data flow

❑ Concurrency arises from executing different operations in parallel (in
a data driven manner)

◼ Contrast with thread (“control”) parallelism

❑ Concurrency arises from executing different threads of control in
parallel

◼ SIMD exploits operation-level parallelism on different data

❑ Same operation concurrently applied to different pieces of data

❑ A form of ILP where instruction happens to be the same across data
12

SIMD Processing

◼ Single instruction operates on multiple data elements

❑ In time or in space

◼ Multiple processing elements (PEs), i.e., execution units

◼ Time-space duality

❑ Array processor: Instruction operates on multiple data
elements at the same time using different spaces (PEs)

❑ Vector processor: Instruction operates on multiple data
elements in consecutive time steps using the same space (PE)

13

Storing Multiple Data Elements: Vector Registers

◼ Each vector data register holds N M-bit values

❑ Each register stores a vector

❑ Not a (single) scalar value as we saw before

14

V0,0
V0,1

V0,N-1

V1,0
V1,1

V1,N-1

V0

M-bit wide

V1 V2

M-bit wide

PE

Array vs. Vector Processors

15

ARRAY PROCESSOR VECTOR PROCESSOR

LD VR A[3:0]

ADD VR VR, 1

MUL VR VR, 2

ST A[3:0] VR

Instruction Stream

Time

LD0 LD1 LD2 LD3

AD0 AD1 AD2 AD3

MU0 MU1 MU2 MU3

ST0 ST1 ST2 ST3

LD0

LD1 AD0

LD2 AD1 MU0

LD3 AD2 MU1 ST0

AD3 MU2 ST1

MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space

SIMD Array Processing vs. VLIW

◼ VLIW: Multiple independent operations packed together into a “long inst.”

16

SIMD Array Processing vs. VLIW

◼ Array processor: Single operation on multiple (different) data elements

17

Lecture on VLIW

18https://youtu.be/UtLy4Yagdys

https://youtu.be/UtLy4Yagdys

Vector Processors (I)

◼ A vector is a one-dimensional array of numbers

◼ Many scientific/commercial programs use vectors

for (i = 0; i<=49; i++)

C[i] = (A[i] + B[i]) / 2

◼ A vector processor is one whose instructions operate on
vectors rather than scalar (single data) values

◼ Basic requirements

❑ Need to load/store vectors → vector registers (contain vectors)

❑ Need to operate on vectors of different lengths → vector length

register (VLEN)

❑ Elements of a vector might be stored apart from each other in
memory → vector stride register (VSTR)

◼ Stride: distance in memory between two elements of a vector

19

◼ A and B matrices, both stored in memory in row-major order

◼ Load A’s row 0 (A00 through A05) into vector register V1

❑ Each time, increment address by 1 to access the next column

❑ Accesses have a stride of 1

◼ Load B’s column 0 (B00 through B50) into vector register V2

❑ Each time, increment address by 10 to access the next row

❑ Accesses have a stride of 10

Vector Stride Example: Matrix Multiply

A4x6 B6x10 → C4x10

Dot product of each row vector of

A with each column vector of B

A

Linear Memory

B

0

1

2

3

4

5

6

0

1

2

3

4

5

6

7

8

9

10

Vector Processors (II)

◼ A vector instruction performs an operation on each element
in consecutive cycles

❑ Vector functional units are pipelined

❑ Each pipeline stage operates on a different data element

◼ Vector instructions allow deeper pipelines

❑ No intra-vector dependencies → no hardware interlocking

needed within a vector

❑ No control flow within a vector

❑ Known stride allows easy address calculation for all vector
elements

◼ Enables easy loading (or even early loading, i.e., prefetching) of
vectors into registers/cache/memory

21

Vector Processor Advantages

+ No dependencies within a vector

❑ Pipelining & parallelization work really well

❑ Can have very deep pipelines (without the penalty of deep pipelines)

+ Each instruction generates a lot of work (i.e., operations)

❑ Reduces instruction fetch bandwidth requirements

❑ Amortizes instruction fetch and control overhead over many data

--> Leads to high energy efficiency per operation

+ No need to explicitly code loops

❑ Fewer branches in the instruction sequence

+ Highly regular memory access pattern

22

Vector Processor Disadvantages

-- Works (only) if parallelism is regular (data/SIMD parallelism)

++ Vector operations

-- Very inefficient if parallelism is irregular

-- How about searching for a key in a linked list?

23Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.

Recommended Paper

24Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.

Amdahl’s Law

◼ Amdahl’s Law

❑ f: Parallelizable fraction of a program

❑ N: Number of processors

❑ Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

◼ Maximum speedup limited by serial portion: Serial bottleneck

◼ All parallel machines “suffer from” the serial bottleneck

25

Speedup =
1

+1 - f
f

N

Vector Processor Limitations

-- Memory (bandwidth) can easily become a bottleneck,
especially if

1. compute/memory operation balance is not maintained

2. data is not mapped appropriately to memory banks

26

Vector Processing in More Depth

Vector Registers

◼ Each vector data register holds N M-bit values

◼ Vector control registers: VLEN, VSTR, VMASK

◼ Maximum VLEN can be N

❑ Maximum number of elements stored in a vector register

◼ Vector Mask Register (VMASK)

❑ Indicates which elements of vector to operate on

❑ Set by vector test instructions

◼ e.g., VMASK[i] = (V
k
[i] == 0)

28

V0,0
V0,1

V0,N-1

V1,0
V1,1

V1,N-1

M-bit wide M-bit wide

Vector Functional Units

◼ Use a deep pipeline to execute
element operations

→ fast clock cycle

◼ Control of deep pipeline is
simple because elements in
vector are independent

29

V
1

V
2

V
3

V1 * V2 → V3

Six stage multiply pipeline

Slide credit: Krste Asanovic

Vector Machine Organization (CRAY-1)

◼ CRAY-1

◼ Russell, “The CRAY-1
computer system,”
CACM 1978.

◼ Scalar and vector modes

◼ 8 64-element vector
registers

◼ 64 bits per element

◼ 16 memory banks

◼ 8 64-bit scalar registers

◼ 8 24-bit address registers

30

Recommended Paper

Russell,

“The CRAY-1 computer system,”

CACM 1978.

31

CRAY X-MP-28 @ ETH (CAB, E Floor)

32

CRAY X-MP System Organization

33

Cray Research Inc., “The

CRAY X-MP Series of

Computer Systems,” 1985

CRAY X-MP Design Detail

34

Cray Research Inc., “The

CRAY X-MP Series of

Computer Systems,” 1985

CRAY X-MP CPU Functional Units

35

Cray Research Inc., “The

CRAY X-MP Series of

Computer Systems,” 1985

CRAY X-MP System Configuration

36

Cray Research Inc., “The

CRAY X-MP Series of

Computer Systems,” 1985

Seymour Cray, Leader in Supercomputer Design

37

"If you were plowing a field, which would you
rather use: Two strong oxen or 1024 chickens?"

© amityrebecca / Pinterest. https://www.pinterest.ch/pin/473018767088408061/

© Scott Sinklier / Corbis. http://america.aljazeera.com/articles/2015/2/20/the-short-brutal-life-of-male-chickens.html

https://en.wikipedia.org/wiki/Seymour_Cray

Vector Machine Organization (CRAY-1)

◼ CRAY-1

◼ Russell, “The CRAY-1
computer system,”
CACM 1978.

◼ Scalar and vector modes

◼ 8 64-element vector
registers

◼ 64 bits per element

◼ 16 memory banks

◼ 8 64-bit scalar registers

◼ 8 24-bit address registers

38

Loading/Storing Vectors from/to Memory

◼ Requires loading/storing multiple elements

◼ Elements separated from each other by a constant distance
(stride)

❑ Assume stride = 1 for now

◼ Elements can be loaded in consecutive cycles if we can
start the load of one element per cycle

❑ Can sustain a throughput of one element per cycle

◼ Question: How do we achieve this with a memory that
takes more than 1 cycle to access?

◼ Answer: Bank the memory; interleave the elements across
banks

39

Memory Banking
◼ Memory is divided into banks that can be accessed independently;

banks share address and data buses (to minimize pin cost)

◼ Can start and complete one bank access per cycle

◼ Can sustain N concurrent accesses if all N go to different banks

40

Bank

0

Bank

1

MDR MAR

Bank

2

Bank

15

MDR MAR MDR MAR MDR MAR

Data bus

Address bus

CPU

Picture credit: Derek Chiou

Vector Memory System

◼ Next address = Previous address + Stride

◼ If (stride == 1) && (consecutive elements interleaved
across banks) && (number of banks >= bank latency), then

❑ we can sustain 1 element/cycle throughput

41

0 1 2 3 4 5 6 7 8 9 A B C D E F

+

Base Stride
Vector Registers

Memory Banks

Address
Generator

Picture credit: Krste Asanovic

Scalar Code Example: Element-Wise Avg.

◼ For I = 0 to 49

❑ C[i] = (A[i] + B[i]) / 2

◼ Scalar code (instruction and its latency)

MOVI R0 = 50 1

MOVA R1 = A 1

MOVA R2 = B 1

MOVA R3 = C 1

X: LD R4 = MEM[R1++] 11 ;autoincrement addressing

LD R5 = MEM[R2++] 11

ADD R6 = R4 + R5 4

SHFR R7 = R6 >> 1 1

ST MEM[R3++] = R7 11

DECBNZ R0, X 2 ;decrement and branch if NZ

42

304 dynamic instructions

Scalar Code Execution Time (In Order)

43

◼ Scalar execution time on an in-order processor with 1 bank

❑ First two loads in the loop cannot be pipelined: 2*11 cycles

❑ 4 + 50*40 = 2004 cycles

◼ Scalar execution time on an in-order processor with 16
banks (word-interleaved: consecutive words are stored in
consecutive banks)

❑ First two loads in the loop can be pipelined

❑ 4 + 50*30 = 1504 cycles

◼ Why 16 banks?

❑ 11-cycle memory access latency

❑ Having 16 (>11) banks ensures there are enough banks to
overlap enough memory operations to cover memory latency

Vectorizable Loops

◼ A loop is vectorizable if each iteration is independent of any
other

◼ For I = 0 to 49

❑ C[i] = (A[i] + B[i]) / 2

◼ Vectorized loop (each instruction and its latency):

MOVI VLEN = 50 1

MOVI VSTR = 1 1

VLD V0 = A 11 + VLEN – 1

VLD V1 = B 11 + VLEN – 1

VADD V2 = V0 + V1 4 + VLEN – 1

VSHFR V3 = V2 >> 1 1 + VLEN – 1

VST C = V3 11 + VLEN – 1

44

7 dynamic instructions

Basic Vector Code Performance

◼ Assume no chaining (no vector data forwarding)

❑ i.e., output of a vector functional unit cannot be used as the
direct input of another

❑ The entire vector register needs to be ready before any
element of it can be used as part of another operation

◼ One memory port (one address generator)

◼ 16 memory banks (word-interleaved)

◼ 285 cycles

45

1 1 11 49 11 49 4 49 1 49 11 49

V0 = A[0..49] V1 = B[0..49] ADD SHIFT STORE

VLD V0=A VLD V1=B VADD V2=V0+V1 VSHFR V3=V2>>1 VST C=V3

Vector Chaining

◼ Vector chaining: Data forwarding from one vector
functional unit to another

46

Memory

V
1

Load
Unit

Mult.

V
2

V
3

Chain

Add

V
4

V
5

Chain

LV v1

MULV v3,v1,v2

ADDV v5, v3, v4

Slide credit: Krste Asanovic

Vector Code Performance - Chaining

◼ Vector chaining: Data forwarding from one vector
functional unit to another

◼ 182 cycles

47

1 1 11 49 11 49

4 49

1 49

11 49

These two VLDs cannot be

pipelined. WHY?

VLD and VST cannot be

pipelined. WHY?

Strict assumption:

Each memory bank

has a single port

(memory bandwidth

bottleneck)

VLD V0=A VLD V1=B

VADD V2=V0+V1

VSHFR V3=V2>>1

VST C=V3

Vector Code Performance – Multiple Memory Ports

◼ Chaining and 2 load ports, 1 store port in each bank

◼ 79 cycles

◼ 19X perf. improvement!

48

1 1 11 49

4 49

1 49

11 49

11 491

VLD V0=A

VLD V1=B

VADD V2=V0+V1

VSHFR V3=V2>>1

VST C=V3

Questions (I)

◼ What if # data elements > # elements in a vector register?

❑ Idea: Break loops so that each iteration operates on #
elements in a vector register

◼ E.g., 527 data elements, 64-element VREGs

◼ 8 iterations where VLEN = 64

◼ 1 iteration where VLEN = 15 (need to change value of VLEN)

❑ Called vector stripmining

49

(Vector) Stripmining

50Source: https://en.wikipedia.org/wiki/Surface_mining

https://en.wikipedia.org/wiki/Surface_mining

Questions (II)

◼ What if vector data is not stored in a strided fashion in
memory? (irregular memory access to a vector)

❑ Idea: Use indirection to combine/pack elements into vector
registers

❑ Called scatter/gather operations

❑ Doing so also helps with avoiding useless computation on
sparse vectors (i.e., vectors where many elements are 0)

51

Gather/Scatter Operations

52

Want to vectorize loops with indirect accesses:

for (i=0; i<N; i++)

A[i] = B[i] + C[D[i]]

Indexed load instruction (Gather)

LV vD, rD # Load indices in D vector

LVI vC, rC, vD # Load indirect from rC base

LV vB, rB # Load B vector

ADDV.D vA,vB,vC # Do add

SV vA, rA # Store result

Gather/Scatter Operations

◼ Gather/scatter operations often implemented in hardware
to handle sparse vectors (matrices) or indirect indexing

◼ Vector loads and stores use an index vector which is added
to the base register to generate the addresses

◼ Scatter example

53

Index Vector Data Vector (to Store) Stored Vector (in Memory)

0 3.14 Base+0 3.14

2 6.5 Base+1 X

6 71.2 Base+2 6.5

7 2.71 Base+3 X

Base+4 X

Base+5 X

Base+6 71.2

Base+7 2.71

Conditional Operations in a Loop

◼ What if some operations should not be executed on a vector
(based on a dynamically-determined condition)?

loop: for (i=0; i<N; i++)

if (a[i] != 0) then b[i]=a[i]*b[i]

◼ Idea: Masked operations

❑ VMASK register is a bit mask determining which data element
should not be acted upon

VLD V0 = A

VLD V1 = B

VMASK = (V0 != 0)

VMUL V1 = V0 * V1

VST B = V1

❑ This is predicated execution. Execution is predicated on mask bit.
54

Another Example with Masking

55

for (i = 0; i < 64; ++i)

if (a[i] >= b[i])

c[i] = a[i]

else

c[i] = b[i]

A B VMASK

1 2 0

2 2 1

3 2 1

4 10 0

-5 -4 0

0 -3 1

6 5 1

-7 -8 1

Steps to execute the loop in SIMD code

1. Compare A, B to get

VMASK

2. Masked store of A into C

3. Complement VMASK

4. Masked store of B into C

Masked Vector Instructions

56

C[4]

C[5]

C[1]

Write data port

A[7] B[7]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

Density-Time Implementation

– scan mask vector and only execute
elements with non-zero masks

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

Write data portWrite Enable

A[7] B[7]M[7]=1

Simple Implementation

– execute all N operations, turn off
result writeback according to mask

Slide credit: Krste Asanovic

Which one is better?

Tradeoffs?

Some Issues

◼ Stride and banking

❑ As long as they are relatively prime to each other and there
are enough banks to cover bank access latency, we can
sustain 1 element/cycle throughput

◼ Storage format of a matrix

❑ Row major: Consecutive elements in a row are laid out
consecutively in memory

❑ Column major: Consecutive elements in a column are laid out
consecutively in memory

❑ You need to change the stride when accessing a row versus
column

57

◼ A and B matrices, both stored in memory in row-major order

◼ Load A’s row 0 into vector register V1

❑ Each time, increment address by 1 to access the next column

❑ Accesses have a stride of 1

◼ Load B’s column 0 into vector register V2

❑ Each time, increment address by 10

❑ Accesses have a stride of 10

Bank Conflicts in Matrix Multiplication

58

A4x6 B6x10 → C4x10

Dot product of each row vector of

A with each column vector of B

Different strides can lead

to bank conflicts

How do we minimize them?

Minimizing Bank Conflicts

◼ More banks

◼ More ports in each bank

◼ Better data layout to match the access pattern

❑ Is this always possible?

◼ Better mapping of address to bank

❑ E.g., randomized mapping

❑ Rau, “Pseudo-randomly interleaved memory,” ISCA 1991.

59

Minimizing Bank Conflicts: Recommended Reading

60Rau, “Pseudo-randomly Interleaved Memory,” ISCA 1991.

Array vs. Vector Processors, Revisited

◼ Array vs. vector processor distinction is a “purist’s”
distinction

◼ Most “modern” SIMD processors are a combination of both

❑ They exploit data parallelism in both time and space

❑ GPUs are a prime example we will cover in a bit more detail

61

Recall: Array vs. Vector Processors

62

ARRAY PROCESSOR VECTOR PROCESSOR

LD VR A[3:0]

ADD VR VR, 1

MUL VR VR, 2

ST A[3:0] VR

Instruction Stream

Time

LD0 LD1 LD2 LD3

AD0 AD1 AD2 AD3

MU0 MU1 MU2 MU3

ST0 ST1 ST2 ST3

LD0

LD1 AD0

LD2 AD1 MU0

LD3 AD2 MU1 ST0

AD3 MU2 ST1

MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space

Vector Instruction Execution

63

VADD A,B → C

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using
four pipelined
functional units

Slide credit: Krste Asanovic

Time

Space

Time

Vector Unit Structure

64

Lane

Functional Unit

Partitioned
Vector
Registers

Memory Subsystem

Elements 0,
4, 8, …

Elements 1,
5, 9, …

Elements 2,
6, 10, …

Elements 3,
7, 11, …

Slide credit: Krste Asanovic

Vector Instruction Level Parallelism

Can overlap execution of multiple vector instructions
❑ Example machine has 32 elements per vector register and 8 lanes

❑ Completes 24 operations/cycle while issuing 1 vector instruction/cycle

65

load

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

Instruction
issue

Slide credit: Krste Asanovic

Automatic Code Vectorization

66

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vectorization is a compile-time reordering of
operation sequencing
 requires extensive loop dependence analysis

Vector Instruction

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Vectorized Code

T
im

e

Slide credit: Krste Asanovic

Vector/SIMD Processing Summary

◼ Vector/SIMD machines are good at exploiting regular data-
level parallelism

❑ Same operation performed on many data elements

❑ Improve performance, simplify design (no intra-vector
dependencies)

◼ Performance improvement limited by vectorizability of code

❑ Scalar operations limit vector machine performance

❑ Remember Amdahl’s Law

❑ CRAY-1 was the fastest SCALAR machine at its time!

◼ Many existing ISAs include (vector-like) SIMD operations

❑ Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD

67

Recall: Amdahl’s Law

◼ Amdahl’s Law

❑ f: Parallelizable fraction of a program

❑ N: Number of processors

❑ Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

◼ Maximum speedup limited by serial portion: Serial bottleneck

◼ All parallel machines “suffer from” the serial bottleneck

68

Speedup =
1

+1 - f
f

N

SIMD Operations in Modern ISAs

SIMD ISA Extensions

◼ Single Instruction Multiple Data (SIMD) extension
instructions

❑ Single instruction acts on multiple pieces of data at once

❑ Common application: graphics

❑ Perform short arithmetic operations (also called packed
arithmetic)

◼ For example: add four 8-bit numbers

◼ Must modify ALU to eliminate carries between 8-bit values

padd8 $s2, $s0, $s1

a
0

0781516232432 Bit position

$s0a
1

a
2

a
3

b
0

$s1b
1

b
2

b
3

a
0
 + b

0
$s2a

1
 + b

1
a

2
 + b

2
a

3
 + b

3

+

70

Intel Pentium MMX Operations

◼ Idea: One instruction operates on multiple data elements
simultaneously

❑ À la array processing (yet much more limited)

❑ Designed with multimedia (graphics) operations in mind

71

Peleg and Weiser, “MMX Technology

Extension to the Intel Architecture,”
IEEE Micro, 1996.

No VLEN register

Opcode determines data type:

8 8-bit bytes

4 16-bit words

2 32-bit doublewords

1 64-bit quadword

Stride is always equal to 1.

MMX Example: Image Overlaying (I)

◼ Goal: Overlay the human in image x on top of the background in image y

72Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.

Image x[]

Image y[] Image new_image[]

Blue

background

Image x[]

Bit mask

Blossom

background

MMX Example: Image Overlaying (II)

73Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.

Y = Blossom image X = Woman’s image

SIMD Operations in

Modern (Machine Learning) Accelerators

Cerebras’s Wafer Scale Engine (2019)

75

Cerebras WSE

1.2 Trillion transistors

46,225 mm2

Largest GPU

21.1 Billion transistors

815 mm2

◼ The largest ML

accelerator chip (2019)

◼ 400,000 cores

NVIDIA TITAN V

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Cerebras’s Wafer Scale Engine-2 (2021)

76

Cerebras WSE-2

2.6 Trillion transistors

46,225 mm2

Largest GPU

54.2 Billion transistors

826 mm2

◼ The largest ML

accelerator chip (2021)

◼ 850,000 cores

NVIDIA Ampere GA100

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Size, Place, and Route in Cerebras’s WSE

◼ Neural network mapping onto the whole wafer is a
challenge

77James et al., “ISPD 2020 Physical Mapping of Neural Networks on a Wafer-Scale Deep Learning Accelerator.”

Multiple possible mappings

An example mapping

Different dies of the wafer work
on different layers of the neural
network: MIMD machine

Recall: Flynn’s Taxonomy of Computers

◼ Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

◼ SISD: Single instruction operates on single data element

◼ SIMD: Single instruction operates on multiple data elements

❑ Array processor

❑ Vector processor

◼ MISD: Multiple instructions operate on single data element

❑ Closest form: systolic array processor, streaming processor

◼ MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

❑ Multiprocessor

❑ Multithreaded processor

78

A MIMD Machine with SIMD Processors (I)

◼ MIMD machine

❑ Distributed memory (no shared memory)

❑ 2D-mesh interconnection fabric

79Rocki et al., “Fast stencil-code computation on a wafer-scale processor.” SC 2020.

84 dies4539 tiles

A MIMD Machine with SIMD Processors (II)

◼ SIMD processors

❑ 4-way SIMD for 16-bit floating point operands

❑ 48 KB of local SRAM

80Rocki et al., “Fast stencil-code computation on a wafer-scale processor.” SC 2020.

4-way SIMD fused-multiply

accumulate (FMAC) units.
AXPY: y = a * x + y

Address registers

Local memory

Fine-Grained Multithreading

81

Fine-Grained Multithreading

◼ Idea: Hardware has multiple thread contexts (PC+registers).
Each cycle, fetch engine fetches from a different thread.

❑ By the time the fetched branch/instruction resolves, no
instruction is fetched from the same thread

❑ Branch/instruction resolution latency overlapped with execution
of other threads’ instructions

+ No logic needed for handling control and

data dependences within a thread

-- Single thread performance suffers

-- Extra logic for keeping thread contexts

-- Does not overlap latency if not enough

threads to cover the whole pipeline

82

Fine-Grained Multithreading (II)

◼ Idea: Switch to another thread every cycle such that no two
instructions from a thread are in the pipeline concurrently

◼ Tolerates the control and data dependence latencies by
overlapping the latency with useful work from other threads

◼ Improves pipeline utilization by taking advantage of multiple
threads

◼ Thornton, “Parallel Operation in the Control Data 6600,” AFIPS
1964.

◼ Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

83

Multithreaded Pipeline Example

84Slide credit: Joel Emer

Fine-grained Multithreading (III)

◼ Advantages

+ No need for dependency checking between instructions

(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic

+ Otherwise-bubble cycles used for executing useful instructions from
different threads

+ Improved system throughput, latency tolerance, utilization

◼ Disadvantages

- Extra hardware complexity: multiple hardware contexts (PCs, register
files, …), thread selection logic

- Reduced single thread performance (one instruction fetched every N
cycles from the same thread)

- Resource contention between threads in caches and memory

- Some dependency checking logic between threads remains (load/store)
85

Lecture on Fine-Grained Multithreading

86https://www.youtube.com/watch?v=6e5KZcCGBYw&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LlN&index=16

Lectures on Fine-Grained Multithreading

◼ Digital Design & Computer Architecture, Spring 2021, Lecture 14

❑ Pipelined Processor Design (ETH, Spring 2021)

❑ https://www.youtube.com/watch?v=6e5KZcCGBYw&list=PL5Q2soXY2Zi_uej3aY39Y
B5pfW4SJ7LlN&index=16

◼ Digital Design & Computer Architecture, Spring 2020, Lecture 18c

❑ Fine-Grained Multithreading (ETH, Spring 2020)

❑ https://www.youtube.com/watch?v=bu5dxKTvQVs&list=PL5Q2soXY2Zi_FRrloMa2fU
YWPGiZUBQo2&index=26

87https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=6e5KZcCGBYw&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LlN&index=16
https://www.youtube.com/watch?v=bu5dxKTvQVs&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=26
https://www.youtube.com/onurmutlulectures

GPUs (Graphics Processing Units)

GPUs are SIMD Engines Underneath

◼ The instruction pipeline operates like a SIMD pipeline (e.g.,
an array processor)

◼ However, the programming is done using threads, NOT
SIMD instructions

◼ To understand this, let’s go back to our parallelizable code
example

◼ But, before that, let’s distinguish between

❑ Programming Model (Software)

vs.

❑ Execution Model (Hardware)

89

Programming Model vs. Hardware Execution Model

◼ Programming Model refers to how the programmer expresses
the code

❑ E.g., Sequential (von Neumann), Data Parallel (SIMD), Dataflow,
Multi-threaded (MIMD, SPMD), …

◼ Execution Model refers to how the hardware executes the
code underneath

❑ E.g., Out-of-order execution, Vector processor, Array processor,
Dataflow processor, Multiprocessor, Multithreaded processor, …

◼ Execution Model can be very different from the Programming
Model

❑ E.g., von Neumann model implemented by an OoO processor

❑ E.g., SPMD model implemented by a SIMD processor (a GPU)
90

How Can You Exploit Parallelism Here?

91

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Let’s examine three programming
options to exploit instruction-level

parallelism present in this sequential
code:

1. Sequential (SISD)

2. Data-Parallel (SIMD)

3. Multithreaded (MIMD/SPMD)

Prog. Model 1: Sequential (SISD)

92

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code ◼ Can be executed on a:

◼ Pipelined processor

◼ Out-of-order execution processor

❑ Independent instructions executed
when ready

❑ Different iterations are present in the
instruction window and can execute in
parallel in multiple functional units

❑ In other words, the loop is dynamically
unrolled by the hardware

◼ Superscalar or VLIW processor

❑ Can fetch and execute multiple
instructions per cycle

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 2: Data Parallel (SIMD)

93

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

Vector Instruction

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Vectorized Code

Realization: Each iteration is independent

Idea: Programmer or compiler generates a SIMD
instruction to execute the same instruction from
all iterations across different data

Best executed by a SIMD processor (vector, array)

VLD A → V1

VLD B → V2

VADD V1 + V2 → V3

VST V3 → C

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 3: Multithreaded

94

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

Prog. Model 3: Multithreaded

95

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMD machineCan be executed on a SIMT machine

Single Instruction Multiple Thread

A GPU is a SIMD (SIMT) Machine

◼ Except it is not programmed using SIMD instructions

◼ It is programmed using threads (SPMD programming model)

❑ Each thread executes the same code but operates a different
piece of data

❑ Each thread has its own context (i.e., can be
treated/restarted/executed independently)

◼ A set of threads executing the same instruction are
dynamically grouped into a warp (wavefront) by the
hardware

❑ A warp is essentially a SIMD operation formed by hardware!

96

Warp 0 at PC X+3

Warp 0 at PC X+2

Warp 0 at PC X+1

SPMD on SIMT Machine

97

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMD machineA GPU executes it using the SIMT model:

Single Instruction Multiple Thread

Warp 0 at PC X

Warp: A set of threads that execute

the same instruction (i.e., at the same PC)

Graphics Processing Units
SIMD not Exposed to Programmer (SIMT)

SIMD vs. SIMT Execution Model

◼ SIMD: A single sequential instruction stream of SIMD
instructions → each instruction specifies multiple data inputs

❑ [VLD, VLD, VADD, VST], VLEN

◼ SIMT: Multiple instruction streams of scalar instructions →

threads grouped dynamically into warps

❑ [LD, LD, ADD, ST], NumThreads

◼ Two Major SIMT Advantages:

❑ Can treat each thread separately → i.e., can execute each thread
independently (on any type of scalar pipeline) → MIMD processing

❑ Can group threads into warps flexibly → i.e., can group threads
that are supposed to truly execute the same instruction →

dynamically obtain and maximize benefits of SIMD processing
99

Fine-Grained Multithreading of

Warps

100

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Warp 0 at PC X

◼ Assume a warp consists of 32 threads

◼ If you have 32K iterations, and 1 iteration/thread → 1K warps

◼ Warps can be interleaved on the same pipeline → Fine grained

multithreading of warps

Warp 1 at PC X

Iter.
33

Iter.
34

Warp 20 at PC X+2

Iter.
20*32 + 1

Iter.
20*32 + 2

Warps and Warp-Level FGMT

◼ Warp: A set of threads that execute the same instruction
(on different data elements) → SIMT (Nvidia-speak)

◼ All threads run the same code
◼ Warp: The threads that run lengthwise in a woven fabric …

101

Thread Warp 3
Thread Warp 8

Thread Warp 7

Thread Warp

Scalar
Thread

W

Scalar
Thread

X

Scalar
Thread

Y

Scalar
Thread

Z

Common PC

SIMD Pipeline

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.

High-Level View of a GPU

102Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.

Latency Hiding via Warp-Level FGMT

◼ Warp: A set of threads that
execute the same instruction
(on different data elements)

◼ Fine-grained multithreading

❑ One instruction per thread in
pipeline at a time (No
interlocking)

❑ Interleave warp execution to
hide latencies

◼ Register values of all threads stay
in register file

◼ FGMT enables long latency
tolerance

❑ Millions of pixels

103

Decode

R
F

R
F

R
F

A
LU

A
LU

A
LU

D-Cache

Thread Warp 6

Thread Warp 1
Thread Warp 2DataAll Hit?

Miss?

Warps accessing
memory hierarchy

Thread Warp 3
Thread Warp 8

Writeback

Warps available
for scheduling

Thread Warp 7

I-Fetch

SIMD Pipeline

Slide credit: Tor Aamodt

Warp Execution (Recall the Slide)

104

32-thread warp executing ADD A[tid],B[tid] → C[tid]

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using
four pipelined
functional units

Slide credit: Krste Asanovic

Time

Space

Time

105

Lane

Functional Unit

Registers
for each
Thread

Memory Subsystem

Registers for
thread IDs
0, 4, 8, …

Registers for
thread IDs
1, 5, 9, …

Registers for
thread IDs
2, 6, 10, …

Registers for
thread IDs
3, 7, 11, …

Slide credit: Krste Asanovic

SIMD Execution Unit Structure

Warp Instruction Level Parallelism

Can overlap execution of multiple instructions
❑ Example machine has 32 threads per warp and 8 lanes

❑ Completes 24 operations/cycle while issuing 1 warp/cycle

106

W3

W0
W1

W4

W2

W5

Load Unit Multiply Unit Add Unit

time

Warp issue

Slide credit: Krste Asanovic

◼ Same instruction in different threads uses thread id to
index and access different data elements

SIMT Memory Access

Let’s assume N=16, 4 threads per warp → 4 warps

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+

+ + + +

Slide credit: Hyesoon Kim

Threads

Data elements

Warp 0 Warp 1 Warp 2 Warp 3

107

◼ CPU threads and GPU kernels

❑ Sequential or modestly parallel sections on CPU

❑ Massively parallel sections on GPU: Blocks of threads

Serial Code (host)

. . .

. . .

Parallel Kernel (device)

KernelA<<<nBlk, nThr>>>(args);

Serial Code (host)

Parallel Kernel (device)

KernelB<<<nBlk, nThr>>>(args);

Warps not Exposed to GPU Programmers

108

Slide credit: Hwu & Kirk

Sample GPU SIMT Code (Simplified)

for (ii = 0; ii < 100000; ++ii) {
C[ii] = A[ii] + B[ii];
}

// there are 100000 threads
__global__ void KernelFunction(…) {
int tid = blockDim.x * blockIdx.x + threadIdx.x;
int varA = aa[tid];
int varB = bb[tid];
C[tid] = varA + varB;

}

CPU code

CUDA code

Slide credit: Hyesoon Kim 109

Sample GPU Program (Less Simplified)

110Slide credit: Hyesoon Kim

Lecture on GPU Programming

111https://youtu.be/AkYnuqVpCug

https://youtu.be/AkYnuqVpCug

Heterogeneous Systems Course (Fall 2021)

https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id
=heterogeneous_systems

https://youtube.com/playlist?list=PL5Q2soXY2Zi_OwkTgEyA6tk3UsoPBH737

◼ Short weekly lectures

◼ Hands-on projects

112

https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=processing_in_memory
https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=heterogeneous_systems
https://youtube.com/playlist?list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://youtube.com/playlist?list=PL5Q2soXY2Zi_OwkTgEyA6tk3UsoPBH737

From Blocks to Warps

◼ GPU cores: SIMD pipelines

❑ Streaming Multiprocessors (SM)

❑ Streaming Processors (SP)

◼ Blocks are divided into warps

❑ SIMD unit (32 threads)

…
t0 t1 t2 … t31

…

…
t0 t1 t2 … t31

…

Block 0’s warps Block 1’s warps

…
t0 t1 t2 … t31

…

Block 2’s warps

113

NVIDIA Fermi architecture

Warp-based SIMD vs. Traditional SIMD
◼ Traditional SIMD contains a single thread

❑ Sequential instruction execution; lock-step operations in a SIMD instruction

❑ Programming model is SIMD (no extra threads) → SW needs to know

vector length

❑ ISA contains vector/SIMD instructions

◼ Warp-based SIMD consists of multiple scalar threads executing in a
SIMD manner (i.e., same instruction executed by all threads)

❑ Does not have to be lock step

❑ Each thread can be treated individually (i.e., placed in a different warp)
→ programming model not SIMD

◼ SW does not need to know vector length

◼ Enables multithreading and flexible dynamic grouping of threads

❑ ISA is scalar → SIMD operations can be formed dynamically

❑ Essentially, it is SPMD programming model implemented on SIMD
hardware

114

SPMD
◼ Single procedure/program, multiple data

❑ This is a programming model rather than computer organization

◼ Each processing element executes the same procedure, except on
different data elements

❑ Procedures can synchronize at certain points in program, e.g. barriers

◼ Essentially, multiple instruction streams execute the same
program

❑ Each program/procedure 1) works on different data, 2) can execute a
different control-flow path, at run-time

❑ Many scientific applications are programmed this way and run on MIMD
hardware (multiprocessors)

❑ Modern GPUs programmed in a similar way on a SIMD hardware

115

SIMD vs. SIMT Execution Model

◼ SIMD: A single sequential instruction stream of SIMD
instructions → each instruction specifies multiple data inputs

❑ [VLD, VLD, VADD, VST], VLEN

◼ SIMT: Multiple instruction streams of scalar instructions →

threads grouped dynamically into warps

❑ [LD, LD, ADD, ST], NumThreads

◼ Two Major SIMT Advantages:

❑ Can treat each thread separately → i.e., can execute each thread
independently on any type of scalar pipeline → MIMD processing

❑ Can group threads into warps flexibly → i.e., can group threads
that are supposed to truly execute the same instruction →

dynamically obtain and maximize benefits of SIMD processing
116

Threads Can Take Different Paths in Warp-based SIMD

◼ Each thread can have conditional control flow instructions

◼ Threads can execute different control flow paths

117

Thread Warp Common PC

Thread

2

Thread

3

Thread

4

Thread

1

B

C D

E

F

A

G

Slide credit: Tor Aamodt

Control Flow Problem in GPUs/SIMT

◼ A GPU uses a SIMD
pipeline to save area
on control logic

❑ Groups scalar threads
into warps

◼ Branch divergence
occurs when threads
inside warps branch to
different execution
paths

118

Branch

Path A

Path B

Branch

Path A

Path B

Slide credit: Tor Aamodt

This is the same as conditional/predicated/masked execution.

Recall the Vector Mask and Masked Vector Operations?

Remember: Each Thread Is Independent

◼ Two Major SIMT Advantages:

❑ Can treat each thread separately → i.e., can execute each thread
independently on any type of scalar pipeline → MIMD processing

❑ Can group threads into warps flexibly → i.e., can group threads
that are supposed to truly execute the same instruction →

dynamically obtain and maximize benefits of SIMD processing

◼ If we have many threads

◼ We can find individual threads that are at the same PC

◼ And, group them together into a single warp dynamically

◼ This reduces “divergence” → improves SIMD utilization

❑ SIMD utilization: fraction of SIMD lanes executing a useful
operation (i.e., executing an active thread)

119

Dynamic Warp Formation/Merging

◼ Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

◼ Form new warps from warps that are waiting

❑ Enough threads branching to each path enables the creation
of full new warps

120

Warp X

Warp Y

Warp Z

Dynamic Warp Formation/Merging

◼ Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

◼ Fung et al., “Dynamic Warp Formation and Scheduling for
Efficient GPU Control Flow,” MICRO 2007.

121

Branch

Path A

Path B

Branch

Path A

Dynamic Warp Formation Example

122

A A B B G G A AC C D D E E F F

Time

A A B B G G A AC D E E F

Time

A
x/1111
y/1111

B
x/1110
y/0011

C
x/1000
y/0010 D

x/0110
y/0001 F

x/0001
y/1100

E
x/1110
y/0011

G
x/1111
y/1111

A new warp created from scalar

threads of both Warp x and y

executing at Basic Block D

D

Execution of Warp x

at Basic Block A

Execution of Warp y

at Basic Block A

Legend
AA

Baseline

Dynamic

Warp

Formation

Slide credit: Tor Aamodt

Hardware Constraints Limit Flexibility of Warp Grouping

123

Lane

Functional Unit

Registers
for each
Thread

Memory Subsystem

Registers for
thread IDs
0, 4, 8, …

Registers for
thread IDs
1, 5, 9, …

Registers for
thread IDs
2, 6, 10, …

Registers for
thread IDs
3, 7, 11, …

Slide credit: Krste Asanovic

Can you move any thread
flexibly to any lane?

Large Warps and Two-Level Warp Scheduling

◼ Two main reasons for GPU resources be underutilized

❑ Branch divergence

❑ Long latency operations

124

time

Core

Memory
System

All Warps Compute

Req Warp 0

All Warps Compute

Req Warp 1

Req Warp 15

Round Robin Scheduling, 16 total warps

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp

Scheduling,” MICRO 2011.

Large Warp Microarchitecture Example

Decode Stage

1 0 0 1

0 1 0 0

0 0 1 1

1 0 0 0

0 0 1 0

0 1 0 0

1 0 0 1

0 1 0 0

0 0

0

0
1 1 1 1

0

0

0

0

1 1 1 1

0 0

0

1 1 1 11 1 0 1

Sub-warp 0 mask Sub-warp 0 maskSub-warp 1 mask Sub-warp 0 maskSub-warp 1 maskSub-warp 2 mask

1 1 1 1 1 1 1 1

◼ Reduce branch divergence by having large warps

◼ Dynamically break down a large warp into sub-warps

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp

Scheduling,” MICRO 2011.

Two-Level Round Robin

◼ Scheduling in two levels to deal with long latency operations

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp

Scheduling,” MICRO 2011.

time

Core

Memory
System

All Warps Compute

Req Warp 0

All Warps Compute

Req Warp 1

Req Warp 15

Round Robin Scheduling, 16 total warps

time

Core

Memory
System

Compute

Req Warp 0
Req Warp 1

Req Warp 7

Two Level Round Robin Scheduling, 2 fetch groups, 8 warps each

Group 0

Compute

Group 1

Req Warp 8
Req Warp 9

Req Warp 15

Compute

Group 0

Compute

Group 1

Saved Cycles

An Example GPU

NVIDIA GeForce GTX 285

◼ NVIDIA-speak:

❑ 240 stream processors

❑ “SIMT execution”

◼ Generic speak:

❑ 30 cores

❑ 8 SIMD functional units per core

◼ NVIDIA, “NVIDIA GeForce GTX 200 GPU. Architectural Overview. White Paper,” 2008.

Slide credit: Kayvon Fatahalian 128

NVIDIA GeForce GTX 285 “core”

…

= instruction stream decode= SIMD functional unit, control

shared across 8 units

= execution context storage = multiply-add
= multiply

64 KB of storage

for thread contexts

(registers)

Slide credit: Kayvon Fatahalian 129

NVIDIA GeForce GTX 285 “core”

…
64 KB of storage

for thread contexts

(registers)

◼ Groups of 32 threads share instruction stream (each group is
a Warp)

◼ Up to 32 warps are simultaneously interleaved

◼ Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian 130

NVIDIA GeForce GTX 285

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

… … …

………

………

………

………

………

………

………

………

………

30 cores on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian 131

0.0

5000.0

10000.0

15000.0

20000.0

25000.0

0

1000

2000

3000

4000

5000

6000

7000

8000

GTX 285
(2009)

GTX 480
(2010)

GTX 780
(2013)

GTX 980
(2014)

P100 (2016) V100 (2017) A100 (2020)

G
FL

O
P

S

#F
u

n
ct

io
n

al
 U

n
it

s

Functional units (stream processors)

GFLOPS

Evolution of NVIDIA GPUs

132

NVIDIA V100

◼ NVIDIA-speak:

❑ 5120 stream processors

❑ “SIMT execution”

◼ Generic speak:

❑ 80 cores

❑ 64 SIMD functional units per core

❑ Tensor cores for Machine Learning

◼ NVIDIA, “NVIDIA Tesla V100 GPU Architecture. White Paper,” 2017.

133

NVIDIA V100 Block Diagram

80 cores on the V100
https://devblogs.nvidia.com/inside-volta/

134

NVIDIA V100 Core

15.7 TFLOPS Single Precision

7.8 TFLOPS Double Precision

125 TFLOPS for Deep Learning (Tensor cores)

135

https://devblogs.nvidia.com/inside-volta/

Tensor Core Microarchitecture (Volta)
◼ Each warp utilizes two tensor cores

◼ Each tensor core contains two “octets”

❑ 16 SIMD units per tensor core (8 per octet)

❑ 4x4 matrix-multiply and accumulate each cycle per tensor core

136
* M. A. Raihan, N. Goli and T. M. Aamodt, "Modeling Deep Learning Accelerator Enabled GPUs," ISPASS 2019.

Proposed* tensor core microarchitecture

SIMD unit

Unlike conventional SIMD,

register contents are not

private to each thread, but

shared inside the warp

Edge TPU: Baseline Accelerator

DRAM

ML Model

PE Array

B
u

ff
e
r

Dataflow

64x64 array

2TFLOP/s

4MB

on-chip buffer

Output

ActivationParameter
Input

Activation

=*

137Introduction TPU and Model Characterization Mensa Framework Mensa-G Evaluation Conclusion

● ●

Research Lecture on Edge TPU

138https://youtu.be/KPPfRRPENgQ?t=2999

https://youtu.be/KPPfRRPENgQ?t=2999

Lecture on Systolic Arrays

139https://youtu.be/UtLy4Yagdys?t=2948

https://youtu.be/UtLy4Yagdys?t=2948

NVIDIA A100

◼ NVIDIA-speak:

❑ 6912 stream processors

❑ “SIMT execution”

◼ Generic speak:

❑ 108 cores

❑ 64 SIMD functional units per core

❑ Tensor cores for Machine Learning
◼ Support for sparsity

◼ New floating point data type (TF32)

◼ https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/ 140

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

NVIDIA A100 Block Diagram

108 cores on the A100
(Up to 128 cores in the full-blown chip)

40MB L2 cache

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

141

NVIDIA A100 Core

19.5 TFLOPS Single Precision

9.7 TFLOPS Double Precision

312 TFLOPS for Deep Learning (Tensor cores)

142

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

Food for Thought

◼ Compare and contrast GPUs vs Systolic Arrays

❑ Which one is better for machine learning?

❑ Which one is better for image/vision processing?

❑ What types of parallelism each one exploits?

❑ What are the tradeoffs?

143

Heterogeneous Systems Course (Fall 2021)

https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id
=heterogeneous_systems

https://youtube.com/playlist?list=PL5Q2soXY2Zi_OwkTgEyA6tk3UsoPBH737

◼ Short weekly lectures

◼ Hands-on projects

144

https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=processing_in_memory
https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=heterogeneous_systems
https://youtube.com/playlist?list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://youtube.com/playlist?list=PL5Q2soXY2Zi_OwkTgEyA6tk3UsoPBH737

Computer Architecture

Lecture 25: SIMD Processors

and GPUs

Dr. Juan Gómez Luna

Prof. Onur Mutlu

ETH Zürich

Fall 2022

05 January 2023

Clarification of Some GPU Terms

146

Generic Term NVIDIA Term AMD Term Comments

Vector length Warp size Wavefront size Number of threads that run in parallel (lock-step)
on a SIMD functional unit

Pipelined
functional unit /
Scalar pipeline

Streaming
processor /
CUDA core

- Functional unit that executes instructions for one
GPU thread

SIMD functional
unit /
SIMD pipeline

Group of N
streaming
processors (e.g.,
N=8 in GTX 285,
N=16 in Fermi)

Vector ALU SIMD functional unit that executes instructions for
an entire warp

GPU core Streaming
multiprocessor

Compute unit It contains one or more warp schedulers and one
or several SIMD pipelines

	Slide 1: Computer Architecture Lecture 25: SIMD Processors and GPUs
	Slide 2: Agenda for This Lecture
	Slide 3: Recommended Readings
	Slide 4: Exploiting Data Parallelism: SIMD Processors and GPUs
	Slide 5: SIMD Processing: Exploiting Regular (Data) Parallelism
	Slide 6: Flynn’s Taxonomy of Computers
	Slide 7: Flynn’s Taxonomy of Computers
	Slide 8: MISD Example from Flynn
	Slide 9: Lecture on Systolic Arrays
	Slide 10: SIMD Example from Flynn
	Slide 11: Flynn’s Taxonomy of Computers
	Slide 12: Data Parallelism
	Slide 13: SIMD Processing
	Slide 14: Storing Multiple Data Elements: Vector Registers
	Slide 15: Array vs. Vector Processors
	Slide 16: SIMD Array Processing vs. VLIW
	Slide 17: SIMD Array Processing vs. VLIW
	Slide 18: Lecture on VLIW
	Slide 19: Vector Processors (I)
	Slide 20: Vector Stride Example: Matrix Multiply
	Slide 21: Vector Processors (II)
	Slide 22: Vector Processor Advantages
	Slide 23: Vector Processor Disadvantages
	Slide 24: Recommended Paper
	Slide 25: Amdahl’s Law
	Slide 26: Vector Processor Limitations
	Slide 27: Vector Processing in More Depth
	Slide 28: Vector Registers
	Slide 29: Vector Functional Units
	Slide 30: Vector Machine Organization (CRAY-1)
	Slide 31: Recommended Paper
	Slide 32: CRAY X-MP-28 @ ETH (CAB, E Floor)
	Slide 33: CRAY X-MP System Organization
	Slide 34: CRAY X-MP Design Detail
	Slide 35: CRAY X-MP CPU Functional Units
	Slide 36: CRAY X-MP System Configuration
	Slide 37: Seymour Cray, Leader in Supercomputer Design
	Slide 38: Vector Machine Organization (CRAY-1)
	Slide 39: Loading/Storing Vectors from/to Memory
	Slide 40: Memory Banking
	Slide 41: Vector Memory System
	Slide 42: Scalar Code Example: Element-Wise Avg.
	Slide 43: Scalar Code Execution Time (In Order)
	Slide 44: Vectorizable Loops
	Slide 45: Basic Vector Code Performance
	Slide 46: Vector Chaining
	Slide 47: Vector Code Performance - Chaining
	Slide 48: Vector Code Performance – Multiple Memory Ports
	Slide 49: Questions (I)
	Slide 50: (Vector) Stripmining
	Slide 51: Questions (II)
	Slide 52: Gather/Scatter Operations
	Slide 53: Gather/Scatter Operations
	Slide 54: Conditional Operations in a Loop
	Slide 55: Another Example with Masking
	Slide 56: Masked Vector Instructions
	Slide 57: Some Issues
	Slide 58: Bank Conflicts in Matrix Multiplication
	Slide 59: Minimizing Bank Conflicts
	Slide 60: Minimizing Bank Conflicts: Recommended Reading
	Slide 61: Array vs. Vector Processors, Revisited
	Slide 62: Recall: Array vs. Vector Processors
	Slide 63: Vector Instruction Execution
	Slide 64: Vector Unit Structure
	Slide 65: Vector Instruction Level Parallelism
	Slide 66: Automatic Code Vectorization
	Slide 67: Vector/SIMD Processing Summary
	Slide 68: Recall: Amdahl’s Law
	Slide 69: SIMD Operations in Modern ISAs
	Slide 70: SIMD ISA Extensions
	Slide 71: Intel Pentium MMX Operations
	Slide 72: MMX Example: Image Overlaying (I)
	Slide 73: MMX Example: Image Overlaying (II)
	Slide 74: SIMD Operations in Modern (Machine Learning) Accelerators
	Slide 75: Cerebras’s Wafer Scale Engine (2019)
	Slide 76: Cerebras’s Wafer Scale Engine-2 (2021)
	Slide 77: Size, Place, and Route in Cerebras’s WSE
	Slide 78: Recall: Flynn’s Taxonomy of Computers
	Slide 79: A MIMD Machine with SIMD Processors (I)
	Slide 80: A MIMD Machine with SIMD Processors (II)
	Slide 81: Fine-Grained Multithreading
	Slide 82: Fine-Grained Multithreading
	Slide 83: Fine-Grained Multithreading (II)
	Slide 84: Multithreaded Pipeline Example
	Slide 85: Fine-grained Multithreading (III)
	Slide 86: Lecture on Fine-Grained Multithreading
	Slide 87: Lectures on Fine-Grained Multithreading
	Slide 88: GPUs (Graphics Processing Units)
	Slide 89: GPUs are SIMD Engines Underneath
	Slide 90: Programming Model vs. Hardware Execution Model
	Slide 91: How Can You Exploit Parallelism Here?
	Slide 92: Prog. Model 1: Sequential (SISD)
	Slide 93: Prog. Model 2: Data Parallel (SIMD)
	Slide 94: Prog. Model 3: Multithreaded
	Slide 95: Prog. Model 3: Multithreaded
	Slide 96: A GPU is a SIMD (SIMT) Machine
	Slide 97: SPMD on SIMT Machine
	Slide 98: Graphics Processing Units SIMD not Exposed to Programmer (SIMT)
	Slide 99: SIMD vs. SIMT Execution Model
	Slide 100: Fine-Grained Multithreading of Warps
	Slide 101: Warps and Warp-Level FGMT
	Slide 102: High-Level View of a GPU
	Slide 103: Latency Hiding via Warp-Level FGMT
	Slide 104: Warp Execution (Recall the Slide)
	Slide 105
	Slide 106: Warp Instruction Level Parallelism
	Slide 107: SIMT Memory Access
	Slide 108: Warps not Exposed to GPU Programmers
	Slide 109: Sample GPU SIMT Code (Simplified)
	Slide 110: Sample GPU Program (Less Simplified)
	Slide 111: Lecture on GPU Programming
	Slide 112: Heterogeneous Systems Course (Fall 2021)
	Slide 113: From Blocks to Warps
	Slide 114: Warp-based SIMD vs. Traditional SIMD
	Slide 115: SPMD
	Slide 116: SIMD vs. SIMT Execution Model
	Slide 117: Threads Can Take Different Paths in Warp-based SIMD
	Slide 118: Control Flow Problem in GPUs/SIMT
	Slide 119: Remember: Each Thread Is Independent
	Slide 120: Dynamic Warp Formation/Merging
	Slide 121: Dynamic Warp Formation/Merging
	Slide 122: Dynamic Warp Formation Example
	Slide 123: Hardware Constraints Limit Flexibility of Warp Grouping
	Slide 124: Large Warps and Two-Level Warp Scheduling
	Slide 125: Large Warp Microarchitecture Example
	Slide 126: Two-Level Round Robin
	Slide 127: An Example GPU
	Slide 128: NVIDIA GeForce GTX 285
	Slide 129: NVIDIA GeForce GTX 285 “core”
	Slide 130: NVIDIA GeForce GTX 285 “core”
	Slide 131: NVIDIA GeForce GTX 285
	Slide 132: Evolution of NVIDIA GPUs
	Slide 133: NVIDIA V100
	Slide 134: NVIDIA V100 Block Diagram
	Slide 135: NVIDIA V100 Core
	Slide 136: Tensor Core Microarchitecture (Volta)
	Slide 137: Edge TPU: Baseline Accelerator
	Slide 138: Research Lecture on Edge TPU
	Slide 139: Lecture on Systolic Arrays
	Slide 140: NVIDIA A100
	Slide 141: NVIDIA A100 Block Diagram
	Slide 142: NVIDIA A100 Core
	Slide 143: Food for Thought
	Slide 144: Heterogeneous Systems Course (Fall 2021)
	Slide 145: Computer Architecture Lecture 25: SIMD Processors and GPUs
	Slide 146: Clarification of Some GPU Terms

