Computer Architecture
Lecture 26: GPU Programming

Dr. Juan Gomez Luna
Prof. Onur Mutlu
ETH Zurich
Fall 2022
06 January 2023

Agenda for Today

GPU as an accelerator

o Program structure
Bulk synchronous programming model

o Memory hierarchy and memory management

o Performance considerations
Memory access
SIMD utilization
Atomic operations
Data transfers

Collaborative computing

Recommended Readings

= CUDA Programming Guide

o https://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html

= Hwu and Kirk, “Programming Massively Parallel Processors,”
Third Edition, 2017

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

An Example GPU

Recall: NVIDIA GeForce GTX 285

NVIDIA-speak:
o 240 stream processors
o “SIMT execution”

Generic speak:
o 30 cores
o 8 SIMD functional units per core

Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285 “core’’

64 KB of storage
for thread contexts

= multiply-add
= multiply

o = SIMD functional unit, control
shared across 8 units

(registers)

= instruction stream decode

= execution context storage

Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285 “core’’

64 KB of storage
for thread contexts
(registers)

= Groups of 32 threads share instruction stream (each group is

a Warp)

= Up to 32 warps are simultaneously interleaved

= Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285

[=T=])| (ST=]{ [<T=] | =[=]|

| [=]=]| [=]=] | [=[=]{ [=]=]|

 [=]=]|[=]=] [=[=]| [=]=]|

[=[=]] (ST=]{ [ST=]{ [ST=])

| [T=] | (=T (]| (=]

=[] | (=[] | (S[=] | (=[=],

INEREnEEER

[=T=]| (ST=]| [<T=] | T=]|

| [=[=] | [=]=]{ [=]=] | [=[=]]

| [=]=]) [=]=]{[=[=]1| [=1=]]

 [=]=]{[=I=] [=I=] | [=]=]|

| [S[=] | [wT] | [wT] | [wT]|

=[] | ([=] | (S[=] (=[=],

HERNEDEEER

CLrrr--T177]

CLiir---T770]

|[=T=] | [=[=]}| [=T=]{ [=I=1 ¥ [=T=] | [=[=]) (== E) EE] =E EE EE) (08][oo||oo||oo|| | [Oe][0s][os][oe] | | (0] [oe][oa][oa]
 [w]=] | [=]=]) [=[=]1| [=I=] {§ § =T=]| [=T=]1| [=I=1{ [=I=] i [=I=] | [=I=] | [=I=] | =T=]] | [n]=] | [=]=]{ [=[=1) [=T=1 |)i [=[=] | =I=] | == | == EE EE EEH EE)|
-t e -1 ety I -1t
[=T=]| (=[]} [=T=]{ [=I=1 ¥ [=T=] | [=T=]) [=T=]{ [sI=1§) (=T=]) [=[=1}| [sT=]{ [=]=]] =] EE EE EE I EE| EE| EE EE Y EE EE EE EE
EE|EE|EE | EE N EE EE | EE EE N EE EE EE] EEEE|EE|EEEE EE EE EEEE EE EE EE
et r---Trr iy ferrr---11rti -ty I 11Tt
(0o][og||oo||oa|| | [oe][0s][os][oa] | | (o] [oa][oa][oa] EEEEEEEEE EE EE EE N EE EE EE EE
(0o][og||oo||oa|| | [Oe][0s][0s][o] | | (o] [oa][oa][oa] EEEEE EE EE EE EE EEINEE EE EE EE

CLifr--T101]

INNEEn R

CLiff--T111]

INNEEn R

 [=]=]{[=]=] [=[=]{ [=]=]|

| [T=] [T [wT=] | [<T]|

=[] | I=] | [S[=] | [=])

 [=]=]{[=]=] [=[=]{ [=]=]|

| [=]=]{[=I=]{[=[=]| [=]=]|

 [=]=]|[=]=] [=[=]| [=]=]|

INNEED R

 [=]=]{[=I=] [=I=] | [=]=]|

| [=[=]|[=]=]|[=[=]| [=]=]|

 [=]=]{[=]=] [=[=] | [=]=]|

 [=]=] | [=]=] [=[=] | [=]=]|

[=[=]|[==1|[=I=]|[=]=]|

[=[=]|[=I=]|[=I=] | [=]=]|

CLrrr--T111]

INNEEn R

30 cores on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian

Recall: Evolution of NVIDIA GPUs

#HStream@rocessors

6000

5000

4000

3000

2000

1000

GTX2850C)
(2009)

GTX@80m GTXZ80m GTX®SOE P100E2016)
(2010) (2013) (2014)

=fll=Stream@rocessors

=@-GFLOPS

V100H2017)

16000

14000

12000

10000

8000

6000

4000

2000

GFLOPS

Recall: NVIDIA V100

NVIDIA-speak:
o 5120 stream processors
o “SIMT execution”

Generic speak:
o 80 cores
a 64 SIMD functional units per core

o Specialized Functional Units for Machine Learning (tensor
"cores” in NVIDIA-speak)

10

Recall: NVIDIA V100 Bloc

PCI Express 3.0 Host Interface

Memory Controller
Joljonuoy Asowaw

Memory Controller
Jononuog Aowew

1olonu0n Loway

5
o
-]
[
-]
(&
2
§
=

Memory Controlier
Jojjonuos Aowonm

https://devblogs.nvidia.com/inside-volta/

80 cores on the V100

Recall: NVIDIA V100 Core

—————— 4 157 TFLOPS Single Precision

Dispatch Unit (32 thread/clk) Dispatch Unit (32 threadiclk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit 7.8 TFLOPS Double Precision
Ly | v 125 TFLOPS for Deep Learning (Tensor “cores”)

INT FPa3 FPaz INT FP33 FP2
INT m: ¥Paz INT FPS PPR
INT FPA2 FP52 INT FP32 FPR TENSOR TENSOR
INT FR32 PR F il 'GORE | [CORE
FPa3 PR32 EP32 FPNY
g faa]
FF32 FEa2 Sum with
- - FP16 Full precision FP32 Convert to
storage/input product accumulator FP32 result
Loin ctian Cache i : L0 Inatrue Ji| more products
Wars Schidiller (32 thrssdsth) arp Sehndulir (32 thresdicil - 1]
Dispatch Unit (32 threadlclk) Dispatch Unit {32 thread/clk) _|_.. . -
Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) -_l_’

INT INT s pea) INT INT FPa2 PRE

INT INT P2 FPRR T EPa2 Fpad
Fraz e PP FE

= PR ENSOR TENSOR

INT FPO2 FP3I Pz FPR2 CORE GORE

FPG4 INT FP31 PR32 FP32 PPz D —_—
FPB4 INT FP32 BRa2 FP32 FPI

FPE4 T FP32 PP P32 FPX2

FP16 or FP32 FP16

FP16 or FP32

Lo/ LD LD Lo/ LD Lo/
ST ST ST ST ST ST 57

https://devblogs.nvidia.com/inside-volta/

12

Food for Thought

What is the main bottleneck in GPU programs?

“Tensor cores”:
o Can you think about other operations than matrix multiplication?
o What other applications could benefit from specialized cores?

Compa)re and contrast GPUs vs other accelerators (e.g., systolic
arrays

o Which one is better for machine learning?
o Which one is better for image/vision processing?
o What types of parallelism each one exploits?

o What are the tradeoffs?

13

Recall: Latency Hiding via Warp-Level FGMT

Warp: A set of threads that
execute the same instruction
(on different data elements)

Fine-grained multithreading

o One instruction per thread in
pipeline at a time (No
interlocking)

o Interleave warp execution to
hide latencies

Register values of all threads stay
in register file

FGMT enables long latency
tolerance

o Millions of pixels

Slide credit: Tor Aamodt

L 2
Thread Warp 3

Thread Warp 8

| ThreadIWarp 7 |

\ 4
| I-Fetch |
v

Decode |
v

NV [¢ 3 [«
NNV <3
NV [¢ o [«

v
D-Cache |

Al Hit’?l [Dam
v

Thread Warp 1
Thread Warp 2

| Writeback |

Warps available
for scheduling

SIMD Pipeline

Warps accessing

memory hierarchy
Miss?

| Thread Warp 6 |

14

Recall: Warp Execution

A[6]

A[5]
Al4]
A[3]

|

32-thread warp executing ADD A[tid],B[tid] = C[tid]

Execution using
one pipelined
functional unit

B[6]
B[5]
B[4]
B[3]

|
/

e

cr2l |

4

C[1] /

Time

l <

C[0]

Slide credit: Krste Asanovic

Time

Execution using
four pipelined
functional units

A[24] B[24] A[25] B[25] A[26] B[26] A[27] B[27]
A[20] B[20] A[21] B[21] A[22] B[22] A[23] B[23]
A[16] B[16] A[17] B[17] A[18] B[18] A[19] B[19]
A[12] B[12] A[13] B[13] A[14] B[14] A[15] B[15]
| l/ | l/ | l/ | l/
T Cr8] f T Cr9] f T C[10] f O] f
cr41 | cis1| \cel| c]
l
C[0] C[1] C[2] C[3]
< Space >

Recall: SIMD Execution Unit Structure

Registers
for each
Thread

Functional Unit
/

_ !

(T

[
Y

Lane

|
1 1 1 1 1 1 1 1

Registers for Registers for Registers for Registers for
thread IDs thread IDs thread IDs thread IDs
0,4,8, .. 1,5,9, .. 2, 6,10, ... 3,7, 11, ..
‘\ A 4 ‘7</,7 ‘\ A 4 <]/7 ‘\ A 4 ‘7</,7 ‘\ A 4 ‘7</,7
L[L] L[L[
SN O f PR B PR B |

j — . . .

Memory Subsystem

Slide credit: Krste Asanovic

Recall: Warp Instruction Level Parallelism

Can overlap execution of multiple instructions
o Example machine has 32 threads per warp and 8 lanes
o Completes 24 operations/cycle while issuing 1 warp/cycle

Load Unit Multiply Unit Add Unit
00 0 e A A A A A
time oo o000 AAAAAAVYZ fame e mEEE
00 0 e AAAAAAA A EEEEEE
0100 |0|0 A A A A AAAANEEEEEEDE
0100 |0|0 AAAA A A \|HEEEEEEENE
O|0|0|0|0 AAAAALVE_IIIIIIIII
0100 |0|0 AAAAAAA A EEE EEEE
A A AAAAAAINEEEEEEDE
H EEEENENEN

I Warp issue >

Slide credit: Krste Asanovic 17

Clarification of some GPU Terms

Vector length

Pipelined
functional unit /
Scalar pipeline

SIMD functional
unit /
SIMD pipeline

GPU core

Warp size

Streaming
processor /
CUDA core

Group of N
streaming
processors (e.g.,
N=8 in GTX 285,
N=16 in Fermi)

Streaming
multiprocessor

Wavefront size

Vector ALU

Compute unit

Number of threads that run in parallel (lock-step)
on a SIMD functional unit

Functional unit that executes instructions for one
GPU thread

SIMD functional unit that executes instructions for
an entire warp

It contains one or more warp schedulers and one
or several SIMD pipelines

18

GPU Programming

Recall: Vector Processor Disadvantages

-- Works (only) if parallelism is regular (data/SIMD parallelism)

++ Vector operations
-- Very inefficient if parallelism is irregular
-- How about searching for a key in a linked list?

To program a vector machine, the compiler or hand coder
must make the data structures in the code fit nearly exactly the
regular structure built intc the hardware. That’s hard to do in
first place, and just as hard to change. One tweak, and the
Jow-level code has to be rewritten by a very smart and
dedicated programmer who knows the hardware and often the
subtleties of the application area. Often the rewriting is

20
Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.

General Purpose Processing on GPU

Easier programming of SIMD processors with SPMD
o GPUs have democratized High Performance Computing (HPC)
o Great FLOPS/$, massively parallel chip on a commodity PC

Many workloads exhibit inherent parallelism
o Matrices

o Image processing

o Deep neural networks

However, this is not for free
o New programming model
o Algorithms need to be re-implemented and rethought

Still some bottlenecks
o CPU-GPU data transfers (PCle, NVLINK)
o DRAM memory bandwidth (GDDR5, GDDR6, HBM2)

Data layout
21

CPU vs. GPU

= Different design philosophies
o CPU: A few out-of-order cores
o GPU: Many in-order FGMT cores

CPU

- ==

Slide credit: Hwu & Kirk

22

GPU Computing

Computation is offloaded to the GPU

Three steps

o CPU-GPU data transfer (1)
o GPU kernel execution (2)
o GPU-CPU data transfer (3)

CPU
cores

CPU
memory

Matrix

GPU
memory

Matrix

GPU
cores

23

Traditional Program Structure

= CPU threads and GPU kernels

o Sequential or modestly parallel sections on CPU
o Massively parallel sections on GPU

Serial Code (host) g
Parallel Kernel (device) LD || L || < > Y
KernelA<<< nBlk, nThr >>>(args); ; S || S5 || £ S| ... | S8
Serial Code (host) g
Parallel Kernel (device) LD || Y || < > R
KernelB<<< nBlk, nThr >>>(args) ; ; S || S || & S|, .. | S5

Slide credit: Hwu & Kirk

24

Recall: SPMD

Single procedure/program, multiple data
a This is a programming model rather than computer organization

Each processing element executes the same procedure, except on
different data elements

o Procedures can synchronize at certain points in program, e.g. barriers

Essentially, multiple instruction streams execute the same
program

o Each program/procedure 1) works on different data, 2) can execute a
different control-flow path, at run-time

o Many scientific applications are programmed this way and run on MIMD
hardware (multiprocessors)

o Modern GPUs programmed in a similar way on a SIMD hardware

25

CUDA/OpenCL Programming Model
SIMT or SPMD

Bulk synchronous programming
o Global (coarse-grain) synchronization between kernels

The host (typically CPU) allocates memory, copies data,
and launches kernels

The device (typically GPU) executes kernels
o Grid (NDRange)
o Block (work-group)
Within a block, shared memory, and synchronization

o Thread (work-item)
26

Transparent Scalability

= Hardware is free to schedule thread blocks

time

DeV|ce Kernel grid

time

_ Each block can execute in any order relative to other blocks.
\ 4

Slide credit: Hwu & Kirk

27

Memory Hierarchy

Block (0, 0)

Registers

!

Registers

!

Block (1, 0)

Registers

!

Registers

!

é Thread (0, 0)

é Thread (1, 0)

é Thread (0, 0)

é Thread (1, 0)

28

Traditional Program Structure in CUDA

Function prototypes

float serialFunction (..);

__global void kernel(..);

main ()

o 1) Allocate memory space on the device — cudaMalloc (&d _in, bytes);

o 2) Transfer data from host to device — cudaMemCpy (d_in, h in, ..); 9
o 3) Execution configuration setup: #blocks and #threads 89
U ¢
o 4) Kernel call = kernel<<<execution configuration>>>(args..); S w
“ @©

o 5) Transfer results from device to host — cudaMemCpy (h_out, d out, ..);

Kernel - global void kernel (type args,..)
o Automatic variables transparently assigned to registers
o Shared memory: shared

o Intra-block synchronization: syncthreads () ;

Slide credit: Hwu & Kirk

29

CUDA Programming Language

= Memory allocation
cudaMalloc ((void**) &d in, #bytes);

= Memory copy
cudaMemcpy (d _in, h in, #bytes, cudaMemcpyHostToDevice) ;

= Kernel launch

kernel<<< #blocks, #threads >>>(args);

= Memory deallocation

cudaFree (d 1in);

= Explicit synchronization

cudaDeviceSynchronize () ;

30

Indexing and Memory Access

= Images are 2D data structures
o height x width
o Image[j][i], where 0 < j < height, and 0 < i < width

Image[0][1]
\‘ 0 1 2 3 4 5 6 7

\$

Image[1][2]—

0
1
2
3
4
5
6
7

Image Layout in Memory

= Row-major layout
= Image[j][i] = Image[j x width + i]

l NENN BN BN EEEEE EEEEEEE EEEEEEEEEEN

\
| Image[0][1] = Image[0 x 8 + 1]
Stride = width
Image[1][2] = Image[1 x 8 + 2]

32

Indexing and Memory Access: 1D Grid

= One GPU thread per pixel
s Grid of Blocks of Threads

0 gridDim.x, blockDim.x
0 blockIdx.x, threadIdx.x

Thread 0
Thread 1
Thread 2
Thread 3

blockIdx.x Block O

threadIdx.x

Block 0

6*4+1=25

blockIdx.x * blockDim.x +
threadIdx.x

Indexing and Memory Access: 2D Grid

= 2D blocks
0 gridDim.x, gridDim.y

threadIdx.x
threadIdx.y

1l
o

Block (o 0)
Row = blockIdx.y *

blockDim.y + threadIdx.y ‘ \
Col = blockIdx.x *
blockDim.x + threadIdx.x__

blockIdx.x
blockIdx.y

Row=1*2+1=3
Col=0*2+1=1

Image[3][1] = Image[3 * 8 + 1]

34

Briet Review of GPU Architecture (I)

= Streaming Processor Array
o Tesla architecture (G80/GT200)

Briet Review ot GPU Architecture (1I)

| St rea m i n g M U Iti p rocesso rS (S M) Streaming Multiprocessor
o Streaming Processors (SP)

Warp Scheduler || Warp Scheduler

Dispatch Unit Dispatch Unit

|
Register File

= Blocks are divided into warps
o SIMD unit (32 threads)

Block O’s warps Block 1’s warps Block 2’s warps
]]]
t0t1t2..1t31 t0t1t2..131 t0t1t2 ... 131 ..
\\\\\\\\\\) NNNNNNNNANN ANNNNNNNNNN
S S > o] -

NVIDIA Fermi architecture

36

Briet Review ot GPU Architecture (I11)

Streaming Multiprocessors (SM) or Compute Units (CU)
o SIMD pipelines

Streaming Processors (SP) or CUDA “cores”
a Vector lanes

Number of SMs x SPs across generations
Tesla (2007): 30 x 8

Fermi (2010): 16 x 32

Kepler (2012): 15 x 192

Maxwell (2014): 24 x 128

Pascal (2016): 56 x 64

Volta (2017): 80 x 64

a
a
a
a
a
a

Performance Considerations

Performance Considerations

= Main bottlenecks
a Global memory access
a CPU-GPU data transfers
= Memory access
o Latency hiding
= Occupancy
o Memory coalescing
o Data reuse
= Shared memory usage
= SIMD (Warp) Utilization: Divergence
= Atomic operations: Serialization

= Data transfers between CPU and GPU
a Overlap of communication and computation

Memory Access

Latency Hiding

= FGMT can hide long latency operations (e.g., memory accesses)

= Occupancy: ratio of active warps

.
time

il

4 active

warps

Instruction 3

Instruction 2

Instruction *

Instruction 4

Instruction *

Instruction 3

Instruction £

"
time

. 3 3

(Long latency!

2 active warps

Instruction 3

Instruction 2

Instruction 3

Instruction £

Instruction 4
(Long latency!

41

Occupancy

SM resources (typical values)

o Maximum number of warps per SM (64)
o Maximum number of blocks per SM (32)
o Register usage (256KB)

o Shared memory usage (64KB)

Occupancy calculation

o Number of threads per block (defined by the programmer)
o Registers per thread (known at compile time)

o Shared memory per block (defined by the programmer)

42

Memory Coalescing

= When accessing global memory, we want to make sure
that concurrent threads access nearby memory locations

= Peak bandwidth utilization occurs when all threads in a
warp access one cache line

Not coalesced Coalesced

Md

Thread 1
Thread 2

Slide credit: Hwu & Kirk

43

Uncoalesced Memory Accesses

Access
direction
in Kernel
code
Time Period 2
T, T, T T,
A A A A
Time Period [l
T, T, T, T,

I

e My 1 My 1My M5 Mg oM oM, 5 M5 Mg s My s M 5 M 5

Slide credit: Hwu & Kirk

44

Coalesced Memory Accesses

Access
direction
in Kernel
code

Time Period 1|| Time Period 2
T, T, T3 T4|| Ty T, T3 Ty

M
!

MO,O

, MO,I Ml,l M2,1 M3,1 MO,Z M1,2 M2,2 M3,2 M0,3 IV|1,3 M2,3 M3,3

Slide credit: Hwu & Kirk

45

AoS vs. SOA

Array of Structures vs. Structure of Arrays

struct foo{
Structure of
(SoA) int d[8];

struct foo{

Array of
Structures
(AOS) int 4d;

} A[8];

46

CPUs Prefer AoS, GPUs Prefer SoA

= Linear and strided accesses

1

20

47 8@ 168 320 640 128 256@ 5120 1024@
Strided@Structure@ize)?

GPU CPU

12.08 - 5.00

11.08 \ ——-Gpue 4.581— —o—1CPURE —— 2CPUE —— 4CPUR

10.08 . —*
008 \ 4.00
2 > \ 2L 350
o 8.0)
1% 7.08 \ % 3.0 —
3 6.07 \ 3 2.50- /
B sonl—— N4 \
2 s5.08 ¥ X 2.0
s oo = %m
F 3om I__l = iz ¢ o

2.08 ' o

1.00 \EL‘U_D—%D——D—EI—D 0.50

0.08 ' ' 0.0@

1@ 2@ 43 8@ 16@ 328 64@ 1287 256@ 5120 10247
StridedStructure@ize)

AMD Kaveri A10-7850K

Sung+, “DL: A data layout transformation system for heterogeneous computing,” INPAR 2012

47

Data Reuse

= Same memory locations accessed by neighboring threads

for (int 1 = 0; 1 < 3; i++){
for (int J = 0; J < 3; J++){
sum += gauss[i][J] * Imagel (i+row-1)*width + (j+col-1)1;

}

48

Data Reuse: Tiling

= To take advantage of data reuse, we divide the input into tiles
that can be loaded into shared memory

__shared int 1 data[(L SIZE+2)* (L SIZE+2)];

Load tile into shared memory
__syncthreads() ;
for (int 1 = 0; i < 3; i++){
for (int J = 0; J < 3; Jj++){
sum += gauss[i] []]

* 1 data[(i+l row-1)*(L SIZE+2)+3j+1 col-1];
}

}

49

Shared Memory

Shared memory is an interleaved (banked) memory
o Each bank can service one address per cycle

Typically, 32 banks in NVIDIA GPUs

o Successive 32-bit words are assigned to successive banks
Bank = Address % 32

Bank conflicts are only possible within a warp
o No bank conflicts between different warps

50

Shared Memory Bank Conflicts (I)

Thread O
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

= Bank conflict free

Bank 15

Linear addressing: stride = 1

Thread O
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 15

Bank 15

Random addressing 1:1

Slide credit: Hwu & Kirk

51

Shared Memory Bank Conflicts (II)

= N-way bank conflicts

Thread O
Thread 1
Thread 2
Thread 3

Thread 8
Thread 9

Thread 10
Thread 11

2-way bank conflict: stride = 2

Thread O
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5 3

Thread 6 >

Thread 7

8-way bank conflict: stride = 8

Slide credit: Hwu & Kirk

52

Reducing Shared Memory Bank Conftlicts

Bank conflicts are only possible within a warp
o No bank conflicts between different warps

If strided accesses are needed, some optimization
techniques can help
o Padding

o Randomized mapping
Rau, “Pseudo-randomly interleaved memory,” ISCA 1991

o Hash functions

V.d.Braak+, “Configurable XOR Hash Functions for Banked
Scratchpad Memories in GPUs,” IEEE TC, 2016

53

SIMD Utilization

Control Flow Problem in GPUs/SIMT

A GPU uses a SIMD
pipeline to save area

on control logic 1 1 1 1 1 1 1 1

o Groups scalar threads

into warps Branch 1 1 1 1 1 1 1 1
Path A
Branch divergence i 1 1 1 1
occurs when threads Patﬂ 1 1 1 1

inside warps branch to
different execution 1 1 1 1 1 1 1 1
paths

This is the same as conditional/predicated/masked execution.
Recall the Vector Mask and Masked Vector Operations?

55

Slide credit: Tor Aamodt

SIMD Utilization

= Intra-warp divergence

Compute

Compute (threadIdx.x) ;

if (threadIdx.x % 2 == 0) {
Do this(threadldx.x);

}

else{
Do that (threadIdx.x);
}

Else

Increasing SIMD Utt

1zation

= Divergence-free execution

Compute (threadIdx.x) ;
if (threadIdx.x < 32){

Do this(threadIdx.x * 2);
}

else{
Do that ((threadIdx.x%32) *2+1);

}

YYYvyYrrry

Yyvyrryvvrvry

Compute

Else

57

Vector Reduction: Naive Mapping (I)

Thread 0 Thread 2 Thread 4 Thread 6 Thread 8 Thread 10

iterations
—
W

Slide credit: Hwu & Kirk

58

Vector Reduction: Naive Mapping (1I)

= Program with low SIMD utilization

__shared float partialSum][]
unsigned int t = threadIldx.x;
for (int stride = 1; stride < blockDim.x; stride *= 2) {

__syncthreads () ;

if (t $ (2*stride) == 0)
partialSum[t] += partialSum|[t + stride];

59

Divergence-Free Mapping (1)

= All active threads belong to the same warp

Thread 0 Thread 1 Thread 2 Thread 14 Thread 15

N

iterations
—
(O8]

Slide credit: Hwu & Kirk

60

Divergence-Free Mapping (11)

= Program with high SIMD utilization

shared float partialSum/[]

unsigned int t = threadIldx.x;

for (int stride = blockDim.x; stride > 1; stride >> 1) {

__syncthreads () ;

if (t < stride)
partialSum[t] += partialSum|[t + stride];

61

Atomic Operations

Shared Memory Atomic Operations

Atomic Operations are needed when threads might update the
same memory locations at the same time

CUDA: int atomicAdd (int*, int);
PTX: atom.shared.add.u32 %r25, [%rdl4], %r24;
SASS:

Tesla, Fermi, Kepler Maxwell, Pascal, Volta

/*00a0*/ LDSLK PO, R9, [R8]; /*01£f8*/ ATOMS.ADD RZ, [R7], R1l1;
/*00a8*/ @P0O IADD R10, RS9, R7;

/*00b0*/ @PO STSCUL P1, [R8], RLO; Native atomic operations for

32-bit integer, and 32-bit and

/*00b8*/ @!P1 BRA 0xal;) .
64-bit atomicCAS

63

Atomic Conflicts

= We define the intra-warp conflict degree as the number of
threads in a warp that update the same memory position

= The conflict degree can be between 1 and 32

th0 th’ th0 th’
-tconﬂ/ct
tho thi the — |
0 5 § % tbase 2 2 é _tbase
0 1 2 3 0 1 2 _3_
No atomic conflict = Atomic conflict =

concurrent updates serialized updates

64

Histogram Calculation

= Histograms count the number of data instances in disjoint

categories (bins)

for (each pixel 1 in image 1I) {

Pixel = I[1]

Pixel’ = Computation (Pixel)

Histogram[Pixel’] ++

Input data

// Read pixel
// Optional computation

// Vote in histogram bin

data[n]

data[n+1]

data[n+2]

data[2n 1]

data[0]

data[1]

data[2]

data[n-1]

Histogram

Atomic additions

65

Histogram Calculation of Natural Images

= Frequent conflicts in natural images

¢ o ¥
2

2
Y ¢ v ¥

187 192 194 192
189 191 192
188 190 193
187 189 193
187 192
188
188
189 193 195 194
190 192 191
189 191 190
190 192 192
189 192 192

66

Optimizing Histogram Calculation

= Privatization: Per-block sub-histograms in shared memory

Shared memory

Block Qs sub-histo Block 1's sub-histo Block 2’s sub-histo

Block 3’s sub-histo

Final histogram

bO [b1 | b2 | b3 bO [b1 | b2 | b3 b0 [b1 | b2 | b3 bOo [b1 | b2 | b3
bo | b1 | b2 | b3 | Global memory

Gomez-Luna+, “Performance Modeling of Atomic Additions on GPU Scratchpad

Memory,” IEEE TPDS, 2013.

67

Data Transfers
between CPU and GPU

Data Transfers

= Synchronous and asynchronous transfers
= Streams (Command queues)

o Sequence of operations that are performed in order
= CPU-GPU data transfer

= Kernel execution
o D input data instances, B blocks
= GPU-CPU data transfer

o Default stream

copy ot |

Execute]

69

Asynchronous Transfers

= Computation divided into nStreams
o D input data instances, B blocks

o nStreams
= D/nStreams data instances
= B/nStreams blocks

- |
copydata [;
- £ |
Execute]
copydata [D I
Execute I E I e
o Estimates tp+ tp+
nStreams nStreams

tr >= t,(dominant kernel) t-> t- (dominant transfers)

70

Overlap of Communication and Computation

Applications with independent computation on different data
instances can benefit from asynchronous transfers

For instance, video processing

Non-
streamed
execution

A sequence of 6 frames is transferred to device

KIKIIX)X

DDDDDDDDDDDDDDDDDD

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

Streamed
execution

Gomez-Luna+, “Performance models for asynchronous data transfers on consumer

A chunk of 2 frames is
transferred to device

L2le

////////////////

DEPEENTE

4L CLL(
G
AsdAdddd

J

ooooddgddo

2h%

transferred

2 x b blocks compute
on the chunk, while the
second chunk is being

llllllllllllllll

Execution time saved
thanks to streams

oodddddddo|ddoddddan

<%

\/

Graphics Processing Units,” JPDC, 2012.

71

Summary

GPU as an accelerator

o Program structure
Bulk synchronous programming model

o Memory hierarchy and memory management

o Performance considerations

Memory access

o Latency hiding: occupancy (TLP)
0 Memory coalescing

o Data reuse: shared memory

SIMD utilization
Atomic operations
Data transfers

72

Collaborative Computing

Review

Device allocation, CPU-GPU transfer, and GPU-CPU transfer

o cudaMalloc () ;

0 cudaMemcpy () ;

malloc (input, ...);

cudaMalloc (d_input, ...);
cudaMemcpy (d_input, input, ..., HostToDevice);
malloc (output, ...);

cudaMalloc (d_output, ...);

gpu_kernel<<<blocks, threads>>> (d output, d input, ...);

cudaDeviceSynchronize () ;

cudaMemcpy (output, d output, ..., DeviceToHost);

74

Unitied Memory (I)

= Unified Virtual Address
= Since CUDA 6.0: Unified memory
= Since CUDA 8.0 + Pascal: GPU page faults

CUDA 6 Unified Memory

Pascal Unified Memory

Kepler Pascal

1 $ $!

Unified Memory

(Limited to GPU Memory Size)

(Limited to System Memory Size)

75

Unitied Memory (II)

= Easier programming with Unified Memory
0 cudaMallocManaged() ;

malloc (input, ...);
cudaMallocManaged (d_input, ...);
memcpy (d_input, input, ...);

cudaMallocManaged (d_output, ...);
gpu_kernel<<<blocks, threads>>> (d output, d input, ...);

cudaDeviceSynchronize () ;

Collaborative Computing Algorithms

Case studies using CPU and GPU

Kernel launches are asynchronous
o CPU can work while waits for GPU to finish

o Traditionally, this is the most efficient way to exploit
heterogeneity

malloc (input, ...);
cudaMalloc (d_input, ...);
cudaMemcpy (d_input, input, ..., HostToDevice);

malloc (output, ...);
cudaMalloc (d output, ...);

gpu_kernel<<<blocks, threads>>> (d output, d input, ...);

// CPU can do things here
cudaDeviceSynchronize () ;

cudaMemcpy (output, d output, ..., DeviceToHost);

77

Fine-Grained Heterogeneity

= Fine-grain heterogeneity becomes possible with
Pascal/Volta architecture

= Pascal/Volta Unified Memory
o CPU-GPU memory coherence
o System-wide atomic operations

cudaMallocManaged (input, ...);
cudaMallocManaged (output, ...);
gpu_kernel<<<blocks, threads>>> (output, input, ...);

output [x] = inputly];

output [x+1] .fetch add(1l);

78

Since CUDA 8.0

= Unified memory

cudaMallocManaged (&h 1in,

= System-wide atomics

in size);

old = atomicAdd system(&h out[x],

inc) ;

79

Since OpenCL 2.0

= Shared virtual memory

XYZ * h in = (XYZ *)clSVMAlloc(

ocl.clContext, CL MEM SVM FINE GRAIN BUFFER, in size,

= More flags:

CL_MEM READ WRITE

CL_MEM SVM ATOMICS

= C++11 atomic operations
(memory scope all svm devices)

old = atomic fetch add(&h out[x], 1nc);

0);

80

C++AMP (HCC)

= Unified memory space (HSA)

XYZ *h 1n = (XYZ *)malloc(in size);
= C++11 atomic operations

(memory scope all svm devices)

o Platform atomics (HSA)

old = atomic fetch add(&h out[x], 1inc);

81

Collaborative Patterns (I)

sequential sub-tasks

data-parallel tasks

A
| 1

AN

\

P

Program Structure

d

coarse-graine
synchronization

Device 1: Device 2

T

T

Data Partitioning

82

Collaborative Patterns (1I)

Device 1: Device 2

i

data-parallel tasks

A
| 1

A, i
AR

1

Coarse-grained Task Partitioning

Program Structure

83

Collaborative Patterns (I11)

Device 1 ' Device 2

|
data-parallel tasks D I:l._l__
Oar

TR i
- ey,

Program Structure Fine-grained Task
Partitioning

d

coarse-graine
synchronization
L]
]

I

sequential sub-tasks

84

Histogram (I)

= Previous generations: separate CPU and GPU histograms
are merged at the end

malloc (CPU image) ;
cudaMalloc (GPU image) ;
cudaMemcpy (GPU image, CPU image,
Host to Device);
malloc (CPU histogram) ;
memset (CPU histogram, O0);
cudaMalloc (GPU histogram) ;
cudaMemset (GPU histogram, 0);

N?k mfk // Launch CPU threads

// Launch GPU kernel

cudaMemcpy (GPU histogram, DeviceToHost) :;

// Launch CPU threads for merging

85

Histogram (11)

= System-wide atomic operations: one single histogram

cudaMallocManaged (Histogram) ;
cudaMemset (Histogram, 0);

// Launch CPU threads
// Launch GPU kernel (atomicAdd system)

86

Bézier Surtaces (I)

Bézier surface: 4x4 net of control points

87

Bézier Surtaces (1I)

Parametric non-rational formulation
o Bernstein polynomials
o Bi-cubic surface m=n=13

S(u,v) = Z Z P; i Bim(u)Bjn(v),

i=0 j=0

(2)

(1)

88

Bézier Surtaces (111)

Collaborative implementation
o Tiles calculated by GPU blocks or CPU threads

o Static distribution

XyZ
T M
500
(2 ° ® ® °
¢ ® . n 3D Surface point processed
e e e o T e in CPU
4 * b d * e * 3D Surface point processed
it DI D S
ehie N hlie [h e e]
e W%—J Tile of surface points processed
(9] in CPU
Wﬂ]?J Tile of surface points processed
® 9 ® ® s Py \FZEHPEJ in GPU
® [® e h
ST 1

89

Bézier Surtaces (IV)

= Without Unified Memory

malloc (control points, ...);

generate cp(control points);

cudaMalloc (d control points, ...);

cudaMemcpy (d_control points, control points, ..., HostToDevice);

malloc (surface, ...);
cudaMalloc (d _surface, ...);

std::thread main thread (run cpu threads, control points, surface,
gpu_kernel<<<blocks, threads>>> (d surface, d control points, ...);

main_ thread.join();
cudaDeviceSynchronize () ;

cudaMemcpy (&surface[end of cpu part], d surface, ..., DeviceToHost);

Bézier Surtaces (V)

= Execution results

o Bezier surface: 300x300, 4x4 control points
o %Tiles to CPU

o NVIDIA Jetson TX1 (4 ARMv8 + 2 SMX): 17% speedup wrt

90.00
80.01 /z//EI
70.00
/
m
£ 60.03
i }/
[J]
E50.02
= /z/
S
-g 40.0m /z/
s} = = -
S<J 30.00 _—H—P_ﬂ\?
Ll
20.03
10.0
O_O T T T T T T T T T T 1
0.00@ 0.050 0.10@ 0.150 0.200 0.250[0.30m 0.350 0.400 0.450R 0.50m
%Tiles@oEPUR

91

Bézier Surtaces (VI)

= With Unified Memory (Pascal/Volta)

malloc (control points, ...);
generate cp(control points);
cudaMalloc (d control points, ...);

cudaMemcpy (d_control points, control points, ..., HostToDevice);

cudaMallocManaged (surface, ...);

std::thread main thread (run cpu threads, control points,

surface,

gpu_kernel<<<blocks, threads>>> (surface, d control points, ...);

main thread.join();
cudaDeviceSynchronize () ;

92

Bézier Surtaces (VII)

Static vs. dynamic implementation

(a) Static Distribution (b) Dynamic Distribution

_yZ yZ

-
%

So.l S
T T

!I, 3D Surface point processed

in GPU

et M e e
JAd0- 00 @0 Og
SEechy Che oy = o

'
S

J] Tile of surface points processed
in CPU

L L)

i
%ﬁZJ Tile of surface points processed

in GPU

wir et - Lol 1 R

€T €T
ST e ST

o Pascal/Volta Unified Memory: system-wide atomic operations

while (true) {
if (threadIdx.x == 0)
my tile = atomicAdd system(tile num, 1); // my tile in shared memory; tile num in UM

__syncthreads(); // Synchronization

if (my tile >= number of tiles) break; // Break when all tiles processed

93

Benefits of Collaboration

= Data partitioning improves performance
o AMD Kaveri (4 CPU cores + 8 GPU CUs)

4096
1024
256

Execution Time (/m5s)
Ll ®))
> o A~

—o— 12x12 (300x300) NP
eni 88 (300x300) S & &K
- @ - 4x4 (300x300)

Bézier Surfaces
(up to 47% improvement over GPU only)

94

Padding (I)

= Matrix padding
o Memory alignment
o Transposition of near-square matrices

= Traditionally, it can only be performed out-of-place

95

Padding (II)

= Execution results
o Matrix size: 4000x4000, padding = 1

o NVIDIA Jetson TX1 (4 ARMv8 + 2 SMX): 29% speedup wrt
GPU only

120m

100m

80 /
602 \ = ’E/E/E/

w

Execution@imedms)&

40

200

o

0.002 0.052 0.108 0.158 0.208 0.258 0.30@ 0.358 0.408 0.458 0.502 0.558 0.603
%CPURvorkload®

In-Place Padding

= Pascal/Volta Unified Memory

Coherent ! Flags
memory !
[1] GPU temporary
location
~> |20 212223 |24
~> 25|26 |27 |28 | 29
3334 | CPU temporary
location

Adjacent synchronization:
CPU and GPU

In-place implementation will
be possible

97

Benefits of Collaboration

= Optimal number of devices is not always max

o AMD Kaveri (4 CPU cores + 8 GPU CUs)

w)
~~
[an]
)

t

>

Throughp

18.0

16.0 T
14.0 T

i

+0CPU | +1CPU | +2CPU |+4CPU Copy | Mul | Add | Triad

12.0
10.0
8.0
6.0
4.0
2.0

0.0 7

1000x999

M 6000x5999

+0CPU | +1CPU | +2CPU | +4CPU

16WG(64WI)

Execution configuration
(GPU work-groups + CPU threads)

8WG(64WI)

GPU-STREAM

98

Stream Compaction (1)

Stream compaction
o Saving memory storage in sparse data

o Similar to padding, but local reduction result (non-zero
element count) is propagated

Stream compaction

Input 2 1 3 O[O 1 3[4 (0[O0 2 1

Predicate: Element > 0

Qutput { 2 | 1 [3 |1 |3 (4] 2|1

99

Stream Compaction (II)

= Execution results
o Array size: 2 MB, Filtered items = 50%

o NVIDIA Jetson TX1 (4 ARMv8 + 2 SMX): 25% speedup wrt
GPU only

140

. S
A

_ _ ~ /
| f— | -

o~

=
o
[l

[0.]
29

(o)}
[

Execution@imed@ms)l

N
=

N
[~

o
[l

0.00@ 0.052 0.108 0.158 0.208 0.258 0.30@ 0.358 0.408 0.458 0.502 0.558 0.603
%CPURvorkloadn

100

Benefits of Collaboration

= Data partitioning improves performance
o AMD Kaveri (4 CPU cores + 8 GPU CUs)

& 512

S

Q

g 128

[

= 32

=)

whd

S 8

Q NN NN T\ T
= R R R RRR
o SO AN AN C AN M O MG
——1 | >V " \bx’\'gxq’oxb‘
il 0.5 Q Q R
-%-0 © © ©

Stream Compaction
(up to 82% improvement over GPU only)

101

Breadth-First Search

= Small-sized and big-sized frontiers

o Top-down approach
o Kernel 1 and Kernel 2

= Atomic-based block synchronization
a Avoids kernel re-launch

= Very small frontiers
o Underutilize GPU resources

= Collaborative implementation

102

Atomic-Based Block Synchronization (I)

Combine Kernel 1 and Kernel 2
We can avoid kernel re-launch

We need to use persistent thread blocks
o Kernel 2 launches (frontier_size / block_size) blocks
o Persistent blocks: up to (number_SMs x max_blocks_SM)

BITO'ck'l'(-_I'_
Rock 1
1149
g _‘%E}— 1
Block _'Ljr 'ﬂ_bck I
" |
4 Lt—4a
SM#0 SM#1 SM#0 SM#1
Block Block Block Block Block Block Block Block
0 1 2 3 0 1 2 3
Block O Block 1 Block 2 Block 3 Block 4 Block5 Block m-2 Block m-1 Block 0 Block 1 Block 2 Block 3 Block O Block 1 Block2 Block 3
| I I Il | I | |
| | l I I l || I ! l l l | I || I
0 1 2 3 4 5 e m-2 m-1 0 1 2 3 4 5 e m-2 m-1

103

Atomic-Based Block Synchronization (I1I)

= Code (simplified)

// GPU kernel
const int gtid = blockIdx.x * blockDim.x + threadIdx.x;

while (frontier size != 0) {
for (node = gtid; node < frontier size; node += blockDim.x*gridDim.Xx) {

// Visit neighbors
// Enqueue in output queue if needed (global or local queue)

}
// Update frontier size

// Global synchronization

104

Atomic-Based Block Synchronization (I111)

= Global synchronization (simplified)
o At the end of each iteration

const int tid = threadIdx.x;

const int gtid = blockIdx.x * blockDim.x + threadIdx.x;
atomicExch (ptr threads run, 0);
atomicExch (ptr threads end, 0);

int frontier = 0;

frontier++;

if (tid == 0) {
atomicAdd (ptr threads end, 1); // Thread block finishes iteration
}

if (gtid == 0) {
while (atomicAdd (ptr threads end, 0) != gridDim.x){;} // Wait until all blocks finish

atomicExch (ptr threads end, 0); // Reset
atomicAdd (ptr threads run, 1); // Count iteration

}
if(tid == 0 && gtid != 0) {

while (atomicAdd (ptr threads run, 0) < frontier){;} // Wait until ptr threads run is updated
}

__syncthreads(); // Rest of threads wait here

105

Collaborative Implementation (I)

= Motivation

o Small-sized frontiers underutilize GPU resources
= NVIDIA Jetson TX1 (4 ARMv8 CPUs + 2 SMXs)
= New York City roads

10.0 50000
ESSSICPU (4 threads)

9.0 + 45000
= C=GPU (4x256 threads) =
£ 8.0 -+ 40000 ©
£ \ = Frontier size =
2 70 35000 O
E [y
c 6.0 30000 ©
'O Q
£ 50 25000
3 ©
o (@]
X 4.0 20000 <
Q
o o
W 30 15000 ©
§ 50 10000 s
z - =
1.0 - 5000
00 +55 - : - 0
& & £ £ & &
PSS S AN NN
S
o RS S
Frontiers

106

Collaborative Implementation (II)

Choose the most appropriate device

QOO0
-\

small frontiers IQ_QQ:QQQQ_Q_Q@:Q_QI T large frontiers
proc<(e:spsl<Jed on b _@Q_E)_O@_E):C_Ség; — proczssﬁd on

) _ N

10QQ0!

CPU GPU

HE HER

| HEN

107

Collaborative Implementation (11I)

Choose CPU or GPU depending on frontier size

// Host code
while (frontier size != 0) {

if (frontier size < LIMIT) {
// Launch CPU threads

}

else{

// Launch GPU kernel

CPU threads or GPU kernel keep running while the
condition is satisfied

108

Collaborative Implementation (IV)

|
§ |

21l -

Collaborative Implementation (V)

Without Unified Memory
o Explicit memory copies

// Host code
while (frontier size != 0){

if (frontier size < LIMIT) {
// Launch CPU threads

}

else{
// Copy from host to device (queues and synchronization variables)
// Launch GPU kernel

// Copy from device to host (queues and synchronization variables)

110

Collaborative Implementation (VI)

= Unified Memory
0 cudaMallocManaged() ;
o Easier programming
o No explicit memory copies

// Host code
while (frontier size != 0){

if (frontier size < LIMIT) {

// Launch CPU threads

}

else{
// Launch GPU kernel

cudaDeviceSynchronize () ;

111

Collaborative Implementation (VII)

Pascal/Volta Unified Memory

o CPU/GPU coherence

o System-wide atomic operations

o No need to re-launch kernel or CPU threads

o Possibility of CPU and GPU working on the same frontier

112

Benefits of Collaboration

= SSSP performs more computation than BFS

g 524288

;’ 65536 O\'O——‘O\c

P < T, o Sleeeenene sl
:

'_g P -0 - --g---
Q

X SO L L ©
——nNE |~V " \)x\/\BX’LQXD‘
wenrgip \Y Q Q Q
-o-UT © o0

Single Source Shortest Path

(up to 22% improvement over GPU only)

113

Egomotion Compensation and Moving Objects
Detection (I)

Hexapod robot OSCAR

o Rescue scenarios
o Strong egomotion on uneven terrains

Algorithm
o Random Sample Consensus (RANSAC): F-o-F model

Vector clustering

—_——— e e T————— — ————————

(. N\
Compensati Loc_:al Clustering Reg|_o n
RANSA on kernel H|stogram maxima kernel growing
o . Flow kernel F-o-F calculation kernel L kernel) '
tical flow vectors
Current P array (egomotion model | | N ——————— — — — — — — — — — — — Bounding
frame gstimation) JJ T L e e — boxes

e : ™ Y
Next L((:ompensatlo Region
frame '1d differencing NPP Erode growing
kernel kernel
—

Frame differencing

114

Egomotion Compensation and Moving Objects
Detection (II)

Fast moving object in strong egomotion scenario detected by vector clustering

115

SISD and SIMD phases
RANSAC (Fischler et al. 1981)

While (iteration < MAX ITER) {

Fitting stage (Compute F-o-F model) // SISD phase
Evaluation stage (Count outliers) // SIMD phase
Comparison to best model // SISD phase
Check if best model is good enough and iteration >= MIN ITER // SISD phase

o Fitting stage picks two flow EEEEEEEEDE
vectors randomly

o Evaluation generates motion
vectors from F-o-F model, and

compares them to real flow
vectors EEEEEEEREN

116

Collaborative Implementation

= Randomly picked vectors: Iterations are independent
o We assign one iteration to one CPU thread and one GPU block

lteration O lteration 1 lteration 2
CPU GPU CPU GPU CPU GPU
thread block thread block thread block

117

Chai Benchmark Suite (I)

= Collaboration patterns
a 8 data partitioning benchmarks

a3 coarse-grain task partitioning benchmarks
a 3 fine-grain task partitioning benchmarks

https://chai-benchmarks.github.io

CHAI

118

Chai Benchmark Suite (1)

Collaboration Short | Benchmark
Pattern Name
BS Bézier Surface
CEDD | Canny Edge Detection
HSTI | Image Histogram (Input Partitioning)
Data Partitioning II;I:E‘)O gzjgfn;hst{)gmm (Output Partitioning)
RSCD | Random Sample Consensus
SC Stream Compaction
TRNS | In-place Transposition
Fine. RSCT | Random Sample Consensus
TQ Task Queue System (Synthetic)
Task stattl TQH Task Queue System (Histogram)
Partitioning Coarse. BES Breadth-First Search
UrainL CEDT | Canny Edge Detection
= SSSP | Single-Source Shortest Path

119

Computer Architecture
Lecture 26: GPU Programming

Dr. Juan Gomez Luna
Prof. Onur Mutlu
ETH Zurich
Fall 2022
06 January 2023

	Slide 1: Computer Architecture Lecture 26: GPU Programming
	Slide 2: Agenda for Today
	Slide 3: Recommended Readings
	Slide 4: An Example GPU
	Slide 5: Recall: NVIDIA GeForce GTX 285
	Slide 6: NVIDIA GeForce GTX 285 “core”
	Slide 7: NVIDIA GeForce GTX 285 “core”
	Slide 8: NVIDIA GeForce GTX 285
	Slide 9: Recall: Evolution of NVIDIA GPUs
	Slide 10: Recall: NVIDIA V100
	Slide 11: Recall: NVIDIA V100 Block Diagram
	Slide 12: Recall: NVIDIA V100 Core
	Slide 13: Food for Thought
	Slide 14: Recall: Latency Hiding via Warp-Level FGMT
	Slide 15: Recall: Warp Execution
	Slide 16
	Slide 17: Recall: Warp Instruction Level Parallelism
	Slide 18: Clarification of some GPU Terms
	Slide 19: GPU Programming
	Slide 20: Recall: Vector Processor Disadvantages
	Slide 21: General Purpose Processing on GPU
	Slide 22: CPU vs. GPU
	Slide 23: GPU Computing
	Slide 24: Traditional Program Structure
	Slide 25: Recall: SPMD
	Slide 26: CUDA/OpenCL Programming Model
	Slide 27: Transparent Scalability
	Slide 28: Memory Hierarchy
	Slide 29: Traditional Program Structure in CUDA
	Slide 30: CUDA Programming Language
	Slide 31: Indexing and Memory Access
	Slide 32: Image Layout in Memory
	Slide 33: Indexing and Memory Access: 1D Grid
	Slide 34: Indexing and Memory Access: 2D Grid
	Slide 35: Brief Review of GPU Architecture (I)
	Slide 36: Brief Review of GPU Architecture (II)
	Slide 37: Brief Review of GPU Architecture (III)
	Slide 38: Performance Considerations
	Slide 39: Performance Considerations
	Slide 40: Memory Access
	Slide 41: Latency Hiding
	Slide 42: Occupancy
	Slide 43: Memory Coalescing
	Slide 44: Uncoalesced Memory Accesses
	Slide 45: Coalesced Memory Accesses
	Slide 46: AoS vs. SoA
	Slide 47: CPUs Prefer AoS, GPUs Prefer SoA
	Slide 48: Data Reuse
	Slide 49: Data Reuse: Tiling
	Slide 50: Shared Memory
	Slide 51: Shared Memory Bank Conflicts (I)
	Slide 52: Shared Memory Bank Conflicts (II)
	Slide 53: Reducing Shared Memory Bank Conflicts
	Slide 54: SIMD Utilization
	Slide 55: Control Flow Problem in GPUs/SIMT
	Slide 56: SIMD Utilization
	Slide 57: Increasing SIMD Utilization
	Slide 58: Vector Reduction: Naïve Mapping (I)
	Slide 59: Vector Reduction: Naïve Mapping (II)
	Slide 60: Divergence-Free Mapping (I)
	Slide 61: Divergence-Free Mapping (II)
	Slide 62: Atomic Operations
	Slide 63: Shared Memory Atomic Operations
	Slide 64: Atomic Conflicts
	Slide 65: Histogram Calculation
	Slide 66: Histogram Calculation of Natural Images
	Slide 67: Optimizing Histogram Calculation
	Slide 68: Data Transfers between CPU and GPU
	Slide 69: Data Transfers
	Slide 70: Asynchronous Transfers
	Slide 71: Overlap of Communication and Computation
	Slide 72: Summary
	Slide 73: Collaborative Computing
	Slide 74: Review
	Slide 75: Unified Memory (I)
	Slide 76: Unified Memory (II)
	Slide 77: Collaborative Computing Algorithms
	Slide 78: Fine-Grained Heterogeneity
	Slide 79: Since CUDA 8.0
	Slide 80: Since OpenCL 2.0
	Slide 81: C++AMP (HCC)
	Slide 82: Collaborative Patterns (I)
	Slide 83: Collaborative Patterns (II)
	Slide 84: Collaborative Patterns (III)
	Slide 85: Histogram (I)
	Slide 86: Histogram (II)
	Slide 87: Bézier Surfaces (I)
	Slide 88: Bézier Surfaces (II)
	Slide 89: Bézier Surfaces (III)
	Slide 90: Bézier Surfaces (IV)
	Slide 91: Bézier Surfaces (V)
	Slide 92: Bézier Surfaces (VI)
	Slide 93: Bézier Surfaces (VII)
	Slide 94: Benefits of Collaboration
	Slide 95: Padding (I)
	Slide 96: Padding (II)
	Slide 97: In-Place Padding
	Slide 98: Benefits of Collaboration
	Slide 99: Stream Compaction (I)
	Slide 100: Stream Compaction (II)
	Slide 101: Benefits of Collaboration
	Slide 102: Breadth-First Search
	Slide 103: Atomic-Based Block Synchronization (I)
	Slide 104: Atomic-Based Block Synchronization (II)
	Slide 105: Atomic-Based Block Synchronization (III)
	Slide 106: Collaborative Implementation (I)
	Slide 107: Collaborative Implementation (II)
	Slide 108: Collaborative Implementation (III)
	Slide 109: Collaborative Implementation (IV)
	Slide 110: Collaborative Implementation (V)
	Slide 111: Collaborative Implementation (VI)
	Slide 112: Collaborative Implementation (VII)
	Slide 113: Benefits of Collaboration
	Slide 114: Egomotion Compensation and Moving Objects Detection (I)
	Slide 115: Egomotion Compensation and Moving Objects Detection (II)
	Slide 116: SISD and SIMD phases
	Slide 117: Collaborative Implementation
	Slide 118: Chai Benchmark Suite (I)
	Slide 119: Chai Benchmark Suite (II)
	Slide 120: Computer Architecture Lecture 26: GPU Programming

