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Short Background on 

NAND Flash Memory Operation



NAND Flash Memory Background

Flash Memory
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Sense Amplifiers

Flash Cell Array
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Threshold Voltage (Vth)
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Flash Read

Vread = 2.5 V Vth = 
3 V

Vth = 
2 V

1 0

Vread = 2.5 V
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Flash Pass-Through

Vpass = 5 V Vth = 
2 V
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Vpass = 5 V
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Read from Flash Cell Array

3.0V 3.8V 3.9V 4.8V

3.5V 2.9V 2.4V 2.1V

2.2V 4.3V 4.6V 1.8V

3.5V 2.3V 1.9V 4.3V

Vread = 2.5 V

Vpass = 5.0 V

Vpass = 5.0 V

Vpass = 5.0 V
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Aside: NAND vs. NOR Flash Memory
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By wikipedia user Cyferz, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=4571194
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Threshold Voltage (Vth)
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Normalized Vth
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Threshold Voltage (Vth) Distribution
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Read Reference Voltage (Vref)
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Multi-Level Cell (MLC)
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Fixed Read Reference Voltage Becomes Suboptimal

16

Normalized Vth

P1
-P

2 
V re

f

P2
-P

3 
V re

f
Normalized Vth

PDF
P1

(10)
P2

(00)
P3

(01)

Raw bit errors

Before retention loss:After some retention loss:



Optimal Read Reference Voltage (OPT)
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How Current Flash Cells are Programmed

◼ Programming 2-bit MLC NAND flash memory in two steps
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MLC Architecture
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Planar vs. 3D NAND Flash Memory
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Planar NAND 
Flash Memory

3D NAND 
Flash Memory

Scaling

Reliability

Reduce flash cell size,
Reduce distance b/w cells

Increase # of layers

Scaling hurts reliability Not well studied!



3D NAND Flash Memory Structure
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Charge Trap Based 3D Flash Cell

◼ Cross-section of a charge trap transistor
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3D NAND Flash Memory Organization
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https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

More Background and State-of-the-Art

https://arxiv.org/pdf/1706.08642
https://arxiv.org/pdf/1706.08642


More Up-to-date Version 

◼ Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu,
"Errors in Flash-Memory-Based Solid-State Drives: Analysis, 
Mitigation, and Recovery"
Invited Book Chapter in Inside Solid State Drives, 2018.
[Preliminary arxiv.org version]
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https://arxiv.org/pdf/1711.11427.pdf
https://link.springer.com/book/10.1007%2F978-981-13-0599-3/
https://arxiv.org/pdf/1711.11427.pdf


Flash Memory

Reliability and Security



Error Analysis and Management 

of NAND Flash Memory



Limits of Charge Memory

◼ Difficult charge placement and control

❑ Flash: floating gate charge

❑ DRAM: capacitor charge, transistor leakage

◼ Reliable sensing becomes difficult as charge 
storage unit size reduces

28



Executive Summary

◼ Problem: MLC NAND flash memory reliability/endurance is a key 
challenge for satisfying future storage systems’ requirements

◼ Our Goals: (1) Build reliable error models for NAND flash 
memory via experimental characterization, (2) Develop efficient 
techniques to improve reliability and endurance

◼ This lecture provides a “flash” summary of our recent results 
published in the past 8 years:

❑ Experimental error and threshold voltage characterization [DATE’12&13]

❑ Retention-aware error management [ICCD’12]

❑ Program interference analysis and read reference V prediction [ICCD’13]

❑ Neighbor-assisted error correction [SIGMETRICS’14]

❑ Read disturb error handling [DSN’15]

❑ Data retention error handling [HPCA’15]
29



Agenda

◼ Background, Motivation and Approach

◼ Experimental Characterization Methodology

◼ Error Analysis and Management 

❑ Characterization Results

❑ Retention-Aware Error Management

❑ Threshold Voltage and Program Interference Analysis

❑ Read Reference Voltage Prediction

❑ Neighbor-Assisted Error Correction

❑ Read Disturb Error Handling

❑ Retention Error Handling

❑ 3D NAND Flash Memory Reliability

◼ Summary
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Evolution of NAND Flash Memory

◼ Flash memory is widening its range of applications

❑ Portable consumer devices, laptop PCs and enterprise servers

S    g S k      “Em  g  g Ch     g       A   F   h T  h    gy”  F   h S mm        (Hy  x)

CMOS scaling

More bits per Cell

31



Flash Challenges: Reliability and Endurance

E.     h w k       .  “F         h    gy  h     g   f    A   f   h     H   p       ”  

Flash Memory Summit 2012

▪ P/E cycles 
(required)

▪ P/E cycles 
(provided)

A few thousand

Writing 

the full capacity 

of the drive 

10 times per day 

for 5 years 

(STEC)

> 50k P/E cycles
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UBER: Uncorrectable bit error rate. Fraction of erroneous bits after error correction.

Decreasing Endurance with Flash Scaling

◼ Endurance of flash memory decreasing with scaling and multi-level cells

◼ Error correction capability required to guarantee storage-class reliability  
(UBER < 10-15) is increasing exponentially to reach less endurance
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Ariel Maislos, “A New Era in Embedded Flash Memory”, Flash Summit 2011 (Anobit)
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NAND Flash Memory is Increasingly Noisy

Noisy NANDWrite Read
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Future NAND Flash-based Storage Architecture

Memory

Signal 

Processing

Error

Correction

Raw Bit 

Error Rate

Uncorrectable 

BER < 10-15

Noisy
HighLower
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Build reliable error models for NAND flash memory 

Design efficient reliability mechanisms based on the model

Our Goals:

Better



NAND Flash Error Model

Noisy NANDWrite Read

Experimentally characterize and model dominant errors

▪ Neighbor page 
prog/read (c-to-c 
interference)

▪ Retention
▪ Erase block

▪ Program page

Write Read

Cai et al., “Threshold voltage 

distribution in MLC NAND Flash 

Memory: Characterization, Analysis, 

and Modeling”, DATE 2013

Cai et al., “Vulnerabilities in MLC 

NAND Flash Memory Programming: 

Experimental Analysis, Exploits, and 

Mitigation Techniques”, HPCA 2017

Cai et al., “Flash Correct-and-Refresh: 

Retention-aware error management for 

increased flash memory lifetime”, ICCD 2012
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Cai et al., “Program Interference in MLC 

NAND Flash Memory: Characterization, 

Modeling, and Mitigation”, ICCD 2013

C        .  “   ghb  -Cell Assisted Error 

Correction in MLC NAND Flash 

M m     ”  SIGMETRICS 2014

C        .  “R          b E         M C 

NAND Flash Memory: Characterization 

    M   g     ”  DSN 2015

Cai et al., “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis””, DATE 2012

Cai et al., “Error Analysis and Retention-
Aware Error Management for NAND Flash 
Memory”, ITJ 2013

Cai et al., “Data Retention in MLC NAND 
Flash Memory: Characterization, 
Optimization and Recovery”, HPCA 2015

Luo et al., “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory”, JSAC 2016

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.



Our Goals and Approach

◼ Goals:

❑ Understand error mechanisms and develop reliable predictive 
models for MLC NAND flash memory errors

❑ Develop efficient error management techniques to mitigate 
errors and improve flash reliability and endurance

◼ Approach:

❑ Solid experimental analyses of errors in real MLC NAND flash 
memory → drive the understanding and models

❑ Understanding, models, and creativity → drive the new 

techniques

37



Many Errors and Their Mitigation [PIEEE’17]

38

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.
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https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

Many Errors and Their Mitigation [PIEEE’17]

https://arxiv.org/pdf/1706.08642
https://arxiv.org/pdf/1706.08642


More Up-to-date Version 

◼ Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu,
"Errors in Flash-Memory-Based Solid-State Drives: Analysis, 
Mitigation, and Recovery"
Invited Book Chapter in Inside Solid State Drives, 2018.
[Preliminary arxiv.org version]
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https://arxiv.org/pdf/1711.11427.pdf
https://link.springer.com/book/10.1007%2F978-981-13-0599-3/
https://arxiv.org/pdf/1711.11427.pdf


Agenda

◼ Background, Motivation and Approach

◼ Experimental Characterization Methodology

◼ Error Analysis and Management 

❑ Main Characterization Results

❑ Retention-Aware Error Management

❑ Threshold Voltage and Program Interference Analysis

❑ Read Reference Voltage Prediction

❑ Neighbor-Assisted Error Correction

❑ Read Disturb Error Handling

❑ Retention Error Handling

❑ 3D NAND Flash Memory Reliability

◼ Summary
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Experimental Testing Platform

USB Jack

Virtex-II Pro

(USB controller)

Virtex-V FPGA

(NAND Controller)

HAPS-52 Mother Board

USB Daughter Board

NAND Daughter Board

1x-nm

NAND Flash

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014, 
HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017, 
PIEEE 2017, HPCA 2018, SIGMETRICS 2018]

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.



NAND Flash Error Types

◼ Four types of errors [Cai+, DATE 2012]

◼ Caused by common flash operations

❑ Read errors

❑ Erase errors

❑ Program (interference) errors

◼ Caused by flash cell losing charge over time

❑ Retention errors

◼ Whether an error happens depends on required retention time

◼ Especially problematic in MLC flash because threshold voltage 
window to determine stored value is smaller

43



NAND Flash Usage and Error Model

…
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…
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Read Errors
Retention Errors
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Methodology: Error and ECC Analysis

◼ Characterized errors and error rates of 3x and 2y-nm MLC 
NAND flash using an experimental FPGA-based platform
❑ [Cai+, DATE’12, ICCD’12, DATE’13, ITJ’13, ICCD’13, SIGMETRICS’14]

◼ Quantified Raw Bit Error Rate (RBER) at a given P/E cycle

❑ Raw Bit Error Rate: Fraction of erroneous bits without any correction

◼ Quantified error correction capability (and area and power 
consumption) of various BCH-code implementations

❑ Identified how much RBER each code can tolerate 

→ how many P/E cycles (flash lifetime) each code can sustain 
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Agenda

◼ Background, Motivation and Approach

◼ Experimental Characterization Methodology

◼ Error Analysis and Management 

❑ Main Characterization Results

❑ Retention-Aware Error Management

❑ Threshold Voltage and Program Interference Analysis

❑ Read Reference Voltage Prediction

❑ Neighbor-Assisted Error Correction

❑ Read Disturb Error Handling

❑ Retention Error Handling

❑ 3D NAND Flash Memory Reliability

◼ Summary
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Error Types and Testing Methodology

◼ Erase errors

❑ Count the number of cells that fail to be erased to “11” state

◼ Program interference errors

❑ Compare the data immediately after page programming and the data 
after the whole block being programmed

◼ Read errors

❑ Continuously read a given block and compare the data between 
consecutive read sequences

◼ Retention errors

❑ Compare the data read after an amount of time to data written

◼ Characterize short term retention errors under room temperature

◼ Characterize long term retention errors by baking in the oven 
under 125℃



retention errors

◼ Raw bit error rate increases exponentially with P/E cycles

◼ Retention errors are dominant (>99% for 1-year ret. time)

◼ Retention errors increase with retention time requirement

Observations: Flash Error Analysis

48

P/E Cycles

Cai et al., Error Patterns in MLC NAND Flash Memory, DATE 2012.



Retention Error Mechanism
LSB/MSB

◼ Electron loss from the floating gate causes retention errors

❑ Cells with more programmed electrons suffer more from 

retention errors

❑ Threshold voltage is more likely to shift  by one window than by 

multiple

11 10 01 00
Vth

REF1 REF2 REF3

Erased Fully programmed

Stress Induced Leakage Current (SILC)

Floating

Gate
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Retention Error Value Dependency 

00 →01
01 →10

◼ Cells with more programmed electrons tend to suffer more 

from retention noise (i.e. 00 and 01)
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More on Flash Error Analysis

◼ Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai,
"Error Patterns in MLC NAND Flash Memory: 
Measurement, Characterization, and Analysis"
Proceedings of the Design, Automation, and Test in Europe 
Conference (DATE), Dresden, Germany, March 2012. Slides 
(ppt)

51

http://users.ece.cmu.edu/~omutlu/pub/flash-error-patterns_date12.pdf
http://www.date-conference.com/
http://users.ece.cmu.edu/~omutlu/pub/cai_date12_talk.ppt


Agenda

◼ Background, Motivation and Approach

◼ Experimental Characterization Methodology

◼ Error Analysis and Management 

❑ Main Characterization Results

❑ Retention-Aware Error Management

❑ Threshold Voltage and Program Interference Analysis

❑ Read Reference Voltage Prediction

❑ Neighbor-Assisted Error Correction

❑ Read Disturb Error Handling

❑ Retention Error Handling

❑ 3D NAND Flash Memory Reliability

◼ Summary
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Solution to Retention Errors

◼ Refresh periodically

◼ Change the period based on P/E cycle wearout

❑ Refresh more often at higher P/E cycles

◼ Use a combination of in-place and remapping-based refresh

◼ Cai et al. “Flash Correct-and-Refresh: Retention-Aware 
Error Management for Increased Flash Memory Lifetime”, 
ICCD 2012.
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Flash Correct-and-Refresh (FCR)

◼ Key Observations:

❑ Retention errors are the dominant source of errors in flash 
memory [Cai+ DATE 2012][Tanakamaru+ ISSCC 2011]

→ limit flash lifetime as they increase over time

❑ Retention errors can be corrected by “refreshing” each flash 
page periodically 

◼ Key Idea:

❑ Periodically read each flash page,

❑ Correct its errors using “weak” ECC, and 

❑ Either remap it to a new physical page or reprogram it in-place,

❑ Before the page accumulates more errors than ECC-correctable

❑ Optimization: Adapt refresh rate to endured P/E cycles

54Cai et al., Flash Correct and Refresh, ICCD 2012.



FCR: Two Key Questions

◼ How to refresh? 

❑ Remap a page to another one

❑ Reprogram a page (in-place)

❑ Hybrid of remap and reprogram

◼ When to refresh? 

❑ Fixed period

❑ Adapt the period to retention error severity

55



◼ Pro: No remapping needed → no additional erase operations

◼ Con: Increases the occurrence of program errors

In-Place Reprogramming of Flash Cells

56

Retention errors are 

caused by cell voltage 

shifting to the left

ISPP moves cell 

voltage to the right; 

fixes retention errors

Floating Gate

Voltage Distribution 

for each Stored Value

Floating Gate



Normalized Flash Memory Lifetime 
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Energy Overhead

◼ Adaptive-rate refresh: <1.8% energy increase until daily 
refresh is triggered
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Flash Correct-and-Refresh [ICCD’12]

◼ Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, 
Osman Unsal, and Ken Mai,
"Flash Correct-and-Refresh: Retention-Aware Error 
Management for Increased Flash Memory Lifetime"
Proceedings of the 30th IEEE International Conference on Computer 
Design (ICCD), Montreal, Quebec, Canada, September 2012. Slides 
(ppt)(pdf)

59

https://people.inf.ethz.ch/omutlu/pub/flash-correct-and-refresh_iccd12.pdf
http://www.iccd-conf.com/
https://people.inf.ethz.ch/omutlu/pub/mutlu_iccd12_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_iccd12_talk.pdf


More Detail on Flash Error Analysis

◼ Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian 
Cristal, Osman Unsal, and Ken Mai,
"Error Analysis and Retention-Aware Error 
Management for NAND Flash Memory"
Intel Technology Journal (ITJ) Special Issue on Memory 
Resiliency, Vol. 17, No. 1, May 2013. 
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http://users.ece.cmu.edu/~omutlu/pub/flash-error-analysis-and-management_itj13.pdf
http://noggin.intel.com/technology-journal/2013/171/memory-resiliency


Many Errors and Their Mitigation [PIEEE’17]
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Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.



62

https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

Many Errors and Their Mitigation [PIEEE’17]

https://arxiv.org/pdf/1706.08642
https://arxiv.org/pdf/1706.08642


More Up-to-date Version 

◼ Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu,
"Errors in Flash-Memory-Based Solid-State Drives: Analysis, 
Mitigation, and Recovery"
Invited Book Chapter in Inside Solid State Drives, 2018.
[Preliminary arxiv.org version]
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https://arxiv.org/pdf/1711.11427.pdf
https://link.springer.com/book/10.1007%2F978-981-13-0599-3/
https://arxiv.org/pdf/1711.11427.pdf


Agenda

◼ Background, Motivation and Approach

◼ Experimental Characterization Methodology

◼ Error Analysis and Management 

❑ Main Characterization Results

❑ Retention-Aware Error Management

❑ Threshold Voltage and Program Interference Analysis

❑ Read Reference Voltage Prediction

❑ Neighbor-Assisted Error Correction

❑ Read Disturb Error Handling

❑ Retention Error Handling

❑ 3D NAND Flash Memory Reliability

◼ Summary
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Key Questions

◼ How does threshold voltage (Vth) distribution of different 
programmed states change over flash lifetime?

◼ Can we model it accurately and predict the Vth changes?

◼ Can we build mechanisms that can correct for Vth changes? 
(thereby reducing read error rates)

65



Threshold Voltage Distribution Model

Gaussian distribution with additive white noise

As P/E cycles increase ...

◼ Distribution shifts to the right  

◼ Distribution becomes wider

P1 State P2 State P3 State

Characterized on 2Y-nm chips using the read-retry feature

66Cai et al., Threshold Voltage Distribution in MLC NAND Flash Memory, DATE 2013.



Threshold Voltage Distribution Model

◼ Vth distribution can be modeled with ~95% accuracy as a 
Gaussian distribution with additive white noise

◼ Distortion in Vth over P/E cycles can be modeled and 
predicted as an exponential function of P/E cycles

❑ With more than 95% accuracy
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More Detail on Threshold Voltage Model

◼ Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai,
"Threshold Voltage Distribution in MLC NAND Flash 
Memory: Characterization, Analysis and Modeling"
Proceedings of the Design, Automation, and Test in Europe 
Conference (DATE), Grenoble, France, March 2013. Slides 
(ppt)
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http://users.ece.cmu.edu/~omutlu/pub/flash-memory-voltage-characterization_date13.pdf
http://www.date-conference.com/
http://users.ece.cmu.edu/~omutlu/pub/cai_date13_talk.ppt


More Accurate and Online Channel Modeling

69

◼ Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu,
"Enabling Accurate and Practical Online Flash Channel Modeling 
for Modern MLC NAND Flash Memory"
to appear in IEEE Journal on Selected Areas in Communications (JSAC), 
2016. 

https://people.inf.ethz.ch/omutlu/pub/online-nand-flash-memory-channel-model_jsac16.pdf
http://www.comsoc.org/jsac


Non-Gaussian Vth Distributions (1X-nm)

70   +  “Enabling Accurate and Practical Online Flash Channel 

Modeling for Modern MLC NAND Flash Memory”  JSAC     .



Better Modeling of Vth Distributions (I)

71   +  “Enabling Accurate and Practical Online Flash Channel 

Modeling for Modern MLC NAND Flash Memory”  JSAC     .



Better Modeling of Vth Distributions (II)
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Prediction vs. Reality with Better Modeling

73   +  “Enabling Accurate and Practical Online Flash Channel 

Modeling for Modern MLC NAND Flash Memory”  JSAC     .



More Accurate and Online Channel Modeling
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◼ Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu,
"Enabling Accurate and Practical Online Flash Channel Modeling 
for Modern MLC NAND Flash Memory"
to appear in IEEE Journal on Selected Areas in Communications (JSAC), 
2016. 

https://people.inf.ethz.ch/omutlu/pub/online-nand-flash-memory-channel-model_jsac16.pdf
http://www.comsoc.org/jsac


Program Interference Errors

◼ When a cell is being programmed, voltage level of a 
neighboring cell changes (unintentionally) due to parasitic 
capacitance coupling 

→ can change the data value stored

◼ Also called program interference error

◼ Causes neighboring cell voltage to increase (shift right)

◼ Once retention errors are minimized, these errors can 
become dominant
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How Current Flash Cells are Programmed

◼ Programming 2-bit MLC NAND flash memory in two steps
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Basics of Program Interference

Victim

Cell

WL<0>

WL<1>

WL<2>

(n,j)

(n+1,j-1) (n+1,j) (n+1,j+1)

LSB:0

LSB:1

MSB:2

LSB:3

MSB:4

MSB:6

(n-1,j-1) (n-1,j) (n-1,j+1)

∆Vx∆Vx

∆Vy
∆Vxy ∆Vxy

∆Vxy ∆Vxy∆Vy
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Traditional Model for Vth Change

◼ Traditional model for victim cell threshold voltage change

Victim

Cell

WL<0>

WL<1>

WL<2>

(n,j)

(n+1,j-1) (n+1,j) (n+1,j+1)

LSB:0

LSB:1

MSB:2

LSB:3

MSB:4

MSB:6

(n-1,j-1) (n-1,j) (n-1,j+1)

∆Vx∆Vx

∆Vy
∆Vxy ∆Vxy

totalxyxyyyxxvictim CVCVCVCV /)22( ++=
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Not accurate and requires knowledge of coupling caps!



Our Goal and Idea

◼ Develop a new, more accurate and easier to implement 
model for program interference

◼ Idea: 

❑ Empirically characterize and model the effect of neighbor cell 
Vth changes on the Vth of the victim cell

❑ Fit neighbor Vth change to a linear regression model and find 
the coefficients of the model via empirical measurement

79

 
+

−=

=

+=

+=
Kj

Kjy

Mn

nx

before

victimneighborvictim jnVyxVyxjnV
1

0 ),(),(),(),( 

Can be measured



◼ Feature extraction for Vth changes based on characterization

❑ Threshold voltage changes on aggressor cell

❑ Original state of victim cell

◼ Enhanced linear regression model

◼ Maximum likelihood estimation of the model coefficients

Developing a New Model via Empirical Measurement
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Effect of Neighbor Voltages on the Victim

◼ Immediately-above cell interference is dominant

◼ Immediately-diagonal neighbor is the second dominant

◼ Far neighbor cell interference exists

◼ Victim cell’s Vth has negative effect on interference

81Cai et al., Program Interference in MLC NAND Flash Memory, ICCD 2013



New Model for Program Interference

Victim

Cell

WL<0>

WL<1>

WL<2>

(n,j)

(n+1,j-1) (n+1,j) (n+1,j+1)

LSB:0

LSB:1

MSB:2

LSB:3

MSB:4

MSB:6

(n-1,j-1) (n-1,j) (n-1,j+1)

∆Vx∆Vx

∆Vy
∆Vxy ∆Vxy

∆Vxy ∆Vxy∆Vy
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Model Accuracy
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Ideal if no interference

(x,y)=(measured before interference, measured after interference)

Ideal if prediction is 100% accurate 

(x,y)=(measured before interference, predicted with model)

Interference causes systematic Vth shift

Model corrects for the Vth shift: 96.8% acc.

Characterized on 2Y-nm chips using the read-retry feature



Many Other Results in the Paper

◼ Yu Cai, Onur Mutlu, Erich F. Haratsch, and Ken Mai,
"Program Interference in MLC NAND Flash Memory: 
Characterization, Modeling, and Mitigation"
Proceedings of the 31st IEEE International Conference on 
Computer Design (ICCD), Asheville, NC, October 2013. Slides 
(pptx) (pdf) Lightning Session Slides (pdf)
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❑ Read Reference Voltage Prediction

❑ Neighbor-Assisted Error Correction

❑ Read Disturb Error Handling
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❑ 3D NAND Flash Memory Reliability

◼ Summary
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Mitigation: Applying the Model

◼ So, what can we do with the model?

◼ Goal: Mitigate the effects of program interference caused 
voltage shifts
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Optimum Read Reference for Flash Memory

◼ Read reference voltage affects the raw bit error rate

◼ There exists an optimal read reference voltage

❑ Predictable if the statistics (i.e. mean, variance) of threshold 
voltage distributions are characterized and modeled

Vth
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Optimum Read Reference Voltage Prediction

◼ Vth shift learning (done every ~1k P/E cycles)
❑ Program sample cells with known data pattern and test Vth

❑ Program aggressor neighbor cells and test victim Vth after interference

❑ Characterize the mean shift in Vth (i.e., program interference noise)

◼ Optimum read reference voltage prediction

❑ Default read reference voltage + Predicted mean Vth shift by model

After program 

interference

Vth shift



Effect of Read Reference Voltage Prediction

◼ Read reference voltage prediction reduces raw BER (by 
64%) and increases the P/E cycle lifetime (by 30%)

32k-bit BCH Code

(acceptable BER = 2x10-3)

30% lifetime improvement
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More on Read Reference Voltage Prediction

◼ Yu Cai, Onur Mutlu, Erich F. Haratsch, and Ken Mai,
"Program Interference in MLC NAND Flash Memory: 
Characterization, Modeling, and Mitigation"
Proceedings of the 31st IEEE International Conference on 
Computer Design (ICCD), Asheville, NC, October 2013. 
Slides (pptx) (pdf) Lightning Session Slides (pdf)
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More Accurate and Online Channel Modeling
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◼ Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu,
"Enabling Accurate and Practical Online Flash Channel Modeling 
for Modern MLC NAND Flash Memory"
to appear in IEEE Journal on Selected Areas in Communications (JSAC), 
2016. 

https://people.inf.ethz.ch/omutlu/pub/online-nand-flash-memory-channel-model_jsac16.pdf
http://www.comsoc.org/jsac


Readings on Flash Memory



93

https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

More Background and State-of-the-Art

https://arxiv.org/pdf/1706.08642
https://arxiv.org/pdf/1706.08642


More Up-to-date Version 

◼ Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu,
"Errors in Flash-Memory-Based Solid-State Drives: Analysis, 
Mitigation, and Recovery"
Invited Book Chapter in Inside Solid State Drives, 2018.
[Preliminary arxiv.org version]
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Flash Memory Reliability
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❑ Main Characterization Results
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❑ Read Reference Voltage Prediction

❑ Neighbor-Assisted Error Correction
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❑ 3D NAND Flash Memory Reliability

◼ Summary
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Using the Vth Distribution Models

◼ So, what can we do with the model?

◼ Goal: Mitigate the effects of program interference caused 
voltage shifts
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Optimum Read Reference for Flash Memory

◼ Read reference voltage affects the raw bit error rate

◼ There exists an optimal read reference voltage

❑ Predictable if the statistics (i.e. mean, variance) of threshold 
voltage distributions are characterized and modeled

Vth
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Optimum Read Reference Voltage Prediction

◼ Vth shift learning (done every ~1k P/E cycles)
❑ Program sample cells with known data pattern and test Vth

❑ Program aggressor neighbor cells and test victim Vth after interference

❑ Characterize the mean shift in Vth (i.e., program interference noise)

◼ Optimum read reference voltage prediction

❑ Default read reference voltage + Predicted mean Vth shift by model

After program 

interference

Vth shift



Effect of Read Reference Voltage Prediction

◼ Read reference voltage prediction reduces raw BER (by 
64%) and increases the P/E cycle lifetime (by 30%)

32k-bit BCH Code

(acceptable BER = 2x10-3)

30% lifetime improvement
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More on Read Reference Voltage Prediction

◼ Yu Cai, Onur Mutlu, Erich F. Haratsch, and Ken Mai,
"Program Interference in MLC NAND Flash Memory: 
Characterization, Modeling, and Mitigation"
Proceedings of the 31st IEEE International Conference on 
Computer Design (ICCD), Asheville, NC, October 2013. 
Slides (pptx) (pdf) Lightning Session Slides (pdf)
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More Accurate and Online Channel Modeling
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◼ Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu,
"Enabling Accurate and Practical Online Flash Channel Modeling 
for Modern MLC NAND Flash Memory"
to appear in IEEE Journal on Selected Areas in Communications (JSAC), 
2016. 

https://people.inf.ethz.ch/omutlu/pub/online-nand-flash-memory-channel-model_jsac16.pdf
http://www.comsoc.org/jsac


Non-Gaussian Vth Distributions (1X-nm)

103   +  “Enabling Accurate and Practical Online Flash Channel 

Modeling for Modern MLC NAND Flash Memory”  JSAC     .



Better Modeling of Vth Distributions (I)

104   +  “Enabling Accurate and Practical Online Flash Channel 

Modeling for Modern MLC NAND Flash Memory”  JSAC     .



Better Modeling of Vth Distributions (II)
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Vth Prediction vs. Reality with Better Modeling

106   +  “Enabling Accurate and Practical Online Flash Channel 

Modeling for Modern MLC NAND Flash Memory”  JSAC     .



Online Read Reference Voltage Prediction
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Effect on RBER of Read Ref V Prediction
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More Accurate and Online Channel Modeling
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◼ Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu,
"Enabling Accurate and Practical Online Flash Channel Modeling 
for Modern MLC NAND Flash Memory"
to appear in IEEE Journal on Selected Areas in Communications (JSAC), 
2016. 

https://people.inf.ethz.ch/omutlu/pub/online-nand-flash-memory-channel-model_jsac16.pdf
http://www.comsoc.org/jsac
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Goal 

◼ Develop a better error correction mechanism for cases 
where ECC fails to correct a page
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Observations So Far

◼ Immediate neighbor cell has the most effect on the victim 
cell when programmed

◼ A single set of read reference voltages is used to determine 
the value of the (victim) cell

◼ The set of read reference voltages is determined based on 
the overall threshold voltage distribution of all cells 
in flash memory
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New Observations [Cai+ SIGMETRICS’14]

◼ Vth distributions of cells with different-valued 
immediate-neighbor cells are significantly different

❑ Because neighbor value affects the amount of Vth shift

◼ Corollary: If we know the value of the immediate-neighbor, 
we can find a more accurate set of read reference voltages 
based on the “conditional” threshold voltage distribution
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Cai et al., Neighbor-Cell Assisted Error Correction for MLC NAND Flash 
Memories, SIGMETRICS 2014.



Secrets of Threshold Voltage Distributions
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If We Knew the Immediate Neighbor …

◼ Then, we could choose a different read reference voltage to 
more accurately read the “victim” cell
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Overall vs Conditional Reading

◼ Using the optimum read reference voltage based on the 
overall distribution leads to more errors

◼ Better to use the optimum read reference voltage based on 
the conditional distribution (i.e., value of the neighbor)

❑ Conditional distributions of two states are farther apart from 
each other
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Real NAND Flash Chip Measurement Results
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P1 State P2 State P3 State

Raw BER of conditional reading is much smaller than overall reading

Large margin

Small margin



Idea: Neighbor Assisted Correction (NAC)

◼ Read a page with the read reference voltages based on 
overall Vth distribution (same as today) and buffer it

◼ If ECC fails:

❑ Read the immediate-neighbor page

❑ Re-read the page using the read reference voltages 
corresponding to the voltage distribution assuming a particular 
immediate-neighbor value

❑ Replace the buffered values of the cells with that particular 
immediate-neighbor cell value

❑ Apply ECC again
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Neighbor Assisted Correction Flow

◼ Trigger neighbor-assisted reading only when ECC fails

◼ Read neighbor values and use corresponding read 
reference voltages in a prioritized order until ECC passes
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How to select next local 

optimum read reference 

voltage?



Lifetime Extension with NAC
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ECC capable of correcting

40 bits per 1k-Byte

Stage-1 Stage-2 Stage-3

39%

33%

22%

Stage-0

33% lifetime improvement at no performance loss



Performance Analysis of NAC
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No performance loss within nominal lifetime 

and with reasonable (1%) ECC fail rates



More on Neighbor-Assisted Correction

◼ Yu Cai, Gulay Yalcin, Onur Mutlu, Eric Haratsch, Osman Unsal, 
Adrian Cristal, and Ken Mai,
"Neighbor-Cell Assisted Error Correction for MLC NAND 
Flash Memories"
Proceedings of the ACM International Conference on 
Measurement and Modeling of Computer Systems 
(SIGMETRICS), Austin, TX, June 2014. Slides (ppt) (pdf)
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Read Disturb Errors in Flash Memory



One Issue: Read Disturb in Flash Memory

◼ All scaled memories are prone to read disturb errors

◼ DRAM

◼ SRAM

◼ Hard Disks: Adjacent Track Interference

◼ NAND Flash
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NAND Flash Memory Background

Flash Memory

Page 1

Page 0

Page 2

Page 255

…
…

Page 257
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……
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…
…

Flash 
Controller
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Sense Amplifiers

Flash Cell Array

Block X

Page Y

Sense Amplifiers
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Flash Cell

Floating 
Gate

Gate

Drain

Source

Floating Gate Transistor
(Flash Cell)

Vth = 
2.5 V
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Flash Read

Vread = 2.5 V Vth = 
3 V

Vth = 
2 V

1 0

Vread = 2.5 V
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Flash Pass-Through

Vpass = 5 V Vth = 
2 V

1

Vpass = 5 V
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Read from Flash Cell Array

3.0V 3.8V 3.9V 4.8V

3.5V 2.9V 2.4V 2.1V

2.2V 4.3V 4.6V 1.8V

3.5V 2.3V 1.9V 4.3V

Vread = 2.5 V

Vpass = 5.0 V

Vpass = 5.0 V

Vpass = 5.0 V

1 100Correct values 
for page 2: 131

Page 1

Page 2

Page 3

Page 4

Pass (5V)

Read (2.5V)

Pass (5V)

Pass (5V)



Read Disturb Problem: “Weak Programming” Effect

3.0V 3.8V 3.9V 4.8V

3.5V 2.9V 2.4V 2.1V

2.2V 4.3V 4.6V 1.8V

3.5V 2.3V 1.9V 4.3V

Repeatedly read page 3 (or any page other than page 2) 132

Read (2.5V)

Pass (5V)

Pass (5V)

Pass (5V)

Page 1

Page 2

Page 3

Page 4



Vread = 2.5 V

Vpass = 5.0 V

Vpass = 5.0 V

Vpass = 5.0 V

0 100

Read Disturb Problem: “Weak Programming” Effect

High pass-through voltage induces “weak-programming” effect

3.0V 3.8V 3.9V 4.8V

3.5V 2.9V 2.1V

2.2V 4.3V 4.6V 1.8V

3.5V 2.3V 1.9V 4.3V

Incorrect values 
from page 2: 
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Executive Summary [DSN’15]
•Read disturb errors limit flash memory lifetime today
– Apply a high pass-through voltage (Vpass) to multiple pages on a read

– Repeated application of Vpass can alter stored values in unread pages

•We characterize read disturb on real NAND flash chips
– Slightly lowering Vpass greatly reduces read disturb errors

– Some flash cells are more prone to read disturb

• Technique 1: Mitigate read disturb errors online
– Vpass Tuning dynamically finds and applies a lowered Vpass per block

– Flash memory lifetime improves by 21%

• Technique 2: Recover after failure to prevent data loss
– Read Disturb Oriented Error Recovery (RDR) selectively corrects 

cells more susceptible to read disturb errors

– Reduces raw bit error rate (RBER) by up to 36%
134



Reducing The Pass-Through Voltage
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Key Observation 1: Slightly lowering Vpass

greatly reduces read disturb errors



Outline

•Background (Problem and Goal)

•Key Experimental Observations

•Mitigation: Vpass Tuning

•Recovery: Read Disturb Oriented Error Recovery

•Conclusion
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Read Disturb Mitigation: Vpass Tuning

•Key Idea: Dynamically find and apply a lowered 
Vpass

•Trade-off for lowering Vpass

+Allows more read disturbs

– Induces more read errors
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Read Errors Induced by Vpass Reduction
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3.0V 3.8V 3.9V 4.8V

3.5V 2.9V 2.4V 2.1V

2.2V 4.3V 4.6V 1.8V

3.5V 2.3V 1.9V 4.3V

Vread = 2.5 V

Vpass = 4.9 V

Vpass = 4.9 V

Vpass = 4.9 V

1 100

Reducing Vpass to 4.9V
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Read Errors Induced by Vpass Reduction
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3.0V 3.8V 3.9V 4.8V

3.5V 2.9V 2.4V 2.1V

2.2V 4.3V 4.6V 1.8V

3.5V 2.3V 1.9V 4.3V

Vread = 2.5 V

Vpass = 4.7 V

Vpass = 4.7 V

Vpass = 4.7 V

1 000
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Incorrect values 
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Utilizing the Unused ECC Capability
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01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21
N-day Retention

1.0

0.8

0.6
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0.2

0

R
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ER

× 10-3 ECC Correction Capability

Unused ECC capability

1. ECC provisioned for high retention “age”

3. Unused ECC capability decreases over retention age
Dynamically adjust Vpass so that read errors fully utilize 
the unused ECC capability

2. Unused ECC capability can be used to fix read errors



Vpass Reduction Trade-Off Summary

• Today: Conservatively set Vpass to a high voltage

–Accumulates more read disturb errors at the end of 
each refresh interval

+No read errors

• Idea: Dynamically adjust Vpass to unused ECC 
capability

+ Minimize read disturb errors

oControl read errors to be tolerable by ECC

oIf read errors exceed ECC capability, read again with a 
higher Vpass to correct read errors
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Vpass Tuning Steps

•Perform once for each block every day:

1. Estimate unused ECC capability (using retention age)

2. Aggressively reduce Vpass until read errors exceeds ECC 
capability

3. Gradually increase Vpass until read error becomes just 
less than ECC capability
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Evaluation of Vpass Tuning

•19 real workload I/O traces

•Assume 7-day refresh period

•Similar methodology as before to determine 
acceptable Vpass reduction

•Overhead for a 512 GB flash drive:

–128 KB storage overhead for per-block Vpass setting and 
worst-case page

–24.34 sec/day average Vpass Tuning overhead
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Vpass Tuning Lifetime Improvements
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Vpass Tuning

Average lifetime improvement: 21.0%



Read Disturb Prone vs. Resistant Cells
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Observation 2: Some Flash Cells Are
More Prone to Read Disturb
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P1ER
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Disturb-prone cells have higher threshold voltages

Disturb-resistant cells have lower threshold voltages

After 250K read disturbs:

Disturb-prone
→ER state

Disturb-resistant
→P1 state



Read Disturb Oriented Error Recovery (RDR)

•Triggered by an uncorrectable flash error

–Back up all valid data in the faulty block

–Disturb the faulty page 100K times (more)

–Compare Vth’s before and after read disturb

–Select cells susceptible to flash errors (Vref−σ<Vth<Vref−σ)

–Predict among these susceptible cells

• Cells with more Vth shifts are disturb-prone → Lower Vth state

• Cells with less Vth shifts are disturb-resistant → Higher Vth state
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Reduces total error count by up to 36% @ 1M read disturbs
ECC can be used to correct the remaining errors



RDR Evaluation
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No Recovery RDR

Reduces total error counts by up to 36% @ 1M read disturbs
ECC can be used to correct the remaining errors



More on Flash Read Disturb Errors [DSN’15]

◼ Yu Cai, Yixin Luo, Saugata Ghose, Erich F. Haratsch, Ken Mai, 
and Onur Mutlu,
"Read Disturb Errors in MLC NAND Flash Memory: 
Characterization and Mitigation"
Proceedings of the 45th Annual IEEE/IFIP International 
Conference on Dependable Systems and Networks (DSN), Rio de 
Janeiro, Brazil, June 2015. 

149

http://users.ece.cmu.edu/~omutlu/pub/flash-read-disturb-errors_dsn15.pdf
http://2015.dsn.org/


Agenda

◼ Background, Motivation and Approach

◼ Experimental Characterization Methodology

◼ Error Analysis and Management 

❑ Main Characterization Results

❑ Retention-Aware Error Management

❑ Threshold Voltage and Program Interference Analysis

❑ Read Reference Voltage Prediction

❑ Neighbor-Assisted Error Correction

❑ Read Disturb Error Handling

❑ Retention Error Handling

❑ 3D NAND Flash Memory Reliability

◼ Summary

150



Data Retention in Flash Memory



152
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read performance degradation

old files
as slow as 30MB/s newly-written files

500 MB/s

Reference: (May 5, 2015) Per Hansson, “When SSD Performance Goes Awry” 
http://www.techspot.com/article/997-samsung-ssd-read-performance-degradation/
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Why is old data slower?

Retention loss!

Image source: http://tinyurl.com/ng2gfg9



Retention loss
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Charge leakage over time

One dominant source of flash 
memory errors [DATE ‘12, ICCD ‘12]

Retention 
error

Flash cell Flash cell Flash cell

Side effect: Longer read latency



Multi-Level Cell (MLC)
threshold voltage distribution
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Experimental Testing Platform

USB Jack

Virtex-II Pro

(USB controller)

Virtex-V FPGA

(NAND Controller)

HAPS-52 Mother Board

USB Daughter Board

NAND Daughter Board

3x-nm

NAND Flash

[Cai+, FCCM 2011, DATE 2012, ICCD 2012, DATE 2013, ITJ 

2013, ICCD 2013, SIGMETRICS 2014, DSN 2015, HPCA 2015]

Cai et al., FPGA-based Solid-State Drive prototyping platform, FCCM 2011. 157



Characterized threshold voltage distribution
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Finding: Cell’s threshold voltage decreases over time

P1 P2 P3

0-day

40-day

0-day
40-day
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Normalized Vth

PDF

P1
(10)

P2
(00)

P3
(01)

New dataOld data

Threshold voltage reduces over time

More 
charge

Less 
charge



First read attempt fails
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Normalized Vth

Vb Vc

Normalized Vth

PDF

Raw bit errors > 
ECC correctable errors

Old data
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Read-retry
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Normalized Vth

PDF

Vb VcVb’ Vc’

Fewer raw bit errors

Old data

P1
(10)

P2
(00)

P3
(01)

Increase read latency



Why is old data slower?

Retention loss

→ Leak charge over time

→ Generate retention errors

→ Require read-retry

→ Longer read latency
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The ideal read voltage
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Normalized Vth

PDF

OPTb OPTc

Minimal raw bit errors

Old data

P1
(10)

P2
(00)

P3
(01)

OPT: Optimal read reference voltage
→minimal read latency



In reality

•OPT changes over time due to retention loss

•Luckily, OPT change is:
‐ Gradual
‐ Uni-directional (decreases over time)
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Retention Optimized Reading (ROR)

Components:

1. Online pre-optimization algorithm
‐ Learns and records OPT
‐ Performs in the background once every day

2. Simpler read-retry technique
‐ If recorded OPT is out-of-date, read-retry with 
lower voltage
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1. Online Pre-Optimization Algorithm
•Triggered periodically (e.g., per day)

•Find and record an OPT as per-block Vpred

•Performed in background

•Small storage overhead
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Normalized Vth

PDF
New 
Vpred

Old 
Vpred



2. Improved Read-Retry Technique

•Performed as normal read

•Vpred already close to actual OPT

•Decrease Vref if Vpred fails, and retry
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Normalized Vth

PDF OPT Vpred

Very close



ROR result
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Retention optimized reading

Retention loss → longer read latency

Optimal read reference voltage (OPT)

→ Shortest read latency

→ Decreases gradually over time (retention)

→ Learn OPT periodically

→Minimize read-retry & RBER

→ Shorter read latency
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Uncorrectable errors

Retention failure
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Normalized Vth

PDF
P1

(10)
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(00)
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Uncorrectable errors

Old dataVery old data



Leakage speed variation
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Normalized Vth
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retention

N-day retention



A simplified example
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Very old data

P2 P3

F

F

F

F

Reading very old data
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Normalized Vth
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Fast-leaking cells have lower Vth

Slow-leaking cells have higher Vth



“Risky” cells
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Risky 
cells

P2
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Retention Failure Recovery (RFR)

Key idea: Guess original state of the cell from 
its leakage speed property

Three steps

1. Identify risky cells

2. Identify fast-/slow-leaking cells

3. Guess original states
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Risky 
cells

P2

P3

+ S = 

+ F = 

Key Formula



RFR Evaluation

•Expect to eliminate 
50% of raw bit errors

•ECC can correct 
remaining errors
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Program with 
random data

Detect failure, 
backup data

Recover data

28 days

12 addt’l. 
days
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Characterize

Recover

Optimize

retention loss in real NAND chip

read performance for old data

old data after failure



Conclusion

Retention loss→ Longer read latency

Retention optimized reading (ROR)

→ Learns OPT periodically

→ 71% shorter read latency

Retention failure recovery (RFR)

→ Use leakage property to guess correct state

→ 50% error reduction before ECC correction

→ Recover data after failure
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More on Flash Read Disturb Errors

◼ Yu Cai, Yixin Luo, Erich F. Haratsch, Ken Mai, and Onur Mutlu,
"Data Retention in MLC NAND Flash Memory: Characterization, 
Optimization and Recovery"
Proceedings of the 21st International Symposium on High-Performance 
Computer Architecture (HPCA), Bay Area, CA, February 2015. 
[Slides (pptx) (pdf)] 
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http://users.ece.cmu.edu/~omutlu/pub/flash-memory-data-retention_hpca15.pdf
http://darksilicon.org/hpca/
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-data-retention_yixin_hpca15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-data-retention_yixin_hpca15-talk.pdf


Agenda

◼ Background, Motivation and Approach

◼ Experimental Characterization Methodology

◼ Error Analysis and Management 

❑ Main Characterization Results

❑ Retention-Aware Error Management

❑ Threshold Voltage and Program Interference Analysis

❑ Read Reference Voltage Prediction

❑ Neighbor-Assisted Error Correction

❑ Read Disturb Error Handling

❑ Retention Error Handling

❑ Large Scale Field Analysis

❑ 3D NAND Flash Memory Reliability

◼ Summary
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Large Scale Field Analysis of 

Flash Memory Errors



SSD Error Analysis of Facebook Systems

◼ First large-scale field study of flash memory errors

◼ Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"A Large-Scale Study of Flash Memory Errors in the Field"
Proceedings of the ACM International Conference on 
Measurement and Modeling of Computer Systems
(SIGMETRICS), Portland, OR, June 2015. 
[Slides (pptx) (pdf)] [Coverage at ZDNet] [Coverage on The 
Register] [Coverage on TechSpot] [Coverage on The Tech 
Report] 
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http://users.ece.cmu.edu/~omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15.pdf
http://www.sigmetrics.org/sigmetrics2015/
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15-talk.pdf
http://www.zdnet.com/article/facebooks-ssd-experience/
http://www.theregister.co.uk/2015/06/22/facebook_reveals_ssd_failure_rate_trough/
http://www.techspot.com/news/61090-researchers-publish-first-large-scale-field-ssd-reliability.html
http://techreport.com/news/28519/facebook-ssd-reliability-study-shows-early-burnouts


A few SSDs cause most errors



A few SSDs cause most errors



Access pattern
dependence

SSD lifecycle

Read
disturbance

Temperature

Summary

New reliability 

trends



Access pattern
dependence

Read
disturbance

Temperature

New reliability 

trends

SSD lifecycle

Summary

Early detection lifecycle period 
distinct from hard disk drive 
lifecycle.



Access pattern
dependence

Read
disturbance

Temperature

SSD lifecycle

New reliability 

trends



bathtub curve
Storage lifecycle background:

the

[Schroeder+,FAST'07]

for disk drives

Usage

Failure
rate



bathtub curve
Storage lifecycle background:

the

[Schroeder+,FAST'07]

for disk drives

Failure
rate

Usage

Early
failure
period

Useful life
period

Wearout
period
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Storage lifecycle background:
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[Schroeder+,FAST'07]

for disk drives

Failure
rate

Usage
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failure
period

Useful life
period

Wearout
period

Do SSDs display similar 
lifecycle periods?



Usedata written to flash
to examine SSD lifecycle

(time-independent utilization metric)
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Summary

We quantify the effects of 
the page cache and write 
amplification in the field.



Large-Scale SSD Error Analysis [SIGMETRICS’15]

◼ First large-scale field study of flash memory errors

◼ Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"A Large-Scale Study of Flash Memory Errors in the Field"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Portland, OR, June 
2015. 
[Slides (pptx) (pdf)] [Coverage at ZDNet] [Coverage on The Register] 
[Coverage on TechSpot] [Coverage on The Tech Report] 
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http://users.ece.cmu.edu/~omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15.pdf
http://www.sigmetrics.org/sigmetrics2015/
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15-talk.pdf
http://www.zdnet.com/article/facebooks-ssd-experience/
http://www.theregister.co.uk/2015/06/22/facebook_reveals_ssd_failure_rate_trough/
http://www.techspot.com/news/61090-researchers-publish-first-large-scale-field-ssd-reliability.html
http://techreport.com/news/28519/facebook-ssd-reliability-study-shows-early-burnouts


Other Works on NAND Flash 

Memory Modeling & Issues
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Flash Memory Programming Vulnerabilities

210

◼ Yu Cai, Saugata Ghose, Yixin Luo, Ken Mai, Onur Mutlu, and Erich F. 
Haratsch,
"Vulnerabilities in MLC NAND Flash Memory Programming: 
Experimental Analysis, Exploits, and Mitigation Techniques"
Proceedings of the 23rd International Symposium on High-Performance 
Computer Architecture (HPCA) Industrial Session, Austin, TX, USA, 
February 2017. 
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] 

https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17.pdf
https://hpca2017.org/
https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17-lightning-talk.pdf


Accurate and Online Channel Modeling
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◼ Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu,
"Enabling Accurate and Practical Online Flash Channel Modeling 
for Modern MLC NAND Flash Memory"
to appear in IEEE Journal on Selected Areas in Communications (JSAC), 
2016. 

https://people.inf.ethz.ch/omutlu/pub/online-nand-flash-memory-channel-model_jsac16.pdf
http://www.comsoc.org/jsac


Agenda

◼ Background, Motivation and Approach

◼ Experimental Characterization Methodology

◼ Error Analysis and Management 

❑ Main Characterization Results

❑ Retention-Aware Error Management

❑ Threshold Voltage and Program Interference Analysis

❑ Read Reference Voltage Prediction

❑ Neighbor-Assisted Error Correction

❑ Read Disturb Error Handling

❑ Retention Error Handling

❑ Large Scale Field Analysis

❑ 3D NAND Flash Memory Reliability

◼ Summary
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3D NAND Flash Memory
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3D NAND Flash Reliability I [HPCA’18]

◼ Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu,
"HeatWatch: Improving 3D NAND Flash Memory Device 
Reliability by Exploiting Self-Recovery and Temperature-
Awareness"
Proceedings of the 24th International Symposium on High-Performance 
Computer Architecture (HPCA), Vienna, Austria, February 2018.
[Lightning Talk Video]
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/heatwatch-3D-nand-errors-and-self-recovery_hpca18.pdf
https://hpca2018.ece.ucsb.edu/
https://www.youtube.com/watch?v=7ZpGozzEVpY&feature=youtu.be
https://people.inf.ethz.ch/omutlu/pub/heatwatch-3D-nand-errors-and-self-recovery_hpca18_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/heatwatch-3D-nand-errors-and-self-recovery_hpca18_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/heatwatch-3D-nand-errors-and-self-recovery_hpca18_lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/heatwatch-3D-nand-errors-and-self-recovery_hpca18_lightning-talk.pdf


3D NAND Flash Reliability II [SIGMETRICS’18]

◼ Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu,
"Improving 3D NAND Flash Memory Lifetime by Tolerating 
Early Retention Loss and Process Variation"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Irvine, CA, USA, June 
2018.
[Abstract]
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http://www.sigmetrics.org/sigmetrics2018/
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NAND Flash Memory Lifetime Problem
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Planar vs. 3D NAND Flash Memory
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Planar NAND 
Flash Memory

3D NAND 
Flash Memory

Scaling

Reliability

Reduce flash cell size,
Reduce distance b/w cells

Increase # of layers

Scaling hurts reliability Not well studied!



Charge Trap Based 3D Flash Cell

◼ Cross-section of a charge trap transistor
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2D vs. 3D Flash Cell Design

219

Su
b

st
ra

te

S

D

Charge Trap
(Insulator)

Control
Gate

e
e
e

e
e
e

Gate Oxide

Tunnel Oxide

2D Floating-Gate Cell

Substrate
DS

Control 
Gate

Floating Gate
(Conductor)

Gate Oxide

Tunnel Oxide

e e e e

e e e e

3D Charge-Trap Cell



3D NAND Flash Memory Organization
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More Background and State-of-the-Art 

◼ Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu,
"Errors in Flash-Memory-Based Solid-State Drives: Analysis, 
Mitigation, and Recovery"
Invited Book Chapter in Inside Solid State Drives, 2018.
[Preliminary arxiv.org version]
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https://arxiv.org/pdf/1711.11427.pdf
https://link.springer.com/book/10.1007/978-981-13-0599-3/
https://arxiv.org/pdf/1711.11427.pdf


3D vs. Planar NAND Errors: Comparison 
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Improving 3D NAND 
Flash Memory Lifetime by

Tolerating Early Retention Loss
and Process Variation

Yixin Luo Saugata Ghose     Yu Cai     Erich F. Haratsch     Onur Mutlu
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Executive Summary

• Problem: 3D NAND error characteristics are not well studied

• Goal: Understand & mitigate 3D NAND errors to improve lifetime

• Contribution 1: Characterize real 3D NAND flash chips
• Process variation: 21× error rate difference across layers
• Early retention loss: Error rate increases by 10× after 3 hours
• Retention interference: Not observed before in planar NAND

• Contribution 2: Model RBER and threshold voltage
• RBER (raw bit error rate) variation model
• Retention loss model

• Contribution 3: Mitigate 3D NAND flash errors
• LaVAR: Layer Variation Aware Reading
• LI-RAID: Layer-Interleaved RAID
• ReMAR: Retention Model Aware Reading
• Improve flash lifetime by 1.85× or reduce ECC overhead by 78.9%
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• Contribution 2: Model RBER and threshold voltage
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• Conclusion
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Agenda

• Background & Introduction

• Contribution 1: Characterize real 3D NAND flash chips
• Process variation
• Early retention loss
• Retention interference

• Contribution 2: Model RBER and threshold voltage

• Contribution 3: Mitigate 3D NAND flash errors

• Conclusion
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Process Variation Across Layers
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Characterization Methodology

•Modified firmware version in the flash controller
•Controls the read reference voltage of the flash chip
•Bypasses ECC to get raw data (with raw bit errors)

•Analysis and post-processing of the data on the server
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Layer-to-Layer Process Variation
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Layer-to-Layer Process Variation
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Large RBER variation
across layers and LSB-MSB pages



Retention Loss Phenomenon
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Most dominant type of error in planar NAND.
Is this true for 3D NAND as well?
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Early Retention Loss
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10x

3 hours

10x

11 days

3 years

10x

Retention errors increase quickly
immediately after programming



Characterization Summary

• Layer-to-layer process variation
• Large RBER variation across layers and LSB-MSB pages
•→ Need new mechanisms to tolerate RBER variation!

• Early retention loss
• RBER increases quickly after programming
•→ Need new mechanisms to tolerate retention errors!

• Retention interference
• Amount of retention loss correlated with neighbor cells’ states
•→ Need new mechanisms to tolerate retention interference!

• More threshold voltage and RBER results in the paper:
3D NAND P/E cycling, program interference, read disturb, read 
variation, bitline-to-bitline process variation

• Our approach based on insights developed via our experimental 
characterization: Develop error models, and build online
error mitigation mechanisms using the models
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234



What Do We Model?
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Va Vb Vc

Optimal Read Reference Voltage

236

P
ro

b
a

b
il

it
y

Threshold Voltage (Vth)

Raw Bit Errors



Retention Loss Model

237

Early retention loss can be modeled as
a simple linear function of log(retention time)



Retention Loss Model

• Goal: Develop a simple linear model that can be used online

• Models
• Optimal read reference voltage (Vb and 𝑽𝒄)
• Raw bit error rate (𝒍𝒐𝒈(𝑹𝑩𝑬𝑹))
• Mean and standard deviation of threshold voltage distribution 

(𝝁 and 𝝈)

• As a function of
• Retention time (𝒍𝒐𝒈(𝒕))
• P/E cycle count (𝑷𝑬𝑪)

• e.g., 𝑽𝒐𝒑𝒕 = 𝜶 × 𝑷𝑬𝑪 + 𝜷 × 𝒍𝒐𝒈 𝒕 + 𝜸 × 𝑷𝑬𝑪 + 𝜹

• Model error <1 step for Vb and 𝑽𝒄

• Adjusted R2 > 89%
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RBER Variation Model
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Variation-agnostic Vopt

• Same Vref for all layers optimized for the entire block

Variation-aware Vopt

• Different Vref optimized for each layer

KL-divergence error = 0.09

RBER distribution follows gamma distribution
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LaVAR: Layer Variation Aware Reading

• Layer-to-layer process variation
• Error characteristics are different in each layer

• Goal: Adjust read reference voltage for each layer

• Key Idea: Learn a voltage offset (Offset) for each layer

• 𝑽𝒐𝒑𝒕
𝑳𝒂𝒚𝒆𝒓 𝒂𝒘𝒂𝒓𝒆

= 𝑽𝒐𝒑𝒕
𝑳𝒂𝒚𝒆𝒓 𝒂𝒈𝒏𝒐𝒔𝒕𝒊𝒄

+ 𝑶𝒇𝒇𝒔𝒆𝒕

• Mechanism
• Offset: Learned once for each chip & stored in a table
• Uses (𝟐 × 𝑳𝒂𝒚𝒆𝒓𝒔) Bytes memory per chip

• 𝑽𝒐𝒑𝒕
𝑳𝒂𝒚𝒆𝒓 𝒂𝒈𝒏𝒐𝒔𝒕𝒊𝒄

: Predicted by any existing Vopt model
• E.g., ReMAR [Luo+Sigmetrics’18], HeatWatch [Luo+HPCA’18],

OFCM [Luo+JSAC’16], ARVT [Papandreou+GLSVLSI’14]

• Reduces RBER on average by 43%
(based on our characterization data)
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LI-RAID: Layer-Interleaved RAID

• Layer-to-layer process variation
• Worst-case RBER much higher than average RBER

• Goal: Significantly reduce worst-case RBER

• Key Idea
• Group flash pages on less reliable layers

with pages on more reliable layers
• Group MSB pages with LSB pages

• Mechanism
• Reorganize RAID layout to eliminate worst-case RBER
• <0.8% storage overhead
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Conventional RAID
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Wordline # Layer # Page Chip 0 Chip 1 Chip 2 Chip 3

0 0 MSB Group 0 Group 0 Group 0 Group 0

0 0 LSB Group 1 Group 1 Group 1 Group 1

1 1 MSB Group 2 Group 2 Group 2 Group 2

1 1 LSB Group 3 Group 3 Group 3 Group 3

2 2 MSB Group 4 Group 4 Group 4 Group 4

2 2 LSB Group 5 Group 5 Group 5 Group 5

3 3 MSB Group 6 Group 6 Group 6 Group 6

3 3 LSB Group 7 Group 7 Group 7 Group 7

Worst-case RBER in any layer
limits the lifetime of conventional RAID



LI-RAID: Layer-Interleaved RAID
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Wordline # Layer # Page Chip 0 Chip 1 Chip 2 Chip 3

0 0 MSB Group 0 Blank Group 4 Group 3

0 0 LSB Group 1 Blank Group 5 Group 2

1 1 MSB Group 2 Group 1 Blank Group 5

1 1 LSB Group 3 Group 0 Blank Group 4

2 2 MSB Group 4 Group 3 Group 0 Blank

2 2 LSB Group 5 Group 2 Group 1 Blank

3 3 MSB Blank Group 5 Group 2 Group 1

3 3 LSB Blank Group 4 Group 3 Group 0

Any page with worst-case RBER can be corrected by 
other reliable pages in the RAID group



LI-RAID: Layer-Interleaved RAID

• Layer-to-layer process variation
• Worst-case RBER much higher than average RBER

• Goal: Significantly reduce worst-case RBER

• Key Idea
• Group flash pages on less reliable layers

with pages on more reliable layers
• Group MSB pages with LSB pages

• Mechanism
• Reorganize RAID layout to eliminate worst-case RBER
• <0.8% storage overhead

• Reduces worst-case RBER by 66.9%
(based on our characterization data)
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ReMAR: Retention Model Aware Reading

• Early retention loss
• Threshold voltage shifts quickly after programming

• Goal: Adjust read reference voltages based on retention loss

• Key Idea: Learn and use a retention loss model online

• Mechanism
• Periodically characterize and learn retention loss model online
• Retention time = Read timestamp - Write timestamp
• Uses 800 KB memory to store program time of each block

• Predict retention-aware Vopt using the model

• Reduces RBER on average by 51.9%
(based on our characterization data)
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Impact on System Reliability
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Error Mitigation Techniques Summary

• LaVAR: Layer Variation Aware Reading
• Learn a Vopt offset for each layer and apply layer-aware Vopt

• LI-RAID: Layer-Interleaved RAID
• Group flash pages on less reliable layers

with pages on more reliable layers
• Group MSB pages with LSB pages

• ReMAR: Retention Model Aware Reading
• Learn retention loss model and apply retention-aware Vopt

• Benefits:

• Improve flash lifetime by 1.85× or reduce ECC overhead by 78.9%

• ReNAC (in paper): Reread a failed page using Vopt based on the
retention interference induced by neighbor cell
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Agenda

• Background & Introduction

• Contribution 1: Characterize real 3D NAND flash chips

• Contribution 2: Model RBER and threshold voltage

• Contribution 3: Mitigate 3D NAND flash errors

• Conclusion
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Conclusion

• Problem: 3D NAND error characteristics are not well studied

• Goal: Understand & mitigate 3D NAND errors to improve lifetime

• Contribution 1: Characterize real 3D NAND flash chips
• Process variation: 21× error rate difference across layers
• Early retention loss: Error rate increases by 10× after 3 hours
• Retention interference: Not observed before in planar NAND

• Contribution 2: Model RBER and threshold voltage
• RBER (raw bit error rate) variation model
• Retention loss model

• Contribution 3: Mitigate 3D NAND flash errors
• LaVAR: Layer Variation Aware Reading
• LI-RAID: Layer-Interleaved RAID
• ReMAR: Retention Model Aware Reading
• Improve flash lifetime by 1.85× or reduce ECC overhead by 78.9%
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Improving 3D NAND
Flash Memory Lifetime

by Tolerating Early Retention Loss
and Process Variation

Yixin Luo Saugata Ghose     Yu Cai     Erich F. Haratsch     Onur Mutlu
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3D NAND Flash Reliability II [SIGMETRICS’18]

◼ Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu,
"Improving 3D NAND Flash Memory Lifetime by Tolerating 
Early Retention Loss and Process Variation"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Irvine, CA, USA, June 
2018.
[Abstract]
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One More Idea
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Improving NAND Flash Memory Lifetime with
Write-hotness Aware Retention Management 

Yixin Luo, Yu Cai, Saugata Ghose, Jongmoo Choi*, Onur Mutlu

Carnegie Mellon University, *Dankook University

WARM
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Executive Summary

•Flash memory can achieve 50x endurance improvement by relaxing 
retention time using refresh [Cai+ ICCD ’12]

•Problem: Frequent refresh consumes the majority of endurance 
improvement

•Goal: Reduce refresh overhead to increase flash memory lifetime

•Key Observation: Refresh is unnecessary for write-hot data

•Key Ideas of Write-hotness Aware Retention Management (WARM)
‐ Physically partition write-hot pages and write-cold pages within the flash 

drive
‐ Apply different policies (garbage collection, wear-leveling, refresh) to each 

group

•Key Results
‐ WARM w/o refresh improves lifetime by 3.24x
‐ WARM w/ adaptive refresh improves lifetime by 12.9x (1.21x over refresh 

only)
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Flash Memory

Conventional Write-Hotness Oblivious 
Management
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Flash Memory

Key Idea: Write-Hotness Aware Management
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Write-Hotness Aware Retention Management

◼ Yixin Luo, Yu Cai, Saugata Ghose, Jongmoo Choi, and Onur Mutlu,
"WARM: Improving NAND Flash Memory Lifetime with Write-
hotness Aware Retention Management"
Proceedings of the 31st International Conference on Massive Storage 
Systems and Technologies (MSST), Santa Clara, CA, June 2015.
[Slides (pptx) (pdf)] [Poster (pdf)]
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Agenda

◼ Background, Motivation and Approach

◼ Experimental Characterization Methodology

◼ Error Analysis and Management 

❑ Main Characterization Results

❑ Retention-Aware Error Management

❑ Threshold Voltage and Program Interference Analysis

❑ Read Reference Voltage Prediction

❑ Neighbor-Assisted Error Correction

❑ Read Disturb Error Handling

❑ Retention Error Handling

❑ Large Scale Field Analysis

❑ 3D NAND Flash Memory Reliability

◼ Summary
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NAND Flash Errors: A Modern Survey 

262

https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642
https://arxiv.org/pdf/1706.08642


More Up-to-date Version 

◼ Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu,
"Errors in Flash-Memory-Based Solid-State Drives: Analysis, 
Mitigation, and Recovery"
Invited Book Chapter in Inside Solid State Drives, 2018.
[Preliminary arxiv.org version]
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Improving 3D NAND Flash Memory Device Reliability by 
Exploiting Self-Recovery and Temperature Awareness

Yixin Luo Saugata Ghose     Yu Cai     Erich F. Haratsch     Onur Mutlu

HeatWatch



Storage Technology Drivers - 2018
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Executive Summary

•3D NAND flash memory susceptible to retention errors
• Charge leaks out of flash cell
• Two unreported factors: self-recovery and temperature

•We study self-recovery and temperature effects

•We develop a new technique to improve flash reliability

268

•Experimental characterization of real 3D NAND chips

•Unified Self-Recovery and Temperature (URT) Model
• Predicts impact of retention loss, wearout, self-recovery, 

temperature on flash cell voltage
• Low prediction error rate: 4.9%

•HeatWatch
• Uses URT model to find optimal read voltages for 3D NAND flash
• Improves flash lifetime by 3.85x



Outline

•Executive Summary

•Background on NAND Flash Reliability

•Characterization of Self-Recovery and Temperature 
Effect on Real 3D NAND Flash Memory Chips

•URT: Unified Self-Recovery and Temperature Model

•HeatWatch Mechanism

•Conclusion
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3D NAND 
Flash Memory

Flash Cell

Higher Voltage State

Lower Voltage State

Data Value = 0

Data Value = 1

– –
–

Read Reference Voltage

Charge = Threshold Voltage

3D NAND Flash Memory Background
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Flash Wearout

271

2. Program Variation
(init. voltage difference b/w states)

Program/Erase (P/E) →Wearout

–
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1. Retention Loss
(voltage shift over time)
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Improving Flash Lifetime
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Errors introduced by wearout
limit flash lifetime

(measured in P/E cycles)

Exploiting the
Self-Recovery Effect

Exploiting the
Temperature Effect

Two Ways to Improve 
Flash Lifetime



Exploiting the Self-Recovery Effect
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P/E P/E P/E P/E P/E

Dwell Time: Idle Time Between P/E Cycles

Longer Dwell Time: More Self-Recovery

P/E P/E P/E P/E P/E

Reduces Retention Loss

Partially repairs damage due to wearout



––
–

Exploiting the Temperature Effect
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Prior Studies of Self-Recovery/Temperature

275

Self-Recovery 
Effect

Temperature 
Effect

Planar (2D) NAND 3D NAND

Mielke 2006

JEDEC 2010
(no characterization)

x

x



Outline

•Executive Summary

•Background on NAND Flash Reliability

•Characterization of Self-Recovery and Temperature 
Effect on Real 3D NAND Flash Memory Chips

•URT: Unified Self-Recovery and Temperature Model

•HeatWatch Mechanism

•Conclusion
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Characterization Methodology

•Modified firmware version in the flash controller
•Control the read reference voltage of the flash chip
•Bypass ECC to get raw NAND data (with raw bit 

errors)

•Control temperature with a heat chamber
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Heat Chamber

SSD

Server



010101

Characterized Devices
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MLC Threshold Voltage Distribution Background
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Characterized 
Metrics

– –
–

Program Variation
(initial voltage difference

between states)

Characterized 
Phenomena

–
–

–

Retention Loss Speed
(how fast voltage shifts

over time)

Self-Recovery 
Effect

Temperature 
Effect

Characterization Goal
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Self-Recovery Effect Characterization Results
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Program Temperature Effect
Characterization Results
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Storage Temperature Effect
Characterization Results
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Characterization Summary

Major Results:

•Self-recovery affects retention loss speed

•Program temperature affects program variation

•Storage temperature affects retention loss speed

Other Characterizations Methods in the Paper:

•More detailed results on self-recovery and temperature
•Effects on error rate
•Effects on threshold voltage distribution

•Effects of recovery cycle (P/E cycles with
long dwell time) on retention loss speed
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Unified Model



Outline

•Executive Summary

•Background on NAND Flash Reliability

•Characterization of Self-Recovery and Temperature 
Effect on Real 3D NAND Flash Memory Chips

•URT: Unified Self-Recovery and Temperature Model

•HeatWatch Mechanism

•Conclusion
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Minimizing 3D NAND Errors
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Predicting the Mean Threshold Voltage
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Our URT Model:
V = V0 + ΔV
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URT Model Overview
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1. Program 
Variation 

Component

tr Tr
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1. Program Variation Component
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2. Self-Recovery and Retention Component
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3. Temperature Scaling Component
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Outline

•Executive Summary

•Background on NAND Flash Reliability

•Characterization of Self-Recovery and Temperature 
Effect on Real 3D NAND Flash Memory Chips

•URT: Unified Self-Recovery and Temperature Model

•HeatWatch Mechanism

•Conclusion
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HeatWatch Mechanism

•Key Idea

•Predict change in threshold voltage distribution
by using the URT model

•Adapt read reference voltage to near-optimal (Vopt)
based on predicted change in voltage distribution
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HeatWatch Mechanism Overview
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Tracking SSD Temperature
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URT

• Use existing sensors in the SSD

• Precompute temperature scaling factor
at logarithmic time intervals



Tracking Dwell Time
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URT
• Only need to log the timestamps of last 20 full drive writes

• Self-recovery effect diminishes after 20 P/E cycles



Tracking P/E Cycles and Retention Time
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• P/E cycle count already recorded by SSD

• Log write timestamp for each block

• Retention time = read timestamp – write timestamp



Predicting Optimal Read Reference Voltage
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Fine-Tuning URT Parameters Online
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HeatWatch Mechanism Summary
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HeatWatch Evaluation Methodology

•28 real workload storage traces
•MSR-Cambridge
•We use real dwell time, retention time values

obtained from traces

•Temperature Model:
Trigonometric function + Gaussian noise
•Represents periodic temperature variation in each day
• Includes small transient temperature variation
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HeatWatch Greatly Improves Flash Lifetime
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Conclusion

•3D NAND flash memory susceptible to retention errors
• Charge leaks out of flash cell
• Two unreported factors: self-recovery and temperature

•We study self-recovery and temperature effects

•We develop a new technique to improve flash reliability

305

•Experimental characterization of real 3D NAND chips

•Unified Self-Recovery and Temperature (URT) Model
• Predicts impact of retention loss, wearout, self-recovery, 

temperature on flash cell voltage
• Low prediction error rate: 4.9%

•HeatWatch
• Uses URT model to find optimal read voltages for 3D NAND flash
• Improves flash lifetime by 3.85x
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