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Approaches to (Instruction-Level) Concurrency

= Pipelining

= Fine-Grained Multithreading

= Out-of-order Execution

= Dataflow (at the ISA level)

= Superscalar Execution

= VLIW

= Systolic Arrays

= Decoupled Access Execute

= SIMD Processing (Vector and array processors, GPUS)




VLIW Architectures
(Very Long Instruction Word)




VLIW Concept

Superscalar

o Hardware fetches multiple instructions and checks
dependencies between them

VLIW (Very Long Instruction Word)

a Software (compiler) packs independent instructions in a larger
“instruction bundle” to be fetched and executed concurrently

o Hardware fetches and executes the instructions in the bundle
concurrently

No need for hardware dependency checking between
concurrently-fetched instructions in the VLIW model



VLIW Concept

Memory

add r1,r2,r3 load r4 r5+4 mov r6,r2 mul r7,r8.r9

Erograml
ounter

Instruction
Sreedien . . . .
PE PE PE PE

Fisher, “Very Long Instruction Word architectures and the
ELI-512,” ISCA 1983.

o ELI: Enormously longword instructions (512 bits)




VLIW (Very Long Instruction Word)

A very long instruction word consists of multiple
independent instructions packed together by the compiler

o Packed instructions can be logically unrelated (contrast with
SIMD/vector processors, which we will see soon)

Idea: Compiler finds independent instructions and statically
schedules (i.e. packs/bundles) them into a single VLIW
Instruction

Traditional VLIW Characteristics
o Multiple instruction fetch/execute, multiple functional units
o All instructions in a bundle are executed in lock step

o Instructions in a bundle statically aligned to be directly fed
into the functional units



VLIW Performance Example (2-wide bundles)

lw $t0, 40(%$s9) add $t1, $s1, $s2
sub $t2, $s1, $s3 and $t3, $s3, $s4 Ideal IPC = 2
or $t4, $s1, $s5 sw $s5, 80(%$s9)

1 2 3 4 5 6 7 8
>
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1w $t0, 40($s0) — 40 :B— — =
IM RF [ss1 DM RF
add $t1, $s1, S$s2 add = :B— || et
M $s1M M M
sub $t2, $sl1, $s3 Ele { $s3 :B— I
IM RF [s53 DM - RF
and $t3, $s3, $s4 nd -[ $s4 :B— -
M $s1R) Y Msts
or $t4, $sl, $sb5 $s5 E|} —
M RF [5s0 DM RF
5
sw  $s5, 80($s0) = o] P

Actual IPC = 2 (6 instructions issued in 3 cycles)



VLIW Lock-Step Execution

Lock-step (all or none) execution

o If any operation in a VLIW instruction stalls, all concurrent
operations stall

In a truly VLIW machine:

o the compiler handles all dependency-related stalls

o hardware does not perform dependency checking

o What about variable latency operations? Memory stalls?



VLIW Philosophy & Principles

Proceedings of the ACM SIGPLAN '84 Symposium on Compiler Construction

¥

SIGPLAN Notices Vol. 19, No. 8, June 1984

Parallel Processing: |
A Smart Compiler and a Dumb Machine

Joseph A. Fisher, John R. Ellis,
John C. Ruttenberg, and Alexandru Nicolau

Department of Computer Science, Yale University
New Haven, CT 06520

Abstract

Multiprocessors and vector machines, the only success-
ful parallel architectures, have coarse-grained parallelism
that is hard for compilers to take advantage of. We've
developed a new fine-grained parallel architecture and a
compiler that together offer order-of-magnitude speedups
for ordinary scientific code.

future, and we're building a VLIW machine, the ELI
(Enormously Long Instructions) to prove it.

In this paper we'll describe some of the compilation
techniques used by the Bulldog compiler. The ELI
project and the details of Bulldog are descnbed
elsewhere [4, 6, 7, 15, 17).

Fisher et al., “Parallel Processing: A Smart Compiler and a Dumb Machine,” CC 1984. 9



VLIW Philosophy & Principles

Philosophy similar to RISC (simple instructions and hardware)
o Except multiple instructions in parallel

RISC (John Cocke+, 1970s, IBM 801 minicomputer)

o Compiler does the hard work to translate high-level language
code to simple instructions (John Cocke: control signals)

And, to reorder simple instructions for high performance
o Hardware does little translation/decoding - very simple

VLIW (Josh Fisher, ISCA 1983)
o Compiler does the hard work to find instruction level parallelism
o Hardware stays as simple and streamlined as possible

Executes each instruction in a bundle in lock step

Simple = higher frequency, easier to design
10



VLIW Philosophy and Properties

More formally, VLIW architectures have the following
properties:

There is one central control umit issuing a single long

instruction per cycle.

Each long instruction consists of many tightly coupled
independent operations.

Each operation requires a small, statically predictable
number of cycles to execute.

QOperations can be pipelined. These properties distinguish
VLIWs from multiprocessors (with large asynchronous tasks)
and dataflow machines (without a single flow of control, and
without the tight coupling). VLIWSs have none of the required
regularity of a vector processor, or true array processor.

Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.
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Commercial VLIW Machines

Multiflow TRACE, Josh Fisher (7-wide, 28-wide)
Cydrome Cydra 5, Bob Rau
Transmeta Crusoe: x86 binary-translated into internal VLIW

TI C6000, Trimedia, STMicro (DSP & embedded processors)
and some ATI/AMD GPUs

a Most successful commercially

Intel IA-64

o Not fully VLIW, but based on VLIW principles

o EPIC (Explicitly Parallel Instruction Computing)

o Instruction bundles can have dependent instructions

o A few bits in the instruction format specify explicitly which
instructions in the bundle are dependent on which other ones

12



VLIW Tradeoffs

Advantages
+ No need for dynamic scheduling hardware - simple hardware

+ No need for dependency checking within a VLIW instruction -
simple hardware for multiple instruction issue + no renaming

+ No need for instruction alignment/distribution after fetch to
different functional units = simple hardware

Disadvantages

-- Compiler needs to find N independent operations per cycle
-- If it cannot, inserts NOPs in a VLIW instruction
-- Parallelism loss AND code size increase

-- Recompilation required when execution width (N), instruction
latencies, functional units change (Unlike superscalar processing)

-- Lockstep execution causes independent operations to stall

-- No instruction can progress until the longest-latency instruction completes
13



VLIW Summary

= VLIW simplifies hardware, but requires complex compiler
techniques

= Solely-compiler approach of VLIW has several downsides
that reduce performance
-- Too many NOPs (not enough parallelism discovered)
-- Static schedule intimately tied to microarchitecture
-- Code optimized for one generation performs poorly for next
-- No tolerance for variable or long-latency operations (lock step)

++ Most compiler optimizations developed for VLIW employed
in optimizing compilers (for superscalar compilation)

o Enable code optimizations

++ VLIW very successful when parallelism is easier to find by
the compiler (traditionally embedded markets, DSPs, GPUs)

14



Example Work: Trace Scheduling

@ :®

/

\

TRACE SCHEDULING LooP-FREE CODE

(a) A flow graph, with each block representing a basic block
of code. (b) A trace picked from the flow graph. (c) The trace
has been scheduled but it hasn’t been relinked to the rest of the
code. (d) The sections of unscheduled code that allow re-
linking.

Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983. 15



Recommended Paper

Fisher,

VERY LONG INSTRUCTION WORD
ARCHITECTURES
AND THE ELI-512

JOSEPH A. FISHER
YALE UNIVERSITY
NEW HAVEN, CONNECTICUT 06520

ABSTRACT

By compiling ordinary scientific applications programs with a
radical technique called trace scheduling, we are generating
code for a parallel machine that will run these programs faster
than an equivalent sequential machine — we expect 10 to 30

times faster.

Trace scheduling generates code for machines called Very
Long Instruction Word architectures. In Very Long Instruction
Word machines, many statically scheduled, tightly coupled,
fine-grained operations execute in parallel within a single
instruction stream. VLIWs are more parallel extensions of

several current architectures.

These current architectures have never cracked a
fundamental barrier. The speedup they get from parallelism is
never more than a factor of 2 to 3. Not that we couldn’t build
more parallel machines of this type; but until trace scheduling
we didn't know how to generate code for them. Trace
scheduling finds sufficient parallelism in ordinary code to
justify thinking about a highly parallel] VLIW.

At Yale we are actually building ome. Our machine, the
ELI-512, has a horizontal instruction word of over 500 bits and

DT T 2 L IaT o [ NG R SN P | » SO T ]

“Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.

are presented in this paper. How do we put enough tests in
each cycle without making the machine too big! How do we
put enough memory references in each cycle without making
the machine too slow?

WHAT IS A VLIW?

Everyone wants to use cheap hardware in parallel to speed
up computation. One obvious approach would be to take your
favorite Reduced Instruction Set Computer, let it be capable of
executing 10 to 30 RISC-level operations per cycle controlled by
a very long instruction word. (In fact, call it a VLIW.} A
VLIW looks like very parallel horizontal microcode.

More formally, VLIW architectures have the following
properties:

There is one central control unit issuing a single long

instruction per cycle.

Each long instruction consists of many tightly coupled
independent operations.

Each operation requires a small, statically predictable
number of cycles to execute.

Operations can be pipelined. These properties distinguish

16



The Bulldog VLIW Compiler

Chapter 1: My Thests 17

source language
{

Parser

intermediate code
\
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& Optimization

optimized intermediate code
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Memory-bank
Disambiguation

intermediate code intermediate code

. 1 o
Trace trace Code viil, vijl 7

Scheduler Generator

Disambiguator

machine code yes, no, maybe

object codel

Figure 1.5. The Bulldog compiler.

John Ellis, “Bulldog: A Compiler for VLIW Architectures,” PhD Thesis 1984.
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Another Example Work: Superblock

The Superblock: An Effective Technique

for VLIW and Superscalar Compilation

Wen-me1 W. Hwu Scott A. Mahlke William Y. Chen Pohua P. Chang
Nancy J. Warter Roger A. Bringmann Roland G. Quellette Richard E. Hank

Tokuzo Kiyohara Grant E. Haab John G. Holm Daniel M. Lavery *

Hwu et al., The superblock: An effective technique for VLIW and superscalar compilation.

The Journal of Supercomputing, 1993.

= Lecture Video on Static Instruction Scheduling
o https://www.youtube.com/watch?v=isBEVkIjgGA

18


https://www.youtube.com/watch?v=isBEVkIjgGA

Another Example Work: IMPACT

IMPACT: An Architectural Framework for

Pohua P. Chang

Multiple-Instruction-Issue Processors

Scott A. Mahlke William Y. Chen Nancy J. Warter

Center for Reliable and High-Performance Computing
University of Illinois
Urbana, IL 61801

The performance of multiple-instruction-issue processors
can be severely limited by the compiler’s ability to gen-
erate efficient code for concurrent hardware. In the IM-
PACT project, we have developed IMPACT-I, a highly
optimizing C compiler to exploit instruction level concur-
rency. The optimization capabilities of the IMPACT-I
(C compiler are summarized in this paper. Using the
IMPACT-1 C compiler, we ran experiments to analyze
the performance of multiple-instruction-issue processors ex-
ecuting some important non-numerical programs. The
multiple-instruction-issue processors achieve solid speedup
over high-performance single-instruction-issue processors.

Wen-me:r W. Hwu

Chang et al., IMPACT: an architectural framework for multiple-instruction-issue processors. ISCA 1991. 19



Another Example Work: Hyperblock

Effective Compiler Support for Predicated Execution
Using the Hyperblock

Scott A. Mahlke David C. Lin* William Y. Chen  Richard E. Hank Roger A. Bringmann

Center for Reliable and High-Performance Computing
University of Ilhinois
Urbana-Champaign, IL 61801

Lecture Video on Static Instruction Scheduling
o https://www.youtube.com/watch?v=isBEVkIjgGA

Mahlke+, “Effective Compiler Support for Predicated Execution Using the Hyperblock,” MICRO 1992. 20
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Lecture on Static Instruction Scheduling

> Pl o) 5818/1:41:17

Lecture 16. Static Instruction Scheduling - Carnegie Mellon - Comp. Arch. 2015 - Onur Mutlu

7,136 views * Feb 26,2015 ifp 26 &lo P SHARE =i SAVE

Carnegie Mellon Computer Architecture oy
g 23K subscribers SUBSCRIBED A

Lecture 16: Static Instruction Scheduling
Lecturer: Prof. Onur Mutlu (http://users.ece.cmu.edu/~omutlu/)
Date: Feb 23rd, 2015

Lecture 16 slides (pdf): http://www.ece.cmu.edu/~ece447/s15/li...

https:/ /www.youtube.com/onurmutlulectures



https://www.youtube.com/onurmutlulectures

Lectures on Static Instruction Scheduling

= Computer Architecture, Spring 2015, Lecture 16

o Static Instruction Scheduling (CMU, Spring 2015)

o https://www.youtube.com/watch?v=isBEVkIjgGA&list=PL5PHmM2jkkXmi5CxxI17b3]C
L1TWybTDtKg&index=18

= Computer Architecture, Spring 2013, Lecture 21

o Static Instruction Scheduling (CMU, Spring 2013)

o https://www.youtube.com/watch?v=XdDUn2WtkRg&list=PL5PHmM2jkkXmidJOd59RE
0g9iDnNPDTG61J&index=21

SAFARI https://www.youtube.com/onurmutlulectures 22



https://www.youtube.com/watch?v=isBEVkIjgGA&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=18
https://www.youtube.com/watch?v=XdDUn2WtkRg&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=21
https://www.youtube.com/onurmutlulectures

A More Compact Version...

pr: mul r1<-r2,3 opA mul r1< r2 d

1

)9 ng add r2<-r2, 1 r 1dd r2<-r2,1
| L : Q wl r3<-r2,

opC: mul r3<-r2,3

Original Code Formation

opA mul r1< rzq

99| pr add r2<-r2,1
C’: mul r3<-r2,
ﬁC mov r3<-r1| ( L

Code After Common
Subexpression Elimination

Pl R 1:27:19/1:43:16

18-740 Computer Architecture - Advanced Branch Prediction - Lecture 5

4,696 views * Sep 23,2015 s Hlo

=

% SHARE =4 SAVE

Carnegie Mellon Computer Architecture
23K subscribers SUBSCRIBED

Lecture 5: Advanced Branch Prediction
Lecturer: Prof. Onur Mutlu (http://users.ece.cmu.edu/~omutlu/)

Date: September 16, 2014.

Lecture 5 slides (pdf): http://www.ece.cmu.edu/~ece740/f15/li...
Lecture 5 slides (ppt): http://www.ece.cmu.edu/~ece740/f15/Ii.

https:/ /www.youtube.com/onurmutlulectures
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A More Compact Version...

= Computer Architecture, Spring 2015, Lecture 5

o Advanced Branch Prediction (CMU, Spring 2015)
o https://www.youtube.com/watch?v=yDjsr-

1TOtk&list=PL5PHmM?2jkkXmgVhh8CHAuU9N76TSh]gfYDt&index=4

SAFARI

https:/ /www.youtube.com/onurmutlulectures
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https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23
https://www.youtube.com/onurmutlulectures

Aside: ISA Translation

s One can translate from one ISA to another jinternal-ISA to
get to a better tradeoff space

o Programmer-visible ISA (virtual ISA) - Implementation ISA
o Complex instructions (CISC) = Simple instructions (RISC)
a Scalar ISA 2> VLIW ISA

= Examples

a Intel’'s and AMD’s x86 implementations translate x86
instructions into programmer-invisible microoperations (simple
instructions) in hardware

o Transmeta’s x86 implementations translated x86 instructions
into “secret” VLIW instructions in software (code morphing
software)

= Think about the tradeoffs

25



Transmeta: x86 to VLIW Translation

BIOS

Code Morphing
Software
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= EE =

- - S
Transmeta m

()
>
w
w
@
w
.

EEN

4€98H

ﬂ‘

VLIW engine g

" ONYMIVL

X86 X86 fficéon™ 3
Operating Code Morphing Applications X e Ceon 13425 FO9 i,
System Software BV D0 [@Rae 1D

Figure 5. The Code Morphing software mediates between x86 software and the Crusoe processor.

Klaiber, “The Technology Behind Crusoe Processors,” Transmeta White Paper 2000.

https://www.wikiwand.com/en/Transmeta_Efficeon 26
https://classes.engineering.wustl.edu/cse362/images/c/c7/Paper_aklaiber_19jan00.pdf




Recall: Semantic Gap

= How close instructions & data types & addressing modes
are to high-level language (HLL)

HLL HLL
| Small Semantic Gap
ISA with

Complex Inst
& Data Types

& Addressing Modes ISA with
Simple Inst

& Data Types
& Addressing Modes

Large Semantic Gap

HW HW

Control Control

Signals Signals
Easier mapping of HLL to ISA Harder mapping of HLL to ISA
Less work for software designer More work for software designer
More work for hardware designer Less work for hardware designer

Optimization burden on HW Optimization burden on SW



Recall: How to Change the Semantic Gap Tradeotts

= Translate from one ISA into a different “implementation” ISA

HLL

Small Semantic Gap

X86 ISA with
Complex Inst
& Data Types
& Addressing Modes

Software or Hardware Translator

Implementation ISA with

VLIW
Simple Inst

HW
Control & Data Types
Signals & Addressing Modes

SW, translator, and HW can all perform operation re-ordering 28



Transmeta: x86 to VLIW Translation
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Figure 5. The Code Morphing software mediates between x86 software and the Crusoe processor.

Klaiber, “The Technology Behind Crusoe Processors,” Transmeta White Paper 2000.

https://www.wikiwand.com/en/Transmeta_Efficeon 29
https://classes.engineering.wustl.edu/cse362/images/c/c7/Paper_aklaiber_19jan00.pdf




Another Example: Rosetta 2 Binary Translator

Rosetta 2 [edit]

In 2020, Apple announced Rosetta 2 would be bundled with macOS Big Mac transition to

Apple silicon

Sur, to aid in the Mac transition to Apple silicon. The software permits

In addition to the just-in-time (JIT) translation support, Rosetta 2 offers
ahead-of-time compilation (AOT), with the x86-64 code fully translated,
just once, when an application without a universal binary is installed on an
Apple silicon Mac.[?]

Rosetta 2's performance has been praised greatly.!'%l] In some
benchmarks, x86-64-only programs performed better under Rosetta 2 on
a Mac with an Apple M1 SOC than natively on a Mac with an Intel x86-64 Apple silicon - ARM architecture -

processor. One of the key reasons why Rosetta 2 provides such high level Universal 2 binary - Rosetta 2 -
Developer Transition Kit

of translation efficiency is the support of x86-64 memory ordering in Apple

M1 soc.[12]

Although Rosetta 2 works for most software, some software doesn't work

at alll’3] or is reported to be "sluggish".['#] A lot of software can be made compatible with the new Macs by the vendor
recompiling the software, often a simple task; while for some software (such as software that includes assembly
language code, or that generates machine code), the changes to make them work aren't simple and cannot be
automated.

Similar to the first version, Rosetta 2 does not normally require user intervention. When a user attempts to launch an
x86-64-only application for the first time, macOS prompts them to install Rosetta 2 if it is not already available.
Subsequent launches of x86-64 programs will execute via translation automatically. An option also exists to force a
universal binary to run as x86-64 code through Rosetta 2, even on an ARM-based machine.['®]

https://en.wikipedia.org/wiki/Rosetta_(software)#Rosetta 2



https://en.wikipedia.org/wiki/Rosetta_(software)#Rosetta_2

Another Example: Rosetta 2 Binary Translator

8x 16[)

'PDDRAX
Chanhéls!_a '
id Apple M1,
g? 2021
;1] Rt
31

Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested
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Another Example: NVIDIA Denver

The Secret of Denver: Binary Translation & Code Optimization

As we alluded to earlier, NVIDIA's decision to forgo a traditional out-of-order design for Denver means that
much of Denver’s potential is contained in its software rather than its hardware. The underlying chip itself,
though by no means simple, is at its core a very large in-order processor. So it falls to the software stack to
make Denver sing.

Accomplishing this task is NVIDIA's dynamic code optimizer (DCO). The purpose of the DCO is to accomplish
two tasks: to translate ARM code to Denver’s native format, and to optimize this code to make it run better (
Denver. With no out-of-order hardware on Denver, it is the DCO'’s task to find instruction level parallelism
within a thread to fill Denver’s many execution units, and to reorder instructions around potential stalls,
something that is no simple task.

NAMIC CODE OPTIMIZATION
OPTIMIZE ONCE, USE MANY TIMES

Instructions

Dynamic
Profile
Decoder

Execution

Units Impro i Optimization Cache
Denver Hardware i .

d computation

https://www.anandtech.com/show/8701/the-google-nexus-9-review/4
https://safari.ethz.ch/digitaltechnik/spring2021/lib/exe/fetch.php?media=boggs_ieeemicro_2015.pdf

3
2

The DCO system employed in the Den-
ver CPU is codesigned software that extends
ideas from prior system-level binary transla-
tors.” The primary function is to execute the

ser’s code. The secondary function is to pro
file execution, create, optimize, and manage
regions of tens to thousands of ARM
instructions to form equivalent microcode-

optimized reglons that execute efficiently on
microarchitecture.

https://www.toradex.com/computer-on-modules/apalis-arm-family/nvidia-tegra-k1 32



More on NVIDIA Denver Code Optimizer
DENVER: NVIDIA'S FIRST B4-BIT ARM .o e e e o

taken branches. This branch history is moved
PRUCESSOR into a shared buffer that can be processed
from other cores, thereby minimizing the
latency of the interruption. The DCO system
will then run a thread that uses this profile to
evaluate the dynamic properties of code exe-

cuting and to assemble a picture of which
code regions are hottest across all the process-

ARCHITECTURE, DESCRIBES ITS TECHNOLOGICAL INNOVATIONS, AND PROVIDES RELEVANT - .
' ' ors. On finding sufficiently hot code, the
COMPARISONS AGAINST COMPETING MOBILE PROCESSORS.

NVIDIA'S FIRST 64-BIT ARM PROCESSOR, CODE-NAMED DENVER, LEVERAGES A HOST OF
NEW TECHNOLOGIES, SUCH AS DYNAMIC CODE OPTIMIZATION, TO ENABLE HIGH-
PERFORMANCE MOBILE COMPUTING. IMPLEMENTED IN A 28-NM PROCESS, THE DENVER

CPU CAN ATTAIN CLOCK SPEEDS OF UP T0 2.5 GHZ. THIS ARTICLE OUTLINES THE DENVER

DCO system will begin an optimization
process to turn this input ARM code into a
microcode execution region. The optimiza-
tion process uses well-known traditional’® and

COdESigﬂiﬂg a hardware processor with a more speculative compiler techniques to
DCO software system creates both additional reduce work and increase efficiency of execu-
validation exposure and benefits. The DCO Eon Othn t:le undeflf)’%ﬂg skewed pipeline. To

. eep (& atency (0] lﬂterrllptl{)ns 0 a mini-
system can be upgraded in the field to a.ddress mum, the optimizer thread is time-sliced
functionality, performance, or security issues. with ARM execution (if any) and runs in a

mode that can be quickly interrupted.

33
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There Is A Lot More to Cover on ISAs

A\ Note on |S.\ l".\l)lllll()ll

ISAs have evolved to reflect/satisfy the concerns of the day

= Examples:
Limited on
Limite piler optimizatic technology

Limited memory bandwidth

Need for specialization in important applications (e.g., MMX)

hip and off-chip memory size

)

« Use of translation (in HW and SW) enabled underlying
implementations to be similar, regardless of the ISA
, Concept of dynamic/static interface: translation/interpretation
, Contrast it with hardware/software interface

P Ml o) 14352/15110 « £ [« O I3

Lecture 3. ISA Tradeoffs - Carnegie Mellon - Computer Architecture 2015 - Onur Mutlu

#~ SHARE =} SAVE

S:megle Mefl!g: Computer Architecture ANALYTICS EDIT VIDEO

Lecture 3. ISA Tradeoffs
Lecturer: Prof. Onur Mutlu (http
Date: Jan 16th, 2015

https:/ /www.youtube.com/onurmutlulectures
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There Is A Lot More to Cover on ISAs

4« P >l o) 2529/1:30:28 ¢ =0

Ld

Lecture 4. ISA Tradeoffs & MIPS ISA - Carnegie Mellon - Computer Architecture 2015 - Onur Mutlu

28,806 views * Jan 23, 2015 i 5 SHARE

— - .
S, n: Carr:egle Mellon Computer Architecture
-~

Lecture 4. ISA Tradeoffs (cont.) & MIPS ISA
Lecturer: Kevin Chang (
Date: Jan 21th, 2015

https:/ /www.youtube.com/onurmutlulectures
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Detailed Lectures on ISAs & ISA Tradeoffs

= Computer Architecture, Spring 2015, Lecture 3

o ISA Tradeoffs (CMU, Spring 2015)

o https://www.youtube.com/watch?v=0QKdiZSfwg-
g&list=PL5PHmM2jkkXmi5CxxI7b3JCL1TWybTDtKg&index=3

= Computer Architecture, Spring 2015, Lecture 4

o ISA Tradeoffs & MIPS ISA (CMU, Spring 2015)

o  https://www.youtube.com/watch?v=RBgeCCW5Hjs&list=PL5PHmM2jkkXmi5CxxI7b3]
CL1TWybTDtKg&index=4

= Computer Architecture, Spring 2015, Lecture 2

o Fundamental Concepts and ISA (CMU, Spring 2015)

o https://www.youtube.com/watch?v=NpC39uS4K4o0&list=PL5PHmM?2jkkXmi5CxxI7b3J]
CL1TWybTDtKg&index=2

https:/ /www.youtube.com/onurmutlulectures 36



https://www.youtube.com/watch?v=KDy632z23UE&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=8
https://www.youtube.com/watch?v=pwRw7QqK_qA&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=9
https://www.youtube.com/watch?v=gR7XR-Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10
https://www.youtube.com/onurmutlulectures

Approaches to (Instruction-Level) Concurrency

= Pipelining

= Fine-Grained Multithreading

= Out-of-order Execution

= Dataflow (at the ISA level)

= Superscalar Execution

s VLIW

= Systolic Arrays

= Decoupled Access Execute

= SIMD Processing (Vector and array processors, GPUS)

37



Readings for Today

Required

H. T. Kung, "Why Systolic Architectures?,” IEEE Computer
1982.

Recommended

o Jouppi et al., “In-Datacenter Performance Analysis of a Tensor
Processing Unit”, ISCA 2017.
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Readings for Next Week

Required

a Lindholm et al., "NVIDIA Tesla: A Unified Graphics and
Computing Architecture,”" IEEE Micro 2008.

Recommended

o Peleg and Weiser, “MMX Technology Extension to the Intel
Architecture,” IEEE Micro 1996.
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Systolic Arrays




Systolic Arrays: Motivation

Goal: design an accelerator that has

o Simple, reqular design (keep # unique parts small and regular)
o High concurrency - high performance

a Balanced computation and I/O (memory) bandwidth

Idea: Replace a single processing element (PE) with a regular
array of PEs and carefully orchestrate flow of data between
the PEs

o such that they collectively transform a piece of input data before
outputting it to memory

Benefit: Maximizes computation done on a single piece of
data element brought from memory

41



Systolic Arrays

INSTEAD OF:
l MEMORY I‘-

100 ns
WE HAVE: [
| MEMORY I‘——

100 ns
—D{PE PE | PE IPElPElPEI—

THE SYSTOLIC ARRAY

9 MILLION
OPERATIONS
PER SECOND
AT MOST

30 MOPS
POSSIBLE

Figure 1. Basic principle of a systolic system.

Memory: heart
Data: blood
PEs: cells

Memory pulses
data through
PEs

H. T. Kung, "Why Systolic Architectures?,” IEEE Computer 1982.

42



Why Systolic Architectures?

Idea: Data flows from the computer memory in a rhythmic
fashion, passing through many processing elements before it
returns to memory

Similar to blood flow: heart = many cells > heart
a Different cells “process” the blood

o Many veins operate simultaneously

o Can be many-dimensional

Why? Special purpose accelerators/architectures need

a Simple, regular design (keep # unique parts small and regular)
a High concurrency = high performance

o Balanced computation and I/O (memory) bandwidth
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Systolic Architectures

Basic principle: Replace a single PE with a regular array of
PEs and carefully orchestrate flow of data between the PEs

o Balance computation and memory bandwidth

INSTEAD OF:
MEMORY 5 MILLION
OPERATIONS
100 ns PER SECOND
AT MOST
PE
WE HAVE:
MEMORY 30 MOPS
POSSIBLE
100 ns
pe |Pe |pe | pe | pe | pe

Differences from pipelining:
o These are individual PEs Figure 1. Basic princlple of a systolc system.

o Array structure can be non-linear and multi-dimensional

o PE connections can be multidirectional (and different speed)
Q

PEs can have local memory and execute kernels (rather than a
piece of the instruction)
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Systolic Computation Example

= Convolution

o Used in filtering, pattern matching, correlation, polynomial
evaluation, etc ...

o Many image processing tasks

o Machine learning: up to hundreds of convolutional layers in
Convolutional Neural Networks (CNN)

Given the sequence of weights |wy, ws, . . ., W |
and the input sequence Xy, X3, . . . » Xp 1

compute the result sequence ¥y, ¥2, - - - s Vna+1-k |
defined by

Vi=WXi+ WX, + ...+ WXL
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LeNet-5, a Convolutional Neural Network
for Hand-Written Digit Recognition

This is a 1024*8 bit input, which will
have a truth table of 2 819 entries

) C3:f. maps 16@10x10
INPUT C1: feature maps S4:f. maps 16@5x5
6@28x28 S2: §

32x32
6@14x1

C5: layer :
330 F& layer C;léJTPUT

I
Full conflection I Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

Slide credit: Hwu & Kirk
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An Example of 2D Convolution

Output feature map

Structure information
Input: 5*5 (blue)
Kernel (filter): 3*3 (grey)
Output: 5*5 (green)

Computation information
Stride: 1
Padding: 1 (white)

Output Dim = (Input + 2*Padding
Input feature map - Kernel) / Stride + 1




An Example of 2D Convolution




Convolutional Neural Networks: Demo

Back to Yann's

Home
Publications

LeNet-5 Demos

Unusual
Patterns
unusual styles
weirdos

Invariance
translation (anim)
scale (anim)
rotation (anim)
squeezing_(anim)
stroke width
(anim)

Noise
Resistance
noisy 3 and 6
noisy 2 (anim)
noisy 4 (anim)

Multiple
Character
various stills
dancing 00 (anim)
dancing 384
(anim)

Complex cases
(anim)

35->53
12->4-> 21
23->32

30 + noise
31-51-57-61

LeNet-5, convolutional
neural networks

Convolutional Neural Networks are are a special kind of
multi-layer neural networks. Like almost every other
neural networks they are trained with a version of the
back-propagation algorithm. Where they differ is in the

Convolutional Neural Networks are designed to
recognize visual patterns directly from pixel images with
minimal preprocessing.

They can recognize patterns with extreme variability
(such as handwritten characters), and with robustness to
distortions and simple geometric transformations.

LeNet-5 is our latest convolutional network designed for
handwritten and machine-printed character recognition.
Here is an example of LeNet-5 in action.

9“"' LeNet 5 | geseancyl
answer: 7

pici)

7

/r &LayerAS I\
Layer-3 Input
Layer-1

Many more examples are available in the column on the
left:

Several papers on LeNet and convolutional networks are
available on my publication page:

[LeCun et al., 1998]
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document
recognition. Proceedings of the IEEE, november 1998.
Psgz

[Bottou et al., 1997]
L. Bottou, Y. LeCun, and Y. Bengio. Global training of

3.

ll:.l'-l:fl'"

Ll

-H-.

-
%]

-

723
TArvEe R

s ¥
<k

‘nh-t

http://yann.lecun.com/exdb/lenet/index.html
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Implementing a Convolutional Layer
with Matrix Multiplication

12 || 18 10 | 20 Output
Features
13 | 22 15 | 22 Y
101 1)1 0|1 1|0 2|1 Conyolutlon
Filters
22 1)1 1]0 01 21 210 W

(1] 2) "0 |2Y1 1] 2) Input
1|1 0|12 0|13 Features
0|2 110 3|32 X
1{1|2|2|1|1|1|1fof1]1]0 * tff2][2]]1] 12118l 13] 2
1(0|0]|1 121 2120 20lo||1]|3 -
171005 10 | 20 | 15 | 22
1[3]|2]|2
Convolution [ 0§12/10]] 1 Output
Filters (21 2]|1]]2] Features
w off1||1]|2 Y
1f[2]|1]]o0
1f(2]|o|]1
20l 1)|1]|3
ofl1]|3]|3
1[3]|3||2
: : _ Input
Slide credit: Reproduced from Hwu & Kirk Features

X (unrolled)




Power ot Convolutions and Applied Courses

In 2010, Prof. Andreas Moshovos adopted Professor Hwu's
ECE498AL Programming Massively Parallel Processors Class

Several of Prof. Geoffrey Hinton’s graduate students took
the course

These students developed the GPU implementation of the
Deep CNN that was trained with 1.2M images to win the
ImageNet competition

Slide credit: Hwu & Kirk
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Example: AlexNet (2012)

AlexNet wins the ImageNet classification competition with
~10% points higher accuracy than state-of-the-art

o Krizhevsky et al., "ImageNet Classification with Deep Convolutional
Neural Networks”, NIPS 2012.

ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto
kriz@cs.utoronto.ca ilya@cs.utoronto.ca hinton@cs.utoronto.ca

Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million
high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-
ferent classes. On the test data, we achieved top-1 and top-5 error rates of 37.5%
and 17.0% which is considerably better than the previous state-of-the-art. The
neural network, which has 60 million parameters and 650,000 neurons, consists
of five convolutional layers, some of which are followed by max-pooling layers,
and three fully-connected layers with a final 1000-way softmax. To make train-
ing faster, we used non-saturating neurons and a very efficient GPU implemen-
tation of the convolution operation. To reduce overfitting in the fully-connected
layers we employed a recently-developed regularization method called “dropout™
that proved to be very effective. We also entered a variant of this model in the
ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%,
compared to 26.2% achieved by the second-best entry. 52



Example: Googl.eNet (2014)

= Google improves accuracy by adding more network layers
o From 8 in AlexNet to 22 in GooglLeNet

o Szegedy et al., "Going Deeper with Convolutions”, CVPR 2015.

Going Deeper with Convolutions

Christian Szegedy', Wei Liu?, Yangqing Jia®, Pierre Sermanet!, Scott Reed?,
Dragomir Anguelov!, Dumitru Erhan', Vincent Vanhoucke®, Andrew Rabinovich?
1Google Inc. ?University of North Carolina, Chapel Hill
3University of Michigan, Ann Arbor “Magic Leap Inc.

'{szegedy, jiayq, sermanet, dragomir, dumitru, vanhoucke}@google.com

zwliu@cs.unc.edu, dreedscott@umich.edu, 4arabinovich@magicleap.com
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Example: ResNet (2015)

= He et al., "Deep Residual Learning for Image Recognition”, CVPR 2016.

Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun
Microsoft Research
{kahe, v-xiangz, v-shren, jiansun } @ microsoft.com

ImageNet experiments 282

- 25.8
152 layers

Y First CNN

\
\
\
22 layers ‘ 19 Iayers
\ 6.7

Human: 5.1% /'i I_I | i'aiefs_—_?'aiﬁ—--.shallow-

ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

THICCV

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv 2015



Neural Network Layer Examples

LeNet AlexNet
| Image: 28 (height) x 28 (width) x 1 (channel) | Image: 224 (height) x 224 (width) x 3 (channels)|
v v
| Convolution with 5x5 kernel+2padding:28x28x6 | | Convolution with11x11kernel+4stride:54x54x96 |
., sigmoid Vv RelLu
| Pool with 2x2 average kernel+2 stride:14x14x6 | | Pool with 3x3 max. kernel+2 stride: 26x26x96 |
v v
| Convolution with 5x5 kernel (no pad):10x10x16 | | Convolution with 5x5 kernel+2 pad:26x26x256 |
. sigmoid v RelLu
| Pool with 2x2 average kernel+2 stride: 5x5x16 | | Pool with 3x3 max.kernel+2stride:12x12x256 |
v flatten v
| Dense: 120 fully connected neurons || Convolution with 3x3 kernel+1 pad:12x12x384 |
|, sigmoid v Relu
| Dense: 84 fully connected neurons || Convolution with 3x3 kernel+1 pad:12x12x384 |
|, sigmoid v Relu
| Dense: 10 fully connected neurons || Convolution with 3x3 kernel+1 pad:12x12x256 |
v v Relu
Output: 1 of 10 classes | Pool with 3x3 max.kernel+2stride:5x5x256 |
J flatten

| Dense: 4096 fully connected neurons |
v ReL.u, dropout p=0.5

| Dense: 4096 fully connected neurons |
v ReL.u, dropout p=0.5

| Dense: 1000 fully connected neurons |

v

Output: 1 of 1000 classes

By Cmglee - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=104937230
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Systolic Computation Example: Convolution (I)

= Convolution

o Used in filtering, pattern matching, correlation, polynomial
evaluation, etc ...

o Many image processing tasks

o Machine learning: up to hundreds of convolutional layers in
Convolutional Neural Networks (CNN)

Given the sequence of weights |wy, ws, . . ., W |
and the input sequence Xy, X3, . . . » Xp 1

compute the result sequence ¥y, ¥2, - - - s Vna+1-k |
defined by

Vi=WXi+ WX, + ...+ WXL
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Systolic Computation |

vl = wilxl +
w2x2 + w3x3

y2 = Wilx2 +
w2x3 + w3x4

y3 = W1x3 +
w2x4 + w3x5

“xample: Convolution (II)

(b)

r je{r Tjer e
Wn Wo X4 W1
L JHyL JHp{L J
Yin
Yout = Yin + W X
Xout Xout = Xin

Figure 8. Design W1: systolic convolution array (a) and
cell (b) where w;’s stay and x;’s and y;’s move systolically
in opposite directions.
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Systolic Computation Example: Convolution (I11I)

RESULTS 4—?—- ‘—?‘—- 4—?‘- ¢—
w3 4% w2 i W:"é
X} == P 2 » Xy -J—> [IGNORED]

@ = MULTIPLIER @ = ADDER = LATCH

Figure 10. Overlapping the executions of multiply and add in design W1.

= Worthwhile to implement adder and multiplier separately
to allow overlapping of add/mul executions
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Systolic Computation Example: Convolution (IV)

= One needs to carefully orchestrate when data elements are
input to the array

= And when output is buffered

= This gets more involved when
o Array dimensionality increases
o PEs are less predictable in terms of latency
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Example 2D Systolic Array Computation

= Multiply two 3x3 matrices (inputs) o~

o Keep the final result in PE accumulators 410 ° bz
3 0 bay b1,
Coo Co1 Cp2 app adp1r Qo2 boo  bo1 o2
clo €11 Ci2| = |aw air aiz| X |bo by bz mmel 2 bao b1 boz
Cop C21  C22 asp 21 422 bao 521 ")22
1 b bo1 0
N
l 0 b 0 0
TIME
4 3 2 1 0
l 0 0 a a Qg ——> —>‘ —>
Figure 1: A systolic array processing element l l l
0 an an a1 0 — _>‘ |
ke | | |
Q=N ‘
a a a 0 0 E— —— —
R=R+ M*N
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Two-Dimensional Systolic Arrays

(a) T

(b)

T (c)

Figure 11. Two-dimensional systolic arrays: (a) type R, (b) type H, and

(c) type T.

To a given problem there could be both one- and two-
dimensional systolic array solutions. For example, two-
dimensional convolution can be performed by a one-
dimensional systolic array**?* or a two-dimensional
systolic array.® When the memory speed is more than cell
speed, two-dimensional systolic arrays such as those
depicted in Figure 11 should be used. At each cell cycle, all
the [/0 ports on the array boundaries can input or output
data items to or from the memory; as a result, the
available memory bandwidth can be fully utilized. Thus,
the choice of a one- or two-dimensional scheme is very
depenjént on how cells and memories will be imple-
mented.
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Combinations

Systolic arrays can be
chained together to
form powerful systems

This systolic array is
capable of producing
on-the-fly least-squares
fit to all the data that
has arrived up to any
given moment

X34 Y2

X33 X4

GIVEN AN n x p MATRIX X WITH

n = p, AND AN n-VECTOR y,
DETERMINE A p-VECTOR b SUCH THAT
Iy — xb I IS MINIMIZED.

X3p  Xp3  Xq4

STEP 1: ORTHOGONAL
TRIANGULARIZATION

STEP 2: SOLUTION OF TRIANGULAR
LINEAR SYSTEM

X31 X2 X43

X21 X142

X114 . .
-—F--F-- 1
:_- r | r=9 re=" r=An ,l\
| —— = ! \)
{ * i /' 7
I =
|
|
|
|
|
| rd
N g 7 SYSTOLIC ARRAY FOR
SYSTOLIC ARRAY FOR SOLVING TRIANGULAR
ORTHOGONAL /5 LINEAR SYSTEMS
TRIANGULARIZATION N

Figure 12. On-the-fly least-squares solutions using one- and two-
dimensional systolic arrays, withp = 4.



Systolic Arrays: Pros and Cons

Advantages:

o Principled: Efficiently makes use of limited memory bandwidth,
balances computation to I/O bandwidth availability

o Specialized (computation needs to fit PE organization/functions)

- improved efficiency, simple design, high concurrency/
performance

- good to do more with less memory bandwidth requirement

Downside:
a Specialized

- not generally applicable because computation needs to fit
the PE functions/organization
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More Programmability in Systolic Arrays

Each PE in a systolic array

o Can store multiple “weights”

o Weights can be selected on the fly

o Eases implementation of, e.g., adaptive filtering

Taken further
o Each PE can have its own data and instruction memory
o Data memory > to store partial/temporary results, constants

o Leads to stream processing, pipeline parallelism
More generally, staged execution
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Pipeline-Parallel (Pipelined) Programs

fori=1to N
[ Fm“nmﬂaﬁ] PO E.n cofat]el|c1 BE c2 (A3 33@ -
[ ... Il code in stage B |
[ /f code in stage B] t; tlI 1; 'cl:I tI. t; t; "-" 1., 1; tlw t'“ t, time
{a) L (e J
|
1) n | @OEG@E -
P1 B0 |B1|B2 B3 |B4|BS =
Bi
P2 cofc1]c2]cafcscs -
— -+ time
L Lo Lo h ot Lot by by oty
(b} o (d) ’

Figure 1. (a) The code of a loop, (b) Each iteration is split into 3 pipeline stages: A, B, and C. lteration | comprises A, Bi, Ci.
(c) Sequential execution of 4 iterations. (d) Parallel execution of 6 iterations using pipeline parallelism on a three-core machine.
Each stage executes on one core.

Suleman+, “Data Marshaling for Multi-core Architectures,” ISCA 2010. 65



Stages of Pipelined Programs

Loop iterations are divided into code segments called stages
Threads execute stages on different cores

>:.‘ore d

Core 3

loop {

Computel| A

Compute?2| B

Compute3| C

}



Pipelined File Compression Example

STAGE St i STAGES2  [] STAGES3  [] STAGE S4 . STAGE S5
"ALLOCATE | » [READINPUT| o [ COMPRESS | || (WRITEOUTPUT| || (DEALLOCATE |
Input — | Allocate buffers - * | 0=0UEUE1.Pop() - * Q = QUEUEZ.Papl) | O =QUEUE3.Pop() = O=0UEUE4.Pop() | w
File QUEUET Push(Bu) . Read file to But ® |CompressQ i Write oldest Q to File | Deallocate Buffers
. QUEUE2.Push({Buf} ™ QUEUES.Pushid) . QUEUE4.Push(Q) .
5 4 - \. ry - 4 - - ., S
L] L] L] L
QUEUE1 QUEUE2 QUEUE3 QUEUE4

Figure 3. File compression algorithm executed using pipeline parallelism
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Systolic Array: Advantages & Disadvantages

Advantages

o Makes multiple uses of each data item - reduced need for
fetching/refetching > better use of memory bandwidth

o High concurrency
a Regular design (both data and control flow)

Disadvantages
a Not good at exploiting irregular parallelism

o Relatively special purpose > need software, programmer
support to be a general purpose model
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Example Systolic Array: The WARP Computer

HT Kung, CMU, 1984-1988

Linear array of 10 cells, each cell a 10 Mflop programmable
processor

Attached to a general purpose host machine
HLL and optimizing compiler to program the systolic array
Used extensively to accelerate vision and robotics tasks

Annaratone et al., "Warp Architecture and
Implementation,” ISCA 1986.

Annaratone et al., "The Warp Computer: Architecture,
Implementation, and Performance,” IEEE TC 1987.
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The WARP Computer

‘IIIIIIHH!IIIIII

INTERFACE
UNIT

Adr

X X
celll, J cel1 _Jdce11 y
1 i 2 i n

WARP PROCESSOR ARRAY

Figure 1: Warp system overview
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The WARP Cell

X0 3. >
512 x 32 | E
Y0 &
512 x 32
31 x 32
Data v
32K x 32 ——— > 2k x 32
[ A A
> MReg > Mpy
—>1 31 x 32 P _]’
<Literal> -
L'
3
Address |—€ AGU
<] Cross
Mru . Bar 3
512 x 32 -

Figure 2: Warp cell data path
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An Example Modern Systolic Array: TPU (I)

=
i Partial Sums
> P —> Done
] ] ] [
Figure 3. TPU Printed Circuit Board. It can be inserted in the slot ~ Figure 4. Systolic data flow of the Matrix Multiply Unit. Software
for an SATA disk in a server, but the card uses PCle Gen3 x16. has the 1llusion that each 256B input 1s read at once, and they instantly

update one location of each of 256 accumulator RAMs.

Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017.
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An Example Modern Systolic Array: TPU (1I)

As reading a large SRAM uses much more power than arithmetic, the matrix unit uses systolic execution to save energy
by reducing reads and writes of the Unified Buffer [Kun80][Ram91][Ovt15b]. Figure 4 shows that data flows in from the left,
and the weights are loaded from the top. A given 256-element multiply-accumulate operation moves through the matrix as a
diagonal wavefront. The weights are preloaded, and take effect with the advancing wave alongside the first data of a new
block. Control and data are pipelined to give the illusion that the 256 inputs are read at once, and that they instantly update
one location of each of 256 accumulators. From a correctness perspective, software 1s unaware of the systolic nature of the
matrix unit, but for performance, it does worry about the latency of the unit.

e —

o
Y
: L i Pairtial Sums
EEEN

Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017.
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Recall: Example 2D Systolic Array Computation

= Multiply two 3x3 matrices (inputs) o~

o Keep the final result in PE accumulators 410 ° bz
3 0 bay b1,
Coo Co1 Cp2 app adp1r Qo2 boo  bo1 o2
clo €11 Ci2| = |aw air aiz| X |bo by bz mmel 2 bao b1 boz
Cop C21  C22 asp 21 422 bao 521 ")22
1 b bo1 0
N
l 0 b 0 0
TIME
4 3 2 1 0
l 0 0 a a Qg ——> —>‘ —>
Figure 1: A systolic array processing element l l l
0 an an a1 0 — _>‘ |
ke | | |
Q=N ‘
a a a 0 0 E— —— —
R=R+ M*N
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An Example Modern Systolic Array: TPU (I1I)
o | DDR DRAM Chips | L

30 GiB/s 30 GIBI
14 HiEs DDR3 a Weight FIFO
Interfaces (Weight Felcher)
- | - & 30 GiBls
i
©o | E [ [
:: ] . Unified 167 : Matrix Multiply
& £ @ 10 GiB/s Buffer Systolic |GiB/sl| | Unit——
14GiBis |G 8| 14GiB/s| S (Local Dats ~ (64K percycle)
o c = gy | I
4 ::) o <:> o Activation Setup .
B = Storage) : HHH
I
o s
* . K j N J Accumulators ]
1 Activation ]
167 GiB/s
— = Normalize / Pool ]
|:| Off-Chip I/O J
D Data Buffer
Il Computation = R ——
. Control
Not to Scale

Figure 1. TPU Block Diagram. The main computation part is the
yellow Matrix Multiply unit in the upper right hand corner. Its inputs
arc the blue Weight FIFO and the blue Unified Buffer (UB) and its
output 1s the blue Accumulators (Acc). The yellow Activation Unit
performs the nonlinear functions on the Acc, which go to the UB.
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An Example Modern Systolic Array: TPU2

https://mww.nextplatform.com/2017/05/17/first-depth-look-googles-new-second-generation-tpu/

4 TPU chips
vs 1 chip in TPU1

High Bandwidth Memory
vs DDR3

Floating point operations
vs FP16

45 TFLOPS per chip
vs 23 TOPS

Designed for training
and inference
vs only inference
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An Example Modern Systolic Array: TPU3

Core Core Core Core

scalar/ vector scalar/ vector scalar/ scalar/
units units vector units vector units

vA VA \J

oooooooo oooooooo (R | W BEINENNEE DOEDEEDE
HEM 0ooooooo oooooooo HBM HBM SEEEEENE | EEENEEEE ||| EEEEEE (IEEEEEEE HBM
sce €77 |mnmoommE oDooooonE| > sce 146 (9| unnnnnns | sesnsnnn ||| sssssnns | snnnnnnn | [ e
00000000 00000000 EEEEEEEE | |sesnsnsn ||| seEEEnEs | sEEEEEEE
00000000 00000000 ANEEEEEE|(sEEEsnsn ||| I EEEEEE | S EEEEEEE
oooooooo Dooooooo (iNEEOREEE PEEEEEEE ANEEEEEN EEEEEEEE
Dooooooo Dooooooo NEEEDEEE NEEREE®E EIEERENE BEEEENEE
00000000 00000000 EEEEEEES | |susssnsn ||| ssensnes | senEnnnn
MXU MXU MXU MXU MXU MXU
128x128 128x128 128x128 128x128 128x128 128x128

TPU v2 - 4 chips, 2 cores per chip TPU v3 - 4 chips, 2 cores per chip

32GB HBM per chip 4 Matrix Units per chip 90 TFLOPS per chip
vs 16GB HBM in TPU2 vs 2 Matrix Units in TPU2 vs 45 TFLOPS in TPU2

https://cloud.google.com/tpu/docs/system-architecture 77



An Example Modern Systolic Array: TPU4

250 TFLOPS per chip in 2021

New ML applications (vs. TPU3): vs 90 TELOPS in TPU3
« Computer vision

« Natural Language Processing (NLP) @

« Recommender system

» Reinforcement learning that plays Go 1 ExaFLOPS per board

https://spectrum.ieee.org/tech-talk/computing/hardware/heres-how-googles-tpu-v4-ai-chip-stacked-up-in-training-tests
78




erebras’s Water Scale Engine (2019)

= The largest ML
accelerator chip

= 400,000 cores

J £}
T TAIWAN 1723A1

PFBY82.M00 &t

Cerebras WSE Largest GPU
1.2 Trillion transistors 21.1 Billion transistors
46,225 mm?2 815 mm?

NVIDIA TITAN V
https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learnind?



https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Cerebras’s Water Scale Engine-2 (2021)

= The largest ML
accelerator chip

= 850,000 cores

Cerebras WSE-2 Largest GPU

2.6 Trillion transistors 54.2 Billion transistors
46,225 mm?2 826 mm?

. . NVIDIA Ampere GA100 .
https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learningf
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Huge Demand for Performance & Efficiency

Exponential Growth of Neural Networks —an

Memory and compute requirements 1800x more compute

2018 2019 2020+ i
o MSFTAT (17) In just 2 years

e MT-NLG (530B)
® GPT-3 (175B)

100,000

10,000

1,000

e T5(11B)

o I-NLG (17B) Tomorrow, multi-trillion

= (':"ngitrO”'LM e parameter models
® T :

100

10 ¢ BERT Large (340M)

¢ BERT Base (110M)

Total training compute, PFLOP-days

1 10 100 1,000 10,000 100,000
l Model memory requirement, GB ‘

P B ) 443/10875 ud @B & [& O
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https://www.youtube.com/watch?v=x2-qB0J7KHw

More on the Cerebras WSE

https:/ /www.youtube.com/watch?v=x2-qB0J7KHw

Thinking Outside the Die:

Architecting the ML Accelerator of the Future

Sean Lie
Co-founder & Chief HW Architect, Cerebras

SAFARI Live Seminar - Thinking Outside the Die: Architecting the ML Accelerator of the Future
i cheduled for Feb 28, 2022

wait
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These Issues Covered in This Lecture...

- - . . " A
Superblock Code Optimization Fxample

pr: mul r1<-r2,3
P11

)9 ng: add r2<—r727.1i )r 1dd r2<-r2,1
e : * 0 wl r3<-r2,
opC: mul r3<-r2,3 QpC: mul r3<-r2j

Original Code Code After Superblock Formation

:  bpA: mul r1ﬁ'23 ]

09| :bpB: add r2<-r2, 1

é:C : mul r3<-r2,3

EC: mc;v r3<-rd I

Code After Common
Subexpression Elimination

) 1:27:19/1:4316

18-740 Computer Architecture - Advanced Branch Prediction - Lecture 5

4,696 views * Sep 23,2015 |. 41 -:,,"‘ 0 % SHARE =4 SAVE
Carnegie Mellon Computer Architecture
@ 23K subscribers SUBSCRIBED
-

Lecture 5: Advanced Branch Prediction
Lecturer: Prof. Onur Mutlu (http://users.ece.cmu.edu/~omutlu/)
Date: September 16, 2014.

Lecture 5 slides (pdf): http://www.ece.cmu.edu/~ece740/f15/li...
Lecture 5 slides (ppt): http://www.ece.cmu.edu/~ece740/f15/Ii.

https:/ /www.youtube.com/onurmutlulectures



https://www.youtube.com/onurmutlulectures

These Issues Covered in This Lecture...

= Computer Architecture, Spring 2015, Lecture 5

o Advanced Branch Prediction (CMU, Spring 2015)

o https://www.youtube.com/watch?v=yDjsr-
1TOtk&list=PL5PHmM?2jkkXmgVhh8CHAuU9N76TSh]gfYDt&index=4

SAFARI https://www.youtube.com/onurmutlulectures
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Interference in Branch Predictors
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An Issue: Interference in the PHT's

Sharing the PHTs between histories/branches leads to interference
o Different branches map to the same PHT entry and modify it
o Interference can be positive, negative, or neutral

Iatruction Stream.

Pattern History Table (PHI)
Branch A's Index o ..-"U:I
- e
0000 0011 3l €oxmber G
o Lot | =]
Brmch A - 1 bt el
* Prediction of Branch B
. ] may be alwred due io
° the outarme of Dranch A
Exanch Bz Index ®
* I co00 001
o [oooon ]
Brnch B o

Interference can be eliminated by dedicating a PHT per branch
-- Too much hardware cost

How else can you eliminate or reduce interference?
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Reducing Interference in PHTs (I)

Increase size of PHT

Branch filtering

o Predict highly-biased branches separately so that they do not
consume PHT entries

o E.g., static prediction or BTB based prediction
Hashing/index-randomization

o Gshare
o Gskew

Agree prediction
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Biased Branches and Branch Filtering

Observation: Many branches are biased in one direction
(e.g., 99% taken)

Problem: These branches pol/lute the branch prediction
structures =2 make the prediction of other branches difficult
by causing “interference” in branch prediction tables and
history registers

Solution: Detect such biased branches, and predict them
with a simpler predictor (e.g., last time, static, ...)

Chang et al., "Branch classification: a new mechanism for improving
branch predictor performance,” MICRO 1994.
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Reducing Interference: Gshare

Idea 1: Randomize the indexing function into the PHT such that
probability of two branches mapping to the same entry reduces

o Gshare predictor: GHR hashed with the Branch PC
+ Better utilization of PHT + More context information
- Increases access latency

Pattern History Table

— /

Branch Address

vy

Branch History Register

o McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.
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Reducing Interference: Agree Predictor

= Idea 2: Agree prediction

o Each branch has a “bias” bit associated with it in BTB
= Ideally, most likely outcome for the branch

o High bit of the PHT counter indicates whether or not the prediction
agrees with the bias bit (not whether or not prediction is taken)

+ Reduces negative interference (Why???)
-- Requires determining bias bits (compiler vs. hardware)

Facern Hitory Tabie (GHT)

T
—— s // ‘“ :
I Sprangle et al., "The Agree Predictor:
. . A Mechanism for Reducing Negative
LK || Ny . Branch History Interference,” ISCA

(i )- *)D'l 1997,
Blasing Bk Swrge (pan of BIB)
mm&) : =] K
Ty Tt
Tag M
M Predict taken

o not ke




Why Does Agree Prediction Make Senser

Assume two branches have taken rates of 85% and 15%.
Assume they conflict in the PHT

Let’s compute the probability they have opposite outcomes
o Baseline predictor:

P (b1 T, b2NT)+ P (bl NT,b2T)

= (85%*85%) + (15%*15%) = 74.5%
o Agree predictor:

Assume bias bits are setto T (b1) and NT (b2)

P (bl agree, b2 disagree) + P (b1 disagree, b2 agree)

= (85%*15%) + (15%*85%) = 25.5%

Works because most branches are biased (not 50% taken)
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Reducing Interference: Gskew

Idea 3: Gskew predictor

o Multiple PHTs

o Each indexed with a different type of hash function
o Final prediction is a majority vote

+ Distributes interference patterns in a more randomized way
(interfering patterns less likely in different PHTs at the same time)

-- More complexity (due to multiple PHTs, hash functions)

AT, PAT - PHT Seznec, “An optimized

Global BHR

L 2bcgskew branch

| predictor,” IRISA Tech
Report 1993.

- Michaud, “Trading conflict
ap and capacity aliasing in
(o) conditional branch
predictors,” ISCA 1997

L Final Prediction
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More Techniques to Reduce PHT Interference

The bi-mode predictor

o Separate PHTs for mostly-taken and mostly-not-taken branches
o Reduces negative aliasing between them
o Lee et al., "The bi-mode branch predictor,” MICRO 1997.

The YAGS predictor

o Use a small tagged “cache” to predict branches that have experienced
interference

o Aims to not to mispredict them again
o Eden and Mudge, “"The YAGS branch prediction scheme,” MICRO 1998.

Alpha EV8 (21464) branch predictor

a Seznec et al., "Design tradeoffs for the Alpha EV8 conditional
branch predictor,” ISCA 2002.
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Another Direction: Helper Threading

Idea: Pre-compute the outcome of the branch with a
separate, customized thread (i.e., a helper thread)

—————

From Retired Promotion
Instr. Stream Logic

Microthread

* I Eﬁ";’"ﬂ Construction
youngest [~ gR. - Buffer
E

Optimized routine
sent to MicroRAM

Post—
Retrement SCanmer
Buffer -

NS

oldest - e

Figure 3. The Microthread Builder

Chappell et al., “Difficult-Path Branch Prediction Using Subordinate
Microthreads,” ISCA 2002.

Chappell et al., “"Simultaneous Subordinate Microthreading,” ISCA 1999.



Issues 1n Wide & Fast Fetch




I-Cache Line and Way Prediction

Problem: Complex branch prediction can take too long (many
cycles)

Goal

o Quickly generate (a reasonably accurate) next fetch address

o Enable the fetch engine to run at high frequencies

o Override the quick prediction with more sophisticated prediction

Idea: Get the predicted next cache line and way at the time
you fetch the current cache line

Example Mechanism (e.g., Alpha 21264)

o Each cache line tells which line/way to fetch next (prediction)
o On afill, line/way predictor points to next sequential line

o On branch resolution, line/way predictor is updated
a

If line/way prediction is incorrect, one cycle is wasted
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Alpha 21264 Line & Way Prediction

Program
counter (PC) Learn dynamic |umps
eneration
% Fns.tl'um'nn No branch p@nally
pmdiﬂmn PC
Wﬂﬂlhr check

Y Y ¢ K’

] |
Hit/miss/way miss

L] Tag Tag

S 0 1 Cached Line Way |
| instructions prediction | prediction |

ik [ 1

] Compare | Compare

\

Figure 3. Alpha 21264 instruction fetch The |
around path on the right side) p :"'f"':"_:ﬂ';ﬁin&mstmutmn fetch path that
avoids common fetch stalls whan ﬁﬁe ans are correct.

Kessler, “The Alpha 21264 Mlcroprocessor ” IEEE Micro, March-April 1999.
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Alpha 21264 Line & Way Prediction

Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999.

_Fetth  ‘Siot  Rename lssue Register read Execute Memory
gty 2 3 4 - 5 6
' Y
Integer
Integer Integer EHE:LﬁiDn :
Branch Integer | : issue FE%TETEF : Addr
prﬁdic[ﬂr feglst&r ﬁ"-' queue € |“t’&g3r : »
rename | : (20 (80) execution |
entries) :
Level-
Data
Integer o two
Integer amwgtlinn : cache cache | ©
register ; (64 Kbytes, and system|
(80) execution |
i ; =
Floating- FI;?}:::tg- Floating- Floating-paint
point || o issue point multiply execution
register | : queue register
rename (15) file Floating-point
(72) add execution
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Issues in Wide Fetch Engines

Wide Fetch: Fetch multiple instructions per cycle

Superscalar
VLIW
SIMT (GPUs’ single-instruction multiple thread model)

Wide fetch engines suffer from the branch problem:

o How do you feed the wide pipeline with useful instructions in a
single cycle?
o What if there is a taken branch in the “fetch packet™?

o What is there are "multiple (taken) branches” in the “fetch
packet™?
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Fetching Multiple Instructions Per Cycle

Two problems

1. Alignment of instructions in I-cache

o What if there are not enough (N) instructions in the cache line
to supply the fetch width?

2. Fetch break: Branches present in the fetch block
0 Fetching sequential instructions in a single cycle is easy
o What if there is a control flow instruction in the N instructions?

o Problem: The direction of the branch is not known but we
need to fetch more instructions

These can cause effective fetch width < peak fetch width
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Wide Fetch Solutions: Alignment

Large cache blocks: Hope N instructions contained in the
block

Split-line fetch: If address falls into second half of the
cache block, fetch the first half of next cache block as well

o Enabled by banking of the cache
o Allows sequential fetch across cache blocks in one cycle
o Intel Pentium and AMD K5
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Split Line Fetch

Cache Banking 0100 1100 T
0100 1100 Cache
0100 1101 Block
0100 1110 A l
0100 1111 B
Memory Map 0101 0000 C T
0101 0001 D
0101 0010 E Cache
0101 0011 F Block
0101 0111 l

Bank O Bank1

Cache Block 0100 AlB
Block 0101 [C[D [E[F [ 1A

Need alignment logic:
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Short Distance Predicted-Taken Branches

i

/ T

/.

.-"—-f-(-

“H—"'-\-_

Bank O Bank1

Block 0100 A|B|C|D
Block 0101 | E]F

First lteration (Branch B taken to E)
E F ABCD

E F ABCD
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Techniques to Reduce Fetch Breaks

Compiler
o Code reordering (basic block reordering)
o Superblock

Hardware
o Trace cache

Hardware/software cooperative
o Block structured ISA
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Basic Block Reordering

Not-taken control flow instructions not a problem: no fetch
break: make the likely path the not-taken path

Idea: Convert taken branches to not-taken ones
o i.e., reorder basic blocks (after profiling)
o Basic block: code with a single entry and single exit point

Control Flow Graph Code Layout 1 Code Layout 2 Code Layout 3
99% . NT 1% A A A
NG B C B
B C D D C
Y/ °
D C B

Code Layout 1 leads to the fewest fetch breaks
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Basic Block Reordering

Pettis and Hansen, “Profile Guided Code Positioning,” PLDI
1990.

Advantages:

+ Reduced fetch breaks (assuming profile behavior matches
runtime behavior of branches)

+ Increased I-cache hit rate
+ Reduced page faults

Disadvantages:

-- Dependent on compile-time profiling

-- Does not help if branches are not biased
-- Requires recompilation
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Superblock

Idea: Combine frequently executed basic blocks such that they form a
single-entry multiple exit larger block, which is likely executed as
straight-line code ©

+ Helps wide fetch N

+ Enables aggressive
compiler optimizations
and code reordering
within the superblock

-- Increased code size vy
-- Profile dependent —
-- Requires recompilation ©

Hwu et al. “The Superblock: An effective technigue for VLIW
and superscalar compilation,” Journal of Supercomputing, 1993.
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Superblock Formation (I)

Is this a superblock?

100
90 10

B C

90 10
N 0
D E D
0 - 90 | /10 99 0
O\p O

F
100

111



Superblock Formation (1I)

Tail duplication:
duplication of basic blocks
after a side entrance to
eliminate side entrances
- transforms

a trace into a superblock.
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Superblock Code Optimization Example

opA: mul r1<-r2,3

OpA: mul r1<-r2,3

UJ

99 OpB: add r2<-r2,] 99 :ppB: add r2<-r2,1
. 1 v iopC’ : mul r3<-r2,
opC: mul r3<-r2,3 : ppC: mul r3<-r2,3 :
Original Code Code After Superblock Formation

99

A 4

opA: mul r1<-r2,3

TG
fam

opC: mov r3<-rl| :

iopB: adEI r2<-r2,1

pC’ : mul r3<-r2,]

Code After Common
Subexpression Elimination

113



Techniques to Reduce Fetch Breaks

Compiler
o Code reordering (basic block reordering)
o Superblock

Hardware
o Trace cache

Hardware/software cooperative
o Block structured ISA
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Trace Cache: Basic Idea

A trace is a sequence of executed instructions.

It is specified by a start address and the branch outcomes
of control transfer instructions.

Traces repeat: programs have frequently executed paths

Trace cache idea: Store the dynamic instruction sequence
in the same physical location.

D
( 8 Al Bl C D 2
o

—D

Al B C

(a) Instruction cache. (b) Trace cache.
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Reducing Fetch Breaks: Trace Cache

Dynamically determine the basic blocks that are executed consecutively
Trace: Consecutively executed basic blocks

Idea: Store consecutively-executed basic blocks in physically-contiguous
internal storage (called trace cache)

time —*

Dynamic Instruction Stream

Basic trace cache operation:

o Fetch from consecutively-stored basic blocks (predict next trace or branches)
o Verify the executed branch directions with the stored ones

o If mismatch, flush the remaining portion of the trace

Rotenberg et al., “Trace Cache: a Low Latency Approach to High Bandwidth Instruction
Fetching,” MICRO 1996.

Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR, 1997.
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Trace Cache: Example

Instruction
Cache
n
]
= BB F/)'_/— Instruction Latch
| 3“BB | A To Instruction
—3! 0 n Buffers
> >
Fetch Address A > ¢
Trace Cache
n
7
2BB | 3“BB /
\ hit?
A Take outpur from trace
cache if rrace cache hit;
| otherwise, take output from
instction cache.
Line-Fill Buffer

T ;
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An Example Trace Cache Based Processor

-

__ Fetch iﬂ.ddress
Fill Instruction
Unit - Trace Cache Y Cache
Multiple
Branch
) ) Predictor
A ] [A.rfgnfMerge
Selection Logic ~ je— 20" |
Decoder

l Next Fetch Address

—_
i

'

Register Rename

Y

Execution Core

Level 2

Instruction
Cache

%

Level 2
Data
Cache

-

= From Patel’ s PhD Thesis: “Trace Cache Design for Wide Issue Superscalar
Processors,” University of Michigan, 1999.
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Multiple Branch Predictor

= S, Patel, “Trace Cache Design for Wide Issue Superscalar Processors,” PhD
Thesis, University of Michigan, 1999.

Fefch Address Pattern
History

@ Table

Global History

Thraa 2-bif counters

]

prediciion for Zmnd branch
prediction for Srd branch
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What Does A Trace Cache Line Store?

e 16 slots for instructions. Instructions are stored in decoded form and oceupy approxi-
mately five bytes for a typical ISA. Up to three branches can be stored per line. Each

instruction is marked with a two-bit tag indicating to which block it belongs.

e Four target addresses. With three basic blocks per segment and the ability to fetch
partial segments, there are four possible targets to a segment. The four addresses are
explicitly stored allowing immediate generation of the next fetch address, even for cases

where only a partial segment matches.

e Path information. This field encodes the number and directions of branches in the
segment and includes bits to identify whether a segment ends in a branch and whether
that branch is a return from subroutine instruction. In the case of a return instruction.

the return address stack provides the next fetch address.

= Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR,
1997.
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Trace Cache: Advantages/Disadvantages

D
Q 8 - Al Bl C D L

—D

(a) Instruction cache. (b) Trace cache.

Al B—™ C

+ Reduces fetch breaks (assuming branches are biased)
+ No need for decoding (instructions can be stored in decoded form)
+ Can enable dynamic optimizations within a trace
-- Requires hardware to form traces (more complexity) = called fill unit
-- Results in duplication of the same basic blocks in the cache
-- Can require the prediction of multiple branches per cycle
-- If multiple cached traces have the same start address
-- What if XYZ and XYT are both likely traces?
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Intel Pentium 4 Trace Cache

A 12K-uop trace cache replaces the L1 I-cache

Trace cache stores decoded and cracked instructions
o Micro-operations (uops): returns 6 uops every other cycle
x86 decoder can be simpler and slower

A. Peleg, U. Weiser; "Dynamic Flow Instruction Cache Memory Organized

Around Trace Segments Independent of Virtual Address Line", United States
Patent No. 5,381,533, Jan 10, 1995

ok
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