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Approaches to (Instruction-Level) Concurrency

◼ Pipelining

◼ Fine-Grained Multithreading

◼ Out-of-order Execution

◼ Dataflow (at the ISA level)

◼ Superscalar Execution

◼ VLIW

◼ Systolic Arrays

◼ Decoupled Access Execute

◼ SIMD Processing (Vector and array processors, GPUs)
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VLIW Architectures

(Very Long Instruction Word)



VLIW Concept

◼ Superscalar

❑ Hardware fetches multiple instructions and checks 
dependencies between them

◼ VLIW (Very Long Instruction Word)

❑ Software (compiler) packs independent instructions in a larger 
“instruction bundle” to be fetched and executed concurrently

❑ Hardware fetches and executes the instructions in the bundle 
concurrently

◼ No need for hardware dependency checking between 
concurrently-fetched instructions in the VLIW model
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VLIW Concept

◼ Fisher, “Very Long Instruction Word architectures and the 
ELI-512,” ISCA 1983.

❑ ELI: Enormously longword instructions (512 bits)
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VLIW (Very Long Instruction Word)

◼ A very long instruction word consists of multiple 
independent instructions packed together by the compiler

❑ Packed instructions can be logically unrelated (contrast with 
SIMD/vector processors, which we will see soon)

◼ Idea: Compiler finds independent instructions and statically 
schedules (i.e. packs/bundles) them into a single VLIW 
instruction

◼ Traditional VLIW Characteristics

❑ Multiple instruction fetch/execute, multiple functional units

❑ All instructions in a bundle are executed in lock step

❑ Instructions in a bundle statically aligned to be directly fed 
into the functional units
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Carnegie Mellon
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VLIW Performance Example (2-wide bundles)

lw $t0, 40($s0)    add $t1, $s1, $s2
sub $t2, $s1, $s3   and $t3, $s3, $s4
or $t4, $s1, $s5   sw $s5, 80($s0)
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VLIW Lock-Step Execution

◼ Lock-step (all or none) execution

❑ If any operation in a VLIW instruction stalls, all concurrent 
operations stall

◼ In a truly VLIW machine: 

❑ the compiler handles all dependency-related stalls

❑ hardware does not perform dependency checking

❑ What about variable latency operations? Memory stalls?

8



VLIW Philosophy & Principles

9Fisher et al., “Parallel Processing: A Smart Compiler and a Dumb Machine,” CC 1984.



VLIW Philosophy & Principles

◼ Philosophy similar to RISC (simple instructions and hardware)

❑ Except multiple instructions in parallel

◼ RISC (John Cocke+, 1970s, IBM 801 minicomputer)

❑ Compiler does the hard work to translate high-level language 
code to simple instructions (John Cocke: control signals)

◼ And, to reorder simple instructions for high performance

❑ Hardware does little translation/decoding → very simple

◼ VLIW (Josh Fisher, ISCA 1983)

❑ Compiler does the hard work to find instruction level parallelism 

❑ Hardware stays as simple and streamlined as possible

◼ Executes each instruction in a bundle in lock step

◼ Simple → higher frequency, easier to design
10



VLIW Philosophy and Properties

11Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.



Commercial VLIW Machines

◼ Multiflow TRACE, Josh Fisher (7-wide, 28-wide)

◼ Cydrome Cydra 5, Bob Rau

◼ Transmeta Crusoe: x86 binary-translated into internal VLIW

◼ TI C6000, Trimedia, STMicro (DSP & embedded processors) 
and some ATI/AMD GPUs

❑ Most successful commercially

◼ Intel IA-64

❑ Not fully VLIW, but based on VLIW principles

❑ EPIC (Explicitly Parallel Instruction Computing)

❑ Instruction bundles can have dependent instructions

❑ A few bits in the instruction format specify explicitly which 
instructions in the bundle are dependent on which other ones

12



VLIW Tradeoffs

◼ Advantages

+ No need for dynamic scheduling hardware → simple hardware

+ No need for dependency checking within a VLIW instruction →

simple hardware for multiple instruction issue + no renaming

+ No need for instruction alignment/distribution after fetch to 
different functional units → simple hardware

◼ Disadvantages

-- Compiler needs to find N independent operations per cycle

-- If it cannot, inserts NOPs in a VLIW instruction

-- Parallelism loss AND code size increase

-- Recompilation required when execution width (N), instruction 
latencies, functional units change (Unlike superscalar processing)

-- Lockstep execution causes independent operations to stall

-- No instruction can progress until the longest-latency instruction completes
13



VLIW Summary

◼ VLIW simplifies hardware, but requires complex compiler 
techniques

◼ Solely-compiler approach of VLIW has several downsides 
that reduce performance

-- Too many NOPs (not enough parallelism discovered)

-- Static schedule intimately tied to microarchitecture

-- Code optimized for one generation performs poorly for next

-- No tolerance for variable or long-latency operations (lock step)

++ Most compiler optimizations developed for VLIW employed 
in optimizing compilers (for superscalar compilation)

❑ Enable code optimizations

++ VLIW very successful when parallelism is easier to find by 
the compiler (traditionally embedded markets, DSPs, GPUs)
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Example Work: Trace Scheduling

15Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.



Recommended Paper

16Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.



The Bulldog VLIW Compiler

17John Ellis, “Bulldog: A Compiler for VLIW Architectures,” PhD Thesis 1984.



Another Example Work: Superblock

◼ Lecture Video on Static Instruction Scheduling

❑ https://www.youtube.com/watch?v=isBEVkIjgGA

18

Hwu et al., The superblock: An effective technique for VLIW and superscalar compilation.

The Journal of Supercomputing, 1993.

https://www.youtube.com/watch?v=isBEVkIjgGA


Another Example Work: IMPACT

19Chang et al., IMPACT: an architectural framework for multiple-instruction-issue processors. ISCA 1991.



Another Example Work: Hyperblock

◼ Lecture Video on Static Instruction Scheduling

❑ https://www.youtube.com/watch?v=isBEVkIjgGA

20Mahlke+, “Effective Compiler Support for Predicated Execution Using the Hyperblock,” MICRO 1992.

https://www.youtube.com/watch?v=isBEVkIjgGA


Lecture on Static Instruction Scheduling

21https://www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures


Lectures on Static Instruction Scheduling

◼ Computer Architecture, Spring 2015, Lecture 16

❑ Static Instruction Scheduling (CMU, Spring 2015)

❑ https://www.youtube.com/watch?v=isBEVkIjgGA&list=PL5PHm2jkkXmi5CxxI7b3JC
L1TWybTDtKq&index=18

◼ Computer Architecture, Spring 2013, Lecture 21

❑ Static Instruction Scheduling (CMU, Spring 2013)

❑ https://www.youtube.com/watch?v=XdDUn2WtkRg&list=PL5PHm2jkkXmidJOd59RE
og9jDnPDTG6IJ&index=21

22https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=isBEVkIjgGA&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=18
https://www.youtube.com/watch?v=XdDUn2WtkRg&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=21
https://www.youtube.com/onurmutlulectures


A More Compact Version…

23https://www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures


A More Compact Version…

◼ Computer Architecture, Spring 2015, Lecture 5

❑ Advanced Branch Prediction (CMU, Spring 2015)

❑ https://www.youtube.com/watch?v=yDjsr-
jTOtk&list=PL5PHm2jkkXmgVhh8CHAu9N76TShJqfYDt&index=4

24https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23
https://www.youtube.com/onurmutlulectures


Aside: ISA Translation

◼ One can translate from one ISA to another internal-ISA to 
get to a better tradeoff space

❑ Programmer-visible ISA (virtual ISA) → Implementation ISA 

❑ Complex instructions (CISC) → Simple instructions (RISC)

❑ Scalar ISA → VLIW ISA

◼ Examples

❑ Intel’s and AMD’s x86 implementations translate x86 
instructions into programmer-invisible microoperations (simple 
instructions) in hardware

❑ Transmeta’s x86 implementations translated x86 instructions 
into “secret” VLIW instructions in software (code morphing 
software)

◼ Think about the tradeoffs
25



Transmeta: x86 to VLIW Translation

26

Klaiber, “The Technology Behind Crusoe Processors,” Transmeta White Paper 2000.

X86

Proprietary VLIW ISA

X86

https://www.wikiwand.com/en/Transmeta_Efficeon

https://classes.engineering.wustl.edu/cse362/images/c/c7/Paper_aklaiber_19jan00.pdf



Harder mapping of HLL to ISA

More work for software designer

Less work for hardware designer

Optimization burden on SW

Recall: Semantic Gap

◼ How close instructions & data types & addressing modes 
are to high-level language (HLL)

HLL

HW

Control 

Signals

HLL

HW

Control 

Signals

ISA with

Complex Inst

& Data Types

& Addressing Modes ISA with

Simple Inst

& Data Types

& Addressing Modes

Small Semantic Gap

Large Semantic Gap

Easier mapping of HLL to ISA

Less work for software designer

More work for hardware designer

Optimization burden on HW



Recall: How to Change the Semantic Gap Tradeoffs

◼ Translate from one ISA into a different “implementation” ISA

28

HLL

HW
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Implementation ISA with

Simple Inst

& Data Types

& Addressing Modes

Software or Hardware Translator

ISA with

Complex Inst

& Data Types

& Addressing Modes

X86

VLIW

SW, translator, and HW can all perform operation re-ordering



Transmeta: x86 to VLIW Translation

29

Klaiber, “The Technology Behind Crusoe Processors,” Transmeta White Paper 2000.

X86

Proprietary VLIW ISA

X86

https://www.wikiwand.com/en/Transmeta_Efficeon

https://classes.engineering.wustl.edu/cse362/images/c/c7/Paper_aklaiber_19jan00.pdf



Another Example: Rosetta 2 Binary Translator

30https://en.wikipedia.org/wiki/Rosetta_(software)#Rosetta_2

https://en.wikipedia.org/wiki/Rosetta_(software)#Rosetta_2


Another Example: Rosetta 2 Binary Translator

31Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

Apple M1,

2021

https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested


Another Example: NVIDIA Denver

32https://www.anandtech.com/show/8701/the-google-nexus-9-review/4 https://www.toradex.com/computer-on-modules/apalis-arm-family/nvidia-tegra-k1

https://safari.ethz.ch/digitaltechnik/spring2021/lib/exe/fetch.php?media=boggs_ieeemicro_2015.pdf



More on NVIDIA Denver Code Optimizer

33
https://safari.ethz.ch/digitaltechnik/spring2021/lib/exe/fetch.php?media=boggs_ieeemicro_2015.pdf

https://safari.ethz.ch/digitaltechnik/spring2021/lib/exe/fetch.php?media=boggs_ieeemicro_2015.pdf


There Is A Lot More to Cover on ISAs 

34https://www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures


There Is A Lot More to Cover on ISAs

35https://www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures


Detailed Lectures on ISAs & ISA Tradeoffs

◼ Computer Architecture, Spring 2015, Lecture 3

❑ ISA Tradeoffs (CMU, Spring 2015)

❑ https://www.youtube.com/watch?v=QKdiZSfwg-
g&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=3

◼ Computer Architecture, Spring 2015, Lecture 4

❑ ISA Tradeoffs & MIPS ISA (CMU, Spring 2015)

❑ https://www.youtube.com/watch?v=RBgeCCW5Hjs&list=PL5PHm2jkkXmi5CxxI7b3J
CL1TWybTDtKq&index=4

◼ Computer Architecture, Spring 2015, Lecture 2

❑ Fundamental Concepts and ISA (CMU, Spring 2015)

❑ https://www.youtube.com/watch?v=NpC39uS4K4o&list=PL5PHm2jkkXmi5CxxI7b3J
CL1TWybTDtKq&index=2 

36https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=KDy632z23UE&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=8
https://www.youtube.com/watch?v=pwRw7QqK_qA&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=9
https://www.youtube.com/watch?v=gR7XR-Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10
https://www.youtube.com/onurmutlulectures


Approaches to (Instruction-Level) Concurrency

◼ Pipelining

◼ Fine-Grained Multithreading

◼ Out-of-order Execution

◼ Dataflow (at the ISA level)

◼ Superscalar Execution

◼ VLIW

◼ Systolic Arrays

◼ Decoupled Access Execute

◼ SIMD Processing (Vector and array processors, GPUs)
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Readings for Today

◼ Required

◼ H. T. Kung, “Why Systolic Architectures?,” IEEE Computer 
1982.

◼ Recommended

❑ Jouppi et al., “In-Datacenter Performance Analysis of a Tensor 
Processing Unit”, ISCA 2017.
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Readings for Next Week

◼ Required

❑ Lindholm et al., "NVIDIA Tesla: A Unified Graphics and 
Computing Architecture," IEEE Micro 2008.

◼ Recommended

❑ Peleg and Weiser, “MMX Technology Extension to the Intel 
Architecture,” IEEE Micro 1996.
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Systolic Arrays

40



Systolic Arrays: Motivation

◼ Goal: design an accelerator that has

❑ Simple, regular design (keep # unique parts small and regular)

❑ High concurrency → high performance

❑ Balanced computation and I/O (memory) bandwidth

◼ Idea: Replace a single processing element (PE) with a regular 
array of PEs and carefully orchestrate flow of data between 
the PEs 

❑ such that they collectively transform a piece of input data before 
outputting it to memory

◼ Benefit: Maximizes computation done on a single piece of 
data element brought from memory

41



Systolic Arrays

◼ H. T. Kung, “Why Systolic Architectures?,” IEEE Computer 1982.

42

Memory: heart

Data: blood

PEs: cells

Memory pulses 

data through 

PEs



Why Systolic Architectures?

◼ Idea: Data flows from the computer memory in a rhythmic 
fashion, passing through many processing elements before it 
returns to memory

◼ Similar to blood flow: heart → many cells → heart

❑ Different cells “process” the blood

❑ Many veins operate simultaneously

❑ Can be many-dimensional

◼ Why? Special purpose accelerators/architectures need

❑ Simple, regular design (keep # unique parts small and regular)

❑ High concurrency → high performance

❑ Balanced computation and I/O (memory) bandwidth

43



Systolic Architectures

◼ Basic principle: Replace a single PE with a regular array of 
PEs and carefully orchestrate flow of data between the PEs 

❑ Balance computation and memory bandwidth

◼ Differences from pipelining:

❑ These are individual PEs

❑ Array structure can be non-linear and multi-dimensional 

❑ PE connections can be multidirectional (and different speed)

❑ PEs can have local memory and execute kernels (rather than a 
piece of the instruction)

44



Systolic Computation Example

◼ Convolution

❑ Used in filtering, pattern matching, correlation, polynomial 
evaluation, etc …

❑ Many image processing tasks

❑ Machine learning: up to hundreds of convolutional layers in 
Convolutional Neural Networks (CNN)

45



LeNet-5, a Convolutional Neural Network 

for Hand-Written Digit Recognition

46

This is a 1024*8 bit input, which will 

have a truth table of 2 8196 entries

Slide credit: Hwu & Kirk



An Example of 2D Convolution

Structure information
Input: 5*5 (blue)
Kernel (filter): 3*3 (grey)
Output: 5*5 (green)

Computation information
Stride: 1
Padding: 1 (white)

Output Dim = (Input + 2*Padding
- Kernel) / Stride + 1Input feature map

Output feature map



An Example of 2D Convolution

Input 

Layer

CNN 

kernel

Output 

Layer



Convolutional Neural Networks: Demo

49

http://yann.lecun.com/exdb/lenet/index.html



Implementing a Convolutional Layer 

with Matrix Multiplication

50
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Power of Convolutions and Applied Courses

◼ In 2010, Prof. Andreas Moshovos adopted Professor Hwu’s
ECE498AL Programming Massively Parallel Processors Class

◼ Several of Prof. Geoffrey Hinton’s graduate students took 
the course

◼ These students developed the GPU implementation of the 
Deep CNN that was trained with 1.2M images to win the 
ImageNet competition

Slide credit: Hwu & Kirk
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Example: AlexNet (2012)

52

◼ AlexNet wins the ImageNet classification competition with 
~10% points higher accuracy than state-of-the-art

❑ Krizhevsky et al., “ImageNet Classification with Deep Convolutional 
Neural Networks”, NIPS 2012.



◼ Google improves accuracy by adding more network layers

❑ From 8 in AlexNet to 22 in GoogLeNet

❑ Szegedy et al., “Going Deeper with Convolutions”, CVPR 2015.

Example: GoogLeNet (2014)

53



◼ He et al., “Deep Residual Learning for Image Recognition”, CVPR 2016.

Example: ResNet (2015)

54

Human: 5.1%

First CNN



Neural Network Layer Examples

55By Cmglee - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=104937230



◼ Convolution

❑ Used in filtering, pattern matching, correlation, polynomial 
evaluation, etc …

❑ Many image processing tasks

❑ Machine learning: up to hundreds of convolutional layers in 
Convolutional Neural Networks (CNN)

56

Systolic Computation Example: Convolution (I)



Systolic Computation Example: Convolution (II)

◼ y1 = w1x1 + 
w2x2 + w3x3

◼ y2 = w1x2 + 
w2x3 + w3x4

◼ y3 = w1x3 + 
w2x4 + w3x5

57



Systolic Computation Example: Convolution (III)

◼ Worthwhile to implement adder and multiplier separately  
to allow overlapping of add/mul executions

58



Systolic Computation Example: Convolution (IV)

◼ One needs to carefully orchestrate when data elements are 
input to the array

◼ And when output is buffered

◼ This gets more involved when 

❑ Array dimensionality increases

❑ PEs are less predictable in terms of latency

59



Example 2D Systolic Array Computation

◼ Multiply two 3x3 matrices (inputs)

❑ Keep the final result in PE accumulators

60

P = M

Q = N

R = R + M*N



Two-Dimensional Systolic Arrays

61



Combinations

62

◼ Systolic arrays can be 
chained together to 
form powerful systems

◼ This systolic array is 
capable of producing 
on-the-fly least-squares 
fit to all the data that 
has arrived up to any 
given moment



Systolic Arrays: Pros and Cons

◼ Advantages: 

❑ Principled: Efficiently makes use of limited memory bandwidth, 
balances computation to I/O bandwidth availability

❑ Specialized (computation needs to fit PE organization/functions) 

→ improved efficiency, simple design, high concurrency/

performance

→ good to do more with less memory bandwidth requirement

◼ Downside: 

❑ Specialized

→ not generally applicable because computation needs to fit 

the PE functions/organization

63



◼ Each PE in a systolic array

❑ Can store multiple “weights”

❑ Weights can be selected on the fly

❑ Eases implementation of, e.g., adaptive filtering

◼ Taken further

❑ Each PE can have its own data and instruction memory

❑ Data memory → to store partial/temporary results, constants

❑ Leads to stream processing, pipeline parallelism

◼ More generally, staged execution

64

More Programmability in Systolic Arrays



Pipeline-Parallel (Pipelined) Programs

65Suleman+, “Data Marshaling for Multi-core Architectures,” ISCA 2010.



Stages of Pipelined Programs

◼ Loop iterations are divided into code segments called stages

◼ Threads execute stages on different cores

66

loop {

Compute1

Compute2

Compute3

}

A

B

C

A B C



Pipelined File Compression Example

67



Systolic Array: Advantages & Disadvantages

◼ Advantages

❑ Makes multiple uses of each data item → reduced need for 
fetching/refetching → better use of memory bandwidth

❑ High concurrency

❑ Regular design (both data and control flow)

◼ Disadvantages

❑ Not good at exploiting irregular parallelism

❑ Relatively special purpose → need software, programmer 

support to be a general purpose model

68



Example Systolic Array: The WARP Computer

◼ HT Kung, CMU, 1984-1988

◼ Linear array of 10 cells, each cell a 10 Mflop programmable 
processor

◼ Attached to a general purpose host machine

◼ HLL and optimizing compiler to program the systolic array

◼ Used extensively to accelerate vision and robotics tasks

◼ Annaratone et al., “Warp Architecture and 
Implementation,” ISCA 1986. 

◼ Annaratone et al., “The Warp Computer: Architecture, 
Implementation, and Performance,” IEEE TC 1987. 

69



The WARP Computer 

70



The WARP Cell

71



An Example Modern Systolic Array: TPU (I)

72

Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017.



An Example Modern Systolic Array: TPU (II)

73

Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017.



Recall: Example 2D Systolic Array Computation

◼ Multiply two 3x3 matrices (inputs)

❑ Keep the final result in PE accumulators

74

P = M

Q = N

R = R + M*N



An Example Modern Systolic Array: TPU (III)

75



An Example Modern Systolic Array: TPU2 

76

https://www.nextplatform.com/2017/05/17/first-depth-look-googles-new-second-generation-tpu/

4 TPU chips

vs 1 chip in TPU1

High Bandwidth Memory 

vs DDR3

Floating point operations

vs FP16

45 TFLOPS per chip

vs 23 TOPS

Designed for training 

and inference

vs only inference



An Example Modern Systolic Array: TPU3 

77https://cloud.google.com/tpu/docs/system-architecture

32GB HBM per chip

vs 16GB HBM in TPU2

4 Matrix Units per chip

vs 2 Matrix Units in TPU2

90 TFLOPS per chip

vs 45 TFLOPS in TPU2



An Example Modern Systolic Array: TPU4 

78

250 TFLOPS per chip in 2021

vs 90 TFLOPS in TPU3

1 ExaFLOPS per board

New ML applications (vs. TPU3):

• Computer vision

• Natural Language Processing (NLP)

• Recommender system

• Reinforcement learning that plays Go

https://spectrum.ieee.org/tech-talk/computing/hardware/heres-how-googles-tpu-v4-ai-chip-stacked-up-in-training-tests



Cerebras’s Wafer Scale Engine (2019)

79

Cerebras WSE               

1.2 Trillion transistors

46,225 mm2

Largest GPU               

21.1 Billion transistors

815 mm2

◼ The largest ML 

accelerator chip

◼ 400,000 cores 

NVIDIA TITAN V
https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/


Cerebras’s Wafer Scale Engine-2 (2021)

80

Cerebras WSE-2               

2.6 Trillion transistors

46,225 mm2

Largest GPU               

54.2 Billion transistors

826 mm2

◼ The largest ML 

accelerator chip

◼ 850,000 cores 

NVIDIA Ampere GA100
https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/


Huge Demand for Performance & Efficiency

81https://www.youtube.com/watch?v=x2-qB0J7KHw

https://www.youtube.com/watch?v=x2-qB0J7KHw


More on the Cerebras WSE

https://www.youtube.com/watch?v=x2-qB0J7KHw
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These Issues Covered in This Lecture…

86https://www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures


These Issues Covered in This Lecture…

◼ Computer Architecture, Spring 2015, Lecture 5

❑ Advanced Branch Prediction (CMU, Spring 2015)

❑ https://www.youtube.com/watch?v=yDjsr-
jTOtk&list=PL5PHm2jkkXmgVhh8CHAu9N76TShJqfYDt&index=4

87https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23
https://www.youtube.com/onurmutlulectures


Interference in Branch Predictors
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An Issue: Interference in the PHTs

◼ Sharing the PHTs between histories/branches leads to interference

❑ Different branches map to the same PHT entry and modify it

❑ Interference can be positive, negative, or neutral

◼ Interference can be eliminated by dedicating a PHT per branch

-- Too much hardware cost

◼ How else can you eliminate or reduce interference?
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Reducing Interference in PHTs (I)

◼ Increase size of PHT

◼ Branch filtering

❑ Predict highly-biased branches separately so that they do not 
consume PHT entries

❑ E.g., static prediction or BTB based prediction

◼ Hashing/index-randomization

❑ Gshare

❑ Gskew

◼ Agree prediction

90



Biased Branches and Branch Filtering

◼ Observation: Many branches are biased in one direction 
(e.g., 99% taken)

◼ Problem: These branches pollute the branch prediction 
structures → make the prediction of other branches difficult 

by causing “interference” in branch prediction tables and 
history registers

◼ Solution: Detect such biased branches, and predict them 
with a simpler predictor (e.g., last time, static, …)

◼ Chang et al., “Branch classification: a new mechanism for improving 
branch predictor performance,” MICRO 1994.
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Reducing Interference: Gshare

◼ Idea 1: Randomize the indexing function into the PHT such that 
probability of two branches mapping to the same entry reduces

❑ Gshare predictor: GHR hashed with the Branch PC

+ Better utilization of PHT  + More context information

- Increases access latency

❑ McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.
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Reducing Interference: Agree Predictor

◼ Idea 2: Agree prediction

❑ Each branch has a “bias” bit associated with it in BTB

◼ Ideally, most likely outcome for the branch

❑ High bit of the PHT counter indicates whether or not the prediction 
agrees with the bias bit (not whether or not prediction is taken)

+ Reduces negative interference (Why???)

-- Requires determining bias bits (compiler vs. hardware)

93

Sprangle et al., “The Agree Predictor:

A Mechanism for Reducing Negative 

Branch History Interference,” ISCA 

1997.



Why Does Agree Prediction Make Sense?

◼ Assume two branches have taken rates of 85% and 15%.

◼ Assume they conflict in the PHT

◼ Let’s compute the probability they have opposite outcomes

❑ Baseline predictor:

◼ P (b1 T, b2 NT) + P (b1 NT, b2 T) 

= (85%*85%) + (15%*15%) = 74.5%

❑ Agree predictor:

◼ Assume bias bits are set to T (b1) and NT (b2)

◼ P (b1 agree, b2 disagree) + P (b1 disagree, b2 agree) 

= (85%*15%) + (15%*85%) = 25.5%

◼ Works because most branches are biased (not 50% taken)
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Reducing Interference: Gskew

◼ Idea 3: Gskew predictor

❑ Multiple PHTs

❑ Each indexed with a different type of hash function

❑ Final prediction is a majority vote

+ Distributes interference patterns in a more randomized way 
(interfering patterns less likely in different PHTs at the same time)

-- More complexity (due to multiple PHTs, hash functions)

95

Seznec, “An optimized 

2bcgskew branch 

predictor,” IRISA Tech 

Report 1993.

Michaud, “Trading conflict 

and capacity aliasing in 

conditional branch 

predictors,” ISCA 1997

Branch Address

Global BHR

f0

f1

f2

Majority

Final Prediction

PHT0 PHT1 PHT2



More Techniques to Reduce PHT Interference

◼ The bi-mode predictor

❑ Separate PHTs for mostly-taken and mostly-not-taken branches

❑ Reduces negative aliasing between them

❑ Lee et al., “The bi-mode branch predictor,” MICRO 1997.

◼ The YAGS predictor

❑ Use a small tagged “cache” to predict branches that have experienced 
interference 

❑ Aims to not to mispredict them again

❑ Eden and Mudge, “The YAGS branch prediction scheme,” MICRO 1998.

◼ Alpha EV8 (21464) branch predictor

❑ Seznec et al., “Design tradeoffs for the Alpha EV8 conditional 
branch predictor,” ISCA 2002.
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Another Direction: Helper Threading

◼ Idea: Pre-compute the outcome of the branch with a 
separate, customized thread (i.e., a helper thread)

◼ Chappell et al., “Difficult-Path Branch Prediction Using Subordinate 
Microthreads,” ISCA 2002.

◼ Chappell et al., “Simultaneous Subordinate Microthreading,” ISCA 1999.
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Issues in Wide & Fast Fetch 

98



I-Cache Line and Way Prediction

◼ Problem: Complex branch prediction can take too long (many 
cycles)

◼ Goal

❑ Quickly generate (a reasonably accurate) next fetch address 

❑ Enable the fetch engine to run at high frequencies

❑ Override the quick prediction with more sophisticated prediction

◼ Idea: Get the predicted next cache line and way at the time 
you fetch the current cache line 

◼ Example Mechanism (e.g., Alpha 21264)

❑ Each cache line tells which line/way to fetch next (prediction)

❑ On a fill, line/way predictor points to next sequential line

❑ On branch resolution, line/way predictor is updated

❑ If line/way prediction is incorrect, one cycle is wasted
99



Alpha 21264 Line & Way Prediction

100Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999.



Alpha 21264 Line & Way Prediction

101Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999.



Issues in Wide Fetch Engines

◼ Wide Fetch: Fetch multiple instructions per cycle

◼ Superscalar

◼ VLIW

◼ SIMT (GPUs’ single-instruction multiple thread model)

◼ Wide fetch engines suffer from the branch problem:

❑ How do you feed the wide pipeline with useful instructions in a 
single cycle?

❑ What if there is a taken branch in the “fetch packet”?

❑ What is there are “multiple (taken) branches” in the “fetch 
packet”?

102



Fetching Multiple Instructions Per Cycle

◼ Two problems

1. Alignment of instructions in I-cache

❑ What if there are not enough (N) instructions in the cache line 
to supply the fetch width?

2. Fetch break: Branches present in the fetch block

❑ Fetching sequential instructions in a single cycle is easy

❑ What if there is a control flow instruction in the N instructions?

❑ Problem: The direction of the branch is not known but we 
need to fetch more instructions

◼ These can cause effective fetch width < peak fetch width

103



Wide Fetch Solutions: Alignment

◼ Large cache blocks: Hope N instructions contained in the 
block

◼ Split-line fetch: If address falls into second half of the 
cache block, fetch the first half of next cache block as well

❑ Enabled by banking of the cache

❑ Allows sequential fetch across cache blocks in one cycle

❑ Intel Pentium and AMD K5

104



Split Line Fetch

105

Need alignment logic:



Short Distance Predicted-Taken Branches
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Techniques to Reduce Fetch Breaks

◼ Compiler

❑ Code reordering (basic block reordering)

❑ Superblock

◼ Hardware

❑ Trace cache

◼ Hardware/software cooperative

❑ Block structured ISA

107



Basic Block Reordering

◼ Not-taken control flow instructions not a problem: no fetch 
break: make the likely path the not-taken path

◼ Idea: Convert taken branches to not-taken ones

❑ i.e., reorder basic blocks (after profiling)

❑ Basic block: code with a single entry and single exit point

◼ Code Layout 1 leads to the fewest fetch breaks

108

A

B C

D

T NT

A
99% 1%

B

D

Control Flow Graph Code Layout 1 Code Layout 2

A

C

D

Code Layout 3

A

B

C

D

C B



Basic Block Reordering

◼ Pettis and Hansen, “Profile Guided Code Positioning,” PLDI 
1990.

◼ Advantages:

+ Reduced fetch breaks (assuming profile behavior matches 
runtime behavior of branches)

+ Increased I-cache hit rate

+ Reduced page faults

◼ Disadvantages:

-- Dependent on compile-time profiling

-- Does not help if branches are not biased

-- Requires recompilation

109



Superblock
◼ Idea: Combine frequently executed basic blocks such that they form a 

single-entry multiple exit larger block, which is likely executed as 
straight-line code

+ Helps wide fetch

+ Enables aggressive

compiler optimizations

and code reordering

within the superblock

-- Increased code size

-- Profile dependent

-- Requires recompilation

◼ Hwu et al. “The Superblock: An effective technique for VLIW 

and superscalar compilation,” Journal of Supercomputing, 1993.
110



Superblock Formation (I)
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Superblock Formation (II)
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Superblock Code Optimization Example

113

opA: mul r1<-r2,3

opC: mul r3<-r2,3

opB: add r2<-r2,199

1

1

Original Code

opA: mul r1<-r2,3

opC: mul r3<-r2,3

opB: add r2<-r2,199

1

Code After Superblock Formation

opC’: mul r3<-r2,3

opA: mul r1<-r2,3

opC: mov r3<-r1

opB: add r2<-r2,199

1

Code After Common 

Subexpression Elimination

opC’: mul r3<-r2,3



Techniques to Reduce Fetch Breaks

◼ Compiler

❑ Code reordering (basic block reordering)

❑ Superblock

◼ Hardware

❑ Trace cache

◼ Hardware/software cooperative

❑ Block structured ISA
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Trace Cache: Basic Idea

◼ A trace is a sequence of executed instructions.

◼ It is specified by a start address and the branch outcomes 
of control transfer instructions.

◼ Traces repeat: programs have frequently executed paths

◼ Trace cache idea: Store the dynamic instruction sequence 
in the same physical location.
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Reducing Fetch Breaks: Trace Cache

◼ Dynamically determine the basic blocks that are executed consecutively

◼ Trace: Consecutively executed basic blocks

◼ Idea: Store consecutively-executed basic blocks in physically-contiguous 
internal storage (called trace cache)

◼ Basic trace cache operation:
❑ Fetch from consecutively-stored basic blocks (predict next trace or branches)

❑ Verify the executed branch directions with the stored ones

❑ If mismatch, flush the remaining portion of the trace

◼ Rotenberg et al., “Trace Cache: a Low Latency Approach to High Bandwidth Instruction 
Fetching,” MICRO 1996.

◼ Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR, 1997.
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Trace Cache: Example
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An Example Trace Cache Based Processor 

◼ From Patel’s PhD Thesis: “Trace Cache Design for Wide Issue Superscalar 
Processors,” University of Michigan, 1999. 
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Multiple Branch Predictor

◼ S. Patel, “Trace Cache Design for Wide Issue Superscalar Processors,” PhD 
Thesis, University of Michigan, 1999. 
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What Does A Trace Cache Line Store?

◼ Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR, 
1997.
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Trace Cache: Advantages/Disadvantages

+ Reduces fetch breaks (assuming branches are biased)

+ No need for decoding (instructions can be stored in decoded form)

+ Can enable dynamic optimizations within a trace

-- Requires hardware to form traces (more complexity) → called fill unit

-- Results in duplication of the same basic blocks in the cache

-- Can require the prediction of multiple branches per cycle

-- If multiple cached traces have the same start address

-- What if XYZ and XYT are both likely traces?
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Intel Pentium 4 Trace Cache

◼ A 12K-uop trace cache replaces the L1 I-cache

◼ Trace cache stores decoded and cracked instructions

❑ Micro-operations (uops): returns 6 uops every other cycle

◼ x86 decoder can be simpler and slower

◼ A. Peleg, U. Weiser; "Dynamic Flow Instruction Cache Memory Organized 
Around Trace Segments Independent of Virtual Address Line", United States 
Patent No. 5,381,533, Jan 10, 1995 
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Front End BTB

4K Entries

ITLB &

Prefetcher
L2 Interface

x86 Decoder

Trace Cache

12K uop’s
Trace Cache BTB

512 Entries
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