
Computer Architecture

Lecture 28: VLIW

and Systolic Array Architectures

Prof. Onur Mutlu

ETH Zürich

Fall 2022

10 January 2023

Approaches to (Instruction-Level) Concurrency

◼ Pipelining

◼ Fine-Grained Multithreading

◼ Out-of-order Execution

◼ Dataflow (at the ISA level)

◼ Superscalar Execution

◼ VLIW

◼ Systolic Arrays

◼ Decoupled Access Execute

◼ SIMD Processing (Vector and array processors, GPUs)

2

VLIW Architectures

(Very Long Instruction Word)

VLIW Concept

◼ Superscalar

❑ Hardware fetches multiple instructions and checks
dependencies between them

◼ VLIW (Very Long Instruction Word)

❑ Software (compiler) packs independent instructions in a larger
“instruction bundle” to be fetched and executed concurrently

❑ Hardware fetches and executes the instructions in the bundle
concurrently

◼ No need for hardware dependency checking between
concurrently-fetched instructions in the VLIW model

4

VLIW Concept

◼ Fisher, “Very Long Instruction Word architectures and the
ELI-512,” ISCA 1983.

❑ ELI: Enormously longword instructions (512 bits)
5

VLIW (Very Long Instruction Word)

◼ A very long instruction word consists of multiple
independent instructions packed together by the compiler

❑ Packed instructions can be logically unrelated (contrast with
SIMD/vector processors, which we will see soon)

◼ Idea: Compiler finds independent instructions and statically
schedules (i.e. packs/bundles) them into a single VLIW
instruction

◼ Traditional VLIW Characteristics

❑ Multiple instruction fetch/execute, multiple functional units

❑ All instructions in a bundle are executed in lock step

❑ Instructions in a bundle statically aligned to be directly fed
into the functional units

6

Carnegie Mellon

7

VLIW Performance Example (2-wide bundles)

lw $t0, 40($s0) add $t1, $s1, $s2
sub $t2, $s1, $s3 and $t3, $s3, $s4
or $t4, $s1, $s5 sw $s5, 80($s0)

Time (cycles)

1 2 3 4 5 6 7 8

RF
40

$s0

RF

$t0
+

DM
IM

lw

add

lw $t0, 40($s0)

add $t1, $s1, $s2

sub $t2, $s1, $s3

and $t3, $s3, $s4

or $t4, $s1, $s5

sw $s5, 80($s0)

$t1
$s2

$s1

+

RF
$s3

$s1

RF

$t2
-

DM
IM

sub

and $t3
$s4

$s3

&

RF
$s5

$s1

RF

$t4
|

DM
IM

or

sw
80

$s0

+ $s5

Ideal IPC = 2

Actual IPC = 2 (6 instructions issued in 3 cycles)

VLIW Lock-Step Execution

◼ Lock-step (all or none) execution

❑ If any operation in a VLIW instruction stalls, all concurrent
operations stall

◼ In a truly VLIW machine:

❑ the compiler handles all dependency-related stalls

❑ hardware does not perform dependency checking

❑ What about variable latency operations? Memory stalls?

8

VLIW Philosophy & Principles

9Fisher et al., “Parallel Processing: A Smart Compiler and a Dumb Machine,” CC 1984.

VLIW Philosophy & Principles

◼ Philosophy similar to RISC (simple instructions and hardware)

❑ Except multiple instructions in parallel

◼ RISC (John Cocke+, 1970s, IBM 801 minicomputer)

❑ Compiler does the hard work to translate high-level language
code to simple instructions (John Cocke: control signals)

◼ And, to reorder simple instructions for high performance

❑ Hardware does little translation/decoding → very simple

◼ VLIW (Josh Fisher, ISCA 1983)

❑ Compiler does the hard work to find instruction level parallelism

❑ Hardware stays as simple and streamlined as possible

◼ Executes each instruction in a bundle in lock step

◼ Simple → higher frequency, easier to design
10

VLIW Philosophy and Properties

11Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.

Commercial VLIW Machines

◼ Multiflow TRACE, Josh Fisher (7-wide, 28-wide)

◼ Cydrome Cydra 5, Bob Rau

◼ Transmeta Crusoe: x86 binary-translated into internal VLIW

◼ TI C6000, Trimedia, STMicro (DSP & embedded processors)
and some ATI/AMD GPUs

❑ Most successful commercially

◼ Intel IA-64

❑ Not fully VLIW, but based on VLIW principles

❑ EPIC (Explicitly Parallel Instruction Computing)

❑ Instruction bundles can have dependent instructions

❑ A few bits in the instruction format specify explicitly which
instructions in the bundle are dependent on which other ones

12

VLIW Tradeoffs

◼ Advantages

+ No need for dynamic scheduling hardware → simple hardware

+ No need for dependency checking within a VLIW instruction →

simple hardware for multiple instruction issue + no renaming

+ No need for instruction alignment/distribution after fetch to
different functional units → simple hardware

◼ Disadvantages

-- Compiler needs to find N independent operations per cycle

-- If it cannot, inserts NOPs in a VLIW instruction

-- Parallelism loss AND code size increase

-- Recompilation required when execution width (N), instruction
latencies, functional units change (Unlike superscalar processing)

-- Lockstep execution causes independent operations to stall

-- No instruction can progress until the longest-latency instruction completes
13

VLIW Summary

◼ VLIW simplifies hardware, but requires complex compiler
techniques

◼ Solely-compiler approach of VLIW has several downsides
that reduce performance

-- Too many NOPs (not enough parallelism discovered)

-- Static schedule intimately tied to microarchitecture

-- Code optimized for one generation performs poorly for next

-- No tolerance for variable or long-latency operations (lock step)

++ Most compiler optimizations developed for VLIW employed
in optimizing compilers (for superscalar compilation)

❑ Enable code optimizations

++ VLIW very successful when parallelism is easier to find by
the compiler (traditionally embedded markets, DSPs, GPUs)

14

Example Work: Trace Scheduling

15Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.

Recommended Paper

16Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.

The Bulldog VLIW Compiler

17John Ellis, “Bulldog: A Compiler for VLIW Architectures,” PhD Thesis 1984.

Another Example Work: Superblock

◼ Lecture Video on Static Instruction Scheduling

❑ https://www.youtube.com/watch?v=isBEVkIjgGA

18

Hwu et al., The superblock: An effective technique for VLIW and superscalar compilation.

The Journal of Supercomputing, 1993.

https://www.youtube.com/watch?v=isBEVkIjgGA

Another Example Work: IMPACT

19Chang et al., IMPACT: an architectural framework for multiple-instruction-issue processors. ISCA 1991.

Another Example Work: Hyperblock

◼ Lecture Video on Static Instruction Scheduling

❑ https://www.youtube.com/watch?v=isBEVkIjgGA

20Mahlke+, “Effective Compiler Support for Predicated Execution Using the Hyperblock,” MICRO 1992.

https://www.youtube.com/watch?v=isBEVkIjgGA

Lecture on Static Instruction Scheduling

21https://www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures

Lectures on Static Instruction Scheduling

◼ Computer Architecture, Spring 2015, Lecture 16

❑ Static Instruction Scheduling (CMU, Spring 2015)

❑ https://www.youtube.com/watch?v=isBEVkIjgGA&list=PL5PHm2jkkXmi5CxxI7b3JC
L1TWybTDtKq&index=18

◼ Computer Architecture, Spring 2013, Lecture 21

❑ Static Instruction Scheduling (CMU, Spring 2013)

❑ https://www.youtube.com/watch?v=XdDUn2WtkRg&list=PL5PHm2jkkXmidJOd59RE
og9jDnPDTG6IJ&index=21

22https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=isBEVkIjgGA&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=18
https://www.youtube.com/watch?v=XdDUn2WtkRg&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=21
https://www.youtube.com/onurmutlulectures

A More Compact Version…

23https://www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures

A More Compact Version…

◼ Computer Architecture, Spring 2015, Lecture 5

❑ Advanced Branch Prediction (CMU, Spring 2015)

❑ https://www.youtube.com/watch?v=yDjsr-
jTOtk&list=PL5PHm2jkkXmgVhh8CHAu9N76TShJqfYDt&index=4

24https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23
https://www.youtube.com/onurmutlulectures

Aside: ISA Translation

◼ One can translate from one ISA to another internal-ISA to
get to a better tradeoff space

❑ Programmer-visible ISA (virtual ISA) → Implementation ISA

❑ Complex instructions (CISC) → Simple instructions (RISC)

❑ Scalar ISA → VLIW ISA

◼ Examples

❑ Intel’s and AMD’s x86 implementations translate x86
instructions into programmer-invisible microoperations (simple
instructions) in hardware

❑ Transmeta’s x86 implementations translated x86 instructions
into “secret” VLIW instructions in software (code morphing
software)

◼ Think about the tradeoffs
25

Transmeta: x86 to VLIW Translation

26

Klaiber, “The Technology Behind Crusoe Processors,” Transmeta White Paper 2000.

X86

Proprietary VLIW ISA

X86

https://www.wikiwand.com/en/Transmeta_Efficeon

https://classes.engineering.wustl.edu/cse362/images/c/c7/Paper_aklaiber_19jan00.pdf

Harder mapping of HLL to ISA

More work for software designer

Less work for hardware designer

Optimization burden on SW

Recall: Semantic Gap

◼ How close instructions & data types & addressing modes
are to high-level language (HLL)

HLL

HW

Control

Signals

HLL

HW

Control

Signals

ISA with

Complex Inst

& Data Types

& Addressing Modes ISA with

Simple Inst

& Data Types

& Addressing Modes

Small Semantic Gap

Large Semantic Gap

Easier mapping of HLL to ISA

Less work for software designer

More work for hardware designer

Optimization burden on HW

Recall: How to Change the Semantic Gap Tradeoffs

◼ Translate from one ISA into a different “implementation” ISA

28

HLL

HW

Control

Signals

Small Semantic Gap

Implementation ISA with

Simple Inst

& Data Types

& Addressing Modes

Software or Hardware Translator

ISA with

Complex Inst

& Data Types

& Addressing Modes

X86

VLIW

SW, translator, and HW can all perform operation re-ordering

Transmeta: x86 to VLIW Translation

29

Klaiber, “The Technology Behind Crusoe Processors,” Transmeta White Paper 2000.

X86

Proprietary VLIW ISA

X86

https://www.wikiwand.com/en/Transmeta_Efficeon

https://classes.engineering.wustl.edu/cse362/images/c/c7/Paper_aklaiber_19jan00.pdf

Another Example: Rosetta 2 Binary Translator

30https://en.wikipedia.org/wiki/Rosetta_(software)#Rosetta_2

https://en.wikipedia.org/wiki/Rosetta_(software)#Rosetta_2

Another Example: Rosetta 2 Binary Translator

31Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

Apple M1,

2021

https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

Another Example: NVIDIA Denver

32https://www.anandtech.com/show/8701/the-google-nexus-9-review/4 https://www.toradex.com/computer-on-modules/apalis-arm-family/nvidia-tegra-k1

https://safari.ethz.ch/digitaltechnik/spring2021/lib/exe/fetch.php?media=boggs_ieeemicro_2015.pdf

More on NVIDIA Denver Code Optimizer

33
https://safari.ethz.ch/digitaltechnik/spring2021/lib/exe/fetch.php?media=boggs_ieeemicro_2015.pdf

https://safari.ethz.ch/digitaltechnik/spring2021/lib/exe/fetch.php?media=boggs_ieeemicro_2015.pdf

There Is A Lot More to Cover on ISAs

34https://www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures

There Is A Lot More to Cover on ISAs

35https://www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures

Detailed Lectures on ISAs & ISA Tradeoffs

◼ Computer Architecture, Spring 2015, Lecture 3

❑ ISA Tradeoffs (CMU, Spring 2015)

❑ https://www.youtube.com/watch?v=QKdiZSfwg-
g&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=3

◼ Computer Architecture, Spring 2015, Lecture 4

❑ ISA Tradeoffs & MIPS ISA (CMU, Spring 2015)

❑ https://www.youtube.com/watch?v=RBgeCCW5Hjs&list=PL5PHm2jkkXmi5CxxI7b3J
CL1TWybTDtKq&index=4

◼ Computer Architecture, Spring 2015, Lecture 2

❑ Fundamental Concepts and ISA (CMU, Spring 2015)

❑ https://www.youtube.com/watch?v=NpC39uS4K4o&list=PL5PHm2jkkXmi5CxxI7b3J
CL1TWybTDtKq&index=2

36https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=KDy632z23UE&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=8
https://www.youtube.com/watch?v=pwRw7QqK_qA&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=9
https://www.youtube.com/watch?v=gR7XR-Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10
https://www.youtube.com/onurmutlulectures

Approaches to (Instruction-Level) Concurrency

◼ Pipelining

◼ Fine-Grained Multithreading

◼ Out-of-order Execution

◼ Dataflow (at the ISA level)

◼ Superscalar Execution

◼ VLIW

◼ Systolic Arrays

◼ Decoupled Access Execute

◼ SIMD Processing (Vector and array processors, GPUs)

37

Readings for Today

◼ Required

◼ H. T. Kung, “Why Systolic Architectures?,” IEEE Computer
1982.

◼ Recommended

❑ Jouppi et al., “In-Datacenter Performance Analysis of a Tensor
Processing Unit”, ISCA 2017.

38

Readings for Next Week

◼ Required

❑ Lindholm et al., "NVIDIA Tesla: A Unified Graphics and
Computing Architecture," IEEE Micro 2008.

◼ Recommended

❑ Peleg and Weiser, “MMX Technology Extension to the Intel
Architecture,” IEEE Micro 1996.

39

Systolic Arrays

40

Systolic Arrays: Motivation

◼ Goal: design an accelerator that has

❑ Simple, regular design (keep # unique parts small and regular)

❑ High concurrency → high performance

❑ Balanced computation and I/O (memory) bandwidth

◼ Idea: Replace a single processing element (PE) with a regular
array of PEs and carefully orchestrate flow of data between
the PEs

❑ such that they collectively transform a piece of input data before
outputting it to memory

◼ Benefit: Maximizes computation done on a single piece of
data element brought from memory

41

Systolic Arrays

◼ H. T. Kung, “Why Systolic Architectures?,” IEEE Computer 1982.

42

Memory: heart

Data: blood

PEs: cells

Memory pulses

data through

PEs

Why Systolic Architectures?

◼ Idea: Data flows from the computer memory in a rhythmic
fashion, passing through many processing elements before it
returns to memory

◼ Similar to blood flow: heart → many cells → heart

❑ Different cells “process” the blood

❑ Many veins operate simultaneously

❑ Can be many-dimensional

◼ Why? Special purpose accelerators/architectures need

❑ Simple, regular design (keep # unique parts small and regular)

❑ High concurrency → high performance

❑ Balanced computation and I/O (memory) bandwidth

43

Systolic Architectures

◼ Basic principle: Replace a single PE with a regular array of
PEs and carefully orchestrate flow of data between the PEs

❑ Balance computation and memory bandwidth

◼ Differences from pipelining:

❑ These are individual PEs

❑ Array structure can be non-linear and multi-dimensional

❑ PE connections can be multidirectional (and different speed)

❑ PEs can have local memory and execute kernels (rather than a
piece of the instruction)

44

Systolic Computation Example

◼ Convolution

❑ Used in filtering, pattern matching, correlation, polynomial
evaluation, etc …

❑ Many image processing tasks

❑ Machine learning: up to hundreds of convolutional layers in
Convolutional Neural Networks (CNN)

45

LeNet-5, a Convolutional Neural Network

for Hand-Written Digit Recognition

46

This is a 1024*8 bit input, which will

have a truth table of 2 8196 entries

Slide credit: Hwu & Kirk

An Example of 2D Convolution

Structure information
Input: 5*5 (blue)
Kernel (filter): 3*3 (grey)
Output: 5*5 (green)

Computation information
Stride: 1
Padding: 1 (white)

Output Dim = (Input + 2*Padding
- Kernel) / Stride + 1Input feature map

Output feature map

An Example of 2D Convolution

Input

Layer

CNN

kernel

Output

Layer

Convolutional Neural Networks: Demo

49

http://yann.lecun.com/exdb/lenet/index.html

Implementing a Convolutional Layer

with Matrix Multiplication

50

1 0 0 1 2 1 2 1 1 2 2 0

1 1 2 2 1 1 1 1 0 1 1 0

1 2 0

1 1 3

0 2 2

0 2 1

0 1 2

1 1 0

1 2 1

0 1 3

3 3 2

1 1

2 2

1 1

1 1

0 1

1 0

1 0

0 1

2 1

2 1

1 2

2 0

12 18

13 22

10 20

15 22

Output

Features

Y

Convolution

Filters

W

Input

Features

X

1

2

1

1

2

0

1

3

1

1

0

2

1

3

2

2

0

2

0

1

2

1

1

2

0

1

1

1

1

2

1

0

0

2

1

1

1

1

2

3

3

1

0

3

3

3

1

2

12 18 13 22

10 20 15 22

Output

Features

Y

Input

Features

X (unrolled)

Convolution

Filters

W’

Slide credit: Reproduced from Hwu & Kirk

Power of Convolutions and Applied Courses

◼ In 2010, Prof. Andreas Moshovos adopted Professor Hwu’s
ECE498AL Programming Massively Parallel Processors Class

◼ Several of Prof. Geoffrey Hinton’s graduate students took
the course

◼ These students developed the GPU implementation of the
Deep CNN that was trained with 1.2M images to win the
ImageNet competition

Slide credit: Hwu & Kirk

51

Example: AlexNet (2012)

52

◼ AlexNet wins the ImageNet classification competition with
~10% points higher accuracy than state-of-the-art

❑ Krizhevsky et al., “ImageNet Classification with Deep Convolutional
Neural Networks”, NIPS 2012.

◼ Google improves accuracy by adding more network layers

❑ From 8 in AlexNet to 22 in GoogLeNet

❑ Szegedy et al., “Going Deeper with Convolutions”, CVPR 2015.

Example: GoogLeNet (2014)

53

◼ He et al., “Deep Residual Learning for Image Recognition”, CVPR 2016.

Example: ResNet (2015)

54

Human: 5.1%

First CNN

Neural Network Layer Examples

55By Cmglee - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=104937230

◼ Convolution

❑ Used in filtering, pattern matching, correlation, polynomial
evaluation, etc …

❑ Many image processing tasks

❑ Machine learning: up to hundreds of convolutional layers in
Convolutional Neural Networks (CNN)

56

Systolic Computation Example: Convolution (I)

Systolic Computation Example: Convolution (II)

◼ y1 = w1x1 +
w2x2 + w3x3

◼ y2 = w1x2 +
w2x3 + w3x4

◼ y3 = w1x3 +
w2x4 + w3x5

57

Systolic Computation Example: Convolution (III)

◼ Worthwhile to implement adder and multiplier separately
to allow overlapping of add/mul executions

58

Systolic Computation Example: Convolution (IV)

◼ One needs to carefully orchestrate when data elements are
input to the array

◼ And when output is buffered

◼ This gets more involved when

❑ Array dimensionality increases

❑ PEs are less predictable in terms of latency

59

Example 2D Systolic Array Computation

◼ Multiply two 3x3 matrices (inputs)

❑ Keep the final result in PE accumulators

60

P = M

Q = N

R = R + M*N

Two-Dimensional Systolic Arrays

61

Combinations

62

◼ Systolic arrays can be
chained together to
form powerful systems

◼ This systolic array is
capable of producing
on-the-fly least-squares
fit to all the data that
has arrived up to any
given moment

Systolic Arrays: Pros and Cons

◼ Advantages:

❑ Principled: Efficiently makes use of limited memory bandwidth,
balances computation to I/O bandwidth availability

❑ Specialized (computation needs to fit PE organization/functions)

→ improved efficiency, simple design, high concurrency/

performance

→ good to do more with less memory bandwidth requirement

◼ Downside:

❑ Specialized

→ not generally applicable because computation needs to fit

the PE functions/organization

63

◼ Each PE in a systolic array

❑ Can store multiple “weights”

❑ Weights can be selected on the fly

❑ Eases implementation of, e.g., adaptive filtering

◼ Taken further

❑ Each PE can have its own data and instruction memory

❑ Data memory → to store partial/temporary results, constants

❑ Leads to stream processing, pipeline parallelism

◼ More generally, staged execution

64

More Programmability in Systolic Arrays

Pipeline-Parallel (Pipelined) Programs

65Suleman+, “Data Marshaling for Multi-core Architectures,” ISCA 2010.

Stages of Pipelined Programs

◼ Loop iterations are divided into code segments called stages

◼ Threads execute stages on different cores

66

loop {

Compute1

Compute2

Compute3

}

A

B

C

A B C

Pipelined File Compression Example

67

Systolic Array: Advantages & Disadvantages

◼ Advantages

❑ Makes multiple uses of each data item → reduced need for
fetching/refetching → better use of memory bandwidth

❑ High concurrency

❑ Regular design (both data and control flow)

◼ Disadvantages

❑ Not good at exploiting irregular parallelism

❑ Relatively special purpose → need software, programmer

support to be a general purpose model

68

Example Systolic Array: The WARP Computer

◼ HT Kung, CMU, 1984-1988

◼ Linear array of 10 cells, each cell a 10 Mflop programmable
processor

◼ Attached to a general purpose host machine

◼ HLL and optimizing compiler to program the systolic array

◼ Used extensively to accelerate vision and robotics tasks

◼ Annaratone et al., “Warp Architecture and
Implementation,” ISCA 1986.

◼ Annaratone et al., “The Warp Computer: Architecture,
Implementation, and Performance,” IEEE TC 1987.

69

The WARP Computer

70

The WARP Cell

71

An Example Modern Systolic Array: TPU (I)

72

Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017.

An Example Modern Systolic Array: TPU (II)

73

Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017.

Recall: Example 2D Systolic Array Computation

◼ Multiply two 3x3 matrices (inputs)

❑ Keep the final result in PE accumulators

74

P = M

Q = N

R = R + M*N

An Example Modern Systolic Array: TPU (III)

75

An Example Modern Systolic Array: TPU2

76

https://www.nextplatform.com/2017/05/17/first-depth-look-googles-new-second-generation-tpu/

4 TPU chips

vs 1 chip in TPU1

High Bandwidth Memory

vs DDR3

Floating point operations

vs FP16

45 TFLOPS per chip

vs 23 TOPS

Designed for training

and inference

vs only inference

An Example Modern Systolic Array: TPU3

77https://cloud.google.com/tpu/docs/system-architecture

32GB HBM per chip

vs 16GB HBM in TPU2

4 Matrix Units per chip

vs 2 Matrix Units in TPU2

90 TFLOPS per chip

vs 45 TFLOPS in TPU2

An Example Modern Systolic Array: TPU4

78

250 TFLOPS per chip in 2021

vs 90 TFLOPS in TPU3

1 ExaFLOPS per board

New ML applications (vs. TPU3):

• Computer vision

• Natural Language Processing (NLP)

• Recommender system

• Reinforcement learning that plays Go

https://spectrum.ieee.org/tech-talk/computing/hardware/heres-how-googles-tpu-v4-ai-chip-stacked-up-in-training-tests

Cerebras’s Wafer Scale Engine (2019)

79

Cerebras WSE

1.2 Trillion transistors

46,225 mm2

Largest GPU

21.1 Billion transistors

815 mm2

◼ The largest ML

accelerator chip

◼ 400,000 cores

NVIDIA TITAN V
https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Cerebras’s Wafer Scale Engine-2 (2021)

80

Cerebras WSE-2

2.6 Trillion transistors

46,225 mm2

Largest GPU

54.2 Billion transistors

826 mm2

◼ The largest ML

accelerator chip

◼ 850,000 cores

NVIDIA Ampere GA100
https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Huge Demand for Performance & Efficiency

81https://www.youtube.com/watch?v=x2-qB0J7KHw

https://www.youtube.com/watch?v=x2-qB0J7KHw

More on the Cerebras WSE

https://www.youtube.com/watch?v=x2-qB0J7KHw

82

https://www.youtube.com/watch?v=x2-qB0J7KHw

Computer Architecture

Lecture 28: VLIW

and Systolic Array Architectures

Prof. Onur Mutlu

ETH Zürich

Fall 2022

10 January 2023

Backup Slides

(for Further Study)

84

Issues in Fast & Wide Fetch

Engines

85

These Issues Covered in This Lecture…

86https://www.youtube.com/onurmutlulectures

https://www.youtube.com/onurmutlulectures

These Issues Covered in This Lecture…

◼ Computer Architecture, Spring 2015, Lecture 5

❑ Advanced Branch Prediction (CMU, Spring 2015)

❑ https://www.youtube.com/watch?v=yDjsr-
jTOtk&list=PL5PHm2jkkXmgVhh8CHAu9N76TShJqfYDt&index=4

87https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=z77VpggShvg&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=23
https://www.youtube.com/onurmutlulectures

Interference in Branch Predictors

88

An Issue: Interference in the PHTs

◼ Sharing the PHTs between histories/branches leads to interference

❑ Different branches map to the same PHT entry and modify it

❑ Interference can be positive, negative, or neutral

◼ Interference can be eliminated by dedicating a PHT per branch

-- Too much hardware cost

◼ How else can you eliminate or reduce interference?

89

Reducing Interference in PHTs (I)

◼ Increase size of PHT

◼ Branch filtering

❑ Predict highly-biased branches separately so that they do not
consume PHT entries

❑ E.g., static prediction or BTB based prediction

◼ Hashing/index-randomization

❑ Gshare

❑ Gskew

◼ Agree prediction

90

Biased Branches and Branch Filtering

◼ Observation: Many branches are biased in one direction
(e.g., 99% taken)

◼ Problem: These branches pollute the branch prediction
structures → make the prediction of other branches difficult

by causing “interference” in branch prediction tables and
history registers

◼ Solution: Detect such biased branches, and predict them
with a simpler predictor (e.g., last time, static, …)

◼ Chang et al., “Branch classification: a new mechanism for improving
branch predictor performance,” MICRO 1994.

91

Reducing Interference: Gshare

◼ Idea 1: Randomize the indexing function into the PHT such that
probability of two branches mapping to the same entry reduces

❑ Gshare predictor: GHR hashed with the Branch PC

+ Better utilization of PHT + More context information

- Increases access latency

❑ McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.

92

Reducing Interference: Agree Predictor

◼ Idea 2: Agree prediction

❑ Each branch has a “bias” bit associated with it in BTB

◼ Ideally, most likely outcome for the branch

❑ High bit of the PHT counter indicates whether or not the prediction
agrees with the bias bit (not whether or not prediction is taken)

+ Reduces negative interference (Why???)

-- Requires determining bias bits (compiler vs. hardware)

93

Sprangle et al., “The Agree Predictor:

A Mechanism for Reducing Negative

Branch History Interference,” ISCA

1997.

Why Does Agree Prediction Make Sense?

◼ Assume two branches have taken rates of 85% and 15%.

◼ Assume they conflict in the PHT

◼ Let’s compute the probability they have opposite outcomes

❑ Baseline predictor:

◼ P (b1 T, b2 NT) + P (b1 NT, b2 T)

= (85%*85%) + (15%*15%) = 74.5%

❑ Agree predictor:

◼ Assume bias bits are set to T (b1) and NT (b2)

◼ P (b1 agree, b2 disagree) + P (b1 disagree, b2 agree)

= (85%*15%) + (15%*85%) = 25.5%

◼ Works because most branches are biased (not 50% taken)

94

Reducing Interference: Gskew

◼ Idea 3: Gskew predictor

❑ Multiple PHTs

❑ Each indexed with a different type of hash function

❑ Final prediction is a majority vote

+ Distributes interference patterns in a more randomized way
(interfering patterns less likely in different PHTs at the same time)

-- More complexity (due to multiple PHTs, hash functions)

95

Seznec, “An optimized

2bcgskew branch

predictor,” IRISA Tech

Report 1993.

Michaud, “Trading conflict

and capacity aliasing in

conditional branch

predictors,” ISCA 1997

Branch Address

Global BHR

f0

f1

f2

Majority

Final Prediction

PHT0 PHT1 PHT2

More Techniques to Reduce PHT Interference

◼ The bi-mode predictor

❑ Separate PHTs for mostly-taken and mostly-not-taken branches

❑ Reduces negative aliasing between them

❑ Lee et al., “The bi-mode branch predictor,” MICRO 1997.

◼ The YAGS predictor

❑ Use a small tagged “cache” to predict branches that have experienced
interference

❑ Aims to not to mispredict them again

❑ Eden and Mudge, “The YAGS branch prediction scheme,” MICRO 1998.

◼ Alpha EV8 (21464) branch predictor

❑ Seznec et al., “Design tradeoffs for the Alpha EV8 conditional
branch predictor,” ISCA 2002.

96

Another Direction: Helper Threading

◼ Idea: Pre-compute the outcome of the branch with a
separate, customized thread (i.e., a helper thread)

◼ Chappell et al., “Difficult-Path Branch Prediction Using Subordinate
Microthreads,” ISCA 2002.

◼ Chappell et al., “Simultaneous Subordinate Microthreading,” ISCA 1999.

97

Issues in Wide & Fast Fetch

98

I-Cache Line and Way Prediction

◼ Problem: Complex branch prediction can take too long (many
cycles)

◼ Goal

❑ Quickly generate (a reasonably accurate) next fetch address

❑ Enable the fetch engine to run at high frequencies

❑ Override the quick prediction with more sophisticated prediction

◼ Idea: Get the predicted next cache line and way at the time
you fetch the current cache line

◼ Example Mechanism (e.g., Alpha 21264)

❑ Each cache line tells which line/way to fetch next (prediction)

❑ On a fill, line/way predictor points to next sequential line

❑ On branch resolution, line/way predictor is updated

❑ If line/way prediction is incorrect, one cycle is wasted
99

Alpha 21264 Line & Way Prediction

100Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999.

Alpha 21264 Line & Way Prediction

101Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999.

Issues in Wide Fetch Engines

◼ Wide Fetch: Fetch multiple instructions per cycle

◼ Superscalar

◼ VLIW

◼ SIMT (GPUs’ single-instruction multiple thread model)

◼ Wide fetch engines suffer from the branch problem:

❑ How do you feed the wide pipeline with useful instructions in a
single cycle?

❑ What if there is a taken branch in the “fetch packet”?

❑ What is there are “multiple (taken) branches” in the “fetch
packet”?

102

Fetching Multiple Instructions Per Cycle

◼ Two problems

1. Alignment of instructions in I-cache

❑ What if there are not enough (N) instructions in the cache line
to supply the fetch width?

2. Fetch break: Branches present in the fetch block

❑ Fetching sequential instructions in a single cycle is easy

❑ What if there is a control flow instruction in the N instructions?

❑ Problem: The direction of the branch is not known but we
need to fetch more instructions

◼ These can cause effective fetch width < peak fetch width

103

Wide Fetch Solutions: Alignment

◼ Large cache blocks: Hope N instructions contained in the
block

◼ Split-line fetch: If address falls into second half of the
cache block, fetch the first half of next cache block as well

❑ Enabled by banking of the cache

❑ Allows sequential fetch across cache blocks in one cycle

❑ Intel Pentium and AMD K5

104

Split Line Fetch

105

Need alignment logic:

Short Distance Predicted-Taken Branches

106

Techniques to Reduce Fetch Breaks

◼ Compiler

❑ Code reordering (basic block reordering)

❑ Superblock

◼ Hardware

❑ Trace cache

◼ Hardware/software cooperative

❑ Block structured ISA

107

Basic Block Reordering

◼ Not-taken control flow instructions not a problem: no fetch
break: make the likely path the not-taken path

◼ Idea: Convert taken branches to not-taken ones

❑ i.e., reorder basic blocks (after profiling)

❑ Basic block: code with a single entry and single exit point

◼ Code Layout 1 leads to the fewest fetch breaks

108

A

B C

D

T NT

A
99% 1%

B

D

Control Flow Graph Code Layout 1 Code Layout 2

A

C

D

Code Layout 3

A

B

C

D

C B

Basic Block Reordering

◼ Pettis and Hansen, “Profile Guided Code Positioning,” PLDI
1990.

◼ Advantages:

+ Reduced fetch breaks (assuming profile behavior matches
runtime behavior of branches)

+ Increased I-cache hit rate

+ Reduced page faults

◼ Disadvantages:

-- Dependent on compile-time profiling

-- Does not help if branches are not biased

-- Requires recompilation

109

Superblock
◼ Idea: Combine frequently executed basic blocks such that they form a

single-entry multiple exit larger block, which is likely executed as
straight-line code

+ Helps wide fetch

+ Enables aggressive

compiler optimizations

and code reordering

within the superblock

-- Increased code size

-- Profile dependent

-- Requires recompilation

◼ Hwu et al. “The Superblock: An effective technique for VLIW

and superscalar compilation,” Journal of Supercomputing, 1993.
110

Superblock Formation (I)

111

Y

A

100

C

10

B

90

E

90

D

0

F

100

Z

1

90 10

900

0
90

10
99

1

Y

A

100

C

10

B

90

E

90

D

0

F

100

Z

1

90
10

900

0
90

10

99

1

Is this a superblock?

Superblock Formation (II)

112

Y

A

100

C

10

B

90

E

90

D

0

F

90

Z

1

90 10

900

0

90

10

89.1

0.9

Tail duplication:

duplication of basic blocks

after a side entrance to

eliminate side entrances

→ transforms

a trace into a superblock.

F’
10

10

9.9

0.1

Superblock Code Optimization Example

113

opA: mul r1<-r2,3

opC: mul r3<-r2,3

opB: add r2<-r2,199

1

1

Original Code

opA: mul r1<-r2,3

opC: mul r3<-r2,3

opB: add r2<-r2,199

1

Code After Superblock Formation

opC’: mul r3<-r2,3

opA: mul r1<-r2,3

opC: mov r3<-r1

opB: add r2<-r2,199

1

Code After Common

Subexpression Elimination

opC’: mul r3<-r2,3

Techniques to Reduce Fetch Breaks

◼ Compiler

❑ Code reordering (basic block reordering)

❑ Superblock

◼ Hardware

❑ Trace cache

◼ Hardware/software cooperative

❑ Block structured ISA

114

Trace Cache: Basic Idea

◼ A trace is a sequence of executed instructions.

◼ It is specified by a start address and the branch outcomes
of control transfer instructions.

◼ Traces repeat: programs have frequently executed paths

◼ Trace cache idea: Store the dynamic instruction sequence
in the same physical location.

115

Reducing Fetch Breaks: Trace Cache

◼ Dynamically determine the basic blocks that are executed consecutively

◼ Trace: Consecutively executed basic blocks

◼ Idea: Store consecutively-executed basic blocks in physically-contiguous
internal storage (called trace cache)

◼ Basic trace cache operation:
❑ Fetch from consecutively-stored basic blocks (predict next trace or branches)

❑ Verify the executed branch directions with the stored ones

❑ If mismatch, flush the remaining portion of the trace

◼ Rotenberg et al., “Trace Cache: a Low Latency Approach to High Bandwidth Instruction
Fetching,” MICRO 1996.

◼ Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR, 1997.

116

Trace Cache: Example

117

An Example Trace Cache Based Processor

◼ From Patel’s PhD Thesis: “Trace Cache Design for Wide Issue Superscalar
Processors,” University of Michigan, 1999.

118

Multiple Branch Predictor

◼ S. Patel, “Trace Cache Design for Wide Issue Superscalar Processors,” PhD
Thesis, University of Michigan, 1999.

119

What Does A Trace Cache Line Store?

◼ Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR,
1997.

120

Trace Cache: Advantages/Disadvantages

+ Reduces fetch breaks (assuming branches are biased)

+ No need for decoding (instructions can be stored in decoded form)

+ Can enable dynamic optimizations within a trace

-- Requires hardware to form traces (more complexity) → called fill unit

-- Results in duplication of the same basic blocks in the cache

-- Can require the prediction of multiple branches per cycle

-- If multiple cached traces have the same start address

-- What if XYZ and XYT are both likely traces?

121

Intel Pentium 4 Trace Cache

◼ A 12K-uop trace cache replaces the L1 I-cache

◼ Trace cache stores decoded and cracked instructions

❑ Micro-operations (uops): returns 6 uops every other cycle

◼ x86 decoder can be simpler and slower

◼ A. Peleg, U. Weiser; "Dynamic Flow Instruction Cache Memory Organized
Around Trace Segments Independent of Virtual Address Line", United States
Patent No. 5,381,533, Jan 10, 1995

122

Front End BTB

4K Entries

ITLB &

Prefetcher
L2 Interface

x86 Decoder

Trace Cache

12K uop’s
Trace Cache BTB

512 Entries

	Slide 1: Computer Architecture Lecture 28: VLIW and Systolic Array Architectures
	Slide 2: Approaches to (Instruction-Level) Concurrency
	Slide 3: VLIW Architectures (Very Long Instruction Word)
	Slide 4: VLIW Concept
	Slide 5: VLIW Concept
	Slide 6: VLIW (Very Long Instruction Word)
	Slide 7: VLIW Performance Example (2-wide bundles)
	Slide 8: VLIW Lock-Step Execution
	Slide 9: VLIW Philosophy & Principles
	Slide 10: VLIW Philosophy & Principles
	Slide 11: VLIW Philosophy and Properties
	Slide 12: Commercial VLIW Machines
	Slide 13: VLIW Tradeoffs
	Slide 14: VLIW Summary
	Slide 15: Example Work: Trace Scheduling
	Slide 16: Recommended Paper
	Slide 17: The Bulldog VLIW Compiler
	Slide 18: Another Example Work: Superblock
	Slide 19: Another Example Work: IMPACT
	Slide 20: Another Example Work: Hyperblock
	Slide 21: Lecture on Static Instruction Scheduling
	Slide 22: Lectures on Static Instruction Scheduling
	Slide 23: A More Compact Version…
	Slide 24: A More Compact Version…
	Slide 25: Aside: ISA Translation
	Slide 26: Transmeta: x86 to VLIW Translation
	Slide 27: Recall: Semantic Gap
	Slide 28: Recall: How to Change the Semantic Gap Tradeoffs
	Slide 29: Transmeta: x86 to VLIW Translation
	Slide 30: Another Example: Rosetta 2 Binary Translator
	Slide 31: Another Example: Rosetta 2 Binary Translator
	Slide 32: Another Example: NVIDIA Denver
	Slide 33: More on NVIDIA Denver Code Optimizer
	Slide 34: There Is A Lot More to Cover on ISAs
	Slide 35: There Is A Lot More to Cover on ISAs
	Slide 36: Detailed Lectures on ISAs & ISA Tradeoffs
	Slide 37: Approaches to (Instruction-Level) Concurrency
	Slide 38: Readings for Today
	Slide 39: Readings for Next Week
	Slide 40: Systolic Arrays
	Slide 41: Systolic Arrays: Motivation
	Slide 42: Systolic Arrays
	Slide 43: Why Systolic Architectures?
	Slide 44: Systolic Architectures
	Slide 45: Systolic Computation Example
	Slide 46: LeNet-5, a Convolutional Neural Network for Hand-Written Digit Recognition
	Slide 47: An Example of 2D Convolution
	Slide 48: An Example of 2D Convolution
	Slide 49: Convolutional Neural Networks: Demo
	Slide 50: Implementing a Convolutional Layer with Matrix Multiplication
	Slide 51: Power of Convolutions and Applied Courses
	Slide 52: Example: AlexNet (2012)
	Slide 53: Example: GoogLeNet (2014)
	Slide 54: Example: ResNet (2015)
	Slide 55: Neural Network Layer Examples
	Slide 56
	Slide 57: Systolic Computation Example: Convolution (II)
	Slide 58: Systolic Computation Example: Convolution (III)
	Slide 59: Systolic Computation Example: Convolution (IV)
	Slide 60: Example 2D Systolic Array Computation
	Slide 61: Two-Dimensional Systolic Arrays
	Slide 62: Combinations
	Slide 63: Systolic Arrays: Pros and Cons
	Slide 64: More Programmability in Systolic Arrays
	Slide 65: Pipeline-Parallel (Pipelined) Programs
	Slide 66: Stages of Pipelined Programs
	Slide 67: Pipelined File Compression Example
	Slide 68: Systolic Array: Advantages & Disadvantages
	Slide 69: Example Systolic Array: The WARP Computer
	Slide 70: The WARP Computer
	Slide 71: The WARP Cell
	Slide 72: An Example Modern Systolic Array: TPU (I)
	Slide 73: An Example Modern Systolic Array: TPU (II)
	Slide 74: Recall: Example 2D Systolic Array Computation
	Slide 75: An Example Modern Systolic Array: TPU (III)
	Slide 76: An Example Modern Systolic Array: TPU2
	Slide 77: An Example Modern Systolic Array: TPU3
	Slide 78: An Example Modern Systolic Array: TPU4
	Slide 79: Cerebras’s Wafer Scale Engine (2019)
	Slide 80: Cerebras’s Wafer Scale Engine-2 (2021)
	Slide 81: Huge Demand for Performance & Efficiency
	Slide 82: More on the Cerebras WSE
	Slide 83: Computer Architecture Lecture 28: VLIW and Systolic Array Architectures
	Slide 84: Backup Slides (for Further Study)
	Slide 85: Issues in Fast & Wide Fetch Engines
	Slide 86: These Issues Covered in This Lecture…
	Slide 87: These Issues Covered in This Lecture…
	Slide 88: Interference in Branch Predictors
	Slide 89: An Issue: Interference in the PHTs
	Slide 90: Reducing Interference in PHTs (I)
	Slide 91: Biased Branches and Branch Filtering
	Slide 92: Reducing Interference: Gshare
	Slide 93: Reducing Interference: Agree Predictor
	Slide 94: Why Does Agree Prediction Make Sense?
	Slide 95: Reducing Interference: Gskew
	Slide 96: More Techniques to Reduce PHT Interference
	Slide 97: Another Direction: Helper Threading
	Slide 98: Issues in Wide & Fast Fetch
	Slide 99: I-Cache Line and Way Prediction
	Slide 100: Alpha 21264 Line & Way Prediction
	Slide 101: Alpha 21264 Line & Way Prediction
	Slide 102: Issues in Wide Fetch Engines
	Slide 103: Fetching Multiple Instructions Per Cycle
	Slide 104: Wide Fetch Solutions: Alignment
	Slide 105: Split Line Fetch
	Slide 106: Short Distance Predicted-Taken Branches
	Slide 107: Techniques to Reduce Fetch Breaks
	Slide 108: Basic Block Reordering
	Slide 109: Basic Block Reordering
	Slide 110: Superblock
	Slide 111: Superblock Formation (I)
	Slide 112: Superblock Formation (II)
	Slide 113: Superblock Code Optimization Example
	Slide 114: Techniques to Reduce Fetch Breaks
	Slide 115: Trace Cache: Basic Idea
	Slide 116: Reducing Fetch Breaks: Trace Cache
	Slide 117: Trace Cache: Example
	Slide 118: An Example Trace Cache Based Processor
	Slide 119: Multiple Branch Predictor
	Slide 120: What Does A Trace Cache Line Store?
	Slide 121: Trace Cache: Advantages/Disadvantages
	Slide 122: Intel Pentium 4 Trace Cache

