
Computer Architecture

Lecture 29: Virtual Memory

Prof. Onur Mutlu

ETH Zürich

Fall 2022

11 January 2023

Virtual Memory

Memory (Programmer’s View)

3

Ideal Memory

◼ Zero access time (latency)

◼ Infinite capacity

◼ Zero cost

◼ Infinite bandwidth (to support multiple accesses in parallel)

4

Abstraction: Virtual vs. Physical Memory

◼ Programmer sees virtual memory

❑ Can assume the memory is “infinite”

◼ Reality: Physical memory size is much smaller than what
the programmer assumes

◼ The system (system software + hardware, cooperatively)
maps virtual memory addresses to physical memory

❑ The system automatically manages the physical memory
space transparently to the programmer

+ Programmer does not need to know the physical size of memory
nor manage it → A small physical memory can appear as a huge
one to the programmer → Life is easier for the programmer

-- More complex system software and architecture

A classic example of the programmer/(micro)architect tradeoff

Requires indirection and mapping between virtual and physical address spaces

Benefits of Automatic Management of Memory

◼ Programmer does not deal with physical addresses

◼ Each process has its own

❑ Virtual address space (very large)

❑ Independent mapping of virtual→physical addresses

◼ Enables

❑ Code and data to be located anywhere in physical memory

(relocation and flexible location of data)

❑ Isolation/separation of code and data of different processes in
physical memory

(protection and isolation)

❑ Code and data sharing between multiple processes

(sharing)

6

7

A System with Physical Memory Only

◼ Examples:

❑ most early supercomputers

❑ early personal computers (PCs)

❑ many older embedded systems

CPU’s load or store instructions generate

physical memory addresses

CPU

0:
1:

N-1:

Memory

Physical

Addresses

The Problem
◼ Physical memory is of limited size (cost)

❑ What if you need more?

❑ Should the programmer be concerned about the size of code/data
blocks fitting physical memory?

❑ Should the programmer manage data movement from disk to
physical memory?

❑ Multiple programs may need the physical memory

❑ Should the programmer make sure all processes (different
programs) can fit in physical memory?

❑ Should the programmer ensure two processes do not unintentionally
or incorrectly use the same physical memory portion?

◼ ISA can have an address space greater than the physical
memory size

❑ E.g., a 64-bit address space with byte addressability → 16 ExaBytes

❑ What if you do not have enough physical memory?
8

Difficulties of Direct Physical Addressing

◼ Programmer needs to manage physical memory space

❑ Inconvenient & difficult

❑ More difficult when you have multiple processes

◼ Difficult to support code and data relocation

❑ Addresses are directly specified in the program

◼ Difficult to support multiple processes (esp. concurrently)

❑ Protection and isolation between multiple processes

❑ Sharing of physical memory space without problems

◼ Difficult to support data/code sharing across processes

❑ Different processes need to reference the same physical address

9

Virtual Memory

◼ Idea: Give each program the illusion of a large address
space while having a small physical memory

❑ So that the programmer does not worry about managing
physical memory (within a process or across processes)

◼ Programmer can assume they have “infinite” amount of
physical memory

◼ Hardware and software cooperatively and automatically
manage the physical memory space to provide the illusion

❑ Illusion is maintained for each independent process

10

Basic Mechanism

◼ Indirection and mapping (of addresses)

◼ Address generated by each instruction in a program is a
“virtual address”

❑ i.e., it is not the physical address used to address main
memory

❑ called “linear address” in x86

◼ An “address translation” mechanism maps this address to a
“physical address”

❑ called “real address” in x86

❑ Address translation mechanism can be implemented in
hardware and software together

11

Virtual Memory: Conceptual View

◼ Illusion of large, separate address space per process

12
Kim & Mutlu, “Memory Systems,” Computing Handbook, 2014

https://people.inf.ethz.ch/omutlu/pub/memory-systems-introduction_computing-handbook14.pdf

Process 1 Process 2

Requires indirection and mapping between virtual and physical address spaces

13

A System with Virtual Memory (Page-based)

◼ Address Translation: The hardware converts virtual addresses into
physical addresses via an OS-managed lookup table (page table)

CPU

0:
1:

N-1:

Memory

0:
1:

P-1:

Page Table

Disk

Virtual

Addresses
Physical

Addresses

vi
rt
u
a
l

vi
rt
u
a
l

p
hy
si
ca
l

Process 1

Process 2

4
G

B
4

G
B

1
6

M
B

Virtual Page

Virtual Page

Physical Page

Page-based Virtual-to-Physical Mapping

Four Issues in Indirection and Mapping

◼ When to map a virtual address to a physical address?

❑ When the virtual address is first referenced by the program

◼ What is the mapping granularity?

❑ Byte? Kilo-byte? Mega-byte? Giga-byte? …

❑ Multiple granularities?

◼ Where and how to store the virtual→physical mappings?

❑ Operating system data structures? Hardware? Cooperative?

◼ What to do when physical address space is full?

❑ Evict an unlikely-to-be-needed virtual address from physical
memory

15

Virtual Pages, Physical Frames

◼ Virtual address space divided into pages

◼ Physical address space divided into frames

◼ A virtual page is mapped to

❑ A physical frame, if the page is in physical memory

❑ A location in disk, otherwise

◼ If an accessed virtual page is not in memory, but on disk

❑ Virtual memory system brings the page into a physical frame
and adjusts the mapping → this is called demand paging

◼ Page table is the table that stores the mapping of virtual
pages to physical frames

16

Physical Memory as a Cache

◼ In other words…

◼ Physical memory is a cache for pages stored on disk

❑ In fact, it is a fully-associative cache in modern systems (a
virtual page can potentially be mapped to any physical frame)

◼ Similar caching issues exist as we have covered earlier:

❑ Placement: where and how to place/find a page in cache?

❑ Replacement: what page to remove to make room in cache?

❑ Granularity of management: large, small, uniform pages?

❑ Write policy: what do we do about writes? Write back?

17

Cache/Virtual Memory Analogues

Cache Virtual Memory

Block Page

Block Size Page Size

Block Offset Page Offset

Miss Page Fault

Index Virtual Page Number

Metadata (Tag) Store Page Table

Data Store Physical Memory

18

Virtual Memory Definitions

◼ Page size: the mapping granularity of virtual→physical

address spaces

❑ dictates the amount of data transferred from hard disk to DRAM
at once

◼ Page table: table that stores virtual→physical page mappings

❑ lookup table used to translate virtual page addresses to physical
frame addresses (and find where the associated data is)

◼ Address translation: the process of determining the physical
address from the virtual address

19

Recall: The Memory Hierarchy

20

fast
small

large but slow

move what you use here

backup
everything
here

With good locality of
reference, memory
appears as fast as
and as large as

fa
st

er
 p

er
 b

yt
e

ch
e

ap
e

r
p

e
r

b
yt

e

Virtual to Physical Mapping

◼ Most accesses hit in physical memory

◼ Programs see the large capacity of virtual memory

21H&H, Chapter 8.4

Address Translation

22H&H, Chapter 8.4

Virtual Memory Example

◼ System:

❑ Virtual memory size: 2 GB = 231 bytes

❑ Physical memory size: 128 MB = 227 bytes

❑ Page size: 4 KB = 212 bytes

23

Virtual Memory Example (Continued)

◼ System:

❑ Virtual memory size: 2 GB = 231 bytes

❑ Physical memory size: 128 MB = 227 bytes

❑ Page size: 4 KB = 212 bytes

◼ Organization:

❑ Virtual address: 31 bits

❑ Physical address: 27 bits

❑ Page offset: 12 bits

❑ # Virtual pages = 231/212 = 219 (VPN = 19 bits)

❑ # Physical pages = 227/212 = 215 (PPN = 15 bits)

24

Virtual Memory Example (Continued)

25H&H, Chapter 8.4

How Do We Translate Addresses?

◼ Page table

❑ Has entry for each virtual page

◼ Each page table entry has:

❑ Valid bit: whether the virtual page is located in physical
memory (if not, it must be fetched from the hard disk)

❑ Physical page number: where the virtual page is located in
physical memory

❑ (Replacement policy, dirty/modified, permission/access bits)

26

Page Table for Our Example (Continued)

27H&H, Chapter 8.4

Page Table Address Translation Example

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Virtual

Address
0x00002 47C

Hit

Physical

Page Number

1219

15 12

Virtual

Page Number

P
a
g
e
 T

a
b
le

Page

Offset

Physical

Address
0x7FFF 47C

28

Page Table is Indexed

with the VPN

Page Table Provides

The PPN

Page Table is located

at physical memory

address specified by

the PTBR (Page Table

Base Register)

Page offset bits

do not change

during translation

Page Table Address Translation Example 1

◼ What is the physical
address of virtual address
0x5F20?

◼ We first need to find the
page table entry
containing the translation
for the corresponding
VPN

◼ Look up the PTE at the
address

❑ PTBR + VPN*PTE-size

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Hit

Physical

Page Number

15

P
a
g
e
 T

a
b
le

29

Page Table Address Translation Example 1

◼ What is the physical
address of virtual address
0x5F20?

❑ VPN = 5

❑ Entry 5 in page table
indicates VPN 5 is in
physical page 1

❑ Physical address is
0x1F20

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Virtual

Address
0x00005 F20

Hit

Physical

Page Number

1219

15 12

Virtual

Page Number

P
a
g
e
 T

a
b
le

Page

Offset

Physical

Address
0x0001 F20

30

Page Table Address Translation Example 2

◼ What is the physical
address of virtual address
0x73E0?

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Hit

Physical

Page Number

15

P
a
g
e
 T

a
b
le

31

Page Table Address Translation Example 2

◼ What is the physical
address of virtual address
0x73E0?

❑ VPN = 7

❑ Entry 7 in page table is
invalid, so the page is
not in physical memory

❑ The virtual page must be
swapped into physical
memory from disk

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Virtual

Address
0x00007 3E0

Hit

Physical

Page Number

19

15

Virtual

Page Number

P
a
g
e
 T

a
b
le

Page

Offset

32

Issue: Page Table Size

◼ Suppose 64-bit VA and 40-bit PA, how large is the page
table?

◼ 252 entries x ~4 bytes 254 bytes

and that is for just one process!

and the process may not be using the entire VM space!
33

VPN Page Offset

page
table

concat PA

64-bit

12-bit52-bit

28-bit 40-bit

Page Table Challenges (I)

◼ Challenge 1: Page table is large

❑ at least part of it needs to be located in physical memory

❑ solution: multi-level (hierarchical) page tables

34

Multi-Level Page Tables

◼ Idea: Organize page table in a hierarchical manner such that
only a small first-level page table has to be in physical memory

◼ Multi-level (hierarchical) page tables

35

Multi-Level Page Table Example

◼ First-level page table has to be in physical memory

◼ Only the needed second-level page tables can be kept in physical memory

36

Multi-Level Page Table: Address Translation

◼ For N-level page table, we need N page table accesses to find the PTE

37

Multi-Level Page Tables from x86 Manual

38

Example from the x86 architecture

CR3: Control Register 3 (or Page Directory Base Register)

x86 Page Tables (I): Small Pages

39

x86 Page Tables (II): Large Pages

40

Four-level Paging in x86-64

41

Page Table Challenges (II)

◼ Challenge 1: Page table is large

❑ at least part of it needs to be located in physical memory

❑ solution: multi-level (hierarchical) page tables

◼ Challenge 2: Each instruction fetch or load/store requires at
least two memory accesses:

1. one for address translation (page table read)

2. one to access data with the physical address (after translation)

◼ Two memory accesses to service an instruction fetch or
load/store greatly degrades execution time

❑ Num. of memory accesses increases with multi-level page tables

❑ Unless we are clever… → speed up the translation…
42

Translation Lookaside Buffer (TLB)

◼ Idea: Cache the Page Table Entries (PTEs) in a hardware
structure in the processor to speed up address translation

◼ Translation lookaside buffer (TLB)

❑ Small cache of most recently used Page Table Entries, i.e.,
recently used Virtual-to-Physical translations

❑ Reduces the number of memory accesses required for most
instruction fetches and loads/stores to only one TLB access

43

Translation Lookaside Buffer (TLB)

◼ Page table accesses have temporal and spatial locality

❑ Memory accesses have temporal and spatial locality

❑ Large page sizes better exploit spatial locality (KBs, MBs, GBs)

❑ Consecutive instructions and loads/stores are likely to access
same page

◼ TLB: cache of page table entries (i.e., translations)

❑ Small: accessed in ~1 cycle

❑ Typically 16 - 512 entries at level 1

❑ Usually high associativity

❑ > 90-99 % hit rates typical (depends on workload)

❑ Reduces the number of memory accesses for most instruction
fetches and loads/stores to only one TLB access

44

Example Two-Entry TLB

Hit
1

V

=

01

15 15

15

=

Hit
1Hit

0

Hit

19 19

19

Virtual

Page Number

Physical

Page Number

Entry 1

1 0x7FFFD 0x0000 1 0x00002 0x7FFF

Virtual

Address
0x00002 47C

1219

Virtual

Page Number

Page

Offset

V

Virtual

Page Number

Physical

Page Number

Entry 0

12
Physical

Address 0x7FFF 47C

TLB

45

TLB is a Translation (PTE) Cache

◼ All issues we discussed in caching and prefetching lectures
apply to TLBs

◼ Example issues:

❑ Instruction vs. Data TLBs

❑ Multi-level TLBs

❑ Associativity and size choices and tradeoffs

❑ Insertion, promotion, replacement policies

❑ What to keep in which TLB and how to decide that

❑ Prefetching into the TLBs

❑ TLB coherence

❑ Shared vs. private TLBs across cores/threads

❑ …

46

Virtual Memory Support

and Examples

Supporting Virtual Memory

◼ Virtual memory requires both HW+SW support

❑ Page Table is in memory

❑ Can be cached in special hardware structures called Translation
Lookaside Buffers (TLBs)

◼ The hardware component is called the MMU (memory
management unit)

❑ Includes Page Table Base Register(s), TLBs, page walkers

◼ It is the job of the software (e.g., the Operating System) to

❑ Populate page tables, decide what to replace in physical memory

❑ Change the Page Table Base Register on context switch (to use
the running thread’s page table)

❑ Handle page faults and ensure correct mapping
48

Address Translation

◼ How to obtain the physical address from a virtual address?

◼ Page size specified by the ISA

❑ VAX: 512 bytes

❑ Today: 4KB, 8KB, 2GB, … (small and large pages mixed
together)

❑ Trade-offs? (remember cache lectures)

◼ Page Table contains an entry for each virtual page

❑ Called Page Table Entry (PTE)

❑ What is in a PTE?

49

What Is in a Page Table Entry (PTE)?

50

◼ Page table is the “tag store” for the physical memory data store

❑ A mapping table between virtual memory and physical memory

◼ PTE is the “tag store entry” for a virtual page in memory

❑ Need a valid bit → to indicate validity/presence in physical memory

❑ Need tag bits (PFN) → to support translation

❑ Need bits to support replacement

❑ Need a dirty bit to support “write back caching”

❑ Need protection bits to enable access control and protection

51

Recall: Address Translation (I)

◼ Parameters

❑ P = 2p = page size (bytes)

❑ N = 2n = Virtual-address limit

❑ M = 2m = Physical-address limit

virtual page number page offset virtual address

physical frame number page offset physical address

0p–1

address translation

pm–1

n–1 0p–1p

Page offset bits do not change as a result of translation

52

Recall: Address Translation (II)

virtual page number (VPN) page offset

virtual address

physical frame number (PFN) page offset

physical address

0p–1pm–1

n–1
0

p–1p
page table

base register

(per process)

if valid=0

then page

not in memory

(page fault)

valid physical frame number (PFN)

VPN acts as

table index

◼ Separate (set of) page table(s) per process

◼ VPN forms index into page table (points to a page table entry)

◼ Page Table Entry (PTE) provides information about page

access

53

Address Translation: Page Hit

54

Address Translation: Page Fault

Page Fault (“A Miss in Physical Memory”)

◼ If a page is not in physical memory but disk

❑ Page table entry indicates virtual page not in memory

❑ Access to such a page triggers a page fault exception

❑ OS exception handler invoked to move data from disk into memory

◼ Other processes can continue executing

◼ OS has full control over page placement

CPU

Memory

Page Table

Disk

Virtual
Addresses

Physical
Addresses

CPU

Memory

Page Table

Disk

Virtual
Addresses

Physical
Addresses

Before fault After fault

Disk

56

Servicing a Page Fault

1. Processor signals I/O controller

❑ Read block of length P starting
at disk address X and store
starting at memory address Y

2. Disk-to-mem read occurs

❑ Direct Memory Access (DMA)

❑ Under control of I/O controller

3. Controller signals completion

❑ Interrupts processor

❑ OS resumes suspended process Disk

Memory-I/O bus

Processor

Cache

Memory

I/O

controller

Reg

(2) DMA

Transfer

(1) Initiate Block Read

(3) Read

Done

Page Replacement Algorithms

◼ If physical memory is full (i.e., list of free physical pages is
empty), which physical frame to replace on a page fault?

◼ Is True LRU feasible?

❑ 4GB memory, 4KB pages, how many possibilities of ordering?

◼ Modern systems use approximations of LRU

❑ E.g., the CLOCK algorithm

◼ And, more sophisticated algorithms to take into account
“frequency” of use

❑ E.g., the ARC algorithm

❑ Megiddo and Modha, “ARC: A Self-Tuning, Low Overhead
Replacement Cache,” FAST 2003.

57

CLOCK Page Replacement Algorithm

◼ Keep a circular list of physical frames in memory (OS does)

◼ Keep a pointer (hand) to the last-examined frame in the list

◼ When a page is accessed, set the R bit in the PTE

◼ When a frame needs to be replaced, replace the first frame
that has the reference (R) bit not set, traversing the
circular list starting from the pointer (hand) clockwise

❑ During traversal, clear the R bits of examined frames

❑ Set the hand pointer to the next frame in the list

58

Cache versus Page Replacement

◼ Physical memory (DRAM) is a cache for disk

❑ Managed by system software via the virtual memory subsystem

◼ Page replacement is similar to cache replacement

◼ Page table is the “tag store” for physical memory data store

◼ What is the difference?

❑ Required speed of access to cache vs. physical memory

❑ Number of blocks in a cache vs. physical memory

❑ “Tolerable” amount of time to find a replacement candidate (disk
versus memory access latency)

❑ Role of hardware versus software

59

Memory Protection

Memory Protection

◼ Multiple programs (i.e., processes) run concurrently

❑ Each process has its own page table

❑ Each process can use its entire virtual address space without
worrying about where other programs are

◼ A process can only access physical pages mapped in its
page table – cannot overwrite memory of another process

❑ Provides protection and isolation between processes

❑ Enables access control mechanisms per page

61

Page Table is Per Process

◼ Each process has its own virtual address space

❑ Full address space for each program

❑ Simplifies memory allocation, sharing, linking and loading

62

Virtual

Address

Space for

Process 1:

Physical Address

Space (DRAM)VP 1
VP 2

PP 2Address

Translation

0

0

N-1

0

N-1 M-1

VP 1
VP 2

PP 7

PP 10

(e.g., read-only

library code)

...

...

Virtual

Address

Space for

Process 2:

Access Protection/Control

via Virtual Memory

Page-Level Access Control (Protection)

◼ Not every process is allowed to access every page

❑ E.g., need supervisor (i.e., kernel) level privilege to access
system pages

❑ E.g., may not be able to execute “instructions” in some pages

◼ Idea: Store access control information on a page basis in
the process’s page table

◼ Enforce access control at the same time as translation

→ Virtual memory system serves two functions today

Address translation (for illusion of large physical memory)

Access control (protection)
64

Two Functions of Virtual Memory

65

VM as a Tool for Memory Access Protection

66

Page Tables

Process i:

Physical AddrRead? Write?

PP 6Yes No

PP 4Yes Yes

XXXXXXXNo No

VP 0:

VP 1:

VP 2:
•
•
•

•
•
•

•
•
•

Process j:

PP 0

Memory

Physical AddrRead? Write?

PP 6Yes Yes

PP 9Yes No

XXXXXXXNo No
•
•
•

•
•
•

•
•
•

VP 0:

VP 1:

VP 2:

PP 2

PP 4

PP 6

PP 8

PP 10

PP 12

•
•
•

◼ Extend Page Table Entries (PTEs) with permission bits

◼ Check bits on each access and during a page fault

❑ If violated, generate exception (Access Protection exception)

Privilege Levels in x86

67

Privilege Levels in x86

◼ Four privilege levels in x86 (referred to as rings)

❑ Ring 0: Highest privilege (operating system)

❑ Ring 1: Not widely used

❑ Ring 2: Not widely used

❑ Ring 3: Lowest privilege (user applications)

◼ Supervisor = Kernel (in modern terminology)

“Supervisor”

“User”

x86: A Closer Look at the PDE/PTE

◼ PDE: Page Directory Entry (32 bits)

◼ PTE: Page Table Entry (32 bits)

PPNPTE Flags

&PTPDE Flags

Protection: PDE’s Flags

◼ Protects all 1024 pages in a page table

Protection: PTE’s Flags

◼ Protects one page at a time

Page Level Protection in x86

72

Protection: PDE + PTE = ???

Food for Thought: What If?

◼ Your hardware is unreliable and someone can flip the
access protection bits

❑ such that a user-level program can gain supervisor-level
access (i.e., access to all data on the system)

❑ by flipping the access control bit from user to supervisor!

◼ Can this happen?

74

Remember RowHammer?

One can

predictably induce errors

in most DRAM memory chips

75

Remember RowHammer?

◼ One can predictably induce bit flips in commodity DRAM chips

❑ >80% of the tested DRAM chips are vulnerable

◼ First example of how a simple hardware failure mechanism
can create a widespread system security vulnerability

76

Row of Cells

Row
Row
Row
Row

Wordline

VLOWVHIGH
Victim Row

Victim Row

Hammered Row

Repeatedly reading a row enough times (before memory gets
refreshed) induces disturbance errors in adjacent rows in most
real DRAM chips you can buy today

OpenedClosed

77

Modern DRAM is Prone to Disturbance Errors

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM
Disturbance Errors, (Kim et al., ISCA 2014)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

CPU

loop:

mov (X), %eax

mov (Y), %ebx

clflush (X)

clflush (Y)

mfence

jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

Y

X

https://github.com/CMU-SAFARI/rowhammer

CPU

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

Y

X1. Avoid cache hits
– Flush X from cache

2. Avoid row hits to X
– Read Y in another row

https://github.com/CMU-SAFARI/rowhammer

CPU

loop:

mov (X), %eax

mov (Y), %ebx

clflush (X)

clflush (Y)

mfence

jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

Y

X

https://github.com/CMU-SAFARI/rowhammer

CPU

loop:

mov (X), %eax

mov (Y), %ebx

clflush (X)

clflush (Y)

mfence

jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

Y

X

https://github.com/CMU-SAFARI/rowhammer

CPU

loop:

mov (X), %eax

mov (Y), %ebx

clflush (X)

clflush (Y)

mfence

jmp loop

Y

X

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

https://github.com/CMU-SAFARI/rowhammer

A real reliability & security issue

CPU Architecture Errors Access-Rate

Intel Haswell (2013) 22.9K 12.3M/sec

Intel Ivy Bridge (2012) 20.7K 11.7M/sec

Intel Sandy Bridge (2011) 16.1K 11.6M/sec

AMD Piledriver (2012) 59 6.1M/sec

83Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of
DRAM Disturbance Errors,” ISCA 2014.

Observed Errors in Real Systems

One Can Take Over an Otherwise-Secure System

84

Exploiting the DRAM rowhammer bug to
gain kernel privileges (Seaborn, 2015)

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors
(Kim et al., ISCA 2014)

http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

RowHammer Security Attack Example
◼ “Rowhammer” is a problem with some recent DRAM devices in which

repeatedly accessing a row of memory can cause bit flips in adjacent rows
(Kim et al., ISCA 2014).

❑ Flipping Bits in Memory Without Accessing Them: An Experimental Study of
DRAM Disturbance Errors (Kim et al., ISCA 2014)

◼ We tested a selection of laptops and found that a subset of them
exhibited the problem.

◼ We built two working privilege escalation exploits that use this effect.

❑ Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn+, 2015)

◼ One exploit uses rowhammer-induced bit flips to gain kernel privileges on
x86-64 Linux when run as an unprivileged userland process.

◼ When run on a machine vulnerable to the rowhammer problem, the
process was able to induce bit flips in page table entries (PTEs).

◼ It was able to use this to gain write access to its own page table, and
hence gain read-write access to all of physical memory.

85
Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn & Dullien, 2015)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html

Google’s Original RowHammer Attack

The following slides are from Mark Seaborn and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

87

This slide is from Mark Seaborn and Thomas Dullien’s BlackHat 2015 talk
https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

88

This slide is from Mark Seaborn and Thomas Dullien’s BlackHat 2015 talk
https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

89
This slide is from Mark Seaborn and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

90
This slide is from Mark Seaborn and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

91
This slide is from Mark Seaborn and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

92
This slide is from Mark Seaborn and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

93
This slide is from Mark Seaborn and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

94
This slide is from Mark Seaborn and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

95
This slide is from Mark Seaborn and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

96
This slide is from Mark Seaborn and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

97
This slide is from Mark Seaborn and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

98
This slide is from Mark Seaborn and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

99
This slide is from Mark Seaborn and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

100
This slide is from Mark Seaborn and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

101
This slide is from Mark Seaborn and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

Security Implications

102

Security Implications

103

More Security Implications (I)

104
Source: https://lab.dsst.io/32c3-slides/7197.html

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript (DIMVA’16)

“We can gain unrestricted access to systems of website visitors.”

https://lab.dsst.io/32c3-slides/7197.html

More Security Implications (II)

105
Source: https://fossbytes.com/drammer-rowhammer-attack-android-root-devices/

Drammer: Deterministic Rowhammer
Attacks on Mobile Platforms, CCS’16

“Can gain control of a smart phone deterministically”

More Security Implications (III)

◼ Using an integrated GPU in a mobile system to remotely
escalate privilege via the WebGL interface

106

More Security Implications (IV)

◼ Rowhammer over RDMA (I)

107

More Security Implications (V)

◼ Rowhammer over RDMA (II)

108

More Security Implications (VI)

◼ IEEE S&P 2020

More Security Implications (VII)

◼ USENIX Security 2019

More Security Implications (VIII)

◼ USENIX Security 2020

More Security Implications?

112

Curious? First RowHammer Paper

113

◼ Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris
Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors"
Proceedings of the 41st International Symposium on Computer Architecture
(ISCA), Minneapolis, MN, June 2014.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code and
Data] [Lecture Video (1 hr 49 mins), 25 September 2020]
One of the 7 papers of 2012-2017 selected as Top Picks in Hardware and
Embedded Security for IEEE TCAD (link).

https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_isca14.pdf
http://cag.engr.uconn.edu/isca2014/
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pdf
https://github.com/CMU-SAFARI/rowhammer
https://www.youtube.com/watch?v=KDy632z23UE
https://wp.nyu.edu/toppicksinhardwaresecurity/

Curious? RowHammer: Now and Beyond…

◼ Onur Mutlu and Jeremie Kim,
"RowHammer: A Retrospective"
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD) Special Issue on Top Picks in Hardware and
Embedded Security, 2019.
[Preliminary arXiv version]
[Slides from COSADE 2019 (pptx)]
[Slides from VLSI-SOC 2020 (pptx) (pdf)]
[Talk Video (30 minutes)]

114

http://people.inf.ethz.ch/omutlu/pub/RowHammer-Retrospective_ieee_tcad19.pdf
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
https://arxiv.org/pdf/1904.09724.pdf
http://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-COSADE-Keynote-April-4-2019.pptx
http://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-VLSI-SOC-October-9-2020.pptx
http://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-VLSI-SOC-October-9-2020.pdf
https://www.youtube.com/watch?v=B58YT9hZM4g

RowHammer is Getting Much Worse (2020)

◼ Jeremie S. Kim, Minesh Patel, A. Giray Yaglikci, Hasan Hassan,
Roknoddin Azizi, Lois Orosa, and Onur Mutlu,
"Revisiting RowHammer: An Experimental Analysis of Modern
Devices and Mitigation Techniques"
Proceedings of the 47th International Symposium on Computer
Architecture (ISCA), Valencia, Spain, June 2020.
[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (3 minutes)]

115

https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20.pdf
http://iscaconf.org/isca2020/
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-lightning-talk.pdf
https://youtu.be/Lqxc4_ToMUw
https://youtu.be/wDhqi3f1a3Q

New RowHammer Dimensions (2021)
◼ Lois Orosa, Abdullah Giray Yaglikci, Haocong Luo, Ataberk Olgun, Jisung Park, Hasan Hassan,

Minesh Patel, Jeremie S. Kim, and Onur Mutlu,
"A Deeper Look into RowHammer’s Sensitivities: Experimental Analysis of Real DRAM
Chips and Implications on Future Attacks and Defenses"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual,
October 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (21 minutes)]
[Lightning Talk Video (1.5 minutes)]
[arXiv version]

◼

116

https://people.inf.ethz.ch/omutlu/pub/ADeeperLookIntoRowhammer_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/ADeeperLookIntoRowhammer_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ADeeperLookIntoRowhammer_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ADeeperLookIntoRowhammer_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ADeeperLookIntoRowhammer_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ADeeperLookIntoRowhammer_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ADeeperLookIntoRowhammer_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=fkM32oA0u6U&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=12
https://www.youtube.com/watch?v=slFNdmPVD-Q&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=6
https://arxiv.org/abs/2110.10291

Industry-Adopted Solutions Do Not Work
◼ Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen, Onur Mutlu,

Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi,
"TRRespass: Exploiting the Many Sides of Target Row Refresh"
Proceedings of the 41st IEEE Symposium on Security and Privacy (S&P), San Francisco,
CA, USA, May 2020.
[Slides (pptx) (pdf)]
[Lecture Slides (pptx) (pdf)]
[Talk Video (17 minutes)]
[Lecture Video (59 minutes)]
[Source Code]
[Web Article]
Best paper award.
Pwnie Award 2020 for Most Innovative Research. Pwnie Awards 2020

117

http://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20.pdf
https://www.ieee-security.org/TC/SP2020/
http://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20-talk.pptx
http://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20-talk.pdf
https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture5a-rowhammerin2020-trrespass-afterlecture.pptx
https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture5a-rowhammerin2020-trrespass-afterlecture.pdf
https://www.youtube.com/watch?v=u2C0prK-w7Q
https://www.youtube.com/watch?v=pwRw7QqK_qA
https://github.com/vusec/trrespass
https://www.vusec.net/projects/trrespass/
https://pwnies.com/winners/

Hard to Guarantee RowHammer-Free Chips

◼ Lucian Cojocar, Jeremie Kim, Minesh Patel, Lillian Tsai, Stefan Saroiu,
Alec Wolman, and Onur Mutlu,
"Are We Susceptible to Rowhammer? An End-to-End
Methodology for Cloud Providers"
Proceedings of the 41st IEEE Symposium on Security and
Privacy (S&P), San Francisco, CA, USA, May 2020.
[Slides (pptx) (pdf)]
[Talk Video (17 minutes)]

118

https://people.inf.ethz.ch/omutlu/pub/rowhammer-vulnerability-testing-methodology-for-cloud_ieee_security_privacy20.pdf
https://www.ieee-security.org/TC/SP2020/
https://people.inf.ethz.ch/omutlu/pub/rowhammer-vulnerability-testing-methodology-for-cloud_ieee_security_privacy20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/rowhammer-vulnerability-testing-methodology-for-cloud_ieee_security_privacy20-talk.pdf
https://www.youtube.com/watch?v=XP1SvxmJoHE

Industry-Adopted Solutions Are Very Poor

◼ Hasan Hassan, Yahya Can Tugrul, Jeremie S. Kim, Victor van der Veen, Kaveh Razavi,
and Onur Mutlu,
"Uncovering In-DRAM RowHammer Protection Mechanisms: A New
Methodology, Custom RowHammer Patterns, and Implications"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO),
Virtual, October 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (25 minutes)]
[Lightning Talk Video (100 seconds)]
[arXiv version]

119

https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=YkBR9yeLHRs&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=11
https://www.youtube.com/watch?v=HHxeuWVqq8w&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=5
https://arxiv.org/abs/2110.10603

BlockHammer Solution in 2021

◼ A. Giray Yaglikci, Minesh Patel, Jeremie S. Kim, Roknoddin Azizi, Ataberk Olgun,
Lois Orosa, Hasan Hassan, Jisung Park, Konstantinos Kanellopoulos, Taha
Shahroodi, Saugata Ghose, and Onur Mutlu,
"BlockHammer: Preventing RowHammer at Low Cost by Blacklisting
Rapidly-Accessed DRAM Rows"
Proceedings of the 27th International Symposium on High-Performance
Computer Architecture (HPCA), Virtual, February-March 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Talk Video (22 minutes)]
[Short Talk Video (7 minutes)]

120

https://people.inf.ethz.ch/omutlu/pub/BlockHammer_preventing-DRAM-rowhammer-at-low-cost_hpca21.pdf
https://www.hpca-conf.org/2021/
https://people.inf.ethz.ch/omutlu/pub/BlockHammer-preventing-rowhammer-at-low-cost-by-blacklisting-rapidly-accessed-dram-rows_hpca21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/BlockHammer-preventing-rowhammer-at-low-cost-by-blacklisting-rapidly-accessed-dram-rows_hpca21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/BlockHammer-preventing-rowhammer-at-low-cost-by-blacklisting-rapidly-accessed-dram-rows_hpca21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/BlockHammer-preventing-rowhammer-at-low-cost-by-blacklisting-rapidly-accessed-dram-rows_hpca21-short-talk.pdf
https://www.youtube.com/watch?v=cWbW4qoDFds
https://www.youtube.com/watch?v=40SXSKXW5kY

Google’s Recent RowHammer Attack (May 2021)

121https://security.googleblog.com/2021/05/introducing-half-double-new-hammering.html

Google’s Recent RowHammer Attack (May 2021)

◼ Given three consecutive rows A, B, and C, we were able to attack C by directing a very large number of
accesses to A, along with just a handful (~dozens) to B.

◼ Based on our experiments, accesses to B have a non-linear gating effect, in which they appear to
“transport” the Rowhammer effect of A onto C.

◼ This is likely an indication that the electrical coupling responsible for Rowhammer is a property of
distance, effectively becoming stronger and longer-ranged as cell geometries shrink down.

122https://security.googleblog.com/2021/05/introducing-half-double-new-hammering.html

The Story of RowHammer Lecture …
◼ Onur Mutlu,

"The Story of RowHammer"
Keynote Talk at Secure Hardware, Architectures, and Operating Systems
Workshop (SeHAS), held with HiPEAC 2021 Conference, Virtual, 19 January 2021.
[Slides (pptx) (pdf)]
[Talk Video (1 hr 15 minutes, with Q&A)]

123https://www.youtube.com/watch?v=sgd7PHQQ1AI

https://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-SEHAS-Keynote-HiPEAC-January-19-2021-final.pptx
https://www.youtube.com/watch?v=JV1uc1kOt04
https://www.hipeac.net/2021/budapest/#/
https://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-SEHAS-Keynote-HiPEAC-January-19-2021-final.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-SEHAS-Keynote-HiPEAC-January-19-2021-final.pdf
https://www.youtube.com/watch?v=sgd7PHQQ1AI
https://www.youtube.com/watch?v=sgd7PHQQ1AI

The Story of RowHammer in 20 Minutes
◼ Onur Mutlu,

"The Story of RowHammer"
Invited Talk at the Workshop on Robust and Safe Software 2.0 (RSS2), held with the
27th International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Virtual, 28 February 2022.
[Slides (pptx) (pdf)]

124https://www.youtube.com/watch?v=ctKTRyi96Bk

https://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-RSS2-ASPLOS-February-28-2022.pptx
https://rss2workshop.github.io/
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-RSS2-ASPLOS-February-28-2022.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-RSS2-ASPLOS-February-28-2022.pdf
https://www.youtube.com/watch?v=ctKTRyi96Bk

Detailed Lectures on RowHammer

◼ Computer Architecture, Fall 2020, Lecture 4b

❑ RowHammer (ETH Zürich, Fall 2020)

❑ https://www.youtube.com/watch?v=KDy632z23UE&list=PL5Q2soXY2Zi9xidyIgBxUz
7xRPS-wisBN&index=8

◼ Computer Architecture, Fall 2020, Lecture 5a

❑ RowHammer in 2020: TRRespass (ETH Zürich, Fall 2020)

❑ https://www.youtube.com/watch?v=pwRw7QqK_qA&list=PL5Q2soXY2Zi9xidyIgBxU
z7xRPS-wisBN&index=9

◼ Computer Architecture, Fall 2020, Lecture 5b

❑ RowHammer in 2020: Revisiting RowHammer (ETH Zürich, Fall 2020)

❑ https://www.youtube.com/watch?v=gR7XR-
Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10

◼ Computer Architecture, Fall 2020, Lecture 5c

❑ Secure and Reliable Memory (ETH Zürich, Fall 2020)

❑ https://www.youtube.com/watch?v=HvswnsfG3oQ&list=PL5Q2soXY2Zi9xidyIgBxUz
7xRPS-wisBN&index=11

125https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=KDy632z23UE&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=8
https://www.youtube.com/watch?v=pwRw7QqK_qA&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=9
https://www.youtube.com/watch?v=gR7XR-Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10
https://www.youtube.com/watch?v=HvswnsfG3oQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=11
https://www.youtube.com/onurmutlulectures

I Talk A Lot About RowHammer

126Art credit: Malti Redeker (https://www.instagram.com/malti.red/)

https://www.instagram.com/malti.red/

Takeaway and Food for Thought

◼ If hardware is unreliable, higher-level security and protection
mechanisms (as in virtual memory) may be compromised

◼ The root of security and trust is at the very low levels…

❑ in the hardware itself

❑ RowHammer, Spectre, Meltdown are recent key examples…

◼ What should we assume the hardware provides?

◼ How do we keep hardware reliable?

◼ How do we design secure hardware?

◼ How do we design secure hardware with high performance,
high energy efficiency, low cost, convenient programming?

127
Plenty of exciting and highly-relevant research questions

Virtual Memory

Summary

Virtual Memory Summary

◼ Virtual memory gives the illusion of “infinite” capacity

◼ A subset of virtual pages are located in physical memory

◼ A page table maps virtual pages to physical pages – this is
called address translation

◼ A TLB speeds up address translation

◼ Multi-level page tables keep the page table size in check

◼ Using different page tables for different programs provides
memory protection

129

There is More… We Will Not Cover…

◼ How to handle virtualized systems?

❑ Virtual machines running programs

❑ Hypervisors

◼ Alternative page table structures

❑ Hashed page tables

❑ Inverted page tables

❑ …

◼ …

130

Virtual Memory in Virtualized Environments

◼ Virtualized environments (e.g., Virtual Machines) need to
have an additional level of address translation

131

Guest - OS

Host - OS

CPU

Guest
Virtual

Guest-Physical /
Host-Virtual

Host
Physical

Virtual Memory: Parting Thoughts

◼ VM is one of the most successful examples of

❑ architectural support for programmers

❑ how to partition work between hardware and software

❑ hardware/software cooperation

❑ programmer/architect tradeoff

◼ Going forward: How does virtual memory scale into the
future? Four key trends:

❑ Increasing, huge physical memory sizes (local & remote)

❑ Hybrid physical memory systems (DRAM + NVM + SSD)

❑ Many accelerators in the system addressing physical memory

❑ Virtualized systems (hypervisors, software virtualization, local
and remote memories)

132

Rethinking Virtual Memory
◼ Nastaran Hajinazar, Pratyush Patel, Minesh Patel, Konstantinos Kanellopoulos, Saugata Ghose, Rachata

Ausavarungnirun, Geraldo Francisco de Oliveira Jr., Jonathan Appavoo, Vivek Seshadri, and Onur Mutlu,
"The Virtual Block Interface: A Flexible Alternative to the Conventional Virtual Memory
Framework"
Proceedings of the 47th International Symposium on Computer Architecture (ISCA), Virtual, June 2020.
[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[ARM Research Summit Poster (pptx) (pdf)]
[Talk Video (26 minutes)]
[Lightning Talk Video (3 minutes)]
[Lecture Video (43 minutes)]

133

https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20.pdf
http://iscaconf.org/isca2020/
https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20-ARM-Research-Summit-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20-ARM-Research-Summit-poster.pdf
https://www.youtube.com/watch?v=7c6LgVrCwPo
https://youtu.be/04l-Zlaue0k
https://www.youtube.com/watch?v=PPR7YrBi7IQ

Lectures on Virtual Memory

134
https://www.youtube.com/watch?v=2RhGMpY18zw&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=22

https://www.youtube.com/watch?v=2RhGMpY18zw&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=22

Lectures on Virtual Memory

135https://www.youtube.com/watch?v=PPR7YrBi7IQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=24

https://www.youtube.com/watch?v=PPR7YrBi7IQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=24

Lectures on Virtual Memory

◼ Computer Architecture, Spring 2015, Lecture 20

❑ Virtual Memory (CMU, Spring 2015)

❑ https://www.youtube.com/watch?v=2RhGMpY18zw&list=PL5PHm2jkkXmi5CxxI7b3
JCL1TWybTDtKq&index=22

◼ Computer Architecture, Fall 2020, Lecture 12c

❑ The Virtual Block Interface (ETH, Fall 2020)

❑ https://www.youtube.com/watch?v=PPR7YrBi7IQ&list=PL5Q2soXY2Zi9xidyIgBxUz7
xRPS-wisBN&index=24

136https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=2RhGMpY18zw&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=22
https://www.youtube.com/watch?v=PPR7YrBi7IQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=24
https://www.youtube.com/onurmutlulectures

Some Issues in Virtual Memory

Three Major Issues in Virtual Memory

1. How large is the page table and how do we store and
access it?

2. How can we speed up translation & access control check?

3. When do we do the translation in relation to cache access?

◼ There are many other issues we will not cover in detail

❑ What happens on a context switch?

❑ How can you handle multiple page sizes?

❑ …

138

Virtual Memory Issue I

◼ How large is the page table?

◼ Where do we store it?

❑ In hardware?

❑ In physical memory? (Where is the PTBR?)

❑ In virtual memory? (Where is the PTBR?)

◼ How can we store it efficiently without requiring physical
memory that can store all page tables?

❑ Idea: multi-level page tables

❑ Only the first-level page table has to be in physical memory

❑ Remaining levels are in virtual memory (but get cached in
physical memory when accessed)

139

Recall: Solution: Multi-Level Page Tables

140

Example from the x86 architecture

Page Table Access

◼ How do we access the Page Table?

◼ Page Table Base Register (CR3 in x86)

◼ Page Table Limit Register

◼ If VPN is out of the bounds (exceeds PTLR) then the
process did not allocate the virtual page → access control

exception

◼ Page Table Base Register is part of a process’s context

❑ Just like PC, status registers, general purpose registers

❑ Needs to be loaded when the process is context-switched in

141

More on x86 Page Tables (I): Small Pages

142

More on x86 Page Tables (II): Large Pages

143

x86 Page Table Entries

144

x86 PTE (4KB page)

145

x86 Page Directory Entry (PDE)

146

X86-64 Page Table Entry Structure

147
Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System Programming Guide, Part 1

X86-64 Page Table: Accessing 4KB pages

148
Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System Programming Guide, Part 1

X86-64 Page Table: Accessing 2MB pages

149
Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System Programming Guide, Part 1

X86-64 Page Table: Accessing 1GB pages

150
Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System Programming Guide, Part 1

Three Major Issues in Virtual Memory

1. How large is the page table and how do we store and
access it?

2. How can we speed up translation & access control check?

3. When do we do the translation in relation to cache access?

◼ There are many other issues we will not cover in detail

❑ What happens on a context switch?

❑ How can you handle multiple page sizes?

❑ …

151

Recall: Translation Lookaside Buffer (TLB)

◼ Idea: Cache the Page Table Entries (PTEs) in a hardware
structure in the processor to speed up address translation

◼ Translation lookaside buffer (TLB)

❑ Small cache of most recently used Page Table Entries, i.e.,
recently used Virtual-to-Physical translations

❑ Reduces the number of memory accesses required for most
instruction fetches and loads/stores to only one TLB access

152

Virtual Memory Issue II

◼ How fast is the address translation?

❑ How can we make it fast?

◼ Idea: Use a hardware structure that caches PTEs →

Translation Lookaside Buffer (TLB)

◼ What should be done on a TLB miss?

❑ What TLB entry to replace?

❑ Who handles the TLB miss? HW vs. SW?

◼ What should be done on a page fault?

❑ What virtual page to replace from physical memory?

❑ Who handles the page fault? HW vs. SW?

153

154

Speeding up Translation with a TLB

◼ A cache of address translations

❑ Avoids accessing the page table on every memory access

◼ Index = lower bits of VPN

(virtual page #)

◼ Tag = unused bits of VPN +

process ID

◼ Data = a page-table entry

◼ Status = valid, dirty

The usual cache design choices

(placement, replacement policy,

multi-level, etc.) apply here too.

Handling TLB Misses

◼ The TLB is small; it cannot hold all PTEs

❑ Some translation requests will inevitably miss in the TLB

❑ Must access memory to find the required PTE

◼ Called walking the page table

◼ Large performance penalty

◼ Better TLB management & prefetching can reduce TLB misses

◼ Who handles TLB misses?

❑ Hardware or software?

Handling TLB Misses (II)

◼ Approach #1. Hardware-Managed (e.g., x86)

❑ The hardware does the page walk

❑ The hardware fetches the PTE and inserts it into the TLB

◼ If the TLB is full, the entry replaces another entry

❑ Done transparently to system software

❑ Can employ specialized structures and caches

◼ E.g., page walkers and page walk caches

◼ Approach #2. Software-Managed (e.g., MIPS)

❑ The hardware raises an exception

❑ The operating system does the page walk

❑ The operating system fetches the PTE

❑ The operating system inserts/evicts entries in the TLB

Handling TLB Misses (III)

◼ Hardware-Managed TLB

+ No exception on TLB miss. Instruction just stalls

+ Independent instructions may execute and help tolerate latency

+ No extra instructions/data brought into caches

-- Page directory/table organization is etched into the system:
OS has little flexibility in deciding these

◼ Software-Managed TLB

+ The OS can define the page table oganization

+ More sophisticated TLB replacement policies are possible

-- Need to generate an exception → performance overhead due to

pipeline flush, exception handler execution, extra instructions
brought to caches

Three Major Issues in Virtual Memory

1. How large is the page table and how do we store and
access it?

2. How can we speed up translation & access control check?

3. When do we do the translation in relation to cache access?

◼ There are many other issues we will not cover in detail

❑ What happens on a context switch?

❑ How can you handle multiple page sizes?

❑ …

158

Teaser: Virtual Memory Issue III

◼ When do we do the address translation?

❑ Before or after accessing the L1 cache?

159

Address Translation and Caching

◼ When do we do the address translation?

❑ Before or after accessing the L1 cache?

◼ In other words, is the cache virtually addressed or
physically addressed?

❑ Virtual versus physical cache

◼ What are the issues with a virtually addressed cache?

◼ Synonym problem:

❑ Two different virtual addresses can map to the same physical
address → same physical address can be present in multiple
locations in the cache → can lead to inconsistency in data

160

Homonyms and Synonyms

◼ Homonym: Same VA can map to two different PAs

❑ Why?

◼ VA is in different processes

◼ Synonym: Different VAs can map to the same PA

❑ Why?

◼ Different pages can share the same physical frame within or
across processes

◼ Reasons: shared libraries, shared data, copy-on-write pages
within the same process, …

◼ Do homonyms and synonyms create problems when we
have a cache?

❑ Is the cache virtually or physically addressed?

161

Cache-VM Interaction

CPU

TLB

cache

lower
hier.

physical cache

CPU

cache

tlb

lower
hier.

virtual (L1) cache

VA

PA

CPU

cache tlb

lower
hier.

virtual-physical cache

VA

PA

VA

PA

See backup slides for more

A Modern Example

Virtual Memory System

Evolution of Address Translation

164

Simple Address Translation Modern Address Translation

L1 Data
TLB

L1 Instruction
TLB

 L1 Data Cache

L1 Data
TLB

L1 ITLB

PTW
Cache

L2 TLB

PTW Walker

 L1 Data CacheSoftware
Page Table Walker

Memory Management Unit

◼ The Memory Management Unit (MMU) is responsible
for resolving address translation requests

❑ One MMU per core (usually)

◼ MMU typically has three key components:

❑ Translation Lookaside Buffers that cache recently-used
virtual-to-physical translations (PTEs)

❑ Page Table Walk Caches that offer fast access to the
intermediate levels of a multi-level page table

❑ Hardware Page Table Walker that sequentially accesses
the different levels of the Page Table to fetch the required PTE

165

Intel Skylake: MMU

166

L1 Instruction
TLB

L1 Data
TLB

L2 Unified
TLB

Hardware
Page Table Walker

Page Walk
Caches

https://www.7-cpu.com/cpu/Skylake.html

https://www.7-cpu.com/cpu/Skylake.html

Intel Skylake: L1 Data TLB

167

L1 Data
TLB

Intel Skylake: L1 Data TLB

◼ Separate L1 Data TLB structures for 4KB, 2MB, and 1GB pages

◼ L1 DTLB

❑ 4KB: 64-entry, 4-way, 1 cycle access, 9 cycle miss

❑ 2MB: 32-entry, 4-way, 1 cycle access, 9 cycle miss

❑ 1GB: 4 entry, fully-associative

168

◼ Virtual-to-physical mappings are inserted in the
corresponding TLB after a TLB miss

◼ During a translation request, all three L1 TLBs are looked
up in parallel

https://www.7-cpu.com/cpu/Skylake.html

https://www.7-cpu.com/cpu/Skylake.html

L1 Data TLB: Parallel Lookup Example

169

L1 4KB TLB

L1 2MB TLB

L1 1GB TLB

Set 0

Set 1

Set 2

Set 3

Set 0

Set 1 Set 0

Set 1

001010100100101000000000011100000001
Virtual

Address

31th bit to
index 1GB

22th bit to
index 2MB

13-14th bit to
index 4KB

Intel Skylake: L2 Unified I/D TLB

170

L2 Unified
TLB

Intel Skylake: L2 Unified TLB

171

◼ L2 Unified TLB caches translations for both instr. and data

❑ private per individual core

◼ 2 separate L2 TLB structures for 4KB/2MB and 1GB pages

◼ L2 TLB

❑ 4KB/2MB: 1536-entry, 12-way, 14 cycle access, 9 cycle miss

❑ 1GB: 16-entry, 4-way, 1 cycle access, 9 cycle miss penalty

◼ Challenge: How can the L2 TLB support both 4KB and 2MB
pages using a single structure?

(Not enough publicly available information for Intel Skylake)

https://www.7-cpu.com/cpu/Skylake.html

https://www.7-cpu.com/cpu/Skylake.html

L2 Unified TLB: Accessing the TLB

172

◼ The 4KB/2MB structure of the L2 TLB is probed in 2 steps

◼ Step 1: Assume the page size is 4KB, calculate the index bits
and access the L2 TLB

❑ If the tag matches, it is a hit. If the tag does not match, go to
Step 2.

◼ Step 2: Assume the page size is 2MB, re-calculate the index
and access the L2 TLB.

❑ If the tag matches, it is a hit. If the tag does not match, it is an
L2 TLB miss.

◼ General algorithm:

Re-calculate index and probe TLB for all remaining page sizes

Similar to “associativity in time” (also called pseudo-associativity)

Step 1: Calculate Index for 4KB

173

L2 TLB

Set 0

Set 1

Set 2

Set 3

001010100100101000000000011100000001
Virtual

Address

13-14th bit to
index 4KB

Step 2: Re-calculate Index for 2MB

174

L2 TLB

Set 0

Set 1

Set 2

Set 3

001010100100101000000000011100000001
Virtual

Address

22th-23th bit to
index 2MB

L2 TLB: N-Step Index Re-Calculation

◼ Pros:

+ Simple and practical implementation

175

◼ Cons:

- Varying L2 TLB hit latency (faster for 4KB, slower for 2MB)

- Slower identification of L2 TLB Miss as all page sizes need to be
tested

◼ Potential Optimizations:

1. Parallel Lookup: Look up for 4KB and 2MB pages in parallel

2. Page Size Prediction: Predict the probing order

Tradeoffs are similar to “associativity in time” (also called pseudo-associativity)

Hardware Page Table Walker

176

Hardware
Page Table Walker

Hardware Page Table Walker (I)

◼ A per-core hardware component that walks the multi-level
page table to avoid expensive context switches & SW handling

◼ HW PTW consists of 2 components:

❑ A state machine that is designed to be aware of the

architecture’s page table structure

❑ Registers that keep track of outstanding TLB misses

177

Hardware Page Table Walker

STATE
MACHINE

TLB Miss Registers

Hardware Page Table Walker (II)

◼ Pros:

+ Avoids the need for context switch on TLB miss

+ Overlaps TLB misses with useful computation

+ Supports concurrent TLB misses

178

◼ Cons:

- Hardware area and power overheads

- Limited flexibility compared to software page table walk

Hardware Page Table Walker (III)

179

◼ PTW accesses the CR3 register that maintains information
about the physical address of the root of the page table
(PML4)

◼ PTW concatenates the content of CR3 with the first 9 bits
of the virtual address

Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System Programming Guide, Part 1

Hardware Page Table Walker (IV)

◼ Hardware PTWs allow overlapping TLB misses with useful
computation

180

Software PTW

Hardware PTW
Saved Cycles

LOAD A TLB Miss Context Switch – TLB Miss Handler LOAD B TLB Hit

LOAD A TLB Miss

LOAD B TLB Hit

Page Table Walk

VPN = 1 VPN = 5

VPN = 1

VPN = 5

Page Walk Caches

181

Page Walk
Caches

Page Walk Caches

182

◼ Page Walk Caches cache translations from non-leaf levels
of a multi-level page table to accelerate page table walks

◼ Page Walk Caches are low-latency caches that provide
faster access to the page table levels

◼ compared to accessing the regular cache/memory hierarchy
for every page table walk

Intel Skylake: MMU

183

L1 Instruction
TLB

L1 Data
TLB

L2 Unified
TLB

Hardware
Page Table Walker

Page Walk
Caches

Modern Virtual Memory Designs

A14 “Firestorm”
(iPhone 12 Pro)

Intel/AMD/ARM

Decode
width

8 4, 5 (Samsung M3), 5 (Cortex-X1)

ROB size 630 352 (Intel Willow Cove)

Load/store
queue size

~148 outstanding loads
~106 outstanding stores

Intel Sunny Cove (128-LQ, 72-SQ)
AMD Zen3 (64-LQ, 44-SQ)

L1-TLB 256 entries 64 entries

L2-TLB 3072 entries 1536 entries

Page size 16KB 4KB

L1-I cache 192KB 48KB (Intel Ice Lake)

L1-D cache 128KB, 3-cycles 32KB (Intel/AMD), 4-cycles

L2 cache 8MB shared across two big-cores,
~16-cycles

1MB (Intel Cascade Lake)

L3 cache 16MB shared across all CPU cores
and integrated GPU

1.375 MB/core

184https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2
https://news.ycombinator.com/item?id=25257932

https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2
https://news.ycombinator.com/item?id=25257932

Virtual Memory

Summary

Virtual Memory Summary

◼ Virtual memory gives the illusion of “infinite” capacity

◼ A subset of virtual pages are located in physical memory

◼ A page table maps virtual pages to physical pages – this is
called address translation

◼ A TLB speeds up address translation

◼ Multi-level page tables keep the page table size in check

◼ Using different page tables for different programs provides
memory protection

186

There is More… We Will Not Cover…

◼ How to handle virtualized systems?

❑ Virtual machines running programs

❑ Hypervisors

◼ Alternative page table structures

❑ Hashed page tables

❑ Inverted page tables

❑ …

◼ …

187

Virtual Memory in Virtualized Environments

◼ Virtualized environments (e.g., Virtual Machines) need to
have an additional level of address translation

188

Guest - OS

Host - OS

CPU

Guest
Virtual

Guest-Physical /
Host-Virtual

Host
Physical

Virtual Memory: Parting Thoughts

◼ VM is one of the most successful examples of

❑ architectural support for programmers

❑ how to partition work between hardware and software

❑ hardware/software cooperation

❑ programmer/architect tradeoff

◼ Going forward: How does virtual memory scale into the
future? Four key trends:

❑ Increasing, huge physical memory sizes (local & remote)

❑ Hybrid physical memory systems (DRAM + NVM + SSD)

❑ Many accelerators in the system addressing physical memory

❑ Virtualized systems (hypervisors, software virtualization, local
and remote memories)

189

Rethinking Virtual Memory
◼ Nastaran Hajinazar, Pratyush Patel, Minesh Patel, Konstantinos Kanellopoulos, Saugata Ghose, Rachata

Ausavarungnirun, Geraldo Francisco de Oliveira Jr., Jonathan Appavoo, Vivek Seshadri, and Onur Mutlu,
"The Virtual Block Interface: A Flexible Alternative to the Conventional Virtual Memory
Framework"
Proceedings of the 47th International Symposium on Computer Architecture (ISCA), Virtual, June 2020.
[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[ARM Research Summit Poster (pptx) (pdf)]
[Talk Video (26 minutes)]
[Lightning Talk Video (3 minutes)]
[Lecture Video (43 minutes)]

190

https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20.pdf
http://iscaconf.org/isca2020/
https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20-ARM-Research-Summit-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20-ARM-Research-Summit-poster.pdf
https://www.youtube.com/watch?v=7c6LgVrCwPo
https://youtu.be/04l-Zlaue0k
https://www.youtube.com/watch?v=PPR7YrBi7IQ

Lectures on Virtual Memory

191https://www.youtube.com/watch?v=2RhGMpY18zw&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=22

https://www.youtube.com/watch?v=2RhGMpY18zw&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=22

Lectures on Virtual Memory

192https://www.youtube.com/watch?v=PPR7YrBi7IQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=24

https://www.youtube.com/watch?v=PPR7YrBi7IQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=24

Lectures on Virtual Memory

◼ Computer Architecture, Spring 2015, Lecture 20

❑ Virtual Memory (CMU, Spring 2015)

❑ https://www.youtube.com/watch?v=2RhGMpY18zw&list=PL5PHm2jkkXmi5CxxI7b3
JCL1TWybTDtKq&index=22

◼ Computer Architecture, Fall 2020, Lecture 12c

❑ The Virtual Block Interface (ETH, Fall 2020)

❑ https://www.youtube.com/watch?v=PPR7YrBi7IQ&list=PL5Q2soXY2Zi9xidyIgBxUz7
xRPS-wisBN&index=24

193https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=2RhGMpY18zw&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=22
https://www.youtube.com/watch?v=PPR7YrBi7IQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=24
https://www.youtube.com/onurmutlulectures

Computer Architecture

Lecture 29: Virtual Memory

Prof. Onur Mutlu

ETH Zürich

Fall 2022

11 January 2023

Backup Slides

More on

Issues in Virtual Memory

Virtual Memory and Cache Interaction

Address Translation and Caching

◼ When do we do the address translation?

❑ Before or after accessing the L1 cache?

◼ In other words, is the cache virtually addressed or
physically addressed?

❑ Virtual versus physical cache

◼ What are the issues with a virtually addressed cache?

◼ Synonym problem:

❑ Two different virtual addresses can map to the same physical
address → same physical address can be present in multiple
locations in the cache → can lead to inconsistency in data

198

Homonyms and Synonyms

◼ Homonym: Same VA can map to two different PAs

❑ Why?

◼ VA is in different processes

◼ Synonym: Different VAs can map to the same PA

❑ Why?

◼ Different pages can share the same physical frame within or
across processes

◼ Reasons: shared libraries, shared data, copy-on-write pages
within the same process, …

◼ Do homonyms and synonyms create problems when we
have a cache?

❑ Is the cache virtually or physically addressed?

199

Cache-VM Interaction

200

CPU

TLB

cache

lower
hier.

physical cache

CPU

cache

tlb

lower
hier.

virtual (L1) cache

VA

PA

CPU

cache tlb

lower
hier.

virtual-physical cache

VA

PA

VA

PA

Physical Cache

201

Virtual Cache

202

Virtual-Physical Cache

203

Virtually-Indexed Physically-Tagged

◼ If (index-bits + byte-in-block-bits < page-offset-bits), the cache
index bits come only from page offset (same in VA and PA)

❑ Also implies Cache Size ≤ (page size associativity)

◼ If both cache and TLB are on chip

❑ index both arrays concurrently using VA bits

❑ check cache tag (physical) against TLB output at the end

204

VPN Page Offset

TLB

PPN

Index BiB

physical
cache

tag data=

cache hit?TLB hit?

Virtually-Indexed Physically-Tagged

◼ If (index-bits + byte-in-block-bits < page-offset-bits), the cache
index bits include VPN Synonyms can cause problems

❑ The same physical address can exist in two locations

◼ Solutions?

205

VPN Page Offset

TLB

PPN

Index BiB

physical
cache

tag data=

cache hit?TLB hit?

a

Some Solutions to the Synonym Problem

◼ Limit cache size to (page size times associativity)

❑ get index from page offset

◼ On a write to a block, search all possible indices that can
contain the same physical block, and update/invalidate

❑ Used in Alpha 21264, MIPS R10K

◼ Restrict page placement in OS

❑ make sure index(VA) = index(PA)

❑ Called page coloring

❑ Used in many SPARC processors

206

◼ 32 KB, 64B cacheline size, 8-way associative, 64 sets

◼ Virtually-indexed physically-tagged (VIPT)

◼ #set-index bits (6) + #byte-in-block-bits (6) = log2(Page Size)

❑ No synonym problem

◼ “SEESAW: Using Superpages to Improve VIPT Caches, Parasar+, ISCA’18

◼ https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)

◼ https://uops.info/cache.html

◼ https://www.7-cpu.com/cpu/Skylake.html

L1-D Cache in Intel Skylake

207

https://www.cs.yale.edu/homes/abhishek/mparasar-isca18.pdf
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)
https://uops.info/cache.html
https://www.7-cpu.com/cpu/Skylake.html

An Exercise (I)

208

209

An Exercise (II)

210

An Exercise (Concluded)

211

A Potpourri of Issues

Trade-Offs in Page Size

◼ Large page size (e.g., 1GB)

❑ Pro: Fewer PTEs required ➔ Saves memory space

❑ Pro: Fewer TLB misses ➔ Improves performance

❑ Con: Cannot have fine-grained permissions

❑ Con: Large transfers to/from disk

◼ Even when only 1KB is needed, 1GB must be transferred

◼ Waste of bandwidth/energy

◼ Reduces performance

❑ Con: Internal fragmentation

◼ Even when only 1KB is needed, 1GB must be allocated

◼ Waste of space

◼ Q: What is external fragmentation?

Some System Software Tasks for VM

◼ Keeping track of which physical frames are free

◼ Allocating free physical frames to virtual pages

◼ Page replacement policy

❑ When no physical frame is free, what should be removed?

◼ Sharing pages between processes

◼ Copy-on-write optimization

◼ Page-flip optimization

214

Virtual Memory in Virtualized Environments

◼ Virtualized environments (e.g. Virtual Machines) need to
have an additional level of address translation

215

Guest - OS

Host - OS

CPU

Guest
Virtual

Guest-Physical /
Host-Virtual

Host
Physical

Shadow Paging

◼ System maintains a new shadow page table which maps
guest-virtual page directly to host-physical page

◼ Guest-virtual to Guest-physical page table is read-only for
the Guest OS

◼ Pros:

+ Fast TLB Miss / Page Table Walk

◼ Cons:

- To maintain a consistent shadow page table, the system
handles every update to Guest and Host page tables

216

Shadow Paging

217

Guest Page Table

Host Page Table

Shadow Page Table

Guest Virtual Address

Host Physical Address

Guest Virtual Address

sCR3

Host Physical
Address

4 Memory Accesses

Nested Paging

◼ Nested paging is the widely used hardware technique to
virtualize memory in modern systems

◼ Two-dimensional hardware page-table walk:

❑ For every level of Guest Page table

◼ Perform a 4-level Host Page table walk

218

◼ Pros:

+ Easy for the system to maintain/update two page tables

◼ Cons:

- TLB Misses are more costly (up to 24 memory accesses)

Nested Paging

219

Guest Page Table

Host Page Table

Guest Physical Address

Guest Virtual Address

Host Physical Address

Guest Virtual Address

gCR3

Host Physical
Address

gPA gPA gPA gPA gPA

5 + 5 + 5 + 5 + 4 = 24 Memory Accesses

	Slide 1: Computer Architecture Lecture 29: Virtual Memory
	Slide 2: Virtual Memory
	Slide 3: Memory (Programmer’s View)
	Slide 4: Ideal Memory
	Slide 5: Abstraction: Virtual vs. Physical Memory
	Slide 6: Benefits of Automatic Management of Memory
	Slide 7: A System with Physical Memory Only
	Slide 8: The Problem
	Slide 9: Difficulties of Direct Physical Addressing
	Slide 10: Virtual Memory
	Slide 11: Basic Mechanism
	Slide 12: Virtual Memory: Conceptual View
	Slide 13: A System with Virtual Memory (Page-based)
	Slide 14
	Slide 15: Four Issues in Indirection and Mapping
	Slide 16: Virtual Pages, Physical Frames
	Slide 17: Physical Memory as a Cache
	Slide 18: Cache/Virtual Memory Analogues
	Slide 19: Virtual Memory Definitions
	Slide 20: Recall: The Memory Hierarchy
	Slide 21: Virtual to Physical Mapping
	Slide 22: Address Translation
	Slide 23: Virtual Memory Example
	Slide 24: Virtual Memory Example (Continued)
	Slide 25: Virtual Memory Example (Continued)
	Slide 26: How Do We Translate Addresses?
	Slide 27: Page Table for Our Example (Continued)
	Slide 28: Page Table Address Translation Example
	Slide 29: Page Table Address Translation Example 1
	Slide 30: Page Table Address Translation Example 1
	Slide 31: Page Table Address Translation Example 2
	Slide 32: Page Table Address Translation Example 2
	Slide 33: Issue: Page Table Size
	Slide 34: Page Table Challenges (I)
	Slide 35: Multi-Level Page Tables
	Slide 36: Multi-Level Page Table Example
	Slide 37: Multi-Level Page Table: Address Translation
	Slide 38: Multi-Level Page Tables from x86 Manual
	Slide 39: x86 Page Tables (I): Small Pages
	Slide 40: x86 Page Tables (II): Large Pages
	Slide 41: Four-level Paging in x86-64
	Slide 42: Page Table Challenges (II)
	Slide 43: Translation Lookaside Buffer (TLB)
	Slide 44: Translation Lookaside Buffer (TLB)
	Slide 45: Example Two-Entry TLB
	Slide 46: TLB is a Translation (PTE) Cache
	Slide 47: Virtual Memory Support and Examples
	Slide 48: Supporting Virtual Memory
	Slide 49: Address Translation
	Slide 50: What Is in a Page Table Entry (PTE)?
	Slide 51: Recall: Address Translation (I)
	Slide 52: Recall: Address Translation (II)
	Slide 53: Address Translation: Page Hit
	Slide 54: Address Translation: Page Fault
	Slide 55: Page Fault (“A Miss in Physical Memory”)
	Slide 56: Servicing a Page Fault
	Slide 57: Page Replacement Algorithms
	Slide 58: CLOCK Page Replacement Algorithm
	Slide 59: Cache versus Page Replacement
	Slide 60: Memory Protection
	Slide 61: Memory Protection
	Slide 62: Page Table is Per Process
	Slide 63: Access Protection/Control via Virtual Memory
	Slide 64: Page-Level Access Control (Protection)
	Slide 65: Two Functions of Virtual Memory
	Slide 66: VM as a Tool for Memory Access Protection
	Slide 67: Privilege Levels in x86
	Slide 68: Privilege Levels in x86
	Slide 69: x86: A Closer Look at the PDE/PTE
	Slide 70: Protection: PDE’s Flags
	Slide 71: Protection: PTE’s Flags
	Slide 72: Page Level Protection in x86
	Slide 73: Protection: PDE + PTE = ???
	Slide 74: Food for Thought: What If?
	Slide 75: Remember RowHammer?
	Slide 76: Remember RowHammer?
	Slide 77: Modern DRAM is Prone to Disturbance Errors
	Slide 78: A Simple Program Can Induce Many Errors
	Slide 79: A Simple Program Can Induce Many Errors
	Slide 80: A Simple Program Can Induce Many Errors
	Slide 81: A Simple Program Can Induce Many Errors
	Slide 82: A Simple Program Can Induce Many Errors
	Slide 83: Observed Errors in Real Systems
	Slide 84: One Can Take Over an Otherwise-Secure System
	Slide 85: RowHammer Security Attack Example
	Slide 86: Google’s Original RowHammer Attack
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102: Security Implications
	Slide 103: Security Implications
	Slide 104: More Security Implications (I)
	Slide 105: More Security Implications (II)
	Slide 106: More Security Implications (III)
	Slide 107: More Security Implications (IV)
	Slide 108: More Security Implications (V)
	Slide 109: More Security Implications (VI)
	Slide 110: More Security Implications (VII)
	Slide 111: More Security Implications (VIII)
	Slide 112: More Security Implications?
	Slide 113: Curious? First RowHammer Paper
	Slide 114: Curious? RowHammer: Now and Beyond…
	Slide 115: RowHammer is Getting Much Worse (2020)
	Slide 116: New RowHammer Dimensions (2021)
	Slide 117: Industry-Adopted Solutions Do Not Work
	Slide 118: Hard to Guarantee RowHammer-Free Chips
	Slide 119: Industry-Adopted Solutions Are Very Poor
	Slide 120: BlockHammer Solution in 2021
	Slide 121: Google’s Recent RowHammer Attack (May 2021)
	Slide 122: Google’s Recent RowHammer Attack (May 2021)
	Slide 123: The Story of RowHammer Lecture …
	Slide 124: The Story of RowHammer in 20 Minutes
	Slide 125: Detailed Lectures on RowHammer
	Slide 126: I Talk A Lot About RowHammer
	Slide 127: Takeaway and Food for Thought
	Slide 128: Virtual Memory Summary
	Slide 129: Virtual Memory Summary
	Slide 130: There is More… We Will Not Cover…
	Slide 131: Virtual Memory in Virtualized Environments
	Slide 132: Virtual Memory: Parting Thoughts
	Slide 133: Rethinking Virtual Memory
	Slide 134: Lectures on Virtual Memory
	Slide 135: Lectures on Virtual Memory
	Slide 136: Lectures on Virtual Memory
	Slide 137: Some Issues in Virtual Memory
	Slide 138: Three Major Issues in Virtual Memory
	Slide 139: Virtual Memory Issue I
	Slide 140: Recall: Solution: Multi-Level Page Tables
	Slide 141: Page Table Access
	Slide 142: More on x86 Page Tables (I): Small Pages
	Slide 143: More on x86 Page Tables (II): Large Pages
	Slide 144: x86 Page Table Entries
	Slide 145: x86 PTE (4KB page)
	Slide 146: x86 Page Directory Entry (PDE)
	Slide 147: X86-64 Page Table Entry Structure
	Slide 148: X86-64 Page Table: Accessing 4KB pages
	Slide 149: X86-64 Page Table: Accessing 2MB pages
	Slide 150: X86-64 Page Table: Accessing 1GB pages
	Slide 151: Three Major Issues in Virtual Memory
	Slide 152: Recall: Translation Lookaside Buffer (TLB)
	Slide 153: Virtual Memory Issue II
	Slide 154: Speeding up Translation with a TLB
	Slide 155: Handling TLB Misses
	Slide 156: Handling TLB Misses (II)
	Slide 157: Handling TLB Misses (III)
	Slide 158: Three Major Issues in Virtual Memory
	Slide 159: Teaser: Virtual Memory Issue III
	Slide 160: Address Translation and Caching
	Slide 161: Homonyms and Synonyms
	Slide 162: Cache-VM Interaction
	Slide 163: A Modern Example Virtual Memory System
	Slide 164: Evolution of Address Translation
	Slide 165: Memory Management Unit
	Slide 166: Intel Skylake: MMU
	Slide 167: Intel Skylake: L1 Data TLB
	Slide 168: Intel Skylake: L1 Data TLB
	Slide 169: L1 Data TLB: Parallel Lookup Example
	Slide 170: Intel Skylake: L2 Unified I/D TLB
	Slide 171: Intel Skylake: L2 Unified TLB
	Slide 172: L2 Unified TLB: Accessing the TLB
	Slide 173: Step 1: Calculate Index for 4KB
	Slide 174: Step 2: Re-calculate Index for 2MB
	Slide 175: L2 TLB: N-Step Index Re-Calculation
	Slide 176: Hardware Page Table Walker
	Slide 177: Hardware Page Table Walker (I)
	Slide 178: Hardware Page Table Walker (II)
	Slide 179: Hardware Page Table Walker (III)
	Slide 180: Hardware Page Table Walker (IV)
	Slide 181: Page Walk Caches
	Slide 182: Page Walk Caches
	Slide 183: Intel Skylake: MMU
	Slide 184: Modern Virtual Memory Designs
	Slide 185: Virtual Memory Summary
	Slide 186: Virtual Memory Summary
	Slide 187: There is More… We Will Not Cover…
	Slide 188: Virtual Memory in Virtualized Environments
	Slide 189: Virtual Memory: Parting Thoughts
	Slide 190: Rethinking Virtual Memory
	Slide 191: Lectures on Virtual Memory
	Slide 192: Lectures on Virtual Memory
	Slide 193: Lectures on Virtual Memory
	Slide 194: Computer Architecture Lecture 29: Virtual Memory
	Slide 195: Backup Slides
	Slide 196: More on Issues in Virtual Memory
	Slide 197: Virtual Memory and Cache Interaction
	Slide 198: Address Translation and Caching
	Slide 199: Homonyms and Synonyms
	Slide 200: Cache-VM Interaction
	Slide 201: Physical Cache
	Slide 202: Virtual Cache
	Slide 203: Virtual-Physical Cache
	Slide 204: Virtually-Indexed Physically-Tagged
	Slide 205: Virtually-Indexed Physically-Tagged
	Slide 206: Some Solutions to the Synonym Problem
	Slide 207: L1-D Cache in Intel Skylake
	Slide 208: An Exercise (I)
	Slide 209: An Exercise (II)
	Slide 210
	Slide 211: An Exercise (Concluded)
	Slide 212: A Potpourri of Issues
	Slide 213: Trade-Offs in Page Size
	Slide 214: Some System Software Tasks for VM
	Slide 215: Virtual Memory in Virtualized Environments
	Slide 216: Shadow Paging
	Slide 217: Shadow Paging
	Slide 218: Nested Paging
	Slide 219: Nested Paging

