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Virtual Memory



Memory (Programmer’s View) 
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Ideal Memory

◼ Zero access time (latency)

◼ Infinite capacity

◼ Zero cost

◼ Infinite bandwidth (to support multiple accesses in parallel)
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Abstraction: Virtual vs. Physical Memory

◼ Programmer sees virtual memory

❑ Can assume the memory is “infinite”

◼ Reality: Physical memory size is much smaller than what 
the programmer assumes

◼ The system (system software + hardware, cooperatively) 
maps virtual memory addresses to physical memory

❑ The system automatically manages the physical memory 
space transparently to the programmer

+ Programmer does not need to know the physical size of memory 
nor manage it → A small physical memory can appear as a huge 
one to the programmer → Life is easier for the programmer

-- More complex system software and architecture

A classic example of the programmer/(micro)architect tradeoff

Requires indirection and mapping between virtual and physical address spaces



Benefits of Automatic Management of Memory

◼ Programmer does not deal with physical addresses

◼ Each process has its own 

❑ Virtual address space (very large)

❑ Independent mapping of virtual→physical addresses

◼ Enables

❑ Code and data to be located anywhere in physical memory

(relocation and flexible location of data)

❑ Isolation/separation of code and data of different processes in 
physical memory

(protection and isolation)

❑ Code and data sharing between multiple processes

(sharing)
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A System with Physical Memory Only

◼ Examples:

❑ most early supercomputers

❑ early personal computers (PCs)

❑ many older embedded systems

CPU’s load or store instructions generate

physical memory addresses

CPU

0:
1:

N-1:

Memory

Physical

Addresses



The Problem
◼ Physical memory is of limited size (cost)

❑ What if you need more?

❑ Should the programmer be concerned about the size of code/data 
blocks fitting physical memory?

❑ Should the programmer manage data movement from disk to 
physical memory?

❑ Multiple programs may need the physical memory

❑ Should the programmer make sure all processes (different 
programs) can fit in physical memory?

❑ Should the programmer ensure two processes do not unintentionally 
or incorrectly use the same physical memory portion?

◼ ISA can have an address space greater than the physical 
memory size

❑ E.g., a 64-bit address space with byte addressability → 16 ExaBytes

❑ What if you do not have enough physical memory?
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Difficulties of Direct Physical Addressing

◼ Programmer needs to manage physical memory space

❑ Inconvenient & difficult

❑ More difficult when you have multiple processes

◼ Difficult to support code and data relocation

❑ Addresses are directly specified in the program

◼ Difficult to support multiple processes (esp. concurrently)

❑ Protection and isolation between multiple processes

❑ Sharing of physical memory space without problems

◼ Difficult to support data/code sharing across processes

❑ Different processes need to reference the same physical address
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Virtual Memory

◼ Idea: Give each program the illusion of a large address 
space while having a small physical memory

❑ So that the programmer does not worry about managing 
physical memory (within a process or across processes)

◼ Programmer can assume they have “infinite” amount of 
physical memory 

◼ Hardware and software cooperatively and automatically 
manage the physical memory space to provide the illusion

❑ Illusion is maintained for each independent process
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Basic Mechanism

◼ Indirection and mapping (of addresses)

◼ Address generated by each instruction in a program is a 
“virtual address”

❑ i.e., it is not the physical address used to address main 
memory

❑ called “linear address” in x86

◼ An “address translation” mechanism maps this address to a 
“physical address”

❑ called “real address” in x86

❑ Address translation mechanism can be implemented in 
hardware and software together
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Virtual Memory: Conceptual View 

◼ Illusion of large, separate address space per process

12
Kim & Mutlu, “Memory Systems,” Computing Handbook, 2014

https://people.inf.ethz.ch/omutlu/pub/memory-systems-introduction_computing-handbook14.pdf

Process 1 Process 2

Requires indirection and mapping between virtual and physical address spaces
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A System with Virtual Memory (Page-based)

◼ Address Translation: The hardware converts virtual addresses into 
physical addresses via an OS-managed lookup table (page table)

CPU

0:
1:

N-1:

Memory

0:
1:

P-1:

Page Table

Disk

Virtual

Addresses
Physical

Addresses
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Four Issues in Indirection and Mapping

◼ When to map a virtual address to a physical address?

❑ When the virtual address is first referenced by the program

◼ What is the mapping granularity?

❑ Byte? Kilo-byte? Mega-byte? Giga-byte? …

❑ Multiple granularities?

◼ Where and how to store the virtual→physical mappings?

❑ Operating system data structures? Hardware? Cooperative?

◼ What to do when physical address space is full?

❑ Evict an unlikely-to-be-needed virtual address from physical 
memory
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Virtual Pages, Physical Frames

◼ Virtual address space divided into pages

◼ Physical address space divided into frames

◼ A virtual page is mapped to

❑ A physical frame, if the page is in physical memory

❑ A location in disk, otherwise

◼ If an accessed virtual page is not in memory, but on disk

❑ Virtual memory system brings the page into a physical frame 
and adjusts the mapping → this is called demand paging

◼ Page table is the table that stores the mapping of virtual 
pages to physical frames
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Physical Memory as a Cache

◼ In other words…

◼ Physical memory is a cache for pages stored on disk

❑ In fact, it is a fully-associative cache in modern systems (a 
virtual page can potentially be mapped to any physical frame)

◼ Similar caching issues exist as we have covered earlier:

❑ Placement: where and how to place/find a page in cache?

❑ Replacement: what page to remove to make room in cache?

❑ Granularity of management: large, small, uniform pages?

❑ Write policy: what do we do about writes? Write back?
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Cache/Virtual Memory Analogues

Cache Virtual Memory

Block Page

Block Size Page Size

Block Offset Page Offset

Miss Page Fault

Index Virtual Page Number

Metadata (Tag) Store Page Table

Data Store Physical Memory
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Virtual Memory Definitions

◼ Page size: the mapping granularity of virtual→physical

address spaces

❑ dictates the amount of data transferred from hard disk to DRAM 
at once

◼ Page table: table that stores virtual→physical page mappings 

❑ lookup table used to translate virtual page addresses to physical 
frame addresses (and find where the associated data is)

◼ Address translation: the process of determining the physical 
address from the virtual address
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Recall: The Memory Hierarchy
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Virtual to Physical Mapping 

◼ Most accesses hit in physical memory

◼ Programs see the large capacity of virtual memory

21H&H, Chapter 8.4



Address Translation

22H&H, Chapter 8.4



Virtual Memory Example

◼ System:

❑ Virtual memory size: 2 GB = 231 bytes

❑ Physical memory size: 128 MB = 227 bytes

❑ Page size: 4 KB = 212 bytes
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Virtual Memory Example (Continued)

◼ System:

❑ Virtual memory size: 2 GB = 231 bytes

❑ Physical memory size: 128 MB = 227 bytes

❑ Page size: 4 KB = 212 bytes

◼ Organization:

❑ Virtual address: 31 bits

❑ Physical address: 27 bits

❑ Page offset: 12 bits

❑ # Virtual pages = 231/212 = 219 (VPN = 19 bits)

❑ # Physical pages = 227/212 = 215 (PPN = 15 bits)
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Virtual Memory Example (Continued)

25H&H, Chapter 8.4



How Do We Translate Addresses?

◼ Page table

❑ Has entry for each virtual page

◼ Each page table entry has:

❑ Valid bit: whether the virtual page is located in physical 
memory (if not, it must be fetched from the hard disk)

❑ Physical page number: where the virtual page is located in 
physical memory

❑ (Replacement policy, dirty/modified, permission/access bits)
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Page Table for Our Example (Continued)

27H&H, Chapter 8.4



Page Table Address Translation Example

0
0
1         0x0000
1         0x7FFE
0
0

0
0
1         0x0001
0
0
1         0x7FFF
0
0

V

Virtual

Address
0x00002       47C

Hit

Physical

Page Number

1219

15 12

Virtual

Page Number

P
a
g
e
 T

a
b
le

Page

Offset

Physical

Address
0x7FFF       47C
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Page Table Address Translation Example 1

◼ What is the physical 
address of virtual address 
0x5F20? 

◼ We first need to find the 
page table entry 
containing the translation 
for the corresponding 
VPN

◼ Look up the PTE at the 
address

❑ PTBR + VPN*PTE-size

0
0
1         0x0000
1         0x7FFE
0
0

0
0
1         0x0001
0
0
1         0x7FFF
0
0

V

Hit

Physical

Page Number

15

P
a
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 T

a
b
le
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Page Table Address Translation Example 1

◼ What is the physical 
address of virtual address 
0x5F20? 

❑ VPN = 5

❑ Entry 5 in page table 
indicates VPN 5 is in 
physical page 1

❑ Physical address is 
0x1F20

0
0
1         0x0000
1         0x7FFE
0
0

0
0
1         0x0001
0
0
1         0x7FFF
0
0

V

Virtual

Address
0x00005       F20

Hit

Physical

Page Number

1219

15 12

Virtual

Page Number

P
a
g
e
 T

a
b
le

Page

Offset

Physical

Address
0x0001       F20
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Page Table Address Translation Example 2

◼ What is the physical 
address of virtual address 
0x73E0? 

0
0
1         0x0000
1         0x7FFE
0
0

0
0
1         0x0001
0
0
1         0x7FFF
0
0

V

Hit

Physical

Page Number
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Page Table Address Translation Example 2

◼ What is the physical 
address of virtual address 
0x73E0? 

❑ VPN = 7

❑ Entry 7 in page table is 
invalid, so the page is 
not in physical memory

❑ The virtual page must be 
swapped into physical 
memory from disk

0
0
1         0x0000
1         0x7FFE
0
0

0
0
1         0x0001
0
0
1         0x7FFF
0
0

V

Virtual

Address
0x00007       3E0

Hit

Physical

Page Number

19

15

Virtual

Page Number

P
a
g
e
 T

a
b
le

Page

Offset
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Issue: Page Table Size

◼ Suppose 64-bit VA and 40-bit PA, how large is the page 
table?     

◼ 252 entries x ~4 bytes  254 bytes

and that is for just one process!

and the process may not be using the entire VM space!
33
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Page Table Challenges (I)

◼ Challenge 1: Page table is large

❑ at least part of it needs to be located in physical memory

❑ solution: multi-level (hierarchical) page tables

34



Multi-Level Page Tables

◼ Idea: Organize page table in a hierarchical manner such that 
only a small first-level page table has to be in physical memory

◼ Multi-level (hierarchical) page tables

35



Multi-Level Page Table Example

◼ First-level page table has to be in physical memory

◼ Only the needed second-level page tables can be kept in physical memory

36



Multi-Level Page Table: Address Translation

◼ For N-level page table, we need N page table accesses to find the PTE 

37



Multi-Level Page Tables from x86 Manual

38

Example from the x86 architecture

CR3: Control Register 3 (or Page Directory Base Register)



x86 Page Tables (I): Small Pages

39



x86 Page Tables (II): Large Pages
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Four-level Paging in x86-64
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Page Table Challenges (II)

◼ Challenge 1: Page table is large

❑ at least part of it needs to be located in physical memory

❑ solution: multi-level (hierarchical) page tables 

◼ Challenge 2: Each instruction fetch or load/store requires at 
least two memory accesses:

1. one for address translation (page table read)

2. one to access data with the physical address (after translation)

◼ Two memory accesses to service an instruction fetch or 
load/store greatly degrades execution time

❑ Num. of memory accesses increases with multi-level page tables

❑ Unless we are clever… → speed up the translation…
42



Translation Lookaside Buffer (TLB)

◼ Idea: Cache the Page Table Entries (PTEs) in a hardware 
structure in the processor to speed up address translation

◼ Translation lookaside buffer (TLB)

❑ Small cache of most recently used Page Table Entries, i.e., 
recently used Virtual-to-Physical translations

❑ Reduces the number of memory accesses required for most
instruction fetches and loads/stores to only one TLB access

43



Translation Lookaside Buffer (TLB)

◼ Page table accesses have temporal and spatial locality

❑ Memory accesses have temporal and spatial locality

❑ Large page sizes better exploit spatial locality (KBs, MBs, GBs)

❑ Consecutive instructions and loads/stores are likely to access 
same page

◼ TLB: cache of page table entries (i.e., translations)

❑ Small: accessed in ~1 cycle

❑ Typically 16 - 512 entries at level 1

❑ Usually high associativity

❑ > 90-99 % hit rates typical (depends on workload)

❑ Reduces the number of memory accesses for most instruction 
fetches and loads/stores to only one TLB access
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Example Two-Entry TLB

Hit
1

V

=

01

15 15

15

=

Hit
1Hit

0

Hit

19 19

19

Virtual

Page Number

Physical

Page Number

Entry 1

1    0x7FFFD     0x0000     1    0x00002     0x7FFF

Virtual

Address
0x00002       47C

1219

Virtual

Page Number

Page

Offset

V

Virtual

Page Number

Physical

Page Number

Entry 0

12
Physical

Address 0x7FFF       47C

TLB
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TLB is a Translation (PTE) Cache

◼ All issues we discussed in caching and prefetching lectures 
apply to TLBs

◼ Example issues:

❑ Instruction vs. Data TLBs

❑ Multi-level TLBs

❑ Associativity and size choices and tradeoffs

❑ Insertion, promotion, replacement policies

❑ What to keep in which TLB and how to decide that

❑ Prefetching into the TLBs

❑ TLB coherence

❑ Shared vs. private TLBs across cores/threads

❑ …
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Virtual Memory Support

and Examples



Supporting Virtual Memory

◼ Virtual memory requires both HW+SW support 

❑ Page Table is in memory

❑ Can be cached in special hardware structures called Translation 
Lookaside Buffers (TLBs)

◼ The hardware component is called the MMU (memory 
management unit)

❑ Includes Page Table Base Register(s), TLBs, page walkers

◼ It is the job of the software (e.g., the Operating System) to

❑ Populate page tables, decide what to replace in physical memory 

❑ Change the Page Table Base Register on context switch (to use 
the running thread’s page table)

❑ Handle page faults and ensure correct mapping
48



Address Translation

◼ How to obtain the physical address from a virtual address?

◼ Page size specified by the ISA

❑ VAX: 512 bytes

❑ Today: 4KB, 8KB, 2GB, … (small and large pages mixed 
together)

❑ Trade-offs? (remember cache lectures)

◼ Page Table contains an entry for each virtual page

❑ Called Page Table Entry (PTE)

❑ What is in a PTE?

49



What Is in a Page Table Entry (PTE)? 

50

◼ Page table is the “tag store” for the physical memory data store

❑ A mapping table between virtual memory and physical memory

◼ PTE is the “tag store entry” for a virtual page in memory

❑ Need a valid bit → to indicate validity/presence in physical memory

❑ Need tag bits (PFN) → to support translation

❑ Need bits to support replacement 

❑ Need a dirty bit to support “write back caching”

❑ Need protection bits to enable access control and protection
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Recall: Address Translation (I)

◼ Parameters

❑ P = 2p = page size (bytes)  

❑ N = 2n = Virtual-address limit

❑ M = 2m = Physical-address limit

virtual page number page offset virtual address

physical frame number page offset physical address

0p–1

address translation

pm–1

n–1 0p–1p

Page offset bits do not change as a result of translation
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Recall: Address Translation (II)

virtual page number (VPN) page offset

virtual address

physical frame number (PFN) page offset

physical address

0p–1pm–1

n–1
0

p–1p
page table 

base register 

(per process)

if valid=0

then page

not in memory

(page fault)

valid physical frame number (PFN)

VPN acts as

table index

◼ Separate (set of) page table(s) per process

◼ VPN forms index into page table (points to a page table entry)

◼ Page Table Entry (PTE) provides information about page

access
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Address Translation: Page Hit
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Address Translation: Page Fault



Page Fault (“A Miss in Physical Memory”)

◼ If a page is not in physical memory but disk

❑ Page table entry indicates virtual page not in memory

❑ Access to such a page triggers a page fault exception

❑ OS exception handler invoked to move data from disk into memory

◼ Other processes can continue executing

◼ OS has full control over page placement

CPU

Memory

Page Table

Disk

Virtual
Addresses

Physical
Addresses

CPU

Memory

Page Table

Disk

Virtual
Addresses

Physical
Addresses

Before fault After fault



Disk
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Servicing a Page Fault

1. Processor signals I/O controller

❑ Read block of length P starting 
at disk address X and store 
starting at memory address Y

2. Disk-to-mem read occurs

❑ Direct Memory Access (DMA)

❑ Under control of I/O controller

3. Controller signals completion

❑ Interrupts processor

❑ OS resumes suspended process Disk

Memory-I/O bus

Processor

Cache

Memory

I/O

controller

Reg

(2) DMA 

Transfer

(1) Initiate Block Read

(3) Read 

Done



Page Replacement Algorithms

◼ If physical memory is full (i.e., list of free physical pages is 
empty), which physical frame to replace on a page fault?

◼ Is True LRU feasible?

❑ 4GB memory, 4KB pages, how many possibilities of ordering?

◼ Modern systems use approximations of LRU

❑ E.g., the CLOCK algorithm

◼ And, more sophisticated algorithms to take into account 
“frequency” of use

❑ E.g., the ARC algorithm

❑ Megiddo and Modha, “ARC: A Self-Tuning, Low Overhead 
Replacement Cache,” FAST 2003.
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CLOCK Page Replacement Algorithm

◼ Keep a circular list of physical frames in memory (OS does)

◼ Keep a pointer (hand) to the last-examined frame in the list

◼ When a page is accessed, set the R bit in the PTE

◼ When a frame needs to be replaced, replace the first frame 
that has the reference (R) bit not set, traversing the 
circular list starting from the pointer (hand) clockwise

❑ During traversal, clear the R bits of examined frames

❑ Set the hand pointer to the next frame in the list

58



Cache versus Page Replacement

◼ Physical memory (DRAM) is a cache for disk

❑ Managed by system software via the virtual memory subsystem

◼ Page replacement is similar to cache replacement

◼ Page table is the “tag store” for physical memory data store

◼ What is the difference?

❑ Required speed of access to cache vs. physical memory

❑ Number of blocks in a cache vs. physical memory

❑ “Tolerable” amount of time to find a replacement candidate (disk 
versus memory access latency)

❑ Role of hardware versus software

59



Memory Protection



Memory Protection

◼ Multiple programs (i.e., processes) run concurrently

❑ Each process has its own page table

❑ Each process can use its entire virtual address space without 
worrying about where other programs are

◼ A process can only access physical pages mapped in its 
page table – cannot overwrite memory of another process

❑ Provides protection and isolation between processes

❑ Enables access control mechanisms per page

61



Page Table is Per Process

◼ Each process has its own virtual address space

❑ Full address space for each program

❑ Simplifies memory allocation, sharing, linking and loading

62
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Process 1:
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PP 2Address 

Translation

0
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Access Protection/Control 

via Virtual Memory



Page-Level Access Control (Protection)

◼ Not every process is allowed to access every page

❑ E.g., need supervisor (i.e., kernel) level privilege to access 
system pages

❑ E.g., may not be able to execute “instructions” in some pages

◼ Idea: Store access control information on a page basis in 
the process’s page table

◼ Enforce access control at the same time as translation

→ Virtual memory system serves two functions today

Address translation (for illusion of large physical memory)

Access control (protection)
64



Two Functions of Virtual Memory

65



VM as a Tool for Memory Access Protection
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Page Tables

Process i:

Physical AddrRead? Write?

PP 6Yes No

PP 4Yes Yes

XXXXXXXNo No

VP 0:

VP 1:

VP 2:
•
•
•

•
•
•

•
•
•

Process j:

PP 0

Memory

Physical AddrRead? Write?

PP 6Yes Yes

PP 9Yes No

XXXXXXXNo No
•
•
•

•
•
•

•
•
•

VP 0:

VP 1:

VP 2:

PP 2

PP 4

PP 6

PP 8

PP 10

PP 12

•
•
•

◼ Extend Page Table Entries (PTEs) with permission bits

◼ Check bits on each access and during a page fault

❑ If violated, generate exception (Access Protection exception)



Privilege Levels in x86
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Privilege Levels in x86

◼ Four privilege levels in x86 (referred to as rings)

❑ Ring 0: Highest privilege (operating system)

❑ Ring 1: Not widely used

❑ Ring 2: Not widely used

❑ Ring 3: Lowest privilege (user applications)

◼ Supervisor = Kernel (in modern terminology)

“Supervisor”

“User”



x86: A Closer Look at the PDE/PTE

◼ PDE: Page Directory Entry (32 bits)

◼ PTE:  Page Table Entry (32 bits)

PPNPTE Flags

&PTPDE Flags



Protection: PDE’s Flags

◼ Protects all 1024 pages in a page table



Protection: PTE’s Flags

◼ Protects one page at a time



Page Level Protection in x86

72



Protection: PDE + PTE = ???



Food for Thought: What If?

◼ Your hardware is unreliable and someone can flip the 
access protection bits

❑ such that a user-level program can gain supervisor-level 
access (i.e., access to all data on the system)

❑ by flipping the access control bit from user to supervisor!

◼ Can this happen?
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Remember RowHammer?

One can 

predictably induce errors 

in most DRAM memory chips
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Remember RowHammer?

◼ One can predictably induce bit flips in commodity DRAM chips

❑ >80% of the tested DRAM chips are vulnerable

◼ First example of how a simple hardware failure mechanism 
can create a widespread system security vulnerability
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Row of Cells

Row
Row
Row
Row

Wordline

VLOWVHIGH
Victim Row

Victim Row

Hammered Row

Repeatedly reading a row enough times (before memory gets 
refreshed) induces disturbance errors in adjacent rows in most 
real DRAM chips you can buy today

OpenedClosed
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Modern DRAM is Prone to Disturbance Errors

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM 
Disturbance Errors, (Kim et al., ISCA 2014)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf


CPU

loop:

mov (X), %eax

mov (Y), %ebx

clflush (X)  

clflush (Y)

mfence

jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

Y

X

https://github.com/CMU-SAFARI/rowhammer


CPU

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

Y

X1. Avoid cache hits
– Flush X from cache

2. Avoid row hits to X
– Read Y in another row

https://github.com/CMU-SAFARI/rowhammer


CPU

loop:

mov (X), %eax

mov (Y), %ebx

clflush (X)  

clflush (Y)

mfence

jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

Y

X

https://github.com/CMU-SAFARI/rowhammer


CPU

loop:

mov (X), %eax

mov (Y), %ebx

clflush (X)  

clflush (Y)

mfence

jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

Y

X

https://github.com/CMU-SAFARI/rowhammer


CPU

loop:

mov (X), %eax

mov (Y), %ebx

clflush (X)  

clflush (Y)

mfence

jmp loop

Y

X

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

https://github.com/CMU-SAFARI/rowhammer


A real reliability & security issue 

CPU Architecture Errors Access-Rate

Intel Haswell (2013) 22.9K 12.3M/sec

Intel Ivy Bridge (2012) 20.7K 11.7M/sec

Intel Sandy Bridge (2011) 16.1K 11.6M/sec

AMD Piledriver (2012) 59 6.1M/sec

83Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of 
DRAM Disturbance Errors,” ISCA 2014.

Observed Errors in Real Systems



One Can Take Over an Otherwise-Secure System

84

Exploiting the DRAM rowhammer bug to 
gain kernel privileges (Seaborn, 2015)

Flipping Bits in Memory Without Accessing Them: 
An Experimental Study of DRAM Disturbance Errors
(Kim et al., ISCA 2014)

http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf


RowHammer Security Attack Example
◼ “Rowhammer” is a problem with some recent DRAM devices in which 

repeatedly accessing a row of memory can cause bit flips in adjacent rows 
(Kim et al., ISCA 2014). 

❑ Flipping Bits in Memory Without Accessing Them: An Experimental Study of 
DRAM Disturbance Errors (Kim et al., ISCA 2014)

◼ We tested a selection of laptops and found that a subset of them 
exhibited the problem. 

◼ We built two working privilege escalation exploits that use this effect. 

❑ Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn+, 2015)

◼ One exploit uses rowhammer-induced bit flips to gain kernel privileges on 
x86-64 Linux when run as an unprivileged userland process. 

◼ When run on a machine vulnerable to the rowhammer problem, the 
process was able to induce bit flips in page table entries (PTEs). 

◼ It was able to use this to gain write access to its own page table, and 
hence gain read-write access to all of physical memory.
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Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn & Dullien, 2015)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html


Google’s Original RowHammer Attack

The following slides are from Mark Seaborn and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf
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This slide is from Mark Seaborn and Thomas Dullien’s BlackHat 2015 talk
https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf
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This slide is from Mark Seaborn and Thomas Dullien’s BlackHat 2015 talk
https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf
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This slide is from Mark Seaborn and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf


90
This slide is from Mark Seaborn and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf
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This slide is from Mark Seaborn and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf
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This slide is from Mark Seaborn and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf
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This slide is from Mark Seaborn and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf
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This slide is from Mark Seaborn and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf
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This slide is from Mark Seaborn and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf
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This slide is from Mark Seaborn and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf
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This slide is from Mark Seaborn and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf
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This slide is from Mark Seaborn and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf
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This slide is from Mark Seaborn and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf
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This slide is from Mark Seaborn and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf
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This slide is from Mark Seaborn and Thomas Dullien’s BlackHat 2015 talk

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf


Security Implications
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Security Implications
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More Security Implications (I)
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Source: https://lab.dsst.io/32c3-slides/7197.html

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript (DIMVA’16)

“We can gain unrestricted access to systems of website visitors.”

https://lab.dsst.io/32c3-slides/7197.html


More Security Implications (II)

105
Source: https://fossbytes.com/drammer-rowhammer-attack-android-root-devices/

Drammer: Deterministic Rowhammer
Attacks on Mobile Platforms, CCS’16 

“Can gain control of a smart phone deterministically”



More Security Implications (III)

◼ Using an integrated GPU in a mobile system to remotely 
escalate privilege via the WebGL interface 
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More Security Implications (IV)

◼ Rowhammer over RDMA (I)
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More Security Implications (V)

◼ Rowhammer over RDMA (II)
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More Security Implications (VI)

◼ IEEE S&P 2020



More Security Implications (VII)

◼ USENIX Security 2019



More Security Implications (VIII)

◼ USENIX Security 2020



More Security Implications?
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Curious? First RowHammer Paper
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◼ Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris 
Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An Experimental 
Study of DRAM Disturbance Errors"
Proceedings of the 41st International Symposium on Computer Architecture
(ISCA), Minneapolis, MN, June 2014. 
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code and 
Data] [Lecture Video (1 hr 49 mins), 25 September 2020]
One of the 7 papers of 2012-2017 selected as Top Picks in Hardware and 
Embedded Security for IEEE TCAD (link).

https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_isca14.pdf
http://cag.engr.uconn.edu/isca2014/
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pdf
https://github.com/CMU-SAFARI/rowhammer
https://www.youtube.com/watch?v=KDy632z23UE
https://wp.nyu.edu/toppicksinhardwaresecurity/


Curious? RowHammer: Now and Beyond…

◼ Onur Mutlu and Jeremie Kim,
"RowHammer: A Retrospective"
IEEE Transactions on Computer-Aided Design of Integrated Circuits and 
Systems (TCAD) Special Issue on Top Picks in Hardware and 
Embedded Security, 2019.
[Preliminary arXiv version]
[Slides from COSADE 2019 (pptx)]
[Slides from VLSI-SOC 2020 (pptx) (pdf)]
[Talk Video (30 minutes)]
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http://people.inf.ethz.ch/omutlu/pub/RowHammer-Retrospective_ieee_tcad19.pdf
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
https://arxiv.org/pdf/1904.09724.pdf
http://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-COSADE-Keynote-April-4-2019.pptx
http://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-VLSI-SOC-October-9-2020.pptx
http://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-VLSI-SOC-October-9-2020.pdf
https://www.youtube.com/watch?v=B58YT9hZM4g


RowHammer is Getting Much Worse (2020)

◼ Jeremie S. Kim, Minesh Patel, A. Giray Yaglikci, Hasan Hassan, 
Roknoddin Azizi, Lois Orosa, and Onur Mutlu,
"Revisiting RowHammer: An Experimental Analysis of Modern 
Devices and Mitigation Techniques"
Proceedings of the 47th International Symposium on Computer 
Architecture (ISCA), Valencia, Spain, June 2020.
[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (3 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20.pdf
http://iscaconf.org/isca2020/
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-lightning-talk.pdf
https://youtu.be/Lqxc4_ToMUw
https://youtu.be/wDhqi3f1a3Q


New RowHammer Dimensions (2021)
◼ Lois Orosa, Abdullah Giray Yaglikci, Haocong Luo, Ataberk Olgun, Jisung Park, Hasan Hassan, 

Minesh Patel, Jeremie S. Kim, and Onur Mutlu,
"A Deeper Look into RowHammer’s Sensitivities: Experimental Analysis of Real DRAM 
Chips and Implications on Future Attacks and Defenses"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, 
October 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (21 minutes)]
[Lightning Talk Video (1.5 minutes)]
[arXiv version]

◼
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https://people.inf.ethz.ch/omutlu/pub/ADeeperLookIntoRowhammer_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/ADeeperLookIntoRowhammer_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ADeeperLookIntoRowhammer_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ADeeperLookIntoRowhammer_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ADeeperLookIntoRowhammer_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ADeeperLookIntoRowhammer_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ADeeperLookIntoRowhammer_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=fkM32oA0u6U&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=12
https://www.youtube.com/watch?v=slFNdmPVD-Q&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=6
https://arxiv.org/abs/2110.10291


Industry-Adopted Solutions Do Not Work
◼ Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen, Onur Mutlu, 

Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi,
"TRRespass: Exploiting the Many Sides of Target Row Refresh"
Proceedings of the 41st IEEE Symposium on Security and Privacy (S&P), San Francisco, 
CA, USA, May 2020.
[Slides (pptx) (pdf)]
[Lecture Slides (pptx) (pdf)]
[Talk Video (17 minutes)]
[Lecture Video (59 minutes)]
[Source Code]
[Web Article]
Best paper award.
Pwnie Award 2020 for Most Innovative Research. Pwnie Awards 2020
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http://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20.pdf
https://www.ieee-security.org/TC/SP2020/
http://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20-talk.pptx
http://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20-talk.pdf
https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture5a-rowhammerin2020-trrespass-afterlecture.pptx
https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture5a-rowhammerin2020-trrespass-afterlecture.pdf
https://www.youtube.com/watch?v=u2C0prK-w7Q
https://www.youtube.com/watch?v=pwRw7QqK_qA
https://github.com/vusec/trrespass
https://www.vusec.net/projects/trrespass/
https://pwnies.com/winners/


Hard to Guarantee RowHammer-Free Chips 

◼ Lucian Cojocar, Jeremie Kim, Minesh Patel, Lillian Tsai, Stefan Saroiu, 
Alec Wolman, and Onur Mutlu,
"Are We Susceptible to Rowhammer? An End-to-End 
Methodology for Cloud Providers"
Proceedings of the 41st IEEE Symposium on Security and 
Privacy (S&P), San Francisco, CA, USA, May 2020.
[Slides (pptx) (pdf)]
[Talk Video (17 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/rowhammer-vulnerability-testing-methodology-for-cloud_ieee_security_privacy20.pdf
https://www.ieee-security.org/TC/SP2020/
https://people.inf.ethz.ch/omutlu/pub/rowhammer-vulnerability-testing-methodology-for-cloud_ieee_security_privacy20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/rowhammer-vulnerability-testing-methodology-for-cloud_ieee_security_privacy20-talk.pdf
https://www.youtube.com/watch?v=XP1SvxmJoHE


Industry-Adopted Solutions Are Very Poor

◼ Hasan Hassan, Yahya Can Tugrul, Jeremie S. Kim, Victor van der Veen, Kaveh Razavi, 
and Onur Mutlu,
"Uncovering In-DRAM RowHammer Protection Mechanisms: A New 
Methodology, Custom RowHammer Patterns, and Implications"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), 
Virtual, October 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (25 minutes)]
[Lightning Talk Video (100 seconds)]
[arXiv version]
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https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=YkBR9yeLHRs&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=11
https://www.youtube.com/watch?v=HHxeuWVqq8w&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=5
https://arxiv.org/abs/2110.10603


BlockHammer Solution in 2021

◼ A. Giray Yaglikci, Minesh Patel, Jeremie S. Kim, Roknoddin Azizi, Ataberk Olgun, 
Lois Orosa, Hasan Hassan, Jisung Park, Konstantinos Kanellopoulos, Taha 
Shahroodi, Saugata Ghose, and Onur Mutlu,
"BlockHammer: Preventing RowHammer at Low Cost by Blacklisting 
Rapidly-Accessed DRAM Rows"
Proceedings of the 27th International Symposium on High-Performance 
Computer Architecture (HPCA), Virtual, February-March 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Talk Video (22 minutes)]
[Short Talk Video (7 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/BlockHammer_preventing-DRAM-rowhammer-at-low-cost_hpca21.pdf
https://www.hpca-conf.org/2021/
https://people.inf.ethz.ch/omutlu/pub/BlockHammer-preventing-rowhammer-at-low-cost-by-blacklisting-rapidly-accessed-dram-rows_hpca21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/BlockHammer-preventing-rowhammer-at-low-cost-by-blacklisting-rapidly-accessed-dram-rows_hpca21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/BlockHammer-preventing-rowhammer-at-low-cost-by-blacklisting-rapidly-accessed-dram-rows_hpca21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/BlockHammer-preventing-rowhammer-at-low-cost-by-blacklisting-rapidly-accessed-dram-rows_hpca21-short-talk.pdf
https://www.youtube.com/watch?v=cWbW4qoDFds
https://www.youtube.com/watch?v=40SXSKXW5kY


Google’s Recent RowHammer Attack (May 2021)

121https://security.googleblog.com/2021/05/introducing-half-double-new-hammering.html



Google’s Recent RowHammer Attack (May 2021)

◼ Given three consecutive rows A, B, and C, we were able to attack C by directing a very large number of 
accesses to A, along with just a handful (~dozens) to B. 

◼ Based on our experiments, accesses to B have a non-linear gating effect, in which they appear to 
“transport” the Rowhammer effect of A onto C.

◼ This is likely an indication that the electrical coupling responsible for Rowhammer is a property of 
distance, effectively becoming stronger and longer-ranged as cell geometries shrink down.

122https://security.googleblog.com/2021/05/introducing-half-double-new-hammering.html



The Story of RowHammer Lecture …
◼ Onur Mutlu,

"The Story of RowHammer"
Keynote Talk at Secure Hardware, Architectures, and Operating Systems 
Workshop (SeHAS), held with HiPEAC 2021 Conference, Virtual, 19 January 2021.
[Slides (pptx) (pdf)]
[Talk Video (1 hr 15 minutes, with Q&A)]

123https://www.youtube.com/watch?v=sgd7PHQQ1AI

https://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-SEHAS-Keynote-HiPEAC-January-19-2021-final.pptx
https://www.youtube.com/watch?v=JV1uc1kOt04
https://www.hipeac.net/2021/budapest/#/
https://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-SEHAS-Keynote-HiPEAC-January-19-2021-final.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-SEHAS-Keynote-HiPEAC-January-19-2021-final.pdf
https://www.youtube.com/watch?v=sgd7PHQQ1AI
https://www.youtube.com/watch?v=sgd7PHQQ1AI


The Story of RowHammer in 20 Minutes
◼ Onur Mutlu,

"The Story of RowHammer"
Invited Talk at the Workshop on Robust and Safe Software 2.0 (RSS2), held with the 
27th International Conference on Architectural Support for Programming Languages and 
Operating Systems (ASPLOS), Virtual, 28 February 2022.
[Slides (pptx) (pdf)]

124https://www.youtube.com/watch?v=ctKTRyi96Bk

https://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-RSS2-ASPLOS-February-28-2022.pptx
https://rss2workshop.github.io/
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-RSS2-ASPLOS-February-28-2022.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-RSS2-ASPLOS-February-28-2022.pdf
https://www.youtube.com/watch?v=ctKTRyi96Bk


Detailed Lectures on RowHammer

◼ Computer Architecture, Fall 2020, Lecture 4b

❑ RowHammer (ETH Zürich, Fall 2020)

❑ https://www.youtube.com/watch?v=KDy632z23UE&list=PL5Q2soXY2Zi9xidyIgBxUz
7xRPS-wisBN&index=8

◼ Computer Architecture, Fall 2020, Lecture 5a

❑ RowHammer in 2020: TRRespass (ETH Zürich, Fall 2020)

❑ https://www.youtube.com/watch?v=pwRw7QqK_qA&list=PL5Q2soXY2Zi9xidyIgBxU
z7xRPS-wisBN&index=9

◼ Computer Architecture, Fall 2020, Lecture 5b

❑ RowHammer in 2020: Revisiting RowHammer (ETH Zürich, Fall 2020)

❑ https://www.youtube.com/watch?v=gR7XR-
Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10

◼ Computer Architecture, Fall 2020, Lecture 5c

❑ Secure and Reliable Memory (ETH Zürich, Fall 2020)

❑ https://www.youtube.com/watch?v=HvswnsfG3oQ&list=PL5Q2soXY2Zi9xidyIgBxUz
7xRPS-wisBN&index=11

125https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=KDy632z23UE&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=8
https://www.youtube.com/watch?v=pwRw7QqK_qA&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=9
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I Talk A Lot About RowHammer
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Takeaway and Food for Thought

◼ If hardware is unreliable, higher-level security and protection 
mechanisms (as in virtual memory) may be compromised

◼ The root of security and trust is at the very low levels… 

❑ in the hardware itself

❑ RowHammer, Spectre, Meltdown are recent key examples…

◼ What should we assume the hardware provides?

◼ How do we keep hardware reliable?

◼ How do we design secure hardware?

◼ How do we design secure hardware with high performance, 
high energy efficiency, low cost, convenient programming?

127
Plenty of exciting and highly-relevant research questions
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Virtual Memory Summary

◼ Virtual memory gives the illusion of “infinite” capacity

◼ A subset of virtual pages are located in physical memory

◼ A page table maps virtual pages to physical pages – this is 
called address translation

◼ A TLB speeds up address translation

◼ Multi-level page tables keep the page table size in check

◼ Using different page tables for different programs provides 
memory protection
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There is More… We Will Not Cover…

◼ How to handle virtualized systems?

❑ Virtual machines running programs

❑ Hypervisors

◼ Alternative page table structures

❑ Hashed page tables

❑ Inverted page tables

❑ …

◼ …
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Virtual Memory in Virtualized Environments

◼ Virtualized environments (e.g., Virtual Machines) need to 
have an additional level of address translation 
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Guest - OS

Host - OS

CPU

Guest 
Virtual

Guest-Physical /
Host-Virtual

Host 
Physical



Virtual Memory: Parting Thoughts

◼ VM is one of the most successful examples of 

❑ architectural support for programmers 

❑ how to partition work between hardware and software

❑ hardware/software cooperation

❑ programmer/architect tradeoff

◼ Going forward: How does virtual memory scale into the 
future? Four key trends:

❑ Increasing, huge physical memory sizes (local & remote)

❑ Hybrid physical memory systems (DRAM + NVM + SSD)

❑ Many accelerators in the system addressing physical memory

❑ Virtualized systems (hypervisors, software virtualization, local 
and remote memories)
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Rethinking Virtual Memory
◼ Nastaran Hajinazar, Pratyush Patel, Minesh Patel, Konstantinos Kanellopoulos, Saugata Ghose, Rachata

Ausavarungnirun, Geraldo Francisco de Oliveira Jr., Jonathan Appavoo, Vivek Seshadri, and Onur Mutlu,
"The Virtual Block Interface: A Flexible Alternative to the Conventional Virtual Memory 
Framework"
Proceedings of the 47th International Symposium on Computer Architecture (ISCA), Virtual, June 2020.
[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[ARM Research Summit Poster (pptx) (pdf)]
[Talk Video (26 minutes)]
[Lightning Talk Video (3 minutes)]
[Lecture Video (43 minutes)]
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Lectures on Virtual Memory
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Lectures on Virtual Memory
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Lectures on Virtual Memory

◼ Computer Architecture, Spring 2015, Lecture 20

❑ Virtual Memory (CMU, Spring 2015)

❑ https://www.youtube.com/watch?v=2RhGMpY18zw&list=PL5PHm2jkkXmi5CxxI7b3
JCL1TWybTDtKq&index=22

◼ Computer Architecture, Fall 2020, Lecture 12c

❑ The Virtual Block Interface (ETH, Fall 2020)

❑ https://www.youtube.com/watch?v=PPR7YrBi7IQ&list=PL5Q2soXY2Zi9xidyIgBxUz7
xRPS-wisBN&index=24
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Three Major Issues in Virtual Memory

1. How large is the page table and how do we store and 
access it?

2. How can we speed up translation & access control check?

3. When do we do the translation in relation to cache access?

◼ There are many other issues we will not cover in detail

❑ What happens on a context switch?

❑ How can you handle multiple page sizes?

❑ …
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Virtual Memory Issue I

◼ How large is the page table?

◼ Where do we store it? 

❑ In hardware?

❑ In physical memory? (Where is the PTBR?)

❑ In virtual memory? (Where is the PTBR?)

◼ How can we store it efficiently without requiring physical 
memory that can store all page tables?

❑ Idea: multi-level page tables

❑ Only the first-level page table has to be in physical memory

❑ Remaining levels are in virtual memory (but get cached in 
physical memory when accessed)
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Recall: Solution: Multi-Level Page Tables

140

Example from the x86 architecture



Page Table Access

◼ How do we access the Page Table?

◼ Page Table Base Register (CR3 in x86)

◼ Page Table Limit Register

◼ If VPN is out of the bounds (exceeds PTLR) then the 
process did not allocate the virtual page → access control 

exception

◼ Page Table Base Register is part of a process’s context

❑ Just like PC, status registers, general purpose registers

❑ Needs to be loaded when the process is context-switched in
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More on x86 Page Tables (I): Small Pages
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More on x86 Page Tables (II): Large Pages
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x86 Page Table Entries
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x86 PTE (4KB page)
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x86 Page Directory Entry (PDE)
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X86-64 Page Table Entry Structure

147
Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System Programming Guide, Part 1



X86-64 Page Table: Accessing 4KB pages

148
Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System Programming Guide, Part 1



X86-64 Page Table: Accessing 2MB pages

149
Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System Programming Guide, Part 1



X86-64 Page Table: Accessing 1GB pages

150
Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System Programming Guide, Part 1



Three Major Issues in Virtual Memory

1. How large is the page table and how do we store and 
access it?

2. How can we speed up translation & access control check?

3. When do we do the translation in relation to cache access?

◼ There are many other issues we will not cover in detail

❑ What happens on a context switch?

❑ How can you handle multiple page sizes?

❑ …
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Recall: Translation Lookaside Buffer (TLB)

◼ Idea: Cache the Page Table Entries (PTEs) in a hardware 
structure in the processor to speed up address translation

◼ Translation lookaside buffer (TLB)

❑ Small cache of most recently used Page Table Entries, i.e., 
recently used Virtual-to-Physical translations

❑ Reduces the number of memory accesses required for most
instruction fetches and loads/stores to only one TLB access
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Virtual Memory Issue II

◼ How fast is the address translation?

❑ How can we make it fast?

◼ Idea: Use a hardware structure that caches PTEs →

Translation Lookaside Buffer (TLB)

◼ What should be done on a TLB miss?

❑ What TLB entry to replace?

❑ Who handles the TLB miss? HW vs. SW?

◼ What should be done on a page fault?

❑ What virtual page to replace from physical memory?

❑ Who handles the page fault? HW vs. SW?
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Speeding up Translation with a TLB

◼ A cache of address translations

❑ Avoids accessing the page table on every memory access

◼ Index = lower bits of VPN 

(virtual page #)

◼ Tag = unused bits of VPN + 

process ID

◼ Data = a page-table entry

◼ Status = valid, dirty

The usual cache design choices

(placement, replacement policy,

multi-level, etc.) apply here too.



Handling TLB Misses

◼ The TLB is small; it cannot hold all PTEs

❑ Some translation requests will inevitably miss in the TLB

❑ Must access memory to find the required PTE

◼ Called walking the page table

◼ Large performance penalty

◼ Better TLB management & prefetching can reduce TLB misses

◼ Who handles TLB misses? 

❑ Hardware or software?



Handling TLB Misses (II)

◼ Approach #1. Hardware-Managed (e.g., x86)

❑ The hardware does the page walk

❑ The hardware fetches the PTE and inserts it into the TLB

◼ If the TLB is full, the entry replaces another entry

❑ Done transparently to system software

❑ Can employ specialized structures and caches 

◼ E.g., page walkers and page walk caches

◼ Approach #2. Software-Managed (e.g., MIPS)

❑ The hardware raises an exception

❑ The operating system does the page walk

❑ The operating system fetches the PTE

❑ The operating system inserts/evicts entries in the TLB



Handling TLB Misses (III)

◼ Hardware-Managed TLB

+ No exception on TLB miss. Instruction just stalls

+ Independent instructions may execute and help tolerate latency

+ No extra instructions/data brought into caches

-- Page directory/table organization is etched into the system:    
OS has little flexibility in deciding these

◼ Software-Managed TLB

+ The OS can define the page table oganization

+ More sophisticated TLB replacement policies are possible

-- Need to generate an exception → performance overhead due to 

pipeline flush, exception handler execution, extra instructions 
brought to caches 



Three Major Issues in Virtual Memory

1. How large is the page table and how do we store and 
access it?

2. How can we speed up translation & access control check?

3. When do we do the translation in relation to cache access?

◼ There are many other issues we will not cover in detail

❑ What happens on a context switch?

❑ How can you handle multiple page sizes?

❑ …
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Teaser: Virtual Memory Issue III

◼ When do we do the address translation?

❑ Before or after accessing the L1 cache?
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Address Translation and Caching

◼ When do we do the address translation?

❑ Before or after accessing the L1 cache?

◼ In other words, is the cache virtually addressed or 
physically addressed?

❑ Virtual versus physical cache

◼ What are the issues with a virtually addressed cache?

◼ Synonym problem:

❑ Two different virtual addresses can map to the same physical 
address → same physical address can be present in multiple 
locations in the cache → can lead to inconsistency in data
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Homonyms and Synonyms

◼ Homonym: Same VA can map to two different PAs

❑ Why? 

◼ VA is in different processes

◼ Synonym: Different VAs can map to the same PA

❑ Why? 

◼ Different pages can share the same physical frame within or 
across processes

◼ Reasons: shared libraries, shared data, copy-on-write pages 
within the same process, …

◼ Do homonyms and synonyms create problems when we 
have a cache?

❑ Is the cache virtually or physically addressed?
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Cache-VM Interaction

CPU

TLB

cache

lower
hier.

physical cache

CPU

cache

tlb

lower
hier.

virtual (L1) cache

VA

PA

CPU

cache tlb

lower
hier.

virtual-physical cache

VA

PA

VA

PA

See backup slides for more



A Modern Example

Virtual Memory System



Evolution of Address Translation
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Simple Address Translation Modern Address Translation

L1 Data
TLB

L1 Instruction
TLB

 L1 Data Cache

L1 Data
TLB

L1 ITLB

PTW
Cache

L2 TLB

PTW Walker

 L1 Data CacheSoftware 
Page Table Walker



Memory Management Unit 

◼ The Memory Management Unit (MMU) is responsible 
for resolving address translation requests

❑ One MMU per core (usually)

◼ MMU typically has three key components:

❑ Translation Lookaside Buffers that cache recently-used 
virtual-to-physical translations (PTEs)

❑ Page Table Walk Caches that offer fast access to the 
intermediate levels of a multi-level page table 

❑ Hardware Page Table Walker that sequentially accesses 
the different levels of the Page Table to fetch the required PTE
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Intel Skylake: MMU
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L1 Instruction
TLB

L1 Data
TLB

L2 Unified 
TLB

Hardware 
Page Table Walker

Page Walk 
Caches

https://www.7-cpu.com/cpu/Skylake.html

https://www.7-cpu.com/cpu/Skylake.html


Intel Skylake: L1 Data TLB

167

L1 Data
TLB



Intel Skylake: L1 Data TLB 

◼ Separate L1 Data TLB structures for 4KB, 2MB, and 1GB pages 

◼ L1 DTLB

❑ 4KB: 64-entry, 4-way, 1 cycle access, 9 cycle miss

❑ 2MB: 32-entry, 4-way, 1 cycle access, 9 cycle miss 

❑ 1GB: 4 entry, fully-associative

168

◼ Virtual-to-physical mappings are inserted in the 
corresponding TLB after a TLB miss

◼ During a translation request, all three L1 TLBs are looked 
up in parallel

https://www.7-cpu.com/cpu/Skylake.html

https://www.7-cpu.com/cpu/Skylake.html


L1 Data TLB: Parallel Lookup Example 
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L1 4KB TLB

L1 2MB TLB

L1 1GB TLB

Set 0 

Set 1 

Set 2 

Set 3 

Set 0 

Set 1 Set 0 

Set 1 

001010100100101000000000011100000001
Virtual 

Address

31th bit to 
index 1GB

22th bit to 
index 2MB

13-14th bit to 
index 4KB



Intel Skylake: L2 Unified I/D TLB

170

L2 Unified 
TLB



Intel Skylake: L2 Unified TLB 
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◼ L2 Unified TLB caches translations for both instr. and data

❑ private per individual core

◼ 2 separate L2 TLB structures for 4KB/2MB and 1GB pages

◼ L2 TLB

❑ 4KB/2MB: 1536-entry, 12-way, 14 cycle access, 9 cycle miss

❑ 1GB: 16-entry, 4-way, 1 cycle access, 9 cycle miss penalty

◼ Challenge: How can the L2 TLB support both 4KB and 2MB 
pages using a single structure? 

(Not enough publicly available information for Intel Skylake)

https://www.7-cpu.com/cpu/Skylake.html

https://www.7-cpu.com/cpu/Skylake.html


L2 Unified TLB: Accessing the TLB 

172

◼ The 4KB/2MB structure of the L2 TLB is probed in 2 steps

◼ Step 1: Assume the page size is 4KB, calculate the index bits 
and access the L2 TLB

❑ If the tag matches, it is a hit. If the tag does not match, go to 
Step 2.

◼ Step 2: Assume the page size is 2MB, re-calculate the index 
and access the L2 TLB. 

❑ If the tag matches, it is a hit. If the tag does not match, it is an 
L2 TLB miss. 

◼ General algorithm: 

Re-calculate index and probe TLB for all remaining page sizes

Similar to “associativity in time” (also called pseudo-associativity)



Step 1: Calculate Index for 4KB
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L2  TLB

Set 0 

Set 1 

Set 2 

Set 3 

001010100100101000000000011100000001
Virtual 

Address

13-14th bit to 
index 4KB



Step 2: Re-calculate Index for 2MB
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L2  TLB

Set 0 

Set 1 

Set 2 

Set 3 

001010100100101000000000011100000001
Virtual 

Address

22th-23th bit to 
index 2MB



L2 TLB: N-Step Index Re-Calculation

◼ Pros: 

+ Simple and practical implementation

175

◼ Cons: 

- Varying L2 TLB hit latency (faster for 4KB, slower for 2MB)

- Slower identification of L2 TLB Miss as all page sizes need to be                 
tested

◼ Potential Optimizations:

1. Parallel Lookup: Look up for 4KB and 2MB pages in parallel

2. Page Size Prediction: Predict the probing order

Tradeoffs are similar to “associativity in time” (also called pseudo-associativity)



Hardware Page Table Walker
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Hardware 
Page Table Walker



Hardware Page Table Walker (I)

◼ A per-core hardware component that walks the multi-level 
page table to avoid expensive context switches & SW handling

◼ HW PTW consists of 2 components:

❑ A state machine that is designed to be aware of the 

architecture’s page table structure

❑ Registers that keep track of outstanding TLB misses
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Hardware Page Table Walker

STATE
MACHINE

TLB Miss Registers



Hardware Page Table Walker (II)

◼ Pros:

+ Avoids the need for context switch on TLB miss

+ Overlaps TLB misses with useful computation

+ Supports concurrent TLB misses

178

◼ Cons:

- Hardware area and power overheads

- Limited flexibility compared to software page table walk



Hardware Page Table Walker (III)
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◼ PTW accesses the CR3 register that maintains information 
about the physical address of the root of the page table 
(PML4)

◼ PTW concatenates the content of CR3 with the first 9 bits 
of the virtual address

Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System Programming Guide, Part 1



Hardware Page Table Walker (IV)

◼ Hardware PTWs allow overlapping TLB misses with useful 
computation
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Software PTW

Hardware PTW
Saved Cycles

LOAD A TLB Miss Context Switch – TLB Miss Handler LOAD B TLB Hit

LOAD A TLB Miss

LOAD B TLB Hit

Page Table Walk

VPN = 1 VPN = 5

VPN = 1

VPN = 5



Page Walk Caches
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Page Walk 
Caches



Page Walk Caches

182

◼ Page Walk Caches cache translations from non-leaf levels 
of a multi-level page table to accelerate page table walks

◼ Page Walk Caches are low-latency caches that provide 
faster access to the page table levels 

◼ compared to accessing the regular cache/memory hierarchy 
for every page table walk



Intel Skylake: MMU
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Modern Virtual Memory Designs 

A14 “Firestorm” 
(iPhone 12 Pro)

Intel/AMD/ARM

Decode 
width

8 4, 5 (Samsung M3), 5 (Cortex-X1)

ROB size 630 352 (Intel Willow Cove)

Load/store 
queue size

~148 outstanding loads
~106 outstanding stores

Intel Sunny Cove (128-LQ, 72-SQ)
AMD Zen3 (64-LQ, 44-SQ)

L1-TLB 256 entries 64 entries

L2-TLB 3072 entries 1536 entries

Page size 16KB 4KB

L1-I cache 192KB 48KB (Intel Ice Lake)

L1-D cache 128KB, 3-cycles 32KB (Intel/AMD), 4-cycles

L2 cache 8MB shared across two big-cores, 
~16-cycles

1MB (Intel Cascade Lake)

L3 cache 16MB shared across all CPU cores 
and integrated GPU

1.375 MB/core

184https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2
https://news.ycombinator.com/item?id=25257932

https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2
https://news.ycombinator.com/item?id=25257932
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Summary



Virtual Memory Summary

◼ Virtual memory gives the illusion of “infinite” capacity

◼ A subset of virtual pages are located in physical memory

◼ A page table maps virtual pages to physical pages – this is 
called address translation

◼ A TLB speeds up address translation

◼ Multi-level page tables keep the page table size in check

◼ Using different page tables for different programs provides 
memory protection
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There is More… We Will Not Cover…

◼ How to handle virtualized systems?

❑ Virtual machines running programs

❑ Hypervisors

◼ Alternative page table structures

❑ Hashed page tables

❑ Inverted page tables

❑ …

◼ …
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Virtual Memory in Virtualized Environments

◼ Virtualized environments (e.g., Virtual Machines) need to 
have an additional level of address translation 
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Guest - OS

Host - OS

CPU

Guest 
Virtual
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Physical



Virtual Memory: Parting Thoughts

◼ VM is one of the most successful examples of 

❑ architectural support for programmers 

❑ how to partition work between hardware and software

❑ hardware/software cooperation

❑ programmer/architect tradeoff

◼ Going forward: How does virtual memory scale into the 
future? Four key trends:

❑ Increasing, huge physical memory sizes (local & remote)

❑ Hybrid physical memory systems (DRAM + NVM + SSD)

❑ Many accelerators in the system addressing physical memory

❑ Virtualized systems (hypervisors, software virtualization, local 
and remote memories)
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Rethinking Virtual Memory
◼ Nastaran Hajinazar, Pratyush Patel, Minesh Patel, Konstantinos Kanellopoulos, Saugata Ghose, Rachata

Ausavarungnirun, Geraldo Francisco de Oliveira Jr., Jonathan Appavoo, Vivek Seshadri, and Onur Mutlu,
"The Virtual Block Interface: A Flexible Alternative to the Conventional Virtual Memory 
Framework"
Proceedings of the 47th International Symposium on Computer Architecture (ISCA), Virtual, June 2020.
[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[ARM Research Summit Poster (pptx) (pdf)]
[Talk Video (26 minutes)]
[Lightning Talk Video (3 minutes)]
[Lecture Video (43 minutes)]
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Lectures on Virtual Memory
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Lectures on Virtual Memory
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Lectures on Virtual Memory

◼ Computer Architecture, Spring 2015, Lecture 20

❑ Virtual Memory (CMU, Spring 2015)

❑ https://www.youtube.com/watch?v=2RhGMpY18zw&list=PL5PHm2jkkXmi5CxxI7b3
JCL1TWybTDtKq&index=22

◼ Computer Architecture, Fall 2020, Lecture 12c

❑ The Virtual Block Interface (ETH, Fall 2020)

❑ https://www.youtube.com/watch?v=PPR7YrBi7IQ&list=PL5Q2soXY2Zi9xidyIgBxUz7
xRPS-wisBN&index=24
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Virtual Memory and Cache Interaction



Address Translation and Caching

◼ When do we do the address translation?

❑ Before or after accessing the L1 cache?

◼ In other words, is the cache virtually addressed or 
physically addressed?

❑ Virtual versus physical cache

◼ What are the issues with a virtually addressed cache?

◼ Synonym problem:

❑ Two different virtual addresses can map to the same physical 
address → same physical address can be present in multiple 
locations in the cache → can lead to inconsistency in data
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Homonyms and Synonyms

◼ Homonym: Same VA can map to two different PAs

❑ Why? 

◼ VA is in different processes

◼ Synonym: Different VAs can map to the same PA

❑ Why? 

◼ Different pages can share the same physical frame within or 
across processes

◼ Reasons: shared libraries, shared data, copy-on-write pages 
within the same process, …

◼ Do homonyms and synonyms create problems when we 
have a cache?

❑ Is the cache virtually or physically addressed?
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Cache-VM Interaction
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Physical Cache
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Virtual Cache
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Virtual-Physical Cache
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Virtually-Indexed Physically-Tagged

◼ If (index-bits + byte-in-block-bits < page-offset-bits), the cache 
index bits come only from page offset (same in VA and PA)

❑ Also implies Cache Size ≤ (page size  associativity)

◼ If both cache and TLB are on chip

❑ index both arrays concurrently using VA bits

❑ check cache tag (physical) against TLB output at the end
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Virtually-Indexed Physically-Tagged

◼ If (index-bits + byte-in-block-bits < page-offset-bits), the cache 
index bits include VPN  Synonyms can cause problems

❑ The same physical address can exist in two locations

◼ Solutions?
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Some Solutions to the Synonym Problem

◼ Limit cache size to (page size times associativity)

❑ get index from page offset 

◼ On a write to a block, search all possible indices that can 
contain the same physical block, and update/invalidate

❑ Used in Alpha 21264, MIPS R10K

◼ Restrict page placement in OS

❑ make sure index(VA) = index(PA)

❑ Called page coloring

❑ Used in many SPARC processors
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◼ 32 KB, 64B cacheline size, 8-way associative, 64 sets

◼ Virtually-indexed physically-tagged (VIPT)

◼ #set-index bits (6) + #byte-in-block-bits (6) = log2(Page Size)

❑ No synonym problem

◼ “SEESAW: Using Superpages to Improve VIPT Caches, Parasar+, ISCA’18

◼ https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)

◼ https://uops.info/cache.html

◼ https://www.7-cpu.com/cpu/Skylake.html

L1-D Cache in Intel Skylake
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An Exercise (I)
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An Exercise (II)
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An Exercise (Concluded)
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A Potpourri of Issues



Trade-Offs in Page Size

◼ Large page size (e.g., 1GB)

❑ Pro: Fewer PTEs required ➔ Saves memory space

❑ Pro: Fewer TLB misses ➔ Improves performance

❑ Con: Cannot have fine-grained permissions

❑ Con: Large transfers to/from disk

◼ Even when only 1KB is needed, 1GB must be transferred

◼ Waste of bandwidth/energy

◼ Reduces performance

❑ Con: Internal fragmentation

◼ Even when only 1KB is needed, 1GB must be allocated

◼ Waste of space

◼ Q: What is external fragmentation?



Some System Software Tasks for VM

◼ Keeping track of which physical frames are free 

◼ Allocating free physical frames to virtual pages 

◼ Page replacement policy 

❑ When no physical frame is free, what should be removed? 

◼ Sharing pages between processes 

◼ Copy-on-write optimization

◼ Page-flip optimization
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Virtual Memory in Virtualized Environments

◼ Virtualized environments (e.g. Virtual Machines) need to 
have an additional level of address translation 
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Shadow Paging

◼ System maintains a new shadow page table which maps 
guest-virtual page directly to host-physical page 

◼ Guest-virtual to Guest-physical page table is read-only for 
the Guest OS

◼ Pros: 

+ Fast TLB Miss / Page Table Walk

◼ Cons: 

- To maintain a consistent shadow page table, the system     
handles every update to Guest and Host page tables 
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Shadow Paging 
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Nested Paging

◼ Nested paging is the widely used hardware technique to 
virtualize memory in modern systems

◼ Two-dimensional hardware page-table walk:

❑ For every level of Guest Page table

◼ Perform a 4-level Host Page table walk  

218

◼ Pros: 

+ Easy for the system to maintain/update two page tables

◼ Cons: 

- TLB Misses are more costly (up to 24 memory accesses)



Nested Paging
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