
Computer Architecture
Lecture 3: Processing using Memory

Prof. Onur Mutlu

ETH Zürich

Fall 2022

6 October 2022

Sub-Agenda: In-Memory Computation

◼ Major Trends Affecting Main Memory

◼ The Need for Intelligent Memory Controllers

❑ Bottom Up: Push from Circuits and Devices

❑ Top Down: Pull from Systems and Applications

◼ Processing in Memory: Two Directions

❑ Processing using Memory

❑ Processing near Memory

◼ How to Enable Adoption of Processing in Memory

◼ Conclusion

2

Three Key Systems Trends

1. Data access is a major bottleneck
❑ Applications are increasingly data hungry

2. Energy consumption is a key limiter

3. Data movement energy dominates compute
❑ Especially true for off-chip to on-chip movement

3

Observation and Opportunity

◼ High latency and high energy caused by data movement

❑ Long, energy-hungry interconnects

❑ Energy-hungry electrical interfaces

❑ Movement of large amounts of data

◼ Opportunity: Minimize data movement by performing
computation directly (near) where the data resides

❑ Processing in memory (PIM)

❑ In-memory computation/processing

❑ Near-data processing (NDP)

❑ General concept applicable to any data storage & movement
unit (caches, SSDs, main memory, network, controllers)

4

Four Key Issues in Future Platforms

◼ Fundamentally Secure/Reliable/Safe Architectures

◼ Fundamentally Energy-Efficient Architectures

❑ Memory-centric (Data-centric) Architectures

◼ Fundamentally Low-Latency Architectures

◼ Architectures for AI/ML, Genomics, Medicine, Health

5

Maslow’s (Human) Hierarchy of Needs, Revisited

6

Maslow, “A Theory of Human Motivation,”
Psychological Review, 1943.

Everlasting energy

Source: https://www.simplypsychology.org/maslow.html

Maslow, “A Theory of Human Motivation,”
Psychological Review, 1943.

Maslow, “Motivation and Personality,”
Book, 1954-1970.

Do We Want This?

7Source: V. Milutinovic

Or This?

8Source: V. Milutinovic

Challenge and Opportunity for Future

High Performance,

Energy Efficient,

Sustainable

(All at the Same Time)
9

The Problem

Data access is the major performance and energy bottleneck

Our current

design principles

cause great energy waste
(and great performance loss)

10

The Problem

Processing of data

is performed

far away from the data

11

A Computing System

◼ Three key components

◼ Computation

◼ Communication

◼ Storage/memory

12

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/

A Computing System

◼ Three key components

◼ Computation

◼ Communication

◼ Storage/memory

13

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/

Today’s Computing Systems

◼ Are overwhelmingly processor centric

◼ All data processed in the processor → at great system cost

◼ Processor is heavily optimized and is considered the master

◼ Data storage units are dumb and are largely unoptimized
(except for some that are on the processor die)

14

It’s the Memory, Stupid!

◼ “It’s the Memory, Stupid!” (Richard Sites, MPR, 1996)

15http://cva.stanford.edu/classes/cs99s/papers/architects_look_to_future.pdf

http://cva.stanford.edu/classes/cs99s/papers/architects_look_to_future.pdf

The Performance Perspective

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.

The Performance Perspective
◼ Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,

"Runahead Execution: An Alternative to Very Large Instruction
Windows for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance
Computer Architecture (HPCA), Anaheim, CA, February 2003. Slides (pdf)
One of the 15 computer architecture papers of 2003 selected as Top
Picks by IEEE Micro.

17

https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
http://www.cs.arizona.edu/hpca9/
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03_talk.pdf

The Memory Bottleneck
◼ Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,

"Runahead Execution: An Effective Alternative to Large
Instruction Windows"
IEEE Micro, Special Issue: Micro's Top Picks from Microarchitecture
Conferences (MICRO TOP PICKS), Vol. 23, No. 6, pages 20-25,
November/December 2003.

18

https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_micro03.pdf
http://doi.ieeecomputersociety.org/10.1109/MM.2003.1261383

An Informal Interview on Memory

◼ Madeleine Gray and Onur Mutlu,
"It’s the memory, stupid’: A conversation with Onur Mutlu"
HiPEAC info 55, HiPEAC Newsletter, October 2018.
[Shorter Version in Newsletter]
[Longer Online Version with References]

19

https://www.hipeac.net/news/6871/its-the-memory-stupid-a-conversation-with-onur-mutlu/
https://www.hipeac.net/media/public/publications/newsletter/hipeacinfo55_final_web.pdf
https://www.hipeac.net/publications/newsletter/
https://www.hipeac.net/media/public/publications/newsletter/hipeacinfo55_final_web.pdf
https://www.hipeac.net/news/6871/its-the-memory-stupid-a-conversation-with-onur-mutlu/

The Performance Perspective (Today)

◼ All of Google’s Data Center Workloads (2015):

20Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.

The Performance Perspective (Today)

◼ All of Google’s Data Center Workloads (2015):

21Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.

Perils of Processor-Centric Design

◼ Grossly-imbalanced systems

❑ Processing done only in one place

❑ Everything else just stores and moves data: data moves a lot

→ Energy inefficient

→ Low performance

→ Complex

◼ Overly complex and bloated processor (and accelerators)

❑ To tolerate data access from memory

❑ Complex hierarchies and mechanisms

→ Energy inefficient

→ Low performance

→ Complex
22

Perils of Processor-Centric Design

23

Most of the system is dedicated to storing and moving data

The Energy Perspective

24

Dally, HiPEAC 2015

Data Movement vs. Computation Energy

25

Dally, HiPEAC 2015

A memory access consumes ~100-1000X
the energy of a complex addition

Data Movement vs. Computation Energy

◼ Data movement is a major system energy bottleneck

❑ Comprises 41% of mobile system energy during web browsing [2]

❑ Costs ~115 times as much energy as an ADD operation [1, 2]

26

[1]: Reducing data Movement Energy via Online Data Clustering and Encoding (MICRO’16)

[2]: Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms (IISWC’14)

Energy Waste in Mobile Devices
◼ Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul

Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

27

62.7% of the total system energy
is spent on data movement

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/

We Do Not Want to Move Data!

28

Dally, HiPEAC 2015

A memory access consumes ~100-1000X
the energy of a complex addition

We Need A Paradigm Shift To …

◼ Enable computation with minimal data movement

◼ Compute where it makes sense (where data resides)

◼ Make computing architectures more data-centric

29

Goal: Processing Inside Memory

◼ Many questions … How do we design the:

❑ compute-capable memory & controllers?

❑ processor chip and in-memory units?

❑ software and hardware interfaces?

❑ system software, compilers, languages?

❑ algorithms and theoretical foundations?

Cache

Processor
Core

Interconnect

Memory
Database

Graphs

Media
Query

Results

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

PIM Review and Open Problems

31

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"A Modern Primer on Processing in Memory"
Invited Book Chapter in Emerging Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann, Springer, to be published in 2021.

https://arxiv.org/pdf/1903.03988.pdf

https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://arxiv.org/pdf/1903.03988.pdf

32

33

Processing Data

Where It Makes Sense

34

◼ Kautz, “Cellular Logic-in-Memory Arrays”, IEEE TC 1969.

https://doi.org/10.1109/T-C.1969.222754

Processing in/near Memory: An Old Idea

https://doi.org/10.1109/T-C.1969.222754

Processing in/near Memory: An Old Idea

◼ Stone, “A Logic-in-Memory Computer,” IEEE TC 1970.

36https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=stone_logic_in_memory_1970.pdf

https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=stone_logic_in_memory_1970.pdf

Why In-Memory Computation Today?

◼ Huge problems with Memory Technology

❑ Memory technology scaling is not going well (e.g., RowHammer)

❑ Many scaling issues demand intelligence in memory

◼ Huge demand from Applications & Systems

❑ Data access bottleneck

❑ Energy & power bottlenecks

❑ Data movement energy dominates computation energy

❑ Need all at the same time: performance, energy, sustainability

❑ We can improve all metrics by minimizing data movement

◼ Designs are squeezed in the middle

37

Processing-in-Memory Landscape Today

38

[UPMEM 2019][Samsung 2021][SK Hynix 2022]

[Samsung 2021]

And, many other experimental chips and startups

[Alibaba 2022]

Why In-Memory Computation Today?

◼ Huge problems with Memory Technology

❑ Memory technology scaling is not going well (e.g., RowHammer)

❑ Many scaling issues demand intelligence in memory

◼ Huge demand from Applications & Systems

❑ Data access bottleneck

❑ Energy & power bottlenecks

❑ Data movement energy dominates computation energy

❑ Need all at the same time: performance, energy, sustainability

❑ We can improve all metrics by minimizing data movement

◼ Designs are squeezed in the middle

39

The Push from Circuits and Devices

Main Memory Needs

Intelligent Controllers

40

Memory Scaling Issues Are Real

◼ Onur Mutlu,
"Memory Scaling: A Systems Architecture Perspective"
Proceedings of the 5th International Memory
Workshop (IMW), Monterey, CA, May 2013. Slides
(pptx) (pdf)
EETimes Reprint

https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf

https://people.inf.ethz.ch/omutlu/pub/memory-scaling_imw13.pdf
http://www.ewh.ieee.org/soc/eds/imw/
https://people.inf.ethz.ch/omutlu/pub/mutlu_memory-scaling_imw13_invited-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/mutlu_memory-scaling_imw13_invited-talk.pdf
http://www.eetimes.com/document.asp?doc_id=1280950
https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf

Application Scaling Issues Are Real

◼ Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu,
and Kiyoung Choi,
"A Scalable Processing-in-Memory Accelerator for
Parallel Graph Processing"
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]
Top Picks Honorable Mention by IEEE Micro.

42

https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pdf

UPMEM Processing-in-DRAM Engine (2019)

43

◼ Processing in DRAM Engine

◼ Includes standard DIMM modules, with a large
number of DPU processors combined with DRAM chips.

◼ Replaces standard DIMMs

❑ DDR4 R-DIMM modules

◼ 8GB+128 DPUs (16 PIM chips)

◼ Standard 2x-nm DRAM process

❑ Large amounts of compute & memory bandwidth

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem

https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

CPU
(x86, ARM, RV…)

DDR

Data bus

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

44

UPMEM Memory Modules

• E19: 8 chips DIMM (1 rank). DPUs @ 267 MHz

• P21: 16 chips DIMM (2 ranks). DPUs @ 350 MHz

www.upmem.com

http://www.upmem.com/

2,560-DPU Processing-in-Memory System

CPU 0

CPU 1

DRAM

DRAM

PIM-enabled

memory

PIM-enabled

memory

PIM-enabled

memory

PIM-enabled

memory

Host
CPU 0

x10

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

x2

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Main Memory

PIM-enabled Memory

Host
CPU 1

x10

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

x2

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Main Memory

PIM-enabled Memory

45
https://arxiv.org/pdf/2105.03814.pdf

https://arxiv.org/pdf/2105.03814.pdf

Understanding a Modern PIM Architecture (I)

https://arxiv.org/pdf/2105.03814.pdf

https://github.com/CMU-SAFARI/prim-benchmarks

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

Understanding a Modern PIM Architecture (II)

47https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9

https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9

Samsung Function-in-Memory DRAM (2021)

48https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power

https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power

Samsung Function-in-Memory DRAM (2021)

49

Samsung Function-in-Memory DRAM (2021)

50

Samsung Function-in-Memory DRAM (2021)

51

Samsung Function-in-Memory DRAM (2021)

52

Lecture on FIMDRAM/HBM-PIM

53
https://youtu.be/_CpWJGK9N04

https://youtu.be/_CpWJGK9N04

Samsung AxDIMM (2021)

◼ DIMM-based PIM

❑ DLRM recommendation system

54

Baseline System

AxDIMM System

Ke et al. "Near-Memory Processing in Action: Accelerating Personalized Recommendation with AxDIMM", IEEE Micro (2021)

Lecture on AxDIMM

55
https://youtu.be/J_prUKfnv7Q

https://youtu.be/J_prUKfnv7Q

◼ 4 Gb AiM die with 16 processing units (PUs)

56Lee et al., A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for

Deep-Learning Applications, ISSCC 2022

11.1: A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for Deep Learning Applications© 2022 IEEE
International Solid-State Circuits Conference 37 of 42

Chip Implementation

An 4Gb aim die photograph with 16 processing units

PU

BK 4

PU

BK 7

PU

BK 5

PU

BK 6

PU

BK 12

PU

BK 15

PU

BK 13

PU

BK 14

PU

BK 0

PU

BK 3

PU

BK 1

PU

BK 2

PU

BK 8

PU

BK 11

PU

BK 9

PU

BK 10

AiM Die Photograph

Total 0.19mm2

MAC 0.11mm2

Activation Function (AF) 0.02mm2

Reservoir Cap. 0.05mm2

Etc. 0.01mm2

1 Process Unit (PU) Area

MAC
58%

AF
11%

Reservoir
Cap.
26%

Etc.
5%

SK Hynix AiM: Chip Implementation (2022)

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

SK Hynix AiM: System Organization (2022)

◼ GDDR6-based AiM architecture

57Lee et al., A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for

Deep-Learning Applications, ISSCC 2022

11.1: A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for Deep Learning Applications© 2022 IEEE
International Solid-State Circuits Conference 8 of 42

AiM Architecture

AiM Architecture with 16 processing units (PUs) for deep-learning operations

near DRAM cells and a 2KB global buffer (GB) for temporary data storage

 P U

BK 1

Cell

BK I/O

P U

BK 0

BK I/O

P U

DATA PERI

(Byte1)

DATA PERI

(Byte0)
GB GB

Cell

BK 2

Cell

BK I/O

P U

BK 3

BK I/O

P U

Cell

BK 5

Cell

BK I/O

P U

BK 4

BK I/O

P U

Cell

BK 6

Cell

BK I/O

P U

BK 7

BK I/O

P U

Cell

BK 9

Cell

BK I/O

P U

BK 8

BK I/O

P U

Cell

BK 10

Cell

BK I/O

P U

BK 11

BK I/O

P U

Cell

BK 13

Cell

BK I/O

P U

BK 12

BK I/O

P U

Cell

BK 14

Cell

BK I/O

P U

BK 15

BK I/O

P U

Cell

PERI

Global IO BUS

Local IO BUS

BK I/O

256 bits

x x x

16b

16b

+ +

x

+

+

ꭍ

16b 16b

Multiplier x 16

Adder Tree

AF

16b

16b 16b 16b

Accumulator
& AF

RDMAC

RDAF

Supplementary SRAM buffer
G B

2KB

256 b

11.1: A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for Deep Learning Applications© 2022 IEEE
International Solid-State Circuits Conference 8 of 42

AiM Architecture

AiM Architecture with 16 processing units (PUs) for deep-learning operations

near DRAM cells and a 2KB global buffer (GB) for temporary data storage

 P U

BK 1

Cell

BK I/O

P U

BK 0

BK I/O

P U

DATA PERI

(Byte1)

DATA PERI

(Byte0)
GB GB

Cell

BK 2

Cell

BK I/O

P U

BK 3

BK I/O

P U

Cell

BK 5

Cell

BK I/O

P U

BK 4

BK I/O

P U

Cell

BK 6

Cell

BK I/O

P U

BK 7

BK I/O

P U

Cell

BK 9

Cell

BK I/O

P U

BK 8

BK I/O

P U

Cell

BK 10

Cell

BK I/O

P U

BK 11

BK I/O

P U

Cell

BK 13

Cell

BK I/O

P U

BK 12

BK I/O

P U

Cell

BK 14

Cell

BK I/O

P U

BK 15

BK I/O

P U

Cell

PERI

Global IO BUS

Local IO BUS

BK I/O

256 bits

x x x

16b

16b

+ +

x

+

+

ꭍ

16b 16b

Multiplier x 16

Adder Tree

AF

16b

16b 16b 16b

Accumulator
& AF

RDMAC

RDAF

Supplementary SRAM buffer
G B

2KB

256 b

11.1: A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for Deep Learning Applications© 2022 IEEE
International Solid-State Circuits Conference 8 of 42

AiM Architecture

AiM Architecture with 16 processing units (PUs) for deep-learning operations

near DRAM cells and a 2KB global buffer (GB) for temporary data storage

 P U

BK 1

Cell

BK I/O

P U

BK 0

BK I/O

P U

DATA PERI

(Byte1)

DATA PERI

(Byte0)
GB GB

Cell

BK 2

Cell

BK I/O

P U

BK 3

BK I/O

P U

Cell

BK 5

Cell

BK I/O

P U

BK 4

BK I/O

P U

Cell

BK 6

Cell

BK I/O

P U

BK 7

BK I/O

P U

Cell

BK 9

Cell

BK I/O

P U

BK 8

BK I/O

P U

Cell

BK 10

Cell

BK I/O

P U

BK 11

BK I/O

P U

Cell

BK 13

Cell

BK I/O

P U

BK 12

BK I/O

P U

Cell

BK 14

Cell

BK I/O

P U

BK 15

BK I/O

P U

Cell

PERI

Global IO BUS

Local IO BUS

BK I/O

256 bits

x x x

16b

16b

+ +

x

+

+

ꭍ

16b 16b

Multiplier x 16

Adder Tree

AF

16b

16b 16b 16b

Accumulator
& AF

RDMAC

RDAF

Supplementary SRAM buffer
G B

2KB

256 b

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

Lecture on Accelerator-in-Memory

58
https://youtu.be/NDL77Xdccbs?t=159

https://youtu.be/NDL77Xdccbs?t=159

Alibaba HB-PNM: Overall Architecture (2022)

◼ 3D-stacked logic die and DRAM die vertically bonded by
hybrid bonding (HB)

59Niu et al., 184QPS/W 64Mb/mm2 3D Logic-to-DRAM Hybrid Bonding with Process-Near-Memory Engine for Recommendation System, ISSCC 2022

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

Lecture on HB-PNM

60
https://youtu.be/OZjKnn-DbwA

https://youtu.be/OZjKnn-DbwA

FPGA-based Processing Near Memory

◼ Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios
Diamantopoulos, Juan Gómez-Luna, Henk Corporaal, and Onur Mutlu,
"FPGA-based Near-Memory Acceleration of Modern Data-Intensive
Applications"
IEEE Micro (IEEE MICRO), to appear, 2021.

61

https://arxiv.org/pdf/2106.06433.pdf
http://www.computer.org/micro/

Why In-Memory Computation Today?

◼ Push from Technology

❑ DRAM Scaling at jeopardy

→ Controllers close to DRAM

→ Industry open to new memory architectures

◼ Pull from Systems and Applications

❑ Data access is a major system and application bottleneck

❑ Systems are energy limited

❑ Data movement much more energy-hungry than computation

62

The Push from Circuits and Devices

Main Memory Needs

Intelligent Controllers

63

We Need to Think Differently

from the Past Approaches

64

Sub-Agenda: In-Memory Computation

◼ Major Trends Affecting Main Memory

◼ The Need for Intelligent Memory Controllers

❑ Bottom Up: Push from Circuits and Devices

❑ Top Down: Pull from Systems and Applications

◼ Processing in Memory: Two Directions

❑ Processing using Memory

❑ Processing near Memory

◼ How to Enable Adoption of Processing in Memory

◼ Conclusion

65

Two PIM Approaches

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna,
and Rachata Ausavarungnirun,
"A Modern Primer on Processing in
Memory"
Invited Book Chapter in Emerging
Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann,
Springer, to be published in 2021.
[Tutorial Video on "Memory-Centric Computing
Systems" (1 hour 51 minutes)]

66https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf

https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://www.youtube.com/watch?v=H3sEaINPBOE
https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf

Processing in Memory:

Two Approaches

1. Processing using Memory

2. Processing near Memory

67

Approach 1: Processing Using Memory

◼ Take advantage of operational principles of memory to perform
bulk data movement and computation in memory

❑ Can exploit internal connectivity to move data

❑ Can exploit analog computation capability

❑ …

◼ Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM
❑ RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data

(Seshadri et al., MICRO 2013)

❑ Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)

❑ Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial
Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)

❑ "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity
DRAM Technology” (Seshadri et al., MICRO 2017)

68

http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf

Starting Simple: Data Copy and Initialization

Bulk Data
Copy

Bulk Data
Initialization

src dst

dstval

Bulk Data Copy and Initialization

Bulk Data
Copy

Bulk Data
Initialization

src dst

dstval

Starting Simple: Data Copy and Initialization

71

Forking

00000

00000

00000

Zero initialization
(e.g., security)

VM Cloning
Deduplication

Checkpointing

Page Migration

Many more

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’15]

Today’s Systems: Bulk Data Copy

Memory

MCL3L2L1CPU

1) High latency

2) High bandwidth utilization

3) Cache pollution

4) Unwanted data movement

721046ns, 3.6uJ (for 4KB page copy via DMA)

Future Systems: In-Memory Copy

Memory

MCL3L2L1CPU

1) Low latency

2) Low bandwidth utilization

3) No cache pollution

4) No unwanted data movement

731046ns, 3.6uJ → 90ns, 0.04uJ

RowClone: In-DRAM Row Copy

Row Buffer (4 Kbytes)

Data Bus

8 bits

DRAM subarray

4 Kbytes

Step 1: Activate row A

Transfer
row

Step 2: Activate row B

Transfer
row

Negligible HW cost
Idea: Two consecutive ACTivates

11.6X latency reduction, 74X energy reduction

RowClone: Intra-Subarray

VDD/2

VDD/2

0

VDD/2 + δ

0

VDD

VDDVDD/2 + δ

Sense Amplifier

(Row Buffer)

Amplify the

difference

0

Data gets

copied

src

dst

RowClone: Intra-Subarray (II)

r c r o ws

s t o wd r

Row Buffer

r c r o ws

s r c r o w

1. Activate src row (copy data from src to row buffer)

2. Activate dst row (disconnect src from row buffer,
connect dst – copy data from row buffer to dst)

RowClone: Inter-Bank
M

e
m

o
ry

 C
h

a
n

n
e
l

C
h

ip
 I/

O
Bank

Shared

internal bus

Overlap the latency of the read and the write
1.9X latency reduction, 3.2X energy reduction

M
e
m

o
ry

 C
h

a
n

n
e
l

C
h

ip
 I/

O

Bank Bank I/O

Subarray

Intra Subarray
Copy (2 ACTs)

Inter Bank Copy
(Pipelined

Internal RD/WR)

Inter Subarray Copy
(Use Inter-Bank Copy Twice)

Generalized RowClone 0.01% area cost

RowClone: Latency and Energy Savings

0

0.2

0.4

0.6

0.8

1

1.2

Latency Energy

N
o

rm
al

iz
e

d
 S

av
in

gs

Baseline Intra-Subarray

Inter-Bank Inter-Subarray

11.6x 74x

79
Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” MICRO 2013.

RowClone: Fast Row Initialization

0 0 0 0 0 0 0 0 0 0 0 0

Fix a row at Zero
(0.5% loss in capacity)

80

RowClone: Bulk Initialization

◼ Initialization with arbitrary data

❑ Initialize one row

❑ Copy the data to other rows

◼ Zero initialization (most common)

❑ Reserve a row in each subarray (always zero)

❑ Copy data from reserved row (FPM mode)

❑ 6.0X lower latency, 41.5X lower DRAM energy

❑ 0.2% loss in capacity

81

RowClone: Latency & Energy Benefits

82

0
2
4
6
8

10
12
14

In
tr

a-
S

u
b

ar
ra

y

In
te

r-
B

an
k

In
te

r-
S

u
b

ar
ra

y

In
tr

a-
S

u
b

ar
ra

y

Copy Zero

Latency Reduction

0

20

40

60

80

In
tr

a-
S

u
b

ar
ra

y

In
te

r-
B

an
k

In
te

r-
S

u
b

ar
ra

y

In
tr

a-
S

u
b

ar
ra

y

Copy Zero

Energy Reduction

11.6x

1.9x

6.0x

1.0x

74.4x

3.2x 1.5x

41.5x

Very low cost: 0.01% increase in die area

Copy and Initialization in Workloads

83

0

0.2

0.4

0.6

0.8

1

bootup compile forkbench mcached mysql shell

F
ra

ct
io

n
 o

f
M

e
m

o
ry

 T
ra

ff
ic

Zero Copy Write Read

RowClone: Application Performance

84

0

10

20

30

40

50

60

70

80

bootup compile forkbench mcached mysql shell

%
 C

o
m

p
a
re

d
 t

o
 B

a
s
e
li

n
e

IPC Improvement Energy Reduction

End-to-End System Design

85

DRAM (RowClone)

Microarchitecture

ISA

Operating System

Application
How to communicate
occurrences of bulk
copy/initialization across
layers?

How to maximize latency and
energy savings?

How to ensure cache
coherence?

How to handle data reuse?

More on RowClone

◼ Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata
Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A.
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and
Initialization"
Proceedings of the 46th International Symposium on Microarchitecture
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session
Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

86

http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://www.microarch.org/micro46/
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pdf

Lecture on RowClone & Processing using DRAM

87https://www.youtube.com/watch?v=n6Pwg1qax_E&list=PL5Q2soXY2Zi_7UBNmC9B8Yr5JSwTG9yH4&index=4

https://www.youtube.com/watch?v=n6Pwg1qax_E&list=PL5Q2soXY2Zi_7UBNmC9B8Yr5JSwTG9yH4&index=4

Mindset: Memory as an Accelerator

CPU
core

CPU
core

CPU
core

CPU
core

mini-CPU
core

video
core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

LLC

Memory Controller
Specialized

compute-capability
in memory

Memoryimaging
core

Memory Bus

Memory similar to a “conventional” accelerator

RowClone Strengths

89

Strengths of the Paper

◼ Simple, novel mechanism to solve an important problem

◼ Effective and low hardware overhead

◼ Intuitive idea!

◼ Greatly improves performance and efficiency (assuming
data is mapped nicely)

◼ Seems like a clear win for data initialization (without
mapping requirements)

◼ Makes software designer’s life easier

❑ If copies are 10x-100x cheaper, how to design software?

◼ Paper tackles many low-level and system-level issues

◼ Well-written, insightful paper

90

RowClone Weaknesses

91

Weaknesses

◼ Requires data to be mapped in the same subarray to
deliver the largest benefits

❑ Helps less if data movement is not within a subarray

❑ Does not help if data movement is across DRAM channels

◼ Inter-subarray copy is very inefficient

◼ Causes many changes in the system stack

❑ End-to-end design spans applications to circuits

❑ Software-hardware cooperative solution might not always be
easy to adopt

◼ Cache coherence and data reuse cause real overheads

◼ Evaluation is done solely in simulation

◼ Evaluation does not consider multi-chip systems

◼ Are these the best workloads to evaluate?
92

Recall: Try to Avoid Rat Holes

93
Source: https://www.cse.wustl.edu/~jain/iucee/ftp/k_10adp.pdf

Improvements on RowClone

94

RowClone Extensions and Follow-Up Work

◼ Can we do faster inter-subarray copy?

❑ Yes, see LISA [Chang et al., HPCA 2016]

◼ Can we enable data movement at smaller granularities
within a bank?

❑ Yes, see FIGARO [Wang et al., MICRO 2020]

◼ Can we do better inter-bank copy?

❑ Yes, see Network-on-Memory [CAL 2020]

◼ Can similar ideas and DRAM properties be used to perform
computation on data?

❑ Yes, see Ambit [Seshadri et al., CAL 2015, MICRO 2017]

95

LISA: Increasing Connectivity in DRAM

◼ Kevin K. Chang, Prashant J. Nair, Saugata Ghose, Donghyuk Lee,
Moinuddin K. Qureshi, and Onur Mutlu,
"Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast
Inter-Subarray Data Movement in DRAM"
Proceedings of the 22nd International Symposium on High-
Performance Computer Architecture (HPCA), Barcelona, Spain,
March 2016.
[Slides (pptx) (pdf)]
[Source Code]

96

https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_hpca16.pdf
http://hpca22.site.ac.upc.edu/
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_kevinchang_hpca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_kevinchang_hpca16-talk.pdf
https://github.com/CMU-SAFARI/RamulatorSharp

Moving Data Inside DRAM?

97

DRAM

cell

Subarray 1

Subarray 2

Subarray 3

Subarray N

…

Internal

Data Bus (64b)

8Kb
512

rows
Bank

Bank

Bank

Bank

DRAM

…

Low connectivity in DRAM is the fundamental

bottleneck for bulk data movement

Goal: Provide a new substrate to enable

wide connectivity between subarrays

Key Idea and Applications

• Low-cost Inter-linked subarrays (LISA)

– Fast bulk data movement between subarrays

– Wide datapath via isolation transistors: 0.8% DRAM chip area

• LISA is a versatile substrate → new applications

98

Subarray 1

Subarray 2

…

Fast bulk data copy: Copy latency 1.363ms→0.148ms (9.2x)
→ 66% speedup, -55% DRAM energy

In-DRAM caching: Hot data access latency 48.7ns→21.5ns (2.2x)
→ 5% speedup

Fast precharge: Precharge latency 13.1ns→5.0ns (2.6x)
→ 8% speedup

More on LISA

◼ Kevin K. Chang, Prashant J. Nair, Saugata Ghose, Donghyuk Lee,
Moinuddin K. Qureshi, and Onur Mutlu,
"Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast
Inter-Subarray Data Movement in DRAM"
Proceedings of the 22nd International Symposium on High-
Performance Computer Architecture (HPCA), Barcelona, Spain,
March 2016.
[Slides (pptx) (pdf)]
[Source Code]

99

https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_hpca16.pdf
http://hpca22.site.ac.upc.edu/
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_kevinchang_hpca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_kevinchang_hpca16-talk.pdf
https://github.com/CMU-SAFARI/RamulatorSharp

FIGARO: Fine-Grained In-DRAM Copy

◼ Yaohua Wang, Lois Orosa, Xiangjun Peng, Yang Guo, Saugata Ghose,
Minesh Patel, Jeremie S. Kim, Juan Gómez Luna, Mohammad
Sadrosadati, Nika Mansouri Ghiasi, and Onur Mutlu,
"FIGARO: Improving System Performance via Fine-Grained In-
DRAM Data Relocation and Caching"
Proceedings of the 53rd International Symposium on
Microarchitecture (MICRO), Virtual, October 2020.

100

https://people.inf.ethz.ch/omutlu/pub/FIGARO-fine-grained-in-DRAM-data-relocation-and-caching_micro20.pdf
http://www.microarch.org/micro53/

Network-On-Memory: Fast Inter-Bank Copy

◼ Seyyed Hossein SeyyedAghaei Rezaei, Mehdi Modarressi, Rachata
Ausavarungnirun, Mohammad Sadrosadati, Onur Mutlu, and Masoud
Daneshtalab,
"NoM: Network-on-Memory for Inter-Bank Data Transfer in
Highly-Banked Memories"
IEEE Computer Architecture Letters (CAL), to appear in 2020.

101

https://people.inf.ethz.ch/omutlu/pub/network-on-memory-data-copy_ieee-cal20.pdf
http://www.computer.org/web/cal

Mindset: Memory as an Accelerator

CPU
core

CPU
core

CPU
core

CPU
core

mini-CPU
core

video
core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

LLC

Memory Controller
Specialized

compute-capability
in memory

Memoryimaging
core

Memory Bus

Memory similar to a “conventional” accelerator

In-DRAM Bulk Bitwise AND/OR

◼ Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and
Todd C. Mowry,
"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015.

103

http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal

Ambit: Bulk-Bitwise in-DRAM Computation

◼ Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali
Boroumand, Jeremie Kim, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons,
and Todd C. Mowry,
"Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using
Commodity DRAM Technology"
Proceedings of the 50th International Symposium on
Microarchitecture (MICRO), Boston, MA, USA, October 2017.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

104

https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
http://www.microarch.org/micro50/
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-poster.pdf

In-DRAM Bulk Bitwise Execution Paradigm

◼ Vivek Seshadri and Onur Mutlu,
"In-DRAM Bulk Bitwise Execution Engine"
Invited Book Chapter in Advances in Computers, to appear
in 2020.
[Preliminary arXiv version]

105

https://arxiv.org/pdf/1905.09822.pdf
https://arxiv.org/pdf/1905.09822.pdf

SIMDRAM Framework for in-DRAM Computing

◼ Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, Joao Dinis Ferreira, Nika Mansouri
Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gomez-Luna, and Onur Mutlu,
"SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM"
Proceedings of the 26th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Virtual, March-April 2021.
[2-page Extended Abstract]
[Short Talk Slides (pptx) (pdf)]
[Talk Slides (pptx) (pdf)]
[Short Talk Video (5 mins)]
[Full Talk Video (27 mins)]

106

https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21.pdf
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-extended-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-talk.pdf
https://www.youtube.com/watch?v=g0fE1c7w0xk&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=115
https://www.youtube.com/watch?v=bas9U7djW_8&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=116

Extensions and Follow-Up Work (II)

◼ Can this idea be evaluated on a real system? How?

❑ Yes, see the ComputeDRAM paper [MICRO 2019]

◼ Can similar ideas be used in other types of memories?
Phase Change Memory? RRAM? STT-MRAM?

❑ Yes, see the Pinatubo paper [DAC 2016]

◼ Can charge sharing properties be used for other functions?

❑ Yes, see the D-RaNGe [HPCA 2019], DL-PUF [HPCA 2018],
QUAC-TRNG [ISCA 2021] works on random numbers & PUFs

◼ Can we have more efficient solutions to

❑ Cache coherence (minimize overhead)

❑ Data reuse after copy and initialization

107

RowClone in Off-the-Shelf DRAM Chips

◼ Idea: Violate DRAM timing parameters to mimic RowClone

108
https://parallel.princeton.edu/papers/micro19-gao.pdf

https://parallel.princeton.edu/papers/micro19-gao.pdf

Real Processing Using Memory Prototype

◼ End-to-end RowClone & TRNG using off-the-shelf DRAM chips

◼ Idea: Violate DRAM timing parameters to mimic RowClone

https://arxiv.org/pdf/2111.00082.pdf

https://github.com/cmu-safari/pidram

https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

109

https://arxiv.org/pdf/2111.00082.pdf
https://github.com/cmu-safari/pidram
https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

Real Processing Using Memory Prototype

https://arxiv.org/pdf/2111.00082.pdf

https://github.com/cmu-safari/pidram

https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

110

Host Machine

FPGA Board

RISC-V System

PiM-Enabled DIMM

https://arxiv.org/pdf/2111.00082.pdf
https://github.com/cmu-safari/pidram
https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

Real Processing Using Memory Prototype

https://arxiv.org/pdf/2111.00082.pdf

https://github.com/cmu-safari/pidram

https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

https://arxiv.org/pdf/2111.00082.pdf
https://github.com/cmu-safari/pidram
https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

Pinatubo: PCM RowClone and Bitwise Ops

112
https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

Takeaways

113

Key Takeaways

◼ A novel method to accelerate data copy and initialization

◼ Simple and effective

◼ Hardware/software cooperative

◼ Good potential for work building on it to extend it

❑ To different granularities

❑ To make things more efficient and effective

❑ Many works have already built on the paper (see LISA, FIGARO,
NoM, Ambit, ComputeDRAM, and other works in Google Scholar)

◼ Easy to read and understand paper
114

RowClone: Memory as an Accelerator

CPU
core

CPU
core

CPU
core

CPU
core

mini-CPU
core

video
core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

LLC

Memory Controller
Specialized

compute-capability
in memory

Memoryimaging
core

Memory Bus

Memory similar to a “conventional” accelerator

Mindset: Processing using DRAM

◼ DRAM has great capability to perform bulk data movement and
computation internally with small changes

❑ Can exploit internal connectivity to move data

❑ Can exploit analog computation capability

❑ …

◼ Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM
❑ RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data

(Seshadri et al., MICRO 2013)

❑ Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)

❑ Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial
Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)

❑ "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity
DRAM Technology” (Seshadri et al., MICRO 2017)

116

http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf

In-Memory

Bulk Bitwise Operations

117

In-Memory Bulk Bitwise Operations

◼ We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ

◼ At low cost

◼ Using inherent analog computation capability of DRAM

❑ Idea: activating multiple rows performs computation

◼ 30-60X performance and energy improvement

❑ Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology,” MICRO 2017.

◼ New memory technologies enable even more opportunities

❑ Memristors, resistive RAM, phase change mem, STT-MRAM, …

❑ Can operate on data with minimal movement

118

In-DRAM AND/OR: Triple Row Activation

119

½VDD

½VDD

dis

A

B

C

Final State
AB + BC + AC

½VDD+δ

C(A + B) +
~C(AB)en

0

VDD

Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015.

In-DRAM Bulk Bitwise AND/OR Operation

◼ BULKAND A, B → C

◼ Semantics: Perform a bitwise AND of two rows A and B and
store the result in row C

◼ R0 – reserved zero row, R1 – reserved one row

◼ D1, D2, D3 – Designated rows for triple activation

1. RowClone A into D1

2. RowClone B into D2

3. RowClone R0 into D3

4. ACTIVATE D1,D2,D3

5. RowClone Result into C
120

More on In-DRAM Bulk AND/OR

◼ Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and
Todd C. Mowry,
"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015.

121

http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal

In-DRAM NOT: Dual Contact Cell

122

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Idea:
Feed the

negated value
in the sense amplifier

into a special row

In-DRAM NOT Operation

123

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Performance: In-DRAM Bitwise Operations

124

Energy of In-DRAM Bitwise Operations

125

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Ambit vs. DDR3: Performance and Energy

126

0
10
20
30
40
50
60
70

Performance Improvement

Energy Reduction

32X 35X

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Bulk Bitwise Operations in Workloads

[1] Li and Patel, BitWeaving, SIGMOD 2013

[2] Goodwin+, BitFunnel, SIGIR 2017

Example Data Structure: Bitmap Index

◼ Alternative to B-tree and its variants

◼ Efficient for performing range queries and joins

◼ Many bitwise operations to perform a query

B
it

m
ap

 1

B
it

m
ap

 2

B
it

m
ap

 4

B
it

m
ap

 3

age < 18 18 < age < 25 25 < age < 60 age > 60

Performance: Bitmap Index on Ambit

129

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

>5.4-6.6X Performance Improvement

Performance: BitWeaving on Ambit

130

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

>4-12X Performance Improvement

More on In-DRAM Bulk AND/OR

◼ Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and
Todd C. Mowry,
"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015.

131

http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal

More on In-DRAM Bitwise Operations

◼ Vivek Seshadri et al., “Ambit: In-Memory Accelerator
for Bulk Bitwise Operations Using Commodity DRAM
Technology,” MICRO 2017.

132

https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf

More on In-DRAM Bulk Bitwise Execution

◼ Vivek Seshadri and Onur Mutlu,
"In-DRAM Bulk Bitwise Execution Engine"
Invited Book Chapter in Advances in Computers, to appear
in 2020.
[Preliminary arXiv version]

133

https://arxiv.org/pdf/1905.09822.pdf
https://arxiv.org/pdf/1905.09822.pdf

SIMDRAM Framework

◼ Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, Joao Dinis Ferreira, Nika Mansouri
Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gomez-Luna, and Onur Mutlu,
"SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM"
Proceedings of the 26th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Virtual, March-April 2021.
[2-page Extended Abstract]
[Short Talk Slides (pptx) (pdf)]
[Talk Slides (pptx) (pdf)]
[Short Talk Video (5 mins)]
[Full Talk Video (27 mins)]

134

https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21.pdf
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-extended-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-talk.pdf
https://www.youtube.com/watch?v=g0fE1c7w0xk&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=115
https://www.youtube.com/watch?v=bas9U7djW_8&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=116

SIMDRAM Key Idea

• SIMDRAM: An end-to-end processing-using-DRAM
framework that provides the programming interface, the
ISA, and the hardware support for:

- Efficiently computing complex operations in DRAM

- Providing the ability to implement arbitrary operations as
required

- Using an in-DRAM massively-parallel SIMD substrate that
requires minimal changes to DRAM architecture

135

SIMDRAM: PuM Substrate
• SIMDRAM framework is built around a DRAM substrate

that enables two techniques:

(1) Vertical data layout

4
-b

it
 e

le
m

en
t

si
ze

R
o

w
 D

ec
o

d
er

most significant bit (MSB)

least significant bit (LSB)

A

B Cout

Cin

MAJ

(2) Majority-based computation

Pros compared to the
conventional horizontal layout:

• Implicit shift operation
• Massive parallelism

Cout= AB + ACin + BCin

Pros compared to AND/OR/NOT-
based computation:

• Higher performance
• Higher throughput
• Lower energy consumption 136

SIMDRAM Output

Instruction result
in memory

Step 3: Execution according to μProgram

Memory Controller

User Input

SIMDRAM-enabled application

SIMDRAM Framework: Overview

ACT/PRE

ACT/PRE

ACT/PRE

ACT/ACT/PRE

done

SIMDRAM OutputUser Input

AND/OR/NOT logic

Desired operation

Main memory

ISA
bbop_new

New SIMDRAM
instruction

Step 2: Generate
sequence of

DRAM commands

foo () {

bbop_new

}

Control Unit A
C

T
/P

R
E

ACT/PRE

ACT/PRE

ACT/PRE

ACT/PRE/PRE

done

MAJ

MAJ/NOT logic

Step 1: Generate
MAJ logic

𝜇Program

𝜇𝑃𝑟𝑜𝑔𝑟𝑎𝑚

𝜇𝑃𝑟𝑜𝑔𝑟𝑎𝑚

New SIMDRAM 𝜇Program

𝜇Program

137

SIMDRAM Output

Instruction result
in memory

Step 3: Execution according to μProgram

Memory Controller

User Input

SIMDRAM-enabled application

SIMDRAM Framework: Step 1

ACT/PRE

ACT/PRE

ACT/PRE

ACT/ACT/PRE

done

SIMDRAM OutputUser Input

AND/OR/NOT logic

Desired operation

Main memory

ISA
bbop_new

New SIMDRAM
instruction

Step 2: Generate
sequence of

DRAM commands

foo () {

bbop_new

}

Control Unit A
C

T
/P

R
E

ACT/PRE

ACT/PRE

ACT/PRE

ACT/PRE/PRE

done

MAJ

MAJ/NOT logic

Step 1: Generate
MAJ logic

𝜇Program

𝜇𝑃𝑟𝑜𝑔𝑟𝑎𝑚

𝜇𝑃𝑟𝑜𝑔𝑟𝑎𝑚

New SIMDRAM 𝜇Program

𝜇Program

138

Step 1: Naïve MAJ/NOT Implementation

A

B

Cin

Cout

Part 1

MAJ
0

B

Cin

Cout
MAJ MAJ

MAJ

A

0
1

1

A

B
C

A

B
C

output is “1” only when A = B = “1”

output is “0” only when A = B = “0”

Naïvely converting AND/OR/NOT-implementation to
MAJ/NOT-implementation leads to an unoptimized circuit

MAJ
A
B C
0

MAJ
A
B C
1

139

Step 1: Efficient MAJ/NOT Implementation

Part 2

Step 1 generates an optimized
MAJ/NOT-implementation of the desired operation

A

B Cout

Cin

MAJ

Greedy
optimization

algorithm4

4 L. Amarù et al, “Majority-Inverter Graph: A Novel Data-Structure and Algorithms for Efficient Logic Optimization”, DAC, 2014.

MAJ
0

B

Cin

Cout
MAJ MAJ

MAJ

A

0
1

1

140

SIMDRAM Output

Instruction result
in memory

Step 3: Execution according to μProgram

Memory Controller

User Input

SIMDRAM-enabled application

SIMDRAM Framework: Step 2

ACT/PRE

ACT/PRE

ACT/PRE

ACT/ACT/PRE

done

SIMDRAM OutputUser Input

AND/OR/NOT logic

Desired operation

Main memory

ISA
bbop_new

New SIMDRAM
instruction

Step 2: Generate
sequence of

DRAM commands

foo () {

bbop_new

}

Control Unit A
C

T
/P

R
E

ACT/PRE

ACT/PRE

ACT/PRE

ACT/PRE/PRE

done

MAJ

MAJ/NOT logic

Step 1: Generate
MAJ logic

𝝁Program

𝜇𝑃𝑟𝑜𝑔𝑟𝑎𝑚

𝜇𝑃𝑟𝑜𝑔𝑟𝑎𝑚

New SIMDRAM 𝜇Program

𝜇Program

141

Step 2: µProgram Generation

• µProgram: A series of microarchitectural operations
(e.g., ACT/PRE) that SIMDRAM uses to execute SIMDRAM
operation in DRAM

• Goal of Step 2: To generate the µProgram that executes
the desired SIMDRAM operation in DRAM

Task 1: Allocate DRAM rows to the operands

Task 2: Generate µProgram

142

Step 2: µProgram Generation

• µProgram: A series of microarchitectural operations
(e.g., ACT/PRE) that SIMDRAM uses to execute SIMDRAM
operation in DRAM

• Goal of Step 2: To generate the µProgram that executes
the desired SIMDRAM operation in DRAM

Task 1: Allocate DRAM rows to the operands

Task 2: Generate µProgram

143

Task 1: Allocating DRAM Rows to Operands

0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1

re
gu

la
r

ro
w

 d
ec

o
d

er
C

o
m

p
u

te
R

o
w

 d
ec

o
d

er

subarray organization

Constraint 1:
Limited number of rows

reserved for computation

• Allocation algorithm considers two constraints specific to
processing-using-DRAM

Compute
rows

144

Task 1: Allocating DRAM Rows to Operands

0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1

re
gu

la
r

ro
w

 d
ec

o
d

er
C

o
m

p
u

te
R

o
w

 d
ec

o
d

er

subarray organization

Constraint 2:
Destructive behavior

of triple-row activation

Overwritten
with MAJ output

• Allocation algorithm considers two constraints specific to
processing-using-DRAM

145

A

B Cout

Cin

MAJ

Allocation
algorithm

0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1

Task 1: Allocating DRAM Rows to Operands

• Allocation algorithm:

Triple-row
activation

Cout

Cout

Cout

• Assigns as many inputs as the number of free compute rows

• All three input rows contain the MAJ output and can be reused

146

Step 2: µProgram Generation

• µProgram: A series of microarchitectural operations
(e.g., ACT/PRE) that SIMDRAM uses to execute SIMDRAM
operation in DRAM

• Goal of Step 2: To generate the µProgram that executes
the desired SIMDRAM operation in DRAM

Task 1: Allocate DRAM rows to the operands

Task 2: Generate µProgram

147

Task 2: Generate an initial µProgram

A

B Cout

Cin

MAJ
A

B Cout

Cin

MAJ

1. Generate
µProgram

1. Copy A to reserved row
(ACT/ACT/PRE)

2. Copy B to reserved row
(ACT/ACT/PRE)

3. Copy Cin to reserved row
(ACT/ACT/PRE)

4. Execute MAJ
(ACT/PRE)

5. Copy Cout to destination row
(ACT/PRE)

Initial µProgram

148

Task 2: Optimize the µProgram

A

B Cout

Cin

MAJ
A

B Cout

Cin

MAJ

1. Generate
µProgram

1. Copy A to reserved row
(ACT/ACT/PRE)

2. Copy B to reserved row
(ACT/ACT/PRE)

3. Copy Cin to reserved row
(ACT/ACT/PRE)

4. Execute MAJ
(ACT/PRE)

5. Copy Cout to destination row
(ACT/PRE)

Initial µProgram

2. Optimize
149

Task 2: Optimize the µProgram

A

B Cout

Cin

MAJ
A

B Cout

Cin

MAJ

1. Generate
µProgram

1. Copy A to reserved row
(ACT/ACT/PRE)

2. Copy B to reserved row
(ACT/ACT/PRE)

3. Copy Cin to reserved row
(ACT/ACT/PRE)

4. Execute MAJ
(ACT/PRE)

5. Copy Cout to destination row
(ACT/PRE)

Coalesce
row copies

Initial µProgram

2. Optimize
150

Task 2: Optimize the µProgram

A

B Cout

Cin

MAJ
A

B Cout

Cin

MAJ

1. Generate
µProgram

1. Copy A to reserved row
(ACT/ACT/PRE)

2. Copy B to reserved row
(ACT/ACT/PRE)

3. Copy Cin to reserved row
(ACT/ACT/PRE)

4. Execute MAJ
(ACT/PRE)

5. Copy Cout to destination row
(ACT/PRE)

Merge
MAJ + row copy

Initial µProgram

2. Optimize
151

1. Copy A to reserved row
(ACT/ACT/PRE)

2. Copy B to reserved row
(ACT/ACT/PRE)

3. Copy Cin to reserved row
(ACT/ACT/PRE)

4. Execute MAJ
(ACT/PRE)

5. Copy Cout to destination row
(ACT/PRE)

Task 2: Optimize the µProgram

A

B Cout

Cin

MAJ
A

B Cout

Cin

MAJ

1. Generate
µProgram

1. Copy A, B, Cin

to reserved rows
(ACT/ACT/PRE)

2. Execute MAJ and
copy Cout to destination row

(ACT/ACT/PRE)

Initial µProgram

Coalesce
row copies

Merge
MAJ + row copy

Optimized µProgram

2. Optimize
152

Task 2: Generate N-bit Computation

A

B Cout

Cin

MAJ
A

B Cout

Cin

MAJ

1. Generate
µProgram

3. Generate N-bit
computation

Repeat N times:

1. Copy A, B, Cin

to reserved rows
(ACT/ACT/PRE)

2. Execute MAJ and
copy Cout to destination row

(ACT/ACT/PRE)

Final µProgram

Repeat N times:

1. Copy A, B, Cin

to reserved rows
(ACT/ACT/PRE)

2. Execute MAJ and
copy Cout to destination row

(ACT/ACT/PRE)

• Final µProgram is optimized and computes the desired
operation for operands of N-bit size in a bit-serial fashion

2. Optimize

Optimized µProgram

153

Task 2: Generate µProgram

Repeat N times:

1. Copy A, B, Cin

to reserved rows
(ACT/ACT/PRE)

2. Execute MAJ and
copy Cout to destination row

(ACT/ACT/PRE)

Stored in a reserved DRAM
region

for future use

A new SIMDRAM
instruction (called bbop_new)

added to CPU ISA

Final µProgram

• Final µProgram is optimized and computes the desired
operation for operands of N-bit size in a bit-serial fashion

154

SIMDRAM Output

Instruction result
in memory

Step 3: Execution according to 𝛍Program

Memory Controller

User Input

SIMDRAM-enabled application

SIMDRAM Framework: Step 3

ACT/PRE

ACT/PRE

ACT/PRE

ACT/ACT/PRE

done

SIMDRAM OutputUser Input

AND/OR/NOT logic

Desired operation

Main memory

ISA
bbop_new

New SIMDRAM
instruction

Step 2: Generate
sequence of

DRAM commands

foo () {

bbop_new

}

Control Unit A
C

T
/P

R
E

ACT/PRE

ACT/PRE

ACT/PRE

ACT/PRE/PRE

done

MAJ

MAJ/NOT logic

Step 1: Generate
MAJ logic

𝜇Program

𝜇𝑃𝑟𝑜𝑔𝑟𝑎𝑚

𝜇𝑃𝑟𝑜𝑔𝑟𝑎𝑚

New SIMDRAM 𝜇Program

𝜇Program

155

Step 3: µProgram Execution
• SIMDRAM control unit: handles the execution of the

µProgram at runtime

• Upon receiving a bbop instruction, the control unit:

1. Loads the µProgram corresponding to SIMDRAM operation

2. Issues the sequence of DRAM commands (ACT/PRE) stored
in the µProgram to SIMDRAM subarrays to perform the in-
DRAM operation

Step 3: Execution according to 𝜇Program

Memory Controller

User Input

SIMDRAM-enabled application

foo () {

bbop_new

}

𝜇ProgramControl Unit

18

A
C

T
/P

R
E

SIMDRAM Output

Instruction result
in memoryACT/PRE

ACT/PRE

ACT/PRE

ACT/ACT/PRE

done

156

More in the Paper

• Detailed reference implementation and
microarchitecture of the SIMDRAM control unit

…

…𝜇Op 0 𝜇Op 63𝜇Op 62

1024

𝛍Program
Scratchpad

+1

bbop_op

/
…

𝜇Op 0

𝜇Op 1

𝜇Op 63

μPC

16

μOp
Proccessing

FSMbranch
target

AAP/AP

μOp Memory

shift
amount

1 size

dst, src_1, src_2, n

𝝁Program
𝝁Op

decrement is_zero

reg dst.
reg src.

1024

Loop
Counter

bbop
FIFO

μRegister
Addressing

Unit

μRegister
File…𝜇Op 0 𝜇Op 63𝜇Op 62

…𝜇Op 0 𝜇Op 63𝜇Op 62

From 𝛍Program
Memory

From
CPU

To Memory
Controller

2

3

4

5

67

157

System Integration

Efficiently transposing data

Programming interface

Handling page faults, address translation,
coherence, and interrupts

Handling limited subarray size

Security implications

Limitations of our framework

158

Transposing Data

• SIMDRAM operates on vertically-laid-out data

• Other system components expect data to be laid
out horizontally

Challenging to share data between SIMDRAM and CPU

159

Transposition Unit

Last–Level Cache

T
ra

n
sp

o
si

ti
o

n
 U

n
it

Memory Controller

Object Tracker
(OT)

Fetch Unit

Vertical → Horizontal
Transpose

Transpose Buffer

Store Unit

Horizontal → Vertical
Transpose

Transpose Buffer

Transforms the data layout from horizontal to vertical, and vice versa

160

Efficiently Transposing Data

Last–Level Cache

T
ra

n
sp

o
si

ti
o

n
 U

n
it

Memory Controller

Object Tracker
(OT)

Fetch Unit

Vertical → Horizontal
Transpose

Transpose Buffer

Store Unit

Horizontal → Vertical
Transpose

Transpose Buffer

Low impact on the throughput of
SIMDRAM operations

Low area cost (0.06 mm2 in 22nm tech. node)

161

More in the Paper

Efficiently transposing data

Programming interface

Handling page faults, address translation,
coherence, and interrupts

Handling limited subarray size

Security implications

Limitations of our framework

162

Methodology: Experimental Setup

• Simulator: gem5

• Baselines:
- A multi-core CPU (Intel Skylake)

- A high-end GPU (NVidia Titan V)

- Ambit: a state-of-the-art in-memory computing mechanism

• Evaluated SIMDRAM configurations (all using a
DDR4_2400_x64 device):

- 1-bank: SIMDRAM exploits 65’536 SIMD lanes (an 8 kB row
buffer)

- 4-banks: SIMDRAM exploits 262’144 SIMD lanes

- 16-banks: SIMDRAM exploits 1’048’576 SIMD lanes

163

Methodology: Workloads

Evaluated:

• 16 complex in-DRAM operations:
- Absolute - Predication

- Addition/Subtraction - ReLU

- BitCount - AND-/OR-/XOR-
Reduction

- Equality/ Greater/Greater Equal - Division/Multiplication

• 7 real-world applications
- BitWeaving (databases) - LeNET (neural networks)

- TPH-H (databases) - VGG-13/VGG-16 (neural networks)

- kNN (machine learning) - Brightness (graphics)

164

Throughput Analysis

5.5

0.4

2.0

22.0

1.5

7.9

88.0

5.8

31.6

0.1

1.0

10.0

100.0

CPU GPU Ambit

A
ve

ra
ge

 N
o

rm
al

iz
ed

 T
h

ro
u

gh
p

u
t

(G
O

P
S/

s)
 -

-
lo

g
sc

al
e

SIMDRAM - 1 Bank SIMDRAM - 4 Banks SIMDRAM - 16 Banks

SIMDRAM significantly outperforms
all state-of-the-art baselines for a wide range of operations

Average normalized throughput across all 16 SIMDRAM
operations

165

Energy Analysis
Average normalized energy efficiency across all 16
SIMDRAM operations

257

31

2.6

1

10

100

1000

CPU GPU Ambit

A
ve

ra
ge

 E
n

er
gy

 E
ff

ic
ie

n
cy

(G

O
P

S/
s/

W
at

t)
 -

-
lo

g
sc

al
e

SIMDRAM - 1 Bank SIMDRAM - 4 Banks SIMDRAM - 16 Banks

SIMDRAM is more energy-efficient than
all state-of-the-art baselines for a wide range of operations

166

Real-World Applications

3.0

0.3

2.5

8.7

0.9

7.3

21.0

2.1

17.5

0.1

1.0

10.0

100.0

CPU GPU Ambit

A
ve

ra
ge

 S
p

ee
d

u
p

 -
-

lo
g

sc
al

e

SIMDRAM - 1 Bank SIMDRAM - 4 Banks SIMDRAM - 16 Banks

SIMDRAM effectively and efficiently accelerates
many commonly-used real-world applications

Average speedup across 7 real-world applications

167

SIMDRAM Key Results

Evaluated on:
- 16 complex in-DRAM operations

- 7 commonly-used real-world applications

SIMDRAM provides:

• 88× and 5.8× the throughput of a CPU and a high-end
GPU, respectively, over 16 operations

• 257× and 31× the energy efficiency of a CPU and a
high-end GPU, respectively, over 16 operations

• 21× and 2.1× the performance of a CPU an a high-end
GPU, over seven real-world applications

168

SIMDRAM Conclusion
• SIMDRAM:

- Enables efficient computation of a flexible set and wide range
of operations in a PuM massively parallel SIMD substrate

- Provides the hardware, programming, and ISA support, to:
• Address key system integration challenges

• Allow programmers to define and employ new operations without
hardware changes

• More in the paper:
- Efficiently transposing data

- Programming interface

- Handling page faults, address translation, coherence, and interrupts

- Security implications

- Reliability evaluation

- Comparison to in-cache computing

- And more …

SIMDRAM is a promising PuM framework
• Can ease the adoption of processing-using-DRAM

architectures
• Improves the performance and efficiency of processing-

using-memory architectures

169

Lecture on SIMDRAM

170
https://youtu.be/pmZoAAhvkRQ

https://youtu.be/pmZoAAhvkRQ

In-DRAM Physical Unclonable Functions

◼ Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu,
"The DRAM Latency PUF: Quickly Evaluating Physical Unclonable
Functions by Exploiting the Latency-Reliability Tradeoff in Modern DRAM
Devices"
Proceedings of the 24th International Symposium on High-Performance Computer
Architecture (HPCA), Vienna, Austria, February 2018.
[Lightning Talk Video]
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]
[Full Talk Lecture Video (28 minutes)]

171

https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18.pdf
https://hpca2018.ece.ucsb.edu/
https://www.youtube.com/watch?v=Xw0laEEDmsM&feature=youtu.be
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_lightning-talk.pdf
https://www.youtube.com/watch?v=7gqnrTZpjxE

In-DRAM True Random Number Generation

172

◼ Jeremie S. Kim, Minesh Patel, Hasan Hassan, Lois Orosa, and Onur Mutlu,
"D-RaNGe: Using Commodity DRAM Devices to Generate True Random
Numbers with Low Latency and High Throughput"
Proceedings of the 25th International Symposium on High-Performance Computer
Architecture (HPCA), Washington, DC, USA, February 2019.
[Slides (pptx) (pdf)]
[Full Talk Video (21 minutes)]
[Full Talk Lecture Video (27 minutes)]
Top Picks Honorable Mention by IEEE Micro.

https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19.pdf
http://hpca2019.seas.gwu.edu/
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19-talk.pdf
https://www.youtube.com/watch?v=g_GtYdzIPK4&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=19
https://www.youtube.com/watch?v=Y3hPv1I5f8Y&list=PL5Q2soXY2Zi-DyoI3HbqcdtUm9YWRR_z-&index=16

In-DRAM True Random Number Generation

173

◼ Ataberk Olgun, Minesh Patel, A. Giray Yaglikci, Haocong Luo, Jeremie S. Kim, F. Nisa
Bostanci, Nandita Vijaykumar, Oguz Ergin, and Onur Mutlu,
"QUAC-TRNG: High-Throughput True Random Number Generation Using
Quadruple Row Activation in Commodity DRAM Chips"
Proceedings of the 48th International Symposium on Computer Architecture (ISCA),
Virtual, June 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Talk Video (25 minutes)]
[SAFARI Live Seminar Video (1 hr 26 mins)]

https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21.pdf
http://iscaconf.org/isca2021/
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21-short-talk.pdf
https://www.youtube.com/watch?v=QtBrq0WVOmQ&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=132
https://www.youtube.com/watch?v=snvF3g3GfkI&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9&index=6

In-DRAM True Random Number Generation

174

◼ F. Nisa Bostanci, Ataberk Olgun, Lois Orosa, A. Giray Yaglikci, Jeremie S. Kim, Hasan
Hassan, Oguz Ergin, and Onur Mutlu,
"DR-STRaNGe: End-to-End System Design for DRAM-based True Random
Number Generators"
Proceedings of the 28th International Symposium on High-Performance Computer
Architecture (HPCA), Virtual, April 2022.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]

https://arxiv.org/pdf/2201.01385.pdf

https://people.inf.ethz.ch/omutlu/pub/DR_STRANGE_EndtoEnd-DRAM-TRNG_hpca22.pdf
https://www.hpca-conf.org/2022/
https://people.inf.ethz.ch/omutlu/pub/DR_STRANGE_EndtoEnd-DRAM-TRNG_hpca22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/DR_STRANGE_EndtoEnd-DRAM-TRNG_hpca22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/DR_STRANGE_EndtoEnd-DRAM-TRNG_hpca22-shorttalk.pptx
https://people.inf.ethz.ch/omutlu/pub/DR_STRANGE_EndtoEnd-DRAM-TRNG_hpca22-shorttalk.pdf
https://arxiv.org/pdf/2201.01385.pdf

In-DRAM Lookup-Table Based Execution

◼ To appear at MICRO 2022

175https://arxiv.org/pdf/2104.07699.pdf

https://arxiv.org/pdf/2104.07699.pdf

In-Flash Bulk Bitwise Execution

◼ To appear at MICRO 2022

176https://arxiv.org/pdf/2209.05566.pdf

https://arxiv.org/pdf/2209.05566.pdf

RowClone in Off-the-Shelf DRAM Chips

◼ Idea: Violate DRAM timing parameters to mimic RowClone

177
https://parallel.princeton.edu/papers/micro19-gao.pdf

https://parallel.princeton.edu/papers/micro19-gao.pdf

Real Processing Using Memory Prototype

◼ End-to-end RowClone & TRNG using off-the-shelf DRAM chips

◼ Idea: Violate DRAM timing parameters to mimic RowClone

https://arxiv.org/pdf/2111.00082.pdf

https://github.com/cmu-safari/pidram

https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

178

https://arxiv.org/pdf/2111.00082.pdf
https://github.com/cmu-safari/pidram
https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

Real Processing Using Memory Prototype

https://arxiv.org/pdf/2111.00082.pdf

https://github.com/cmu-safari/pidram

https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

179

Host Machine

FPGA Board

RISC-V System

PiM-Enabled DIMM

https://arxiv.org/pdf/2111.00082.pdf
https://github.com/cmu-safari/pidram
https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

Real Processing Using Memory Prototype

https://arxiv.org/pdf/2111.00082.pdf

https://github.com/cmu-safari/pidram

https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

https://arxiv.org/pdf/2111.00082.pdf
https://github.com/cmu-safari/pidram
https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

Pinatubo: RowClone and Bitwise Ops in PCM

181
https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

Pinatubo: RowClone and Bitwise Ops in PCM

182
https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

In-Memory Crossbar Array Operations

◼ Some emerging NVM technologies have crossbar array
structure

❑ Memristors, resistive RAM, phase change mem, STT-MRAM, …

◼ Crossbar arrays can be used to perform dot product
operations using “analog computation capability”

❑ Can operate on multiple pieces of data using Kirchoff’s laws

◼ Bitline current is a sum of products of wordline V x (1 / cell R)

❑ Computation is in analog domain inside the crossbar array

◼ Need peripheral circuitry for D→A and A→D conversion of

inputs and outputs

183

Aside: In-Memory Crossbar Computation

184Shafiee+, “ISAAC: A Convolutional Neural Network Accelerator

with In-Situ Analog Arithmetic in Crossbars”, ISCA 2016.

Aside: In-Memory Crossbar Computation

Readings on Processing using NVM

◼ Shafiee+, “ISAAC: A Convolutional Neural Network Accelerator
with In-Situ Analog Arithmetic in Crossbars”, ISCA 2016.

◼ Chi+, “PRIME: A Novel Processing-in-memory Architecture for
Neural Network Computation in ReRAM-based Main Memory”,
ISCA 2016.

◼ Prezioso+, “Training and Operation of an Integrated
Neuromorphic Network based on Metal-Oxide Memristors”,
Nature 2015

◼ Ambrogio+, “Equivalent-accuracy accelerated neural-network
training using analogue memory”, Nature 2018.

186

Challenge: Intelligent Memory Device

Does memory

have to be

dumb?

187

Challenge and Opportunity for Future

Computing Architectures

with

Minimal Data Movement

188

Historical Perspective &

A Detour

on the Review Process

189

Ambit and RowClone

Sound Great!

No?

190

Some History: RowClone

191

RowClone: Historical Perspective

◼ This work is likely the first example of “minimally changing
DRAM chips” to perform data movement and computation

❑ Surprising that it was done as late as 2013!

◼ It led to a body of work on in-DRAM (and in-NVM)
computation with “hopefully small” changes

◼ Work building on RowClone still continues

◼ Initially, it was dismissed by some reviewers

❑ Rejected from ISCA 2013 conference

192

One Review (ISCA 2013 Submission)

193

Another Review and Rebuttal

194

ISCA 2013 Submission

195

Yet Later… in ISCA 2015…

196

MICRO 2013 Submission

197

More History: Ambit

198

Ambit

◼ First work on performing bulk bitwise operations in DRAM

❑ By exploiting analog computation capability of bitlines

❑ Extends and completes our IEEE CAL 2015 paper

◼ Disruptive -- spans algorithms to circuits/devices

❑ Requires hardware/software cooperation for adoption

◼ Led to a large amount of work in similar approaches in
DRAM and NVM

❑ The work continues to build

◼ Initially, it was dismissed by many reviewers

❑ Rejected from 4 conferences!

199

ISCA 2016: Rejected

200

MICRO 2016: Rejected

201

HPCA 2017: Rejected

202

ISCA 2017: Rejected

203

Ambit Sounds Good, No?

204

Review from ISCA 2016

Very Interesting and Novel, ….. BUT …

205

… This Will Never Get Implemented

206

Another Review

207

Another Review from ISCA 2016

… This Will Never Get Implemented

208

Yet Another Review

209

Yet Another Review from ISCA 2016

A Review from HPCA 2017: REJECT

210

A Review from ISCA 2017

211

Another Review from ISCA 2017

212

ISCA 2017 Summary

213

The Reviewer Accountability Problem

214

MICRO 2017: Accepted

215

Aside: A Recommended Book

216

Raj Jain, “The Art of

Computer Systems

Performance Analysis,”

Wiley, 1991.

217

Raj Jain, “The Art of

Computer Systems

Performance Analysis,”

Wiley, 1991.

218

Raj Jain, “The Art of

Computer Systems

Performance Analysis,”

Wiley, 1991.

Suggestions to Reviewers

◼ Be fair; you do not know it all

◼ Be open-minded; you do not know it all

◼ Be accepting of diverse research methods: there is no
single way of doing research or writing papers

◼ Be constructive, not destructive

◼ Enable heterogeneity, but do not have double standards…

Do not block or delay scientific progress for non-reasons

Suggestion to Community

We Need to Fix the
Reviewer Accountability

Problem

Takeaway

Main Memory Needs

Intelligent Controllers

Takeaway

Research Community
Needs

Accountable Reviewers

An Interview on Research and Education

◼ Computing Research and Education (@ ISCA 2019)

❑ https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2
soXY2Zi_4oP9LdL3cc8G6NIjD2Ydz

◼ Maurice Wilkes Award Speech (10 minutes)

❑ https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2
soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=15

223https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2soXY2Zi_4oP9LdL3cc8G6NIjD2Ydz
https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=15
https://www.youtube.com/onurmutlulectures

More Thoughts and Suggestions

◼ Onur Mutlu,
"Some Reflections (on DRAM)"
Award Speech for ACM SIGARCH Maurice Wilkes Award, at the ISCA Awards
Ceremony, Phoenix, AZ, USA, 25 June 2019.
[Slides (pptx) (pdf)]
[Video of Award Acceptance Speech (Youtube; 10 minutes) (Youku; 13 minutes)]
[Video of Interview after Award Acceptance (Youtube; 1 hour 6 minutes) (Youku;
1 hour 6 minutes)]
[News Article on "ACM SIGARCH Maurice Wilkes Award goes to Prof. Onur Mutlu"]

◼ Onur Mutlu,
"How to Build an Impactful Research Group"
57th Design Automation Conference Early Career Workshop (DAC), Virtual,
19 July 2020.
[Slides (pptx) (pdf)]

https://www.youtube.com/onurmutlulectures

https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pptx
https://www.sigarch.org/benefit/awards/acm-sigarch-maurice-wilkes-award/
https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pdf
https://www.youtube.com/watch?v=tcQ3zZ3JpuA
https://v.youku.com/v_show/id_XNDI3MjU2ODIwNA
https://www.youtube.com/watch?v=8ffSEKZhmvo
https://v.youku.com/v_show/id_XNDI3MjU3MTM0OA
https://inf.ethz.ch/news-and-events/spotlights/2019/06/mutlu-ACM-SIGARCH-award.html
https://people.inf.ethz.ch/omutlu/pub/onur-DAC-EarlyCareerWorkshopPanel-ImpactfulResearch-July-19-2020-withbackup-FINAL.pptx
https://sites.google.com/gapp.nthu.edu.tw/dac-ecw20/
https://people.inf.ethz.ch/omutlu/pub/onur-DAC-EarlyCareerWorkshopPanel-ImpactfulResearch-July-19-2020-withbackup-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DAC-EarlyCareerWorkshopPanel-ImpactfulResearch-July-19-2020-withbackup-FINAL.pdf
https://www.youtube.com/onurmutlulectures

RowClone in Off-the-Shelf DRAM Chips

◼ Idea: Violate DRAM timing parameters to mimic RowClone

225
https://parallel.princeton.edu/papers/micro19-gao.pdf

https://parallel.princeton.edu/papers/micro19-gao.pdf

RowClone & Bitwise Ops in Real DRAM Chips

226https://parallel.princeton.edu/papers/micro19-gao.pdf

https://parallel.princeton.edu/papers/micro19-gao.pdf

Row Copy in ComputeDRAM

227

Bitline is above
VDD/2 when R2 is

activated.

Bitwise AND in ComputeDRAM

228

T1 very short
Sense amps are not

activated

T2 very short
PRE cannot close R1

R3 will appear on the address bus
ACT(R2) will activate R3 and R2

Experimental Methodology

229

Experimental Methodology

230

32 DDR3 Modules
~256 DRAM Chips

Proof of Concept

◼ How they test these memory modules:

❑ Vary T1 and T2, observe what happens.

SoftMC Experiment

1. Select a random subarray

2. Fill subarray with random data

3. Issue ACT-PRE-ACTs with given T1 & T2

4. Read out subarray

5. Find out how many columns in a row support either operation

❑ Row-wise success ratio

231

Proof of Concept

232

◼ Each grid represents the success ratio of operations for a specific
DDR3 module.

Real Processing Using Memory Prototype

◼ End-to-end RowClone & TRNG using off-the-shelf DRAM chips

◼ Idea: Violate DRAM timing parameters to mimic RowClone

https://arxiv.org/pdf/2111.00082.pdf

https://github.com/cmu-safari/pidram

https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

233

https://arxiv.org/pdf/2111.00082.pdf
https://github.com/cmu-safari/pidram
https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

PiDRAM

Goal: Develop a flexible platform to explore
end-to-end implementations of PuM techniques

•Enable rapid integration via key components

234

Hardware Software

Easy-to-extend

Memory Controller

ISA-transparent

PuM Controller

1

2

1

2

Extensible

Software Library

Custom

Supervisor Software

Real Processing Using Memory Prototype

https://arxiv.org/pdf/2111.00082.pdf

https://github.com/cmu-safari/pidram

https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

235

Host Machine

FPGA Board

RISC-V System

PiM-Enabled DIMM

https://arxiv.org/pdf/2111.00082.pdf
https://github.com/cmu-safari/pidram
https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

PiDRAM Workflow

1- User application interfaces with the OS via system calls

2- OS uses PuM Operations Library (pumolib) to convey
operation related information to the hardware using

3- STORE instructions that target the memory
mapped registers of the PuM Operations Controller (POC)

4- POC oversees the execution of a PuM operation (e.g.,
RowClone, bulk bitwise operations)

5- Scheduler arbitrates between regular (load, store) and PuM
operations and issues DRAM commands with custom timings

236

Real Processing Using Memory Prototype

https://arxiv.org/pdf/2111.00082.pdf

https://github.com/cmu-safari/pidram

https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

https://arxiv.org/pdf/2111.00082.pdf
https://github.com/cmu-safari/pidram
https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

238

Microbenchmark Copy/Initialization Throughput

In-DRAM Copy and Initialization
improve throughput by 119x and 89x

239

PiDRAM is Open Source

https://github.com/CMU-SAFARI/PiDRAM

https://github.com/CMU-SAFARI/PiDRAM

240

Extended Version on ArXiv

https://arxiv.org/abs/2111.00082

https://arxiv.org/abs/2111.00082

241

Long Talk + Tutorial on Youtube

https://youtu.be/s_z_S6FYpC8

https://youtu.be/s_z_S6FYpC8

Pinatubo: RowClone and Bitwise Ops in PCM

242
https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

Pinatubo: RowClone and Bitwise Ops in PCM

243
https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

Suggestion to Researchers: Principle: Passion

Follow Your Passion

(Do not get derailed

by naysayers)

Suggestion to Researchers: Principle: Resilience

Be Resilient

Principle: Learning and Scholarship

Focus on

learning and scholarship

Principle: Learning and Scholarship

The quality of your work
defines your impact

Principle: Work Hard

Work Hard to
Enable Your Passion

Principle: Good Mindset, Goals & Focus

You can make a
good impact
on the world

Recommended Interview on Research & Education

◼ Computing Research and Education (@ ISCA 2019)

❑ https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2
soXY2Zi_4oP9LdL3cc8G6NIjD2Ydz

◼ Maurice Wilkes Award Speech (10 minutes)

❑ https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2
soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=15

◼ Onur Mutlu,
"Some Reflections (on DRAM)"
Award Speech for ACM SIGARCH Maurice Wilkes Award, at the ISCA Awards Ceremony,
Phoenix, AZ, USA, 25 June 2019.
[Slides (pptx) (pdf)]
[Video of Award Acceptance Speech (Youtube; 10 minutes) (Youku; 13 minutes)]
[Video of Interview after Award Acceptance (Youtube; 1 hour 6 minutes) (Youku; 1 hour
6 minutes)]
[News Article on "ACM SIGARCH Maurice Wilkes Award goes to Prof. Onur Mutlu"]

250

https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2soXY2Zi_4oP9LdL3cc8G6NIjD2Ydz
https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=15
https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pptx
https://www.sigarch.org/benefit/awards/acm-sigarch-maurice-wilkes-award/
https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pdf
https://www.youtube.com/watch?v=tcQ3zZ3JpuA
https://v.youku.com/v_show/id_XNDI3MjU2ODIwNA
https://www.youtube.com/watch?v=8ffSEKZhmvo
https://v.youku.com/v_show/id_XNDI3MjU3MTM0OA
https://inf.ethz.ch/news-and-events/spotlights/2019/06/mutlu-ACM-SIGARCH-award.html

Recommended Interview

251https://www.youtube.com/watch?v=8ffSEKZhmvo

https://www.youtube.com/watch?v=8ffSEKZhmvo

A Talk on Impactful Research & Education

252
https://www.youtube.com/watch?v=83tlorht7Mc&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=54

https://www.youtube.com/watch?v=83tlorht7Mc&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=54

Suggested Reading

https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=youandyourresearch.pdf

253

https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=youandyourresearch.pdf

Required Reading on Mindset & More

https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=youandyourresearch.pdf

254

https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=youandyourresearch.pdf

Computer Architecture
Lecture 3: Processing using Memory

Prof. Onur Mutlu

ETH Zürich

Fall 2022

6 October 2022

