
Computer Architecture
Lecture 3: Processing using Memory

Prof. Onur Mutlu

ETH Zürich

Fall 2022

6 October 2022



Sub-Agenda: In-Memory Computation

◼ Major Trends Affecting Main Memory

◼ The Need for Intelligent Memory Controllers

❑ Bottom Up: Push from Circuits and Devices

❑ Top Down: Pull from Systems and Applications 

◼ Processing in Memory: Two Directions

❑ Processing using Memory

❑ Processing near Memory

◼ How to Enable Adoption of Processing in Memory

◼ Conclusion
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Three Key Systems Trends

1. Data access is a major bottleneck
❑ Applications are increasingly data hungry

2. Energy consumption is a key limiter

3. Data movement energy dominates compute
❑ Especially true for off-chip to on-chip movement
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Observation and Opportunity

◼ High latency and high energy caused by data movement

❑ Long, energy-hungry interconnects

❑ Energy-hungry electrical interfaces

❑ Movement of large amounts of data

◼ Opportunity: Minimize data movement by performing 
computation directly (near) where the data resides

❑ Processing in memory (PIM)

❑ In-memory computation/processing

❑ Near-data processing (NDP)

❑ General concept applicable to any data storage & movement 
unit (caches, SSDs, main memory, network, controllers)
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Four Key Issues in Future Platforms

◼ Fundamentally Secure/Reliable/Safe Architectures

◼ Fundamentally Energy-Efficient Architectures

❑ Memory-centric (Data-centric) Architectures

◼ Fundamentally Low-Latency Architectures

◼ Architectures for AI/ML, Genomics, Medicine, Health
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Maslow’s (Human) Hierarchy of Needs, Revisited
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Maslow, “A Theory of Human Motivation,” 
Psychological Review, 1943. 

Everlasting energy

Source: https://www.simplypsychology.org/maslow.html

Maslow, “A Theory of Human Motivation,” 
Psychological Review, 1943. 

Maslow, “Motivation and Personality,”
Book, 1954-1970.



Do We Want This?

7Source: V. Milutinovic



Or This?

8Source: V. Milutinovic



Challenge and Opportunity for Future

High Performance,

Energy Efficient,

Sustainable

(All at the Same Time)
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The Problem

Data access is the major performance and energy bottleneck

Our current

design principles 

cause great energy waste
(and great performance loss)
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The Problem

Processing of data 

is performed 

far away from the data
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A Computing System

◼ Three key components

◼ Computation 

◼ Communication

◼ Storage/memory
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Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/
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Today’s Computing Systems

◼ Are overwhelmingly processor centric

◼ All data processed in the processor → at great system cost

◼ Processor is heavily optimized and is considered the master

◼ Data storage units are dumb and are largely unoptimized
(except for some that are on the processor die)
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It’s the Memory, Stupid!

◼ “It’s the Memory, Stupid!” (Richard Sites, MPR, 1996)

15http://cva.stanford.edu/classes/cs99s/papers/architects_look_to_future.pdf

http://cva.stanford.edu/classes/cs99s/papers/architects_look_to_future.pdf


The Performance Perspective 

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.



The Performance Perspective
◼ Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,

"Runahead Execution: An Alternative to Very Large Instruction 
Windows for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance 
Computer Architecture (HPCA), Anaheim, CA, February 2003. Slides (pdf)
One of the 15 computer architecture papers of 2003 selected as Top 
Picks by IEEE Micro.
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https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
http://www.cs.arizona.edu/hpca9/
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03_talk.pdf


The Memory Bottleneck
◼ Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,

"Runahead Execution: An Effective Alternative to Large 
Instruction Windows"
IEEE Micro, Special Issue: Micro's Top Picks from Microarchitecture 
Conferences (MICRO TOP PICKS), Vol. 23, No. 6, pages 20-25, 
November/December 2003.
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https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_micro03.pdf
http://doi.ieeecomputersociety.org/10.1109/MM.2003.1261383


An Informal Interview on Memory

◼ Madeleine Gray and Onur Mutlu,
"It’s the memory, stupid’: A conversation with Onur Mutlu"
HiPEAC info 55, HiPEAC Newsletter, October 2018.
[Shorter Version in Newsletter]
[Longer Online Version with References]
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https://www.hipeac.net/news/6871/its-the-memory-stupid-a-conversation-with-onur-mutlu/
https://www.hipeac.net/media/public/publications/newsletter/hipeacinfo55_final_web.pdf
https://www.hipeac.net/publications/newsletter/
https://www.hipeac.net/media/public/publications/newsletter/hipeacinfo55_final_web.pdf
https://www.hipeac.net/news/6871/its-the-memory-stupid-a-conversation-with-onur-mutlu/


The Performance Perspective (Today)

◼ All of Google’s Data Center Workloads (2015): 

20Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.



The Performance Perspective (Today)

◼ All of Google’s Data Center Workloads (2015): 

21Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.



Perils of Processor-Centric Design

◼ Grossly-imbalanced systems

❑ Processing done only in one place

❑ Everything else just stores and moves data: data moves a lot

→ Energy inefficient 

→ Low performance

→ Complex

◼ Overly complex and bloated processor (and accelerators)

❑ To tolerate data access from memory

❑ Complex hierarchies and mechanisms 

→ Energy inefficient 

→ Low performance

→ Complex
22



Perils of Processor-Centric Design

23

Most of the system is dedicated to storing and moving data 



The Energy Perspective

24

Dally, HiPEAC 2015



Data Movement vs. Computation Energy

25

Dally, HiPEAC 2015

A memory access consumes ~100-1000X 
the energy of a complex addition 



Data Movement vs. Computation Energy

◼ Data movement is a major system energy bottleneck

❑ Comprises 41% of mobile system energy during web browsing [2]

❑ Costs ~115 times as much energy as an ADD operation [1, 2]
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[1]: Reducing data Movement Energy via Online Data Clustering and Encoding (MICRO’16)

[2]: Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms (IISWC’14)



Energy Waste in Mobile Devices
◼ Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul 

Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming 
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.
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62.7% of the total system energy 
is spent on data movement

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/


We Do Not Want to Move Data!
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Dally, HiPEAC 2015

A memory access consumes ~100-1000X 
the energy of a complex addition 



We Need A Paradigm Shift To …

◼ Enable computation with minimal data movement

◼ Compute where it makes sense (where data resides)

◼ Make computing architectures more data-centric
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Goal: Processing Inside Memory

◼ Many questions … How do we design the:

❑ compute-capable memory & controllers?

❑ processor chip and in-memory units?

❑ software and hardware interfaces?

❑ system software, compilers, languages?

❑ algorithms and theoretical foundations?

Cache

Processor
Core

Interconnect

Memory
Database

Graphs

Media 
Query

Results

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons



PIM Review and Open Problems
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Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"A Modern Primer on Processing in Memory"
Invited Book Chapter in Emerging Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann, Springer, to be published in 2021.

https://arxiv.org/pdf/1903.03988.pdf

https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://arxiv.org/pdf/1903.03988.pdf
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Processing Data 

Where It Makes Sense
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◼ Kautz, “Cellular Logic-in-Memory Arrays”, IEEE TC 1969.

https://doi.org/10.1109/T-C.1969.222754

Processing in/near Memory: An Old Idea

https://doi.org/10.1109/T-C.1969.222754


Processing in/near Memory: An Old Idea

◼ Stone, “A Logic-in-Memory Computer,” IEEE TC 1970.

36https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=stone_logic_in_memory_1970.pdf

https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=stone_logic_in_memory_1970.pdf


Why In-Memory Computation Today?

◼ Huge problems with Memory Technology

❑ Memory technology scaling is not going well (e.g., RowHammer)

❑ Many scaling issues demand intelligence in memory

◼ Huge demand from Applications & Systems

❑ Data access bottleneck

❑ Energy & power bottlenecks

❑ Data movement energy dominates computation energy

❑ Need all at the same time: performance, energy, sustainability

❑ We can improve all metrics by minimizing data movement

◼ Designs are squeezed in the middle

37



Processing-in-Memory Landscape Today

38

[UPMEM 2019][Samsung 2021][SK Hynix 2022]

[Samsung 2021]

And, many other experimental chips and startups

[Alibaba 2022]
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The Push from Circuits and Devices

Main Memory Needs 

Intelligent Controllers

40



Memory Scaling Issues Are Real

◼ Onur Mutlu,
"Memory Scaling: A Systems Architecture Perspective"
Proceedings of the 5th International Memory 
Workshop (IMW), Monterey, CA, May 2013. Slides 
(pptx) (pdf)
EETimes Reprint

https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf

https://people.inf.ethz.ch/omutlu/pub/memory-scaling_imw13.pdf
http://www.ewh.ieee.org/soc/eds/imw/
https://people.inf.ethz.ch/omutlu/pub/mutlu_memory-scaling_imw13_invited-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/mutlu_memory-scaling_imw13_invited-talk.pdf
http://www.eetimes.com/document.asp?doc_id=1280950
https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf


Application Scaling Issues Are Real

◼ Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, 
and Kiyoung Choi,
"A Scalable Processing-in-Memory Accelerator for 
Parallel Graph Processing"
Proceedings of the 42nd International Symposium on 
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]
Top Picks Honorable Mention by IEEE Micro.
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https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pdf


UPMEM Processing-in-DRAM Engine (2019)

43

◼ Processing in DRAM Engine 

◼ Includes standard DIMM modules, with a large 
number of DPU processors combined with DRAM chips.

◼ Replaces standard DIMMs

❑ DDR4 R-DIMM modules

◼ 8GB+128 DPUs (16 PIM chips)

◼ Standard 2x-nm DRAM process

❑ Large amounts of compute & memory bandwidth

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem

https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

CPU
(x86, ARM, RV…)

DDR

Data bus

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/
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UPMEM Memory Modules

• E19: 8 chips DIMM (1 rank). DPUs @ 267 MHz

• P21: 16 chips DIMM (2 ranks). DPUs @ 350 MHz

www.upmem.com

http://www.upmem.com/


2,560-DPU Processing-in-Memory System
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https://arxiv.org/pdf/2105.03814.pdf

https://arxiv.org/pdf/2105.03814.pdf


Understanding a Modern PIM Architecture (I)

https://arxiv.org/pdf/2105.03814.pdf

https://github.com/CMU-SAFARI/prim-benchmarks

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks


Understanding a Modern PIM Architecture (II)

47https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9

https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9


Samsung Function-in-Memory DRAM (2021)

48https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power

https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power


Samsung Function-in-Memory DRAM (2021)
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Samsung Function-in-Memory DRAM (2021)
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Samsung Function-in-Memory DRAM (2021)
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Samsung Function-in-Memory DRAM (2021)
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Lecture on FIMDRAM/HBM-PIM
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https://youtu.be/_CpWJGK9N04

https://youtu.be/_CpWJGK9N04


Samsung AxDIMM (2021)

◼ DIMM-based PIM

❑ DLRM recommendation system

54

Baseline System

AxDIMM System

Ke et al. "Near-Memory Processing in Action: Accelerating Personalized Recommendation with AxDIMM", IEEE Micro (2021)



Lecture on AxDIMM

55
https://youtu.be/J_prUKfnv7Q

https://youtu.be/J_prUKfnv7Q


◼ 4 Gb AiM die with 16 processing units (PUs)

56Lee et al., A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for 

Deep-Learning Applications, ISSCC 2022

11.1: A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for Deep Learning Applications© 2022 IEEE 
International Solid-State Circuits Conference 37 of 42

Chip Implementation

An 4Gb aim die photograph with 16 processing units
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SK Hynix AiM: Chip Implementation (2022)

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/


SK Hynix AiM: System Organization (2022)

◼ GDDR6-based AiM architecture

57Lee et al., A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for 

Deep-Learning Applications, ISSCC 2022

11.1: A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for Deep Learning Applications© 2022 IEEE 
International Solid-State Circuits Conference 8 of 42

AiM Architecture

AiM Architecture with 16 processing units (PUs) for deep-learning operations 

near DRAM cells and a 2KB global buffer (GB) for temporary data storage
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AiM Architecture

AiM Architecture with 16 processing units (PUs) for deep-learning operations 

near DRAM cells and a 2KB global buffer (GB) for temporary data storage
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AiM Architecture

AiM Architecture with 16 processing units (PUs) for deep-learning operations 

near DRAM cells and a 2KB global buffer (GB) for temporary data storage
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https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/


Lecture on Accelerator-in-Memory

58
https://youtu.be/NDL77Xdccbs?t=159

https://youtu.be/NDL77Xdccbs?t=159


Alibaba HB-PNM: Overall Architecture (2022)

◼ 3D-stacked logic die and DRAM die vertically bonded by 
hybrid bonding (HB)

59Niu et al., 184QPS/W 64Mb/mm2 3D Logic-to-DRAM Hybrid Bonding with Process-Near-Memory Engine for Recommendation System, ISSCC 2022

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/


Lecture on HB-PNM

60
https://youtu.be/OZjKnn-DbwA

https://youtu.be/OZjKnn-DbwA


FPGA-based Processing Near Memory

◼ Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios
Diamantopoulos, Juan Gómez-Luna, Henk Corporaal, and Onur Mutlu,
"FPGA-based Near-Memory Acceleration of Modern Data-Intensive 
Applications"
IEEE Micro (IEEE MICRO), to appear, 2021.

61

https://arxiv.org/pdf/2106.06433.pdf
http://www.computer.org/micro/


Why In-Memory Computation Today?

◼ Push from Technology

❑ DRAM Scaling at jeopardy 

→ Controllers close to DRAM

→ Industry open to new memory architectures

◼ Pull from Systems and Applications

❑ Data access is a major system and application bottleneck

❑ Systems are energy limited

❑ Data movement much more energy-hungry than computation
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The Push from Circuits and Devices

Main Memory Needs 

Intelligent Controllers
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We Need to Think Differently 

from the Past Approaches
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Sub-Agenda: In-Memory Computation

◼ Major Trends Affecting Main Memory

◼ The Need for Intelligent Memory Controllers

❑ Bottom Up: Push from Circuits and Devices

❑ Top Down: Pull from Systems and Applications 

◼ Processing in Memory: Two Directions

❑ Processing using Memory

❑ Processing near Memory

◼ How to Enable Adoption of Processing in Memory

◼ Conclusion
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Two PIM Approaches

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, 
and Rachata Ausavarungnirun,
"A Modern Primer on Processing in 
Memory"
Invited Book Chapter in Emerging 
Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann, 
Springer, to be published in 2021.
[Tutorial Video on "Memory-Centric Computing 
Systems" (1 hour 51 minutes)]

66https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf

https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://www.youtube.com/watch?v=H3sEaINPBOE
https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf


Processing in Memory:

Two Approaches

1. Processing using Memory

2. Processing near Memory
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Approach 1: Processing Using Memory

◼ Take advantage of operational principles of memory to perform 
bulk data movement and computation in memory

❑ Can exploit internal connectivity to move data

❑ Can exploit analog computation capability

❑ …

◼ Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM
❑ RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data

(Seshadri et al., MICRO 2013)

❑ Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)

❑ Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial 
Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)

❑ "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity 
DRAM Technology” (Seshadri et al., MICRO 2017)
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http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf


Starting Simple: Data Copy and Initialization
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Bulk Data Copy and Initialization
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Starting Simple: Data Copy and Initialization

71

Forking

00000

00000

00000

Zero initialization
(e.g., security)

VM Cloning
Deduplication

Checkpointing

Page Migration

Many more

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’15]



Today’s Systems: Bulk Data Copy

Memory

MCL3L2L1CPU

1) High latency

2) High bandwidth utilization

3) Cache pollution

4) Unwanted data movement

721046ns, 3.6uJ    (for 4KB page copy via DMA)



Future Systems: In-Memory Copy

Memory

MCL3L2L1CPU

1) Low latency

2) Low bandwidth utilization

3) No cache pollution

4) No unwanted data movement

731046ns, 3.6uJ → 90ns, 0.04uJ



RowClone: In-DRAM Row Copy

Row Buffer (4 Kbytes)

Data Bus

8 bits

DRAM subarray

4 Kbytes

Step 1: Activate row A

Transfer 
row

Step 2: Activate row B

Transfer
row

Negligible HW cost
Idea: Two consecutive ACTivates

11.6X latency reduction, 74X energy reduction 



RowClone: Intra-Subarray
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RowClone: Intra-Subarray (II)

r c r o ws

s t o wd r

Row Buffer

r c r o ws

s r c r o w

1. Activate src row (copy data from src to row buffer)

2. Activate dst row (disconnect src from row buffer, 
connect dst – copy data from row buffer to dst)



RowClone: Inter-Bank
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RowClone: Latency and Energy Savings
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Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and 
Initialization of Bulk Data,” MICRO 2013.



RowClone: Fast Row Initialization

0 0 0 0 0 0 0 0 0 0 0 0

Fix a row at Zero
(0.5% loss in capacity)
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RowClone: Bulk Initialization

◼ Initialization with arbitrary data

❑ Initialize one row

❑ Copy the data to other rows

◼ Zero initialization (most common)

❑ Reserve a row in each subarray (always zero)

❑ Copy data from reserved row (FPM mode)

❑ 6.0X lower latency, 41.5X lower DRAM energy

❑ 0.2% loss in capacity
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RowClone: Latency & Energy Benefits

82

0
2
4
6
8

10
12
14

In
tr

a-
S

u
b

ar
ra

y

In
te

r-
B

an
k

In
te

r-
S

u
b

ar
ra

y

In
tr

a-
S

u
b

ar
ra

y

Copy Zero

Latency Reduction

0

20

40

60

80

In
tr

a-
S

u
b

ar
ra

y

In
te

r-
B

an
k

In
te

r-
S

u
b

ar
ra

y

In
tr

a-
S

u
b

ar
ra

y

Copy Zero

Energy Reduction

11.6x

1.9x

6.0x

1.0x

74.4x

3.2x 1.5x

41.5x

Very low cost: 0.01% increase in die area



Copy and Initialization in Workloads
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RowClone: Application Performance
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End-to-End System Design

85

DRAM (RowClone)

Microarchitecture

ISA

Operating System

Application
How to communicate 
occurrences of bulk 
copy/initialization across 
layers?

How to maximize latency and 
energy savings?

How to ensure cache 
coherence?

How to handle data reuse?



More on RowClone

◼ Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata
Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A. 
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and 
Initialization"
Proceedings of the 46th International Symposium on Microarchitecture
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session 
Slides (pptx) (pdf)] [Poster (pptx) (pdf)] 
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http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://www.microarch.org/micro46/
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pdf


Lecture on RowClone & Processing using DRAM

87https://www.youtube.com/watch?v=n6Pwg1qax_E&list=PL5Q2soXY2Zi_7UBNmC9B8Yr5JSwTG9yH4&index=4

https://www.youtube.com/watch?v=n6Pwg1qax_E&list=PL5Q2soXY2Zi_7UBNmC9B8Yr5JSwTG9yH4&index=4


Mindset: Memory as an Accelerator
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RowClone Strengths
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Strengths of the Paper

◼ Simple, novel mechanism to solve an important problem

◼ Effective and low hardware overhead

◼ Intuitive idea!

◼ Greatly improves performance and efficiency (assuming 
data is mapped nicely)

◼ Seems like a clear win for data initialization (without 
mapping requirements)

◼ Makes software designer’s life easier

❑ If copies are 10x-100x cheaper, how to design software?

◼ Paper tackles many low-level and system-level issues

◼ Well-written, insightful paper
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RowClone Weaknesses
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Weaknesses

◼ Requires data to be mapped in the same subarray to 
deliver the largest benefits

❑ Helps less if data movement is not within a subarray

❑ Does not help if data movement is across DRAM channels

◼ Inter-subarray copy is very inefficient

◼ Causes many changes in the system stack 

❑ End-to-end design spans applications to circuits

❑ Software-hardware cooperative solution might not always be 
easy to adopt

◼ Cache coherence and data reuse cause real overheads

◼ Evaluation is done solely in simulation

◼ Evaluation does not consider multi-chip systems

◼ Are these the best workloads to evaluate?
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Recall: Try to Avoid Rat Holes

93
Source: https://www.cse.wustl.edu/~jain/iucee/ftp/k_10adp.pdf



Improvements on RowClone
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RowClone Extensions and Follow-Up Work

◼ Can we do faster inter-subarray copy?

❑ Yes, see LISA [Chang et al., HPCA 2016]

◼ Can we enable data movement at smaller granularities 
within a bank?

❑ Yes, see FIGARO [Wang et al., MICRO 2020]

◼ Can we do better inter-bank copy?

❑ Yes, see Network-on-Memory [CAL 2020]

◼ Can similar ideas and DRAM properties be used to perform 
computation on data?

❑ Yes, see Ambit [Seshadri et al., CAL 2015, MICRO 2017]
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LISA: Increasing Connectivity in DRAM

◼ Kevin K. Chang, Prashant J. Nair, Saugata Ghose, Donghyuk Lee, 
Moinuddin K. Qureshi, and Onur Mutlu,
"Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast 
Inter-Subarray Data Movement in DRAM"
Proceedings of the 22nd International Symposium on High-
Performance Computer Architecture (HPCA), Barcelona, Spain, 
March 2016. 
[Slides (pptx) (pdf)] 
[Source Code] 
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https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_hpca16.pdf
http://hpca22.site.ac.upc.edu/
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_kevinchang_hpca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_kevinchang_hpca16-talk.pdf
https://github.com/CMU-SAFARI/RamulatorSharp


Moving Data Inside DRAM?

97

DRAM 

cell

Subarray 1

Subarray 2

Subarray 3

Subarray N

…

Internal 

Data Bus (64b)

8Kb
512

rows
Bank

Bank

Bank

Bank

DRAM

…

Low connectivity in DRAM is the fundamental 

bottleneck for bulk data movement

Goal: Provide a new substrate to enable 

wide connectivity between subarrays



Key Idea and Applications

• Low-cost Inter-linked subarrays (LISA)

– Fast bulk data movement between subarrays

– Wide datapath via isolation transistors: 0.8% DRAM chip area

• LISA is a versatile substrate → new applications

98

Subarray 1

Subarray 2

…

Fast bulk data copy: Copy latency 1.363ms→0.148ms (9.2x)
→ 66% speedup, -55% DRAM energy

In-DRAM caching: Hot data access latency 48.7ns→21.5ns (2.2x)
→ 5% speedup

Fast precharge: Precharge latency 13.1ns→5.0ns (2.6x)
→ 8% speedup



More on LISA

◼ Kevin K. Chang, Prashant J. Nair, Saugata Ghose, Donghyuk Lee, 
Moinuddin K. Qureshi, and Onur Mutlu,
"Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast 
Inter-Subarray Data Movement in DRAM"
Proceedings of the 22nd International Symposium on High-
Performance Computer Architecture (HPCA), Barcelona, Spain, 
March 2016. 
[Slides (pptx) (pdf)] 
[Source Code] 
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https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_hpca16.pdf
http://hpca22.site.ac.upc.edu/
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_kevinchang_hpca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_kevinchang_hpca16-talk.pdf
https://github.com/CMU-SAFARI/RamulatorSharp


FIGARO: Fine-Grained In-DRAM Copy

◼ Yaohua Wang, Lois Orosa, Xiangjun Peng, Yang Guo, Saugata Ghose, 
Minesh Patel, Jeremie S. Kim, Juan Gómez Luna, Mohammad 
Sadrosadati, Nika Mansouri Ghiasi, and Onur Mutlu,
"FIGARO: Improving System Performance via Fine-Grained In-
DRAM Data Relocation and Caching"
Proceedings of the 53rd International Symposium on 
Microarchitecture (MICRO), Virtual, October 2020.

100

https://people.inf.ethz.ch/omutlu/pub/FIGARO-fine-grained-in-DRAM-data-relocation-and-caching_micro20.pdf
http://www.microarch.org/micro53/


Network-On-Memory: Fast Inter-Bank Copy

◼ Seyyed Hossein SeyyedAghaei Rezaei, Mehdi Modarressi, Rachata
Ausavarungnirun, Mohammad Sadrosadati, Onur Mutlu, and Masoud 
Daneshtalab,
"NoM: Network-on-Memory for Inter-Bank Data Transfer in 
Highly-Banked Memories"
IEEE Computer Architecture Letters (CAL), to appear in 2020.
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https://people.inf.ethz.ch/omutlu/pub/network-on-memory-data-copy_ieee-cal20.pdf
http://www.computer.org/web/cal


Mindset: Memory as an Accelerator
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In-DRAM Bulk Bitwise AND/OR

◼ Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk 
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and 
Todd C. Mowry,
"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015. 
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http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal


Ambit: Bulk-Bitwise in-DRAM Computation

◼ Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali 
Boroumand, Jeremie Kim, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, 
and Todd C. Mowry,
"Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using 
Commodity DRAM Technology"
Proceedings of the 50th International Symposium on 
Microarchitecture (MICRO), Boston, MA, USA, October 2017.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
http://www.microarch.org/micro50/
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17-poster.pdf


In-DRAM Bulk Bitwise Execution Paradigm

◼ Vivek Seshadri and Onur Mutlu,
"In-DRAM Bulk Bitwise Execution Engine"
Invited Book Chapter in Advances in Computers, to appear 
in 2020.
[Preliminary arXiv version]
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https://arxiv.org/pdf/1905.09822.pdf
https://arxiv.org/pdf/1905.09822.pdf


SIMDRAM Framework for in-DRAM Computing

◼ Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, Joao Dinis Ferreira, Nika Mansouri 
Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gomez-Luna, and Onur Mutlu,
"SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM"
Proceedings of the 26th International Conference on Architectural Support for Programming 
Languages and Operating Systems (ASPLOS), Virtual, March-April 2021.
[2-page Extended Abstract]
[Short Talk Slides (pptx) (pdf)]
[Talk Slides (pptx) (pdf)]
[Short Talk Video (5 mins)]
[Full Talk Video (27 mins)]
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https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21.pdf
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-extended-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-talk.pdf
https://www.youtube.com/watch?v=g0fE1c7w0xk&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=115
https://www.youtube.com/watch?v=bas9U7djW_8&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=116


Extensions and Follow-Up Work (II)

◼ Can this idea be evaluated on a real system? How?

❑ Yes, see the ComputeDRAM paper [MICRO 2019]

◼ Can similar ideas be used in other types of memories? 
Phase Change Memory? RRAM? STT-MRAM?

❑ Yes, see the Pinatubo paper [DAC 2016]

◼ Can charge sharing properties be used for other functions?

❑ Yes, see the D-RaNGe [HPCA 2019], DL-PUF [HPCA 2018], 
QUAC-TRNG [ISCA 2021] works on random numbers & PUFs

◼ Can we have more efficient solutions to

❑ Cache coherence (minimize overhead)

❑ Data reuse after copy and initialization
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RowClone in Off-the-Shelf DRAM Chips

◼ Idea: Violate DRAM timing parameters to mimic RowClone

108
https://parallel.princeton.edu/papers/micro19-gao.pdf

https://parallel.princeton.edu/papers/micro19-gao.pdf


Real Processing Using Memory Prototype

◼ End-to-end RowClone & TRNG using off-the-shelf DRAM chips

◼ Idea: Violate DRAM timing parameters to mimic RowClone

https://arxiv.org/pdf/2111.00082.pdf

https://github.com/cmu-safari/pidram

https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s
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https://arxiv.org/pdf/2111.00082.pdf
https://github.com/cmu-safari/pidram
https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s


Real Processing Using Memory Prototype

https://arxiv.org/pdf/2111.00082.pdf

https://github.com/cmu-safari/pidram

https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s
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Host Machine

FPGA Board

RISC-V System

PiM-Enabled DIMM

https://arxiv.org/pdf/2111.00082.pdf
https://github.com/cmu-safari/pidram
https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s


Real Processing Using Memory Prototype

https://arxiv.org/pdf/2111.00082.pdf

https://github.com/cmu-safari/pidram

https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

https://arxiv.org/pdf/2111.00082.pdf
https://github.com/cmu-safari/pidram
https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s


Pinatubo: PCM RowClone and Bitwise Ops

112
https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf


Takeaways
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Key Takeaways

◼ A novel method to accelerate data copy and initialization

◼ Simple and effective

◼ Hardware/software cooperative

◼ Good potential for work building on it to extend it

❑ To different granularities

❑ To make things more efficient and effective

❑ Many works have already built on the paper (see LISA, FIGARO, 
NoM, Ambit, ComputeDRAM, and other works in Google Scholar)

◼ Easy to read and understand paper
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RowClone: Memory as an Accelerator
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Mindset: Processing using DRAM

◼ DRAM has great capability to perform bulk data movement and 
computation internally with small changes

❑ Can exploit internal connectivity to move data

❑ Can exploit analog computation capability

❑ …

◼ Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM
❑ RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data

(Seshadri et al., MICRO 2013)

❑ Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)

❑ Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial 
Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)

❑ "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity 
DRAM Technology” (Seshadri et al., MICRO 2017)
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http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf


In-Memory 

Bulk Bitwise Operations
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In-Memory Bulk Bitwise Operations

◼ We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ

◼ At low cost

◼ Using inherent analog computation capability of DRAM

❑ Idea: activating multiple rows performs computation

◼ 30-60X performance and energy improvement

❑ Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations 
Using Commodity DRAM Technology,” MICRO 2017.

◼ New memory technologies enable even more opportunities

❑ Memristors, resistive RAM, phase change mem, STT-MRAM, …

❑ Can operate on data with minimal movement
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In-DRAM AND/OR: Triple Row Activation
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Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015.



In-DRAM Bulk Bitwise AND/OR Operation

◼ BULKAND A, B → C 

◼ Semantics: Perform a bitwise AND of two rows A and B and 
store the result in row C

◼ R0 – reserved zero row, R1 – reserved one row

◼ D1, D2, D3 – Designated rows for triple activation

1. RowClone  A  into  D1

2. RowClone  B  into  D2

3. RowClone  R0  into  D3

4. ACTIVATE  D1,D2,D3

5. RowClone  Result  into  C
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More on In-DRAM Bulk AND/OR

◼ Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk 
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and 
Todd C. Mowry,
"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015. 
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In-DRAM NOT: Dual Contact Cell

122

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Idea: 
Feed the 

negated value 
in the sense amplifier

into a special row



In-DRAM NOT Operation
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Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.



Performance: In-DRAM Bitwise Operations
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Energy of In-DRAM Bitwise Operations
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Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.



Ambit vs. DDR3: Performance and Energy
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Bulk Bitwise Operations in Workloads

[1] Li and Patel, BitWeaving, SIGMOD 2013

[2] Goodwin+, BitFunnel, SIGIR 2017



Example Data Structure: Bitmap Index

◼ Alternative to B-tree and its variants

◼ Efficient for performing range queries and joins

◼ Many bitwise operations to perform a query
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Performance: Bitmap Index on Ambit
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Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

>5.4-6.6X Performance Improvement



Performance: BitWeaving on Ambit
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Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

>4-12X Performance Improvement



More on In-DRAM Bulk AND/OR

◼ Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk 
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and 
Todd C. Mowry,
"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015. 
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More on In-DRAM Bitwise Operations

◼ Vivek Seshadri et al., “Ambit: In-Memory Accelerator 
for Bulk Bitwise Operations Using Commodity DRAM 
Technology,” MICRO 2017.
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https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf


More on In-DRAM Bulk Bitwise Execution

◼ Vivek Seshadri and Onur Mutlu,
"In-DRAM Bulk Bitwise Execution Engine"
Invited Book Chapter in Advances in Computers, to appear 
in 2020.
[Preliminary arXiv version]
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https://arxiv.org/pdf/1905.09822.pdf
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SIMDRAM Framework

◼ Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, Joao Dinis Ferreira, Nika Mansouri 
Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gomez-Luna, and Onur Mutlu,
"SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM"
Proceedings of the 26th International Conference on Architectural Support for Programming 
Languages and Operating Systems (ASPLOS), Virtual, March-April 2021.
[2-page Extended Abstract]
[Short Talk Slides (pptx) (pdf)]
[Talk Slides (pptx) (pdf)]
[Short Talk Video (5 mins)]
[Full Talk Video (27 mins)]
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https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21.pdf
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-extended-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-short-talk.pptx
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https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-talk.pdf
https://www.youtube.com/watch?v=g0fE1c7w0xk&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=115
https://www.youtube.com/watch?v=bas9U7djW_8&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=116


SIMDRAM Key Idea 

• SIMDRAM: An end-to-end processing-using-DRAM 
framework that provides the programming interface, the 
ISA, and the hardware support for:

- Efficiently computing complex operations in DRAM

- Providing the ability to implement arbitrary operations as 
required

- Using an in-DRAM massively-parallel SIMD substrate that 
requires minimal changes to DRAM architecture
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SIMDRAM: PuM Substrate
• SIMDRAM framework is built around a DRAM substrate 

that enables two techniques:

(1) Vertical data layout
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most significant bit (MSB)

least significant bit (LSB)

A

B Cout

Cin

MAJ

(2) Majority-based computation

Pros compared to the 
conventional horizontal layout:

• Implicit shift operation
• Massive parallelism

Cout= AB + ACin + BCin

Pros compared to AND/OR/NOT-
based computation:

• Higher performance
• Higher throughput
• Lower energy consumption 136



SIMDRAM Output

Instruction result 
in memory

Step 3: Execution according to μProgram

Memory Controller

User Input

SIMDRAM-enabled application

SIMDRAM Framework: Overview 
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done
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sequence of 
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MAJ/NOT logic

Step 1: Generate 
MAJ logic

𝜇Program

𝜇𝑃𝑟𝑜𝑔𝑟𝑎𝑚

𝜇𝑃𝑟𝑜𝑔𝑟𝑎𝑚

New SIMDRAM 𝜇Program
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SIMDRAM Output

Instruction result 
in memory

Step 3: Execution according to μProgram

Memory Controller

User Input

SIMDRAM-enabled application

SIMDRAM Framework: Step 1 

ACT/PRE
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done

SIMDRAM OutputUser Input
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Step 1: Naïve MAJ/NOT Implementation
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B

Cin

Cout

Part 1

MAJ
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Cin

Cout
MAJ MAJ

MAJ

A

0
1

1

A

B
C

A

B
C

output is “1” only when A = B = “1”

output is “0” only when A = B = “0”

Naïvely converting AND/OR/NOT-implementation to 
MAJ/NOT-implementation leads to an unoptimized circuit

MAJ
A
B C
0

MAJ
A
B C
1
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Step 1: Efficient MAJ/NOT Implementation

Part 2

Step 1 generates an optimized
MAJ/NOT-implementation of the desired operation

A

B Cout

Cin

MAJ

Greedy 
optimization

algorithm4

4 L. Amarù et al, “Majority-Inverter Graph: A Novel Data-Structure and Algorithms for Efficient Logic Optimization”, DAC, 2014.
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SIMDRAM Output

Instruction result 
in memory

Step 3: Execution according to μProgram

Memory Controller

User Input

SIMDRAM-enabled application

SIMDRAM Framework: Step 2 

ACT/PRE

ACT/PRE

ACT/PRE

ACT/ACT/PRE

done

SIMDRAM OutputUser Input

AND/OR/NOT logic
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Main memory
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sequence of 
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New SIMDRAM 𝜇Program

𝜇Program
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Step 2: µProgram Generation

• µProgram: A series of microarchitectural operations 
(e.g., ACT/PRE) that SIMDRAM uses to execute SIMDRAM 
operation in DRAM

• Goal of Step 2: To generate the µProgram that executes
the desired SIMDRAM operation in DRAM 

Task 1: Allocate DRAM rows to the operands

Task 2: Generate µProgram
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Step 2: µProgram Generation

• µProgram: A series of microarchitectural operations 
(e.g., ACT/PRE) that SIMDRAM uses to execute SIMDRAM 
operation in DRAM

• Goal of Step 2: To generate the µProgram that executes 
the desired SIMDRAM operation in DRAM 

Task 1: Allocate DRAM rows to the operands

Task 2: Generate µProgram
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Task 1: Allocating DRAM Rows to Operands
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subarray organization

Constraint 1: 
Limited number of rows 

reserved for computation

• Allocation algorithm considers two constraints specific to 
processing-using-DRAM

Compute
rows
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Task 1: Allocating DRAM Rows to Operands
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subarray organization

Constraint 2: 
Destructive behavior 

of triple-row activation

Overwritten 
with MAJ output

• Allocation algorithm considers two constraints specific to 
processing-using-DRAM
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A

B Cout

Cin

MAJ

Allocation 
algorithm

0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1

Task 1: Allocating DRAM Rows to Operands

• Allocation algorithm:

Triple-row 
activation

Cout

Cout

Cout

• Assigns as many inputs as the number of free compute rows

• All three input rows contain the MAJ output and can be reused
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Step 2: µProgram Generation

• µProgram: A series of microarchitectural operations 
(e.g., ACT/PRE) that SIMDRAM uses to execute SIMDRAM 
operation in DRAM

• Goal of Step 2: To generate the µProgram that executes 
the desired SIMDRAM operation in DRAM 

Task 1: Allocate DRAM rows to the operands

Task 2: Generate µProgram
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Task 2: Generate an initial µProgram
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1. Generate
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1. Copy A to reserved row 
(ACT/ACT/PRE)

2. Copy B to reserved row 
(ACT/ACT/PRE)
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4. Execute MAJ 
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5. Copy Cout to destination row
(ACT/PRE)  

Initial µProgram 
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Task 2: Optimize the µProgram
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1. Generate
µProgram 
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Initial µProgram 

2. Optimize
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Task 2: Optimize the µProgram
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1. Generate
µProgram 

1. Copy A to reserved row 
(ACT/ACT/PRE)

2. Copy B to reserved row 
(ACT/ACT/PRE)

3. Copy Cin to reserved row
(ACT/ACT/PRE)

4. Execute MAJ 
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Initial µProgram 

2. Optimize
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Task 2: Optimize the µProgram
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1. Generate
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1. Copy A to reserved row 
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3. Copy Cin to reserved row
(ACT/ACT/PRE)

4. Execute MAJ
(ACT/PRE)

5. Copy Cout to destination row
(ACT/PRE)  

Merge
MAJ + row copy

Initial µProgram 
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1. Copy A to reserved row 
(ACT/ACT/PRE)

2. Copy B to reserved row 
(ACT/ACT/PRE)

3. Copy Cin to reserved row
(ACT/ACT/PRE)

4. Execute MAJ 
(ACT/PRE)

5. Copy Cout to destination row
(ACT/PRE)  

Task 2: Optimize the µProgram
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1. Generate
µProgram 

1. Copy A, B, Cin

to reserved rows 
(ACT/ACT/PRE)

2. Execute MAJ and
copy Cout to destination row

(ACT/ACT/PRE)

Initial µProgram 

Coalesce
row copies

Merge
MAJ + row copy

Optimized µProgram 

2. Optimize
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Task 2: Generate N-bit Computation
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1. Generate
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3. Generate N-bit 
computation

Repeat N times:
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Repeat N times:
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• Final µProgram is optimized and computes the desired 
operation for operands of N-bit size in a bit-serial fashion

2. Optimize

Optimized µProgram 
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Task 2: Generate µProgram

Repeat N times:

1. Copy A, B, Cin

to reserved rows 
(ACT/ACT/PRE)

2. Execute MAJ and
copy Cout to destination row

(ACT/ACT/PRE)

Stored in a reserved DRAM 
region

for future use

A new SIMDRAM 
instruction (called bbop_new) 

added to CPU ISA

Final µProgram 

• Final µProgram is optimized and computes the desired 
operation for operands of N-bit size in a bit-serial fashion
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SIMDRAM Output
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Step 3: µProgram Execution
• SIMDRAM control unit: handles the execution of the 

µProgram at runtime 

• Upon receiving a bbop instruction, the control unit:

1. Loads the µProgram corresponding to SIMDRAM operation

2. Issues the sequence of DRAM commands (ACT/PRE) stored 
in the µProgram to SIMDRAM subarrays to perform the in-
DRAM operation 

Step 3: Execution according to 𝜇Program

Memory Controller

User Input

SIMDRAM-enabled application

foo () {

bbop_new

} 

𝜇ProgramControl Unit

18

A
C
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SIMDRAM Output

Instruction result 
in memoryACT/PRE

ACT/PRE

ACT/PRE

ACT/ACT/PRE

done
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More in the Paper

• Detailed reference implementation and 
microarchitecture of the SIMDRAM control unit
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System Integration

Efficiently transposing data

Programming interface

Handling page faults, address translation, 
coherence, and interrupts

Handling limited subarray size

Security implications

Limitations of our framework
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Transposing Data

• SIMDRAM operates on vertically-laid-out data

• Other system components expect data to be laid 
out horizontally

Challenging to share data between SIMDRAM and CPU
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Transposition Unit

Last–Level Cache
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(OT)

Fetch Unit

Vertical  → Horizontal
Transpose

Transpose Buffer

Store Unit

Horizontal  → Vertical
Transpose

Transpose Buffer

Transforms the data layout from horizontal to vertical, and vice versa
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Efficiently Transposing Data

Last–Level Cache
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Memory Controller

Object Tracker 
(OT)

Fetch Unit

Vertical  → Horizontal
Transpose

Transpose Buffer

Store Unit

Horizontal  → Vertical
Transpose

Transpose Buffer

Low impact on the throughput of 
SIMDRAM operations

Low area cost (0.06 mm2 in 22nm tech. node)  
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More in the Paper

Efficiently transposing data

Programming interface

Handling page faults, address translation, 
coherence, and interrupts

Handling limited subarray size

Security implications

Limitations of our framework
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Methodology: Experimental Setup 

• Simulator: gem5

• Baselines:
- A multi-core CPU (Intel Skylake)

- A high-end GPU (NVidia Titan V)

- Ambit: a state-of-the-art in-memory computing mechanism

• Evaluated SIMDRAM configurations (all using a 
DDR4_2400_x64 device):

- 1-bank: SIMDRAM exploits 65’536 SIMD lanes (an 8 kB row 
buffer) 

- 4-banks: SIMDRAM exploits 262’144 SIMD lanes

- 16-banks: SIMDRAM exploits 1’048’576 SIMD lanes

163



Methodology: Workloads

Evaluated:

• 16 complex in-DRAM operations:
- Absolute - Predication

- Addition/Subtraction - ReLU

- BitCount - AND-/OR-/XOR-
Reduction

- Equality/ Greater/Greater Equal    - Division/Multiplication

• 7 real-world applications
- BitWeaving (databases)   - LeNET (neural networks)

- TPH-H (databases) - VGG-13/VGG-16 (neural networks)

- kNN (machine learning)   - Brightness (graphics)
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Throughput Analysis
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Average normalized throughput across all 16 SIMDRAM 
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Energy Analysis
Average normalized energy efficiency across all 16 
SIMDRAM operations
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Real-World Applications

3.0

0.3

2.5

8.7

0.9

7.3

21.0

2.1

17.5

0.1

1.0

10.0

100.0

CPU GPU Ambit

A
ve

ra
ge

 S
p

ee
d

u
p

  -
-

lo
g 

sc
al

e

SIMDRAM - 1 Bank SIMDRAM - 4 Banks SIMDRAM - 16 Banks
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many commonly-used real-world applications

Average speedup across 7 real-world applications
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SIMDRAM Key Results

Evaluated on:
- 16 complex in-DRAM operations

- 7 commonly-used real-world applications

SIMDRAM provides:

• 88× and 5.8× the throughput of a CPU and a high-end 
GPU, respectively, over 16 operations

• 257× and 31× the energy efficiency of a CPU and a 
high-end GPU, respectively, over 16 operations

• 21× and 2.1× the performance of a CPU an a high-end 
GPU, over seven real-world applications
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SIMDRAM Conclusion
• SIMDRAM:

- Enables efficient computation of a flexible set and wide range 
of operations in a PuM massively parallel SIMD substrate

- Provides the hardware, programming, and ISA support, to:
• Address key system integration challenges

• Allow programmers to define and employ new operations without 
hardware changes

• More in the paper:
- Efficiently transposing data

- Programming interface

- Handling page faults, address translation, coherence, and interrupts

- Security implications

- Reliability evaluation

- Comparison to in-cache computing

- And more …

SIMDRAM is a promising PuM framework
• Can ease the adoption of processing-using-DRAM 

architectures 
• Improves the performance and efficiency of processing-

using-memory architectures
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Lecture on SIMDRAM
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https://youtu.be/pmZoAAhvkRQ

https://youtu.be/pmZoAAhvkRQ


In-DRAM Physical Unclonable Functions

◼ Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu,
"The DRAM Latency PUF: Quickly Evaluating Physical Unclonable 
Functions by Exploiting the Latency-Reliability Tradeoff in Modern DRAM 
Devices"
Proceedings of the 24th International Symposium on High-Performance Computer 
Architecture (HPCA), Vienna, Austria, February 2018.
[Lightning Talk Video]
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]
[Full Talk Lecture Video (28 minutes)]
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https://www.youtube.com/watch?v=7gqnrTZpjxE


In-DRAM True Random Number Generation

172

◼ Jeremie S. Kim, Minesh Patel, Hasan Hassan, Lois Orosa, and Onur Mutlu,
"D-RaNGe: Using Commodity DRAM Devices to Generate True Random 
Numbers with Low Latency and High Throughput"
Proceedings of the 25th International Symposium on High-Performance Computer 
Architecture (HPCA), Washington, DC, USA, February 2019.
[Slides (pptx) (pdf)]
[Full Talk Video (21 minutes)]
[Full Talk Lecture Video (27 minutes)]
Top Picks Honorable Mention by IEEE Micro.

https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19.pdf
http://hpca2019.seas.gwu.edu/
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19-talk.pdf
https://www.youtube.com/watch?v=g_GtYdzIPK4&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=19
https://www.youtube.com/watch?v=Y3hPv1I5f8Y&list=PL5Q2soXY2Zi-DyoI3HbqcdtUm9YWRR_z-&index=16


In-DRAM True Random Number Generation

173

◼ Ataberk Olgun, Minesh Patel, A. Giray Yaglikci, Haocong Luo, Jeremie S. Kim, F. Nisa
Bostanci, Nandita Vijaykumar, Oguz Ergin, and Onur Mutlu,
"QUAC-TRNG: High-Throughput True Random Number Generation Using 
Quadruple Row Activation in Commodity DRAM Chips"
Proceedings of the 48th International Symposium on Computer Architecture (ISCA), 
Virtual, June 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Talk Video (25 minutes)]
[SAFARI Live Seminar Video (1 hr 26 mins)]

https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21.pdf
http://iscaconf.org/isca2021/
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21-short-talk.pdf
https://www.youtube.com/watch?v=QtBrq0WVOmQ&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=132
https://www.youtube.com/watch?v=snvF3g3GfkI&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9&index=6


In-DRAM True Random Number Generation
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◼ F. Nisa Bostanci, Ataberk Olgun, Lois Orosa, A. Giray Yaglikci, Jeremie S. Kim, Hasan 
Hassan, Oguz Ergin, and Onur Mutlu,
"DR-STRaNGe: End-to-End System Design for DRAM-based True Random 
Number Generators"
Proceedings of the 28th International Symposium on High-Performance Computer 
Architecture (HPCA), Virtual, April 2022.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]

https://arxiv.org/pdf/2201.01385.pdf

https://people.inf.ethz.ch/omutlu/pub/DR_STRANGE_EndtoEnd-DRAM-TRNG_hpca22.pdf
https://www.hpca-conf.org/2022/
https://people.inf.ethz.ch/omutlu/pub/DR_STRANGE_EndtoEnd-DRAM-TRNG_hpca22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/DR_STRANGE_EndtoEnd-DRAM-TRNG_hpca22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/DR_STRANGE_EndtoEnd-DRAM-TRNG_hpca22-shorttalk.pptx
https://people.inf.ethz.ch/omutlu/pub/DR_STRANGE_EndtoEnd-DRAM-TRNG_hpca22-shorttalk.pdf
https://arxiv.org/pdf/2201.01385.pdf


In-DRAM Lookup-Table Based Execution

◼ To appear at MICRO 2022

175https://arxiv.org/pdf/2104.07699.pdf

https://arxiv.org/pdf/2104.07699.pdf


In-Flash Bulk Bitwise Execution

◼ To appear at MICRO 2022

176https://arxiv.org/pdf/2209.05566.pdf

https://arxiv.org/pdf/2209.05566.pdf


RowClone in Off-the-Shelf DRAM Chips

◼ Idea: Violate DRAM timing parameters to mimic RowClone

177
https://parallel.princeton.edu/papers/micro19-gao.pdf

https://parallel.princeton.edu/papers/micro19-gao.pdf


Real Processing Using Memory Prototype

◼ End-to-end RowClone & TRNG using off-the-shelf DRAM chips

◼ Idea: Violate DRAM timing parameters to mimic RowClone

https://arxiv.org/pdf/2111.00082.pdf

https://github.com/cmu-safari/pidram

https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

178

https://arxiv.org/pdf/2111.00082.pdf
https://github.com/cmu-safari/pidram
https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s


Real Processing Using Memory Prototype

https://arxiv.org/pdf/2111.00082.pdf

https://github.com/cmu-safari/pidram

https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s
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Host Machine

FPGA Board

RISC-V System

PiM-Enabled DIMM

https://arxiv.org/pdf/2111.00082.pdf
https://github.com/cmu-safari/pidram
https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s


Real Processing Using Memory Prototype

https://arxiv.org/pdf/2111.00082.pdf

https://github.com/cmu-safari/pidram

https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

https://arxiv.org/pdf/2111.00082.pdf
https://github.com/cmu-safari/pidram
https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s


Pinatubo: RowClone and Bitwise Ops in PCM

181
https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf


Pinatubo: RowClone and Bitwise Ops in PCM

182
https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf


In-Memory Crossbar Array Operations

◼ Some emerging NVM technologies have crossbar array 
structure

❑ Memristors, resistive RAM, phase change mem, STT-MRAM, …

◼ Crossbar arrays can be used to perform dot product 
operations using “analog computation capability”

❑ Can operate on multiple pieces of data using Kirchoff’s laws

◼ Bitline current is a sum of products of wordline V x (1 / cell R)

❑ Computation is in analog domain inside the crossbar array

◼ Need peripheral circuitry for D→A and A→D conversion of 

inputs and outputs

183



Aside: In-Memory Crossbar Computation

184Shafiee+, “ISAAC: A Convolutional Neural Network Accelerator

with In-Situ Analog Arithmetic in Crossbars”, ISCA 2016.



Aside: In-Memory Crossbar Computation



Readings on Processing using NVM

◼ Shafiee+, “ISAAC: A Convolutional Neural Network Accelerator 
with In-Situ Analog Arithmetic in Crossbars”, ISCA 2016.

◼ Chi+, “PRIME: A Novel Processing-in-memory Architecture for 
Neural Network Computation in ReRAM-based Main Memory”, 
ISCA 2016.

◼ Prezioso+, “Training and Operation of an Integrated 
Neuromorphic Network based on Metal-Oxide Memristors”, 
Nature 2015

◼ Ambrogio+, “Equivalent-accuracy accelerated neural-network 
training using analogue memory”, Nature 2018.
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Challenge: Intelligent Memory Device

Does memory

have to be

dumb?

187



Challenge and Opportunity for Future

Computing Architectures

with 

Minimal Data Movement

188



Historical Perspective & 

A Detour 

on the Review Process

189



Ambit and RowClone

Sound Great!

No?

190



Some History: RowClone

191



RowClone: Historical Perspective

◼ This work is likely the first example of “minimally changing 
DRAM chips” to perform data movement and computation

❑ Surprising that it was done as late as 2013!

◼ It led to a body of work on in-DRAM (and in-NVM) 
computation with “hopefully small” changes

◼ Work building on RowClone still continues

◼ Initially, it was dismissed by some reviewers

❑ Rejected from ISCA 2013 conference

192



One Review (ISCA 2013 Submission)

193



Another Review and Rebuttal

194



ISCA 2013 Submission

195



Yet Later… in ISCA 2015…

196



MICRO 2013 Submission

197



More History: Ambit

198



Ambit

◼ First work on performing bulk bitwise operations in DRAM

❑ By exploiting analog computation capability of bitlines

❑ Extends and completes our IEEE CAL 2015 paper

◼ Disruptive -- spans algorithms to circuits/devices 

❑ Requires hardware/software cooperation for adoption

◼ Led to a large amount of work in similar approaches in 
DRAM and NVM

❑ The work continues to build

◼ Initially, it was dismissed by many reviewers

❑ Rejected from 4 conferences!
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ISCA 2016: Rejected

200



MICRO 2016: Rejected

201



HPCA 2017: Rejected

202



ISCA 2017: Rejected

203



Ambit Sounds Good, No?

204

Review from ISCA 2016



Very Interesting and Novel, ….. BUT …

205



… This Will Never Get Implemented

206



Another Review 

207

Another Review from ISCA 2016



… This Will Never Get Implemented

208



Yet Another Review

209

Yet Another Review from ISCA 2016



A Review from HPCA 2017: REJECT

210



A Review from ISCA 2017

211



Another Review from ISCA 2017

212



ISCA 2017 Summary

213



The Reviewer Accountability Problem

214



MICRO 2017: Accepted

215



Aside: A Recommended Book

216

Raj Jain, “The Art of 

Computer Systems 

Performance Analysis,” 

Wiley, 1991.



217

Raj Jain, “The Art of 

Computer Systems 

Performance Analysis,” 

Wiley, 1991.



218

Raj Jain, “The Art of 

Computer Systems 

Performance Analysis,” 

Wiley, 1991.



Suggestions to Reviewers

◼ Be fair; you do not know it all

◼ Be open-minded; you do not know it all

◼ Be accepting of diverse research methods: there is no 
single way of doing research or writing papers

◼ Be constructive, not destructive

◼ Enable heterogeneity, but do not have double standards…

Do not block or delay scientific progress for non-reasons



Suggestion to Community

We Need to Fix the 
Reviewer Accountability 

Problem



Takeaway

Main Memory Needs 

Intelligent Controllers



Takeaway

Research Community 
Needs

Accountable Reviewers



An Interview on Research and Education

◼ Computing Research and Education (@ ISCA 2019)

❑ https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2
soXY2Zi_4oP9LdL3cc8G6NIjD2Ydz

◼ Maurice Wilkes Award Speech (10 minutes)

❑ https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2
soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=15

223https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2soXY2Zi_4oP9LdL3cc8G6NIjD2Ydz
https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=15
https://www.youtube.com/onurmutlulectures


More Thoughts and Suggestions

◼ Onur Mutlu,
"Some Reflections (on DRAM)"
Award Speech for ACM SIGARCH Maurice Wilkes Award, at the ISCA Awards 
Ceremony, Phoenix, AZ, USA, 25 June 2019.
[Slides (pptx) (pdf)]
[Video of Award Acceptance Speech (Youtube; 10 minutes) (Youku; 13 minutes)]
[Video of Interview after Award Acceptance (Youtube; 1 hour 6 minutes) (Youku; 
1 hour 6 minutes)]
[News Article on "ACM SIGARCH Maurice Wilkes Award goes to Prof. Onur Mutlu"]

◼ Onur Mutlu,
"How to Build an Impactful Research Group"
57th Design Automation Conference Early Career Workshop (DAC), Virtual, 
19 July 2020.
[Slides (pptx) (pdf)]

https://www.youtube.com/onurmutlulectures

https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pptx
https://www.sigarch.org/benefit/awards/acm-sigarch-maurice-wilkes-award/
https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pdf
https://www.youtube.com/watch?v=tcQ3zZ3JpuA
https://v.youku.com/v_show/id_XNDI3MjU2ODIwNA
https://www.youtube.com/watch?v=8ffSEKZhmvo
https://v.youku.com/v_show/id_XNDI3MjU3MTM0OA
https://inf.ethz.ch/news-and-events/spotlights/2019/06/mutlu-ACM-SIGARCH-award.html
https://people.inf.ethz.ch/omutlu/pub/onur-DAC-EarlyCareerWorkshopPanel-ImpactfulResearch-July-19-2020-withbackup-FINAL.pptx
https://sites.google.com/gapp.nthu.edu.tw/dac-ecw20/
https://people.inf.ethz.ch/omutlu/pub/onur-DAC-EarlyCareerWorkshopPanel-ImpactfulResearch-July-19-2020-withbackup-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DAC-EarlyCareerWorkshopPanel-ImpactfulResearch-July-19-2020-withbackup-FINAL.pdf
https://www.youtube.com/onurmutlulectures


RowClone in Off-the-Shelf DRAM Chips

◼ Idea: Violate DRAM timing parameters to mimic RowClone

225
https://parallel.princeton.edu/papers/micro19-gao.pdf

https://parallel.princeton.edu/papers/micro19-gao.pdf


RowClone & Bitwise Ops in Real DRAM Chips

226https://parallel.princeton.edu/papers/micro19-gao.pdf

https://parallel.princeton.edu/papers/micro19-gao.pdf


Row Copy in ComputeDRAM

227

Bitline is above 
VDD/2 when R2 is 

activated.



Bitwise AND in ComputeDRAM

228

T1 very short
Sense amps are not 

activated

T2 very short
PRE cannot close R1

R3 will appear on the address bus
ACT(R2) will activate R3 and R2



Experimental Methodology

229



Experimental Methodology

230

32 DDR3 Modules
~256 DRAM Chips



Proof of Concept

◼ How they test these memory modules:

❑ Vary T1 and T2, observe what happens.

SoftMC Experiment

1. Select a random subarray

2. Fill subarray with random data

3. Issue ACT-PRE-ACTs with given T1 & T2

4. Read out subarray

5. Find out how many columns in a row support either operation

❑ Row-wise success ratio

231



Proof of Concept

232

◼ Each grid represents the success ratio of operations for a specific 
DDR3 module.



Real Processing Using Memory Prototype

◼ End-to-end RowClone & TRNG using off-the-shelf DRAM chips

◼ Idea: Violate DRAM timing parameters to mimic RowClone

https://arxiv.org/pdf/2111.00082.pdf

https://github.com/cmu-safari/pidram

https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s
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https://arxiv.org/pdf/2111.00082.pdf
https://github.com/cmu-safari/pidram
https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s


PiDRAM

Goal: Develop a flexible platform to explore 
end-to-end implementations of PuM techniques

•Enable rapid integration via key components

234

Hardware Software

Easy-to-extend 

Memory Controller

ISA-transparent

PuM Controller

1

2

1

2

Extensible

Software Library

Custom 

Supervisor Software



Real Processing Using Memory Prototype

https://arxiv.org/pdf/2111.00082.pdf

https://github.com/cmu-safari/pidram

https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s
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Host Machine

FPGA Board

RISC-V System

PiM-Enabled DIMM

https://arxiv.org/pdf/2111.00082.pdf
https://github.com/cmu-safari/pidram
https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s


PiDRAM Workflow

1- User application interfaces with the OS via system calls

2- OS uses PuM Operations Library (pumolib) to convey 
operation related information to the hardware using

3- STORE instructions that target the memory 
mapped registers of the PuM Operations Controller (POC)

4- POC oversees the execution of a PuM operation (e.g., 
RowClone, bulk bitwise operations)

5- Scheduler arbitrates between regular (load, store) and PuM 
operations and issues DRAM commands with custom timings

236



Real Processing Using Memory Prototype

https://arxiv.org/pdf/2111.00082.pdf

https://github.com/cmu-safari/pidram

https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

https://arxiv.org/pdf/2111.00082.pdf
https://github.com/cmu-safari/pidram
https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s


238

Microbenchmark Copy/Initialization Throughput

In-DRAM Copy and Initialization 
improve throughput by 119x and 89x
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PiDRAM is Open Source

https://github.com/CMU-SAFARI/PiDRAM

https://github.com/CMU-SAFARI/PiDRAM
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Extended Version on ArXiv

https://arxiv.org/abs/2111.00082

https://arxiv.org/abs/2111.00082
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Long Talk + Tutorial on Youtube

https://youtu.be/s_z_S6FYpC8

https://youtu.be/s_z_S6FYpC8


Pinatubo: RowClone and Bitwise Ops in PCM

242
https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf


Pinatubo: RowClone and Bitwise Ops in PCM

243
https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf


Suggestion to Researchers: Principle: Passion

Follow Your Passion

(Do not get derailed

by naysayers)



Suggestion to Researchers: Principle: Resilience

Be Resilient



Principle: Learning and Scholarship

Focus on

learning and scholarship



Principle: Learning and Scholarship

The quality of your work 
defines your impact



Principle: Work Hard

Work Hard to       
Enable Your Passion



Principle: Good Mindset, Goals & Focus

You can make a      
good impact
on the world



Recommended Interview on Research & Education

◼ Computing Research and Education (@ ISCA 2019)

❑ https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2
soXY2Zi_4oP9LdL3cc8G6NIjD2Ydz

◼ Maurice Wilkes Award Speech (10 minutes)

❑ https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2
soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=15

◼ Onur Mutlu,
"Some Reflections (on DRAM)"
Award Speech for ACM SIGARCH Maurice Wilkes Award, at the ISCA Awards Ceremony, 
Phoenix, AZ, USA, 25 June 2019.
[Slides (pptx) (pdf)]
[Video of Award Acceptance Speech (Youtube; 10 minutes) (Youku; 13 minutes)]
[Video of Interview after Award Acceptance (Youtube; 1 hour 6 minutes) (Youku; 1 hour 
6 minutes)]
[News Article on "ACM SIGARCH Maurice Wilkes Award goes to Prof. Onur Mutlu"]

250

https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2soXY2Zi_4oP9LdL3cc8G6NIjD2Ydz
https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=15
https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pptx
https://www.sigarch.org/benefit/awards/acm-sigarch-maurice-wilkes-award/
https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pdf
https://www.youtube.com/watch?v=tcQ3zZ3JpuA
https://v.youku.com/v_show/id_XNDI3MjU2ODIwNA
https://www.youtube.com/watch?v=8ffSEKZhmvo
https://v.youku.com/v_show/id_XNDI3MjU3MTM0OA
https://inf.ethz.ch/news-and-events/spotlights/2019/06/mutlu-ACM-SIGARCH-award.html


Recommended Interview

251https://www.youtube.com/watch?v=8ffSEKZhmvo

https://www.youtube.com/watch?v=8ffSEKZhmvo


A Talk on Impactful Research & Education

252
https://www.youtube.com/watch?v=83tlorht7Mc&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=54

https://www.youtube.com/watch?v=83tlorht7Mc&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=54


Suggested Reading

https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=youandyourresearch.pdf
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https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=youandyourresearch.pdf


Required Reading on Mindset & More

https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=youandyourresearch.pdf
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https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=youandyourresearch.pdf
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