Computer Architecture Lecture 4: Processing near Memory Prof. Onur Mutlu ETH Zürich Fall 2022 7 October 2022 #### Sub-Agenda: In-Memory Computation - Major Trends Affecting Main Memory - The Need for Intelligent Memory Controllers - Bottom Up: Push from Circuits and Devices - Top Down: Pull from Systems and Applications - Processing in Memory: Two Directions - Processing using Memory - Processing near Memory - How to Enable Adoption of Processing in Memory - Conclusion #### Two PIM Approaches #### 5.2. Two Approaches: Processing Using Memory (PUM) vs. Processing Near Memory (PNM) Many recent works take advantage of the memory technology innovations that we discuss in Section 5.1 to enable and implement PIM. We find that these works generally take one of two approaches, which are categorized in Table 1: (1) processing using memory or (2) processing near memory. We briefly describe each approach here. Sections 6 and 7 will provide example approaches and more detail for both. Table 1: Summary of enabling technologies for the two approaches to PIM used by recent works. Adapted from [341] and extended. | Approach | Example Enabling Technologies | |-------------------------|---| | | SRAM | | | DRAM | | Processing Using Memory | Phase-change memory (PCM) | | | Magnetic RAM (MRAM) | | | Resistive RAM (RRAM)/memristors | | | Logic layers in 3D-stacked memory | | | Silicon interposers | | Processing Near Memory | Logic in memory controllers | | 1000 A.C. | Logic in memory chips (e.g., near bank) | | | Logic in memory modules | | | Logic near caches | | | Logic near/in storage devices | Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun, "A Modern Primer on Processing in Memory" Invited Book Chapter in <u>Emerging</u> <u>Computing: From Devices to Systems -</u> <u>Looking Beyond Moore and Von Neumann</u>, Springer, to be published in 2021. [Tutorial Video on "Memory-Centric Computing"] [<u>Tutorial Video on "Memory-Centric Computing</u> <u>Systems"</u> (1 hour 51 minutes)] # Processing in Memory: Two Approaches - 1. Processing using Memory - 2. Processing near Memory #### More on RowClone Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A. Kozuch, Phillip B. Gibbons, and Todd C. Mowry, <u>"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and Initialization"</u> Proceedings of the <u>46th International Symposium on Microarchitecture</u> (**MICRO**), Davis, CA, December 2013. [<u>Slides (pptx) (pdf)</u>] [<u>Lightning Session Slides (pptx) (pdf)</u>] [<u>Poster (pptx) (pdf)</u>] # RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and Initialization Vivek Seshadri Yoongu Kim Chris Fallin* Donghyuk Lee vseshadr@cs.cmu.edu yoongukim@cmu.edu cfallin@c1f.net donghyuk1@cmu.edu Rachata Ausavarungnirun Gennady Pekhimenko Yixin Luo gpekhime@cs.cmu.edu yixinluo@andrew.cmu.edu Onur Mutlu Phillip B. Gibbons† Michael A. Kozuch† Todd C. Mowry onur@cmu.edu phillip.b.gibbons@intel.com michael.a.kozuch@intel.com tcm@cs.cmu.edu Carnegie Mellon University †Intel Pittsburgh #### More on In-DRAM Bulk AND/OR Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and Todd C. Mowry, "Fast Bulk Bitwise AND and OR in DRAM" IEEE Computer Architecture Letters (CAL), April 2015. #### Fast Bulk Bitwise AND and OR in DRAM Vivek Seshadri*, Kevin Hsieh*, Amirali Boroumand*, Donghyuk Lee*, Michael A. Kozuch[†], Onur Mutlu*, Phillip B. Gibbons[†], Todd C. Mowry* *Carnegie Mellon University [†]Intel Pittsburgh #### More on In-DRAM Bitwise Operations Vivek Seshadri et al., "<u>Ambit: In-Memory Accelerator</u> for Bulk Bitwise Operations Using Commodity DRAM <u>Technology</u>," MICRO 2017. Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology ``` Vivek Seshadri^{1,5} Donghyuk Lee^{2,5} Thomas Mullins^{3,5} Hasan Hassan^4 Amirali Boroumand^5 Jeremie Kim^{4,5} Michael A. Kozuch^3 Onur Mutlu^{4,5} Phillip B. Gibbons^5 Todd C. Mowry^5 ``` 1 Microsoft Research India 2 NVIDIA Research 3 Intel 4 ETH Zürich 5 Carnegie Mellon University #### More on In-DRAM Bulk Bitwise Execution Vivek Seshadri and Onur Mutlu, "In-DRAM Bulk Bitwise Execution Engine" Invited Book Chapter in Advances in Computers, to appear in 2020. [Preliminary arXiv version] #### In-DRAM Bulk Bitwise Execution Engine Vivek Seshadri Microsoft Research India visesha@microsoft.com Onur Mutlu ETH Zürich onur.mutlu@inf.ethz.ch #### RowClone & Bitwise Ops in Real DRAM Chips ## ComputeDRAM: In-Memory Compute Using Off-the-Shelf DRAMs Fei Gao feig@princeton.edu Department of Electrical Engineering Princeton University Georgios Tziantzioulis georgios.tziantzioulis@princeton.edu Department of Electrical Engineering Princeton University David Wentzlaff wentzlaf@princeton.edu Department of Electrical Engineering Princeton University #### Pinatubo: RowClone and Bitwise Ops in PCM ## Pinatubo: A Processing-in-Memory Architecture for Bulk Bitwise Operations in Emerging Non-volatile Memories Shuangchen Li¹*, Cong Xu², Qiaosha Zou^{1,5}, Jishen Zhao³, Yu Lu⁴, and Yuan Xie¹ University of California, Santa Barbara¹, Hewlett Packard Labs² University of California, Santa Cruz³, Qualcomm Inc.⁴, Huawei Technologies Inc.⁵ {shuangchenli, yuanxie}ece.ucsb.edu¹ #### SIMDRAM Framework Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, Joao Dinis Ferreira, Nika Mansouri Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gomez-Luna, and Onur Mutlu, "SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM" Proceedings of the 26th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), Virtual, March-April 2021. [2-page Extended Abstract] [Short Talk Slides (pptx) (pdf)] [Talk Slides (pptx) (pdf)] [Short Talk Video (5 mins)] [Full Talk Video (27 mins)] ## SIMDRAM: A Framework for Bit-Serial SIMD Processing using DRAM *Nastaran Hajinazar^{1,2} Nika Mansouri Ghiasi¹ *Geraldo F. Oliveira¹ Minesh Patel¹ Juan Gómez-Luna¹ Sven Gregorio¹ Mohammed Alser¹ Onur Mutlu¹ João Dinis Ferreira¹ Saugata Ghose³ ¹ETH Zürich ²Simon Fraser University ³University of Illinois at Urbana-Champaign #### In-DRAM Lookup-Table Based Execution To appear at MICRO 2022 #### pLUTo: Enabling Massively Parallel Computation in DRAM via Lookup Tables João Dinis Ferreira§ Gabriel Falcao† Lois Orosa§∇ Mohammad Sadrosadati§ Juan Gómez-Luna§ Jeremie S. Kim§ Mohammed Alser§ Geraldo F. Oliveira§ Taha Shahroodi‡ Anant Nori* Onur Mutlu§ §ETH Zürich †IT, University of Coimbra $\nabla Galicia$ Supercomputing Center ‡TU Delft *Intel #### In-Flash Bulk Bitwise Execution To appear at MICRO 2022 # Flash-Cosmos: In-Flash Bulk Bitwise Operations Using Inherent Computation Capability of NAND Flash Memory ``` Jisung Park^{§∇} Roknoddin Azizi[§] Geraldo F. Oliveira[§] Mohammad Sadrosadati[§] Rakesh Nadig[§] David Novo[†] Juan Gómez-Luna[§] Myungsuk Kim[‡] Onur Mutlu[§] ``` §ETH Zürich ∇ POSTECH †LIRMM, Univ. Montpellier, CNRS ‡Kyungpook National University #### Sub-Agenda: In-Memory Computation - Major Trends Affecting Main Memory - The Need for Intelligent Memory Controllers - Bottom Up: Push from Circuits and Devices - Top Down: Pull from Systems and Applications - Processing in Memory: Two Directions - Processing using Memory - Processing near Memory - How to Enable Adoption of Processing in Memory - Conclusion # We Need to Think Differently from the Past Approaches ## Memory as an Accelerator Memory similar to a "conventional" accelerator # Processing in Memory: Two Approaches - 1. Processing using Memory - 2. Processing near Memory ## Opportunity: 3D-Stacked Logic+Memory #### DRAM Landscape (circa 2015) | Segment | DRAM Standards & Architectures | |-------------|--| | Commodity | DDR3 (2007) [14]; DDR4 (2012) [18] | | Low-Power | LPDDR3 (2012) [17]; LPDDR4 (2014) [20] | | Graphics | GDDR5 (2009) [15] | | Performance | eDRAM [28], [32]; RLDRAM3 (2011) [29] | | 3D-Stacked | WIO (2011) [16]; WIO2 (2014) [21]; MCDRAM (2015) [13];
HBM (2013) [19]; HMC1.0 (2013) [10]; HMC1.1 (2014) [11] | | Academic | SBA/SSA (2010) [38]; Staged Reads (2012) [8]; RAIDR (2012) [27]; SALP (2012) [24]; TL-DRAM (2013) [26]; RowClone (2013) [37]; Half-DRAM (2014) [39]; Row-Buffer Decoupling (2014) [33]; SARP (2014) [6]; AL-DRAM (2015) [25] | Table 1. Landscape of DRAM-based memory Kim+, "Ramulator: A Flexible and Extensible DRAM Simulator", IEEE CAL 2015. #### Several Questions in 3D-Stacked PIM - What are the performance and energy benefits of using 3D-stacked memory as a coarse-grained accelerator? - By changing the entire system - By performing simple function offloading - What is the minimal processing-in-memory support we can provide? - With minimal changes to system and programming #### Another Example: In-Memory Graph Processing Large graphs are everywhere (circa 2015) 36 Million Wikipedia Pages 1.4 Billion Facebook Users 300 Million Twitter Users 30 Billion Instagram Photos Scalable large-scale graph processing is challenging ### Key Bottlenecks in Graph Processing ``` for (v: graph.vertices) { for (w: v.successors) { w.next rank += weight * v.rank; 1. Frequent random memory accesses &w V w.rank w.next rank weight * v.rank w.edges W 2. Little amount of computation ``` ### Tesseract System for Graph Processing Interconnected set of 3D-stacked memory+logic chips with simple cores ## Tesseract System for Graph Processing #### Communications In Tesseract (I) ``` for (v: graph.vertices) { for (w: v.successors) { w.next_rank += weight * v.rank; } } ``` #### Communications In Tesseract (II) ``` for (v: graph.vertices) { for (w: v.successors) {
w.next_rank += weight * v.rank; } } ``` #### Communications In Tesseract (III) ``` for (v: graph.vertices) { Non-blocking Remote Function Call for (w: v.successors) { put(w.id, function() { w.next_rank += weight * v.rank; }); Can be delayed until the nearest barrier barrier(); Vault #1 Vault #2 put &w V put put W put ``` #### Remote Function Call (Non-Blocking) - 1. Send function address & args to the remote core - 2. Store the incoming message to the message queue - Flush the message queue when it is full or a synchronization barrier is reached put(w.id, function() { w.next_rank += value; }) ## Tesseract System for Graph Processing #### Evaluated Systems ## Tesseract Graph Processing Performance ## Tesseract Graph Processing Performance #### Effect of Bandwidth & Programming Model ## Tesseract Graph Processing System Energy **SAFARI** Ahn+, "A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing" ISCA 2015. #### Tesseract: Advantages & Disadvantages #### Advantages - + Specialized graph processing accelerator using PIM - + Large system performance and energy benefits - + Takes advantage of 3D stacking for an important workload - + More general than just graph processing #### Disadvantages - Changes a lot in the system - New programming model - Specialized Tesseract cores for graph processing - Cost - Scalability limited by off-chip links or graph partitioning #### More on Tesseract Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi, "A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing" Proceedings of the <u>42nd International Symposium on Computer</u> Architecture (**ISCA**), Portland, OR, June 2015 Architecture (ISCA), Portland, OR, June 2015. [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] Top Picks Honorable Mention by IEEE Micro. #### A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing Junwhan Ahn Sungpack Hong[§] Sungjoo Yoo Onur Mutlu[†] Kiyoung Choi junwhan@snu.ac.kr, sungpack.hong@oracle.com, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi@snu.ac.kr Seoul National University [§]Oracle Labs [†]Carnegie Mellon University # Sub-Agenda: In-Memory Computation - Major Trends Affecting Main Memory - The Need for Intelligent Memory Controllers - Bottom Up: Push from Circuits and Devices - Top Down: Pull from Systems and Applications - Processing in Memory: Two Directions - Processing using Memory - Processing near Memory - How to Enable Adoption of Processing in Memory - Conclusion ## Several Questions in 3D-Stacked PIM - What are the performance and energy benefits of using 3D-stacked memory as a coarse-grained accelerator? - By changing the entire system - By performing simple function offloading - What is the minimal processing-in-memory support we can provide? - With minimal changes to system and programming #### 3D-Stacked PIM on Mobile Devices Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu, "Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks" Proceedings of the <u>23rd International Conference on Architectural</u> <u>Support for Programming Languages and Operating</u> <u>Systems</u> (**ASPLOS**), Williamsburg, VA, USA, March 2018. ## Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks Amirali Boroumand¹ Saugata Ghose¹ Youngsok Kim² Rachata Ausavarungnirun¹ Eric Shiu³ Rahul Thakur³ Daehyun Kim^{4,3} Aki Kuusela³ Allan Knies³ Parthasarathy Ranganathan³ Onur Mutlu^{5,1} ### **Consumer Devices** ## Consumer devices are everywhere! # Energy consumption is a first-class concern in consumer devices ## Four Important Workloads Chrome Google's web browser #### **TensorFlow Mobile** Google's machine learning framework Google's video codec Google's video codec # **Energy Cost of Data Movement** Ist key observation: 62.7% of the total system energy is spent on data movement **Processing-In-Memory (PIM)** Potential solution: move computation close to data Challenge: limited area and energy budget ## Using PIM to Reduce Data Movement 2nd key observation: a significant fraction of the data movement often comes from simple functions We can design lightweight logic to implement these <u>simple functions</u> in <u>memory</u> Small embedded low-power core PIM Core **Small fixed-function** accelerators Offloading to PIM logic reduces energy and improves performance, on average, by 55.4% and 54.2% ## **Workload Analysis** Chrome Google's web browser #### **TensorFlow Mobile** Google's machine learning framework Google's video codec Google's video codec ### **TensorFlow Mobile** 57.3% of the inference energy is spent on data movement 54.4% of the data movement energy comes from packing/unpacking and quantization # **Packing** Reorders elements of matrices to minimize cache misses during matrix multiplication Up to 40% of the inference energy and 31% of inference execution time Packing's data movement accounts for up to 35.3% of the inference energy A simple data reorganization process that requires simple arithmetic ## Quantization Converts 32-bit floating point to 8-bit integers to improve inference execution time and energy consumption Up to 16.8% of the inference energy and 16.1% of inference execution time Majority of quantization energy comes from data movement A simple data conversion operation that requires shift, addition, and multiplication operations # **Normalized Energy** PIM core and PIM accelerator reduce energy consumption on average by 49.1% and 55.4% ## **Normalized Runtime** Offloading these kernels to PIM core and PIM accelerator improves performance on average by 44.6% and 54.2% # **Workload Analysis** Chrome Google's web browser **TensorFlow** Google's machine learning framework Google's video codec Google's video codec # How Chrome Renders a Web Page ## How Chrome Renders a Web Page A*FARI* # **Browser Analysis** - To satisfy user experience, the browser must provide: - Fast loading of webpages - Smooth scrolling of webpages - Quick switching between browser tabs - We focus on two important user interactions: - I) Page Scrolling - 2) Tab Switching - Both include page loading # **Tab Switching** ## What Happens During Tab Switching? - Chrome employs a multi-process architecture - Each tab is a <u>separate process</u> - Main operations during tab switching: - Context switch - Load the new page # **Memory Consumption** - Primary concerns during tab switching: - How fast a new tab loads and becomes interactive - Memory consumption Chrome uses compression to reduce each tab's memory footprint SAFARI 2 # **Data Movement Study** To study data movement during tab switching, we emulate a user switching through 50 tabs We make two key observations: - Compression and decompression contribute to 18.1% of the total system energy - 19.6 GB of data moves between CPU and ZRAM ## Can We Use PIM to Mitigate the Cost? PIM core and PIM accelerator are feasible to implement in-memory compression/decompression # Tab Switching Wrap Up A large amount of data movement happens during tab switching as Chrome attempts to compress and decompress tabs Both functions can benefit from PIM execution and can be implemented as PIM logic #### More on PIM for Mobile Devices Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu, "Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks" Proceedings of the <u>23rd International Conference on Architectural Support for Programming</u> <u>Languages and Operating Systems</u> (ASPLOS), Williamsburg, VA, USA, March 2018. ### 62.7% of the total system energy is spent on data movement ## Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks Saugata Ghose¹ Youngsok Kim² Amirali Boroumand¹ Eric Shiu³ Rahul Thakur³ Daehyun Kim^{4,3} Rachata Ausavarungnirun¹ Parthasarathy Ranganathan³ Onur Mutlu^{5,1} Aki Kuusela³ Allan Knies³ ### Truly Distributed GPU Processing with PIM? void applyScaleFactorsKernel(uint8_T * const out, uint8_T const * const in, const double *factor, size t const numRows, size t const numCols) # Accelerating GPU Execution with PIM (I) Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler, "Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems" Proceedings of the <u>43rd International Symposium on Computer</u> <u>Architecture</u> (**ISCA**), Seoul, South Korea, June 2016. [<u>Slides (pptx) (pdf)</u>] [Lightning Session Slides (pptx) (pdf)] #### Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems Kevin Hsieh[‡] Eiman Ebrahimi[†] Gwangsun Kim^{*} Niladrish Chatterjee[†] Mike O'Connor[†] Nandita Vijaykumar[‡] Onur Mutlu^{§‡} Stephen W. Keckler[†] [‡]Carnegie Mellon University [†]NVIDIA *KAIST [§]ETH Zürich ## Accelerating GPU Execution with PIM (II) Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K. Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das, "Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities" Proceedings of the <u>25th International Conference on Parallel</u> <u>Architectures and Compilation Techniques</u> (**PACT**), Haifa, Israel, September 2016. # Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities Ashutosh Pattnaik¹ Xulong Tang¹ Adwait Jog² Onur Kayıran³ Asit K. Mishra⁴ Mahmut T. Kandemir¹ Onur Mutlu^{5,6} Chita R. Das¹ ¹Pennsylvania State University ²College of William and Mary ³Advanced Micro Devices, Inc. ⁴Intel Labs ⁵ETH Zürich ⁶Carnegie Mellon University ## Accelerating Linked Data Structures Kevin
Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali Boroumand, Saugata Ghose, and Onur Mutlu, "Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation" Proceedings of the 34th IEEE International Conference on Computer Design (ICCD), Phoenix, AZ, USA, October 2016. # Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation Kevin Hsieh[†] Samira Khan[‡] Nandita Vijaykumar[†] Kevin K. Chang[†] Amirali Boroumand[†] Saugata Ghose[†] Onur Mutlu^{§†} [†] Carnegie Mellon University [‡] University of Virginia [§] ETH Zürich ## Accelerating Dependent Cache Misses Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt, "Accelerating Dependent Cache Misses with an Enhanced Memory Controller" Proceedings of the <u>43rd International Symposium on Computer</u> <u>Architecture</u> (**ISCA**), Seoul, South Korea, June 2016. [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] # Accelerating Dependent Cache Misses with an Enhanced Memory Controller Milad Hashemi*, Khubaib[†], Eiman Ebrahimi[‡], Onur Mutlu[§], Yale N. Patt* *The University of Texas at Austin †Apple ‡NVIDIA §ETH Zürich & Carnegie Mellon University ## Accelerating Runahead Execution Milad Hashemi, Onur Mutlu, and Yale N. Patt, "Continuous Runahead: Transparent Hardware Acceleration for Memory Intensive Workloads" Proceedings of the 49th International Symposium on Microarchitecture (MICRO), Taipei, Taiwan, October 2016. [Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)] # Continuous Runahead: Transparent Hardware Acceleration for Memory Intensive Workloads Milad Hashemi*, Onur Mutlu§, Yale N. Patt* *The University of Texas at Austin §ETH Zürich ## Accelerating Climate Modeling Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan Gómez-Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal, "NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling" Proceedings of the <u>30th International Conference on Field-Programmable Logic</u> <u>and Applications</u> (**FPL**), Gothenburg, Sweden, September 2020. [Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)] [Talk Video (23 minutes)] Nominated for the Stamatis Vassiliadis Memorial Award. # NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling Gagandeep Singh a,b,c Dionysios Diamantopoulos c Christoph Hagleitner c Juan Gómez-Luna b Sander Stuijk a Onur Mutlu b Henk Corporaal a Eindhoven University of Technology b ETH Zürich c IBM Research Europe, Zurich # Accelerating Approximate String Matching Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu, "GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis" Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual, October 2020. [<u>Lighting Talk Video</u> (1.5 minutes)] [<u>Lightning Talk Slides (pptx) (pdf)</u>] [<u>Talk Video</u> (18 minutes)] [<u>Slides (pptx) (pdf)</u>] #### GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis Damla Senol Cali^{†™} Gurpreet S. Kalsi[™] Zülal Bingöl[▽] Can Firtina[⋄] Lavanya Subramanian[‡] Jeremie S. Kim^{⋄†} Rachata Ausavarungnirun[⊙] Mohammed Alser[⋄] Juan Gomez-Luna[⋄] Amirali Boroumand[†] Anant Nori[™] Allison Scibisz[†] Sreenivas Subramoney[™] Can Alkan[▽] Saugata Ghose^{*†} Onur Mutlu^{⋄†▽} † Carnegie Mellon University [™] Processor Architecture Research Lab, Intel Labs [▽] Bilkent University [⋄] ETH Zürich ‡ Facebook [⊙] King Mongkut's University of Technology North Bangkok ^{*} University of Illinois at Urbana–Champaign SAFAR ## Accelerating Time Series Analysis Ivan Fernandez, Ricardo Quislant, Christina Giannoula, Mohammed Alser, Juan Gómez-Luna, Eladio Gutiérrez, Oscar Plata, and Onur Mutlu, "NATSA: A Near-Data Processing Accelerator for Time Series Analysis" Proceedings of the 38th IEEE International Conference on Computer Design (ICCD), Virtual, October 2020. # NATSA: A Near-Data Processing Accelerator for Time Series Analysis Ivan Fernandez § Ricardo Quislant § Christina Giannoula † Mohammed Alser ‡ Juan Gómez-Luna ‡ Eladio Gutiérrez § Oscar Plata § Onur Mutlu ‡ § University of Malaga † National Technical University of Athens ‡ ETH Zürich ## Several Questions in 3D-Stacked PIM - What are the performance and energy benefits of using 3D-stacked memory as a coarse-grained accelerator? - By changing the entire system - By performing simple function offloading - What is the minimal processing-in-memory support we can provide? - With minimal changes to system and programming #### PIM-Enabled Instructions Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi, "PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture" Proceedings of the <u>42nd International Symposium on</u> Computer Architecture (ISCA), Portland, OR, June 2015. [Slides (pdf)] [Lightning Session Slides (pdf)] #### PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture Junwhan Ahn Sungjoo Yoo Onur Mutlu[†] Kiyoung Choi junwhan@snu.ac.kr, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi@snu.ac.kr Seoul National University †Carnegie Mellon University SAFARI ## PEI: PIM-Enabled Instructions (Ideas) - Goal: Develop mechanisms to get the most out of near-data processing with minimal cost, minimal changes to the system, no changes to the programming model - Key Idea 1: Expose each PIM operation as a cache-coherent, virtually-addressed host processor instruction (called PEI) that operates on only a single cache block - ho e.g., __pim_add(&w.next_rank, value) \rightarrow pim.add r1, (r2) - No changes sequential execution/programming model - No changes to virtual memory - Minimal changes to cache coherence - No need for data mapping: Each PEI restricted to a single memory module - Key Idea 2: Dynamically decide where to execute a PEI (i.e., the host processor or PIM accelerator) based on simple locality characteristics and simple hardware predictors - Execute each operation at the location that provides the best performance # Simple PIM Operations as ISA Extensions (II) ``` for (v: graph.vertices) { value = weight * v.rank; for (w: v.successors) { w.next rank += value; Main Memory Host Processor w.next rank w.next rank 64 bytes in 64 bytes out ``` #### **Conventional Architecture** # Simple PIM Operations as ISA Extensions (III) ``` for (v: graph.vertices) { value = weight * v.rank; pim.add r1, (r2) for (w: v.successors) { pim_add(&w.next_rank, value); Main Memory Host Processor w.next rank value 8 bytes in 0 bytes out ``` **In-Memory Addition** # Always Executing in Memory? Not A Good Idea # PEI: PIM-Enabled Instructions (Example) ``` for (v: graph.vertices) { value = weight * v.rank; for (w: v.successors) { __pim_add(&w.next_rank, value); } } pfence(); ``` **Table 1: Summary of Supported PIM Operations** | Operation | | W | Input | Output | Applications | |---------------------------------------|---|--------|--------------------|--------------------|--------------------| | 8-byte integer increment | O | O | 0 bytes | 0 bytes | AT | | 8-byte integer min Floating-point add | | O
O | 8 bytes
8 bytes | 0 bytes
0 bytes | BFS, SP, WCC
PR | | | | | | | | | Histogram bin index | O | X | 1 byte | 16 bytes | HG, RP | | Euclidean distance | O | X | 64 bytes | 4 bytes | SC | | Dot product | O | X | 32 bytes | 8 bytes | SVM | - Executed either in memory or in the processor: dynamic decision - Low-cost locality monitoring for a single instruction - Cache-coherent, virtually-addressed, single cache block only - Atomic between different PEIs - Not atomic with normal instructions (use pfence for ordering) #### PIM-Enabled Instructions - Key to practicality: single-cache-block restriction - Each PEI can access at most one last-level cache block - Similar restrictions exist in atomic instructions - Benefits - Localization: each PEI is bounded to one memory module - Interoperability: easier support for cache coherence and virtual memory - Simplified locality monitoring: data locality of PEIs can be identified simply by the cache control logic #### PEI: Initial Evaluation Results - Initial evaluations with 10 emerging data-intensive workloads - Large-scale graph processing - In-memory data analytics - Machine learning and data mining - Three input sets (small, medium, large) for each workload to analyze the impact of data locality **Table 2: Baseline Simulation Configuration** | Component | Configuration | |------------------------------------|---| | Core | 16 out-of-order cores, 4 GHz, 4-issue | | L1 I/D-Cache | Private, 32 KB, 4/8-way, 64 B blocks, 16 MSHRs | | L2 Cache | Private, 256 KB, 8-way, 64 B blocks, 16 MSHRs | | L3 Cache | Shared, 16 MB, 16-way, 64 B blocks, 64 MSHRs | | On-Chip Network | Crossbar, 2 GHz, 144-bit links | | Main Memory | 32 GB, 8 HMCs, daisy-chain (80 GB/s full-duplex) | | HMC | 4 GB, 16 vaults, 256 DRAM banks [20] | | - DRAM | FR-FCFS, $tCL = tRCD = tRP = 13.75 \text{ ns}$ [27] | | Vertical Links | 64 TSVs per vault with 2 Gb/s signaling rate [23] | Pin-based cycle-level x86-64 simulation #### Performance Improvement and Energy Reduction: - 47% average speedup with large input data sets - 32% speedup with small input data sets - 25% avg. energy reduction in a single node with large input data sets # Evaluated Data-Intensive Applications - Ten emerging data-intensive workloads - Large-scale graph processing - Average teenage follower, BFS, PageRank, single-source shortest path, weakly connected components - In-memory data analytics - Hash join, histogram,
radix partitioning - Machine learning and data mining - Streamcluster, SVM-RFE - Three input sets (small, medium, large) for each workload to show the impact of data locality # PEI Performance Delta: Large Data Sets # PEI Performance: Large Data Sets #### PEI Performance Delta: Small Data Sets ### PEI Performance: Small Data Sets #### PEI Performance Delta: Medium Data Sets # PEI Energy Consumption # PEI: Advantages & Disadvantages #### Advantages - + Simple and low cost approach to PIM - + No changes to programming model, virtual memory - + Dynamically decides where to execute an instruction #### Disadvantages - Does not take full advantage of PIM potential - Single cache block restriction is limiting # Simpler PIM: PIM-Enabled Instructions Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi, "PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture" Proceedings of the <u>42nd International Symposium on</u> Computer Architecture (ISCA), Portland, OR, June 2015. [Slides (pdf)] [Lightning Session Slides (pdf)] #### PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture Junwhan Ahn Sungjoo Yoo Onur Mutlu[†] Kiyoung Choi junwhan@snu.ac.kr, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi@snu.ac.kr Seoul National University [†]Carnegie Mellon University # Automatic Code and Data Mapping Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler, "Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems" Proceedings of the <u>43rd International Symposium on Computer</u> <u>Architecture</u> (**ISCA**), Seoul, South Korea, June 2016. [<u>Slides (pptx) (pdf)</u>] [<u>Lightning Session Slides (pptx) (pdf)</u>] Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems Kevin Hsieh[‡] Eiman Ebrahimi[†] Gwangsun Kim* Niladrish Chatterjee[†] Mike O'Connor[†] Nandita Vijaykumar[‡] Onur Mutlu^{§‡} Stephen W. Keckler[†] [‡]Carnegie Mellon University [†]NVIDIA *KAIST [§]ETH Zürich # Automatic Offloading of Critical Code Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt, "Accelerating Dependent Cache Misses with an Enhanced Memory Controller" Proceedings of the <u>43rd International Symposium on Computer</u> <u>Architecture</u> (**ISCA**), Seoul, South Korea, June 2016. [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] # Accelerating Dependent Cache Misses with an Enhanced Memory Controller Milad Hashemi*, Khubaib[†], Eiman Ebrahimi[‡], Onur Mutlu[§], Yale N. Patt* *The University of Texas at Austin †Apple ‡NVIDIA §ETH Zürich & Carnegie Mellon University # Automatic Offloading of Prefetch Mechanisms Milad Hashemi, Onur Mutlu, and Yale N. Patt, "Continuous Runahead: Transparent Hardware Acceleration for Memory Intensive Workloads" Proceedings of the 49th International Symposium on Microarchitecture (MICRO), Taipei, Taiwan, October 2016. [Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)] # Continuous Runahead: Transparent Hardware Acceleration for Memory Intensive Workloads Milad Hashemi*, Onur Mutlu§, Yale N. Patt* *The University of Texas at Austin §ETH Zürich # Efficient Automatic Data Coherence Support Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, Hongzhong Zheng, and Onur Mutlu, "LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory" IEEE Computer Architecture Letters (CAL), June 2016. #### LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory Amirali Boroumand[†], Saugata Ghose[†], Minesh Patel[†], Hasan Hassan[†], Brandon Lucia[†], Kevin Hsieh[†], Krishna T. Malladi^{*}, Hongzhong Zheng^{*}, and Onur Mutlu^{‡†} † Carnegie Mellon University * Samsung Semiconductor, Inc. § TOBB ETÜ [‡] ETH Zürich # Efficient Automatic Data Coherence Support Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, Hongzhong Zheng, and Onur Mutlu, "CoNDA: Efficient Cache Coherence Support for Near-**Data Accelerators**" Proceedings of the <u>46th International Symposium on Computer</u> Architecture (ISCA), Phoenix, AZ, USA, June 2019. #### **CoNDA: Efficient Cache Coherence Support** for Near-Data Accelerators Saugata Ghose[†] Minesh Patel* Hasan Hassan* Amirali Boroumand[†] Brandon Lucia[†] Rachata Ausavarungnirun^{†‡} Kevin Hsieh[†] Nastaran Hajinazar^{⋄†} Krishna T. Malladi[§] Hongzhong Zheng[§] Onur Mutlu^{⋆†} > [†]Carnegie Mellon University *ETH Zürich ‡KMUTNB # Challenge and Opportunity for Future Fundamentally **Energy-Efficient** (Data-Centric) Computing Architectures # Challenge and Opportunity for Future Fundamentally High-Performance (Data-Centric) Computing Architectures # Challenge and Opportunity for Future # Computing Architectures with Minimal Data Movement # Sub-Agenda: In-Memory Computation - Major Trends Affecting Main Memory - The Need for Intelligent Memory Controllers - Bottom Up: Push from Circuits and Devices - Top Down: Pull from Systems and Applications - Processing in Memory: Two Directions - Processing using Memory - Processing near Memory - How to Enable Adoption of Processing in Memory - Conclusion # Eliminating the Adoption Barriers # How to Enable Adoption of Processing in Memory # Potential Barriers to Adoption of PIM - 1. **Applications** & **software** for PIM - 2. Ease of **programming** (interfaces and compiler/HW support) - 3. **System** and **security** support: coherence, synchronization, virtual memory, isolation, communication interfaces, ... - 4. **Runtime** and **compilation** systems for adaptive scheduling, data mapping, access/sharing control, ... - 5. **Infrastructures** to assess benefits and feasibility All can be solved with change of mindset #### We Need to Revisit the Entire Stack We can get there step by step # PIM Review and Open Problems # A Modern Primer on Processing in Memory Onur Mutlu^{a,b}, Saugata Ghose^{b,c}, Juan Gómez-Luna^a, Rachata Ausavarungnirun^d SAFARI Research Group ^aETH Zürich ^bCarnegie Mellon University ^cUniversity of Illinois at Urbana-Champaign ^dKing Mongkut's University of Technology North Bangkok Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun, "A Modern Primer on Processing in Memory" Invited Book Chapter in Emerging Computing: From Devices to Systems Looking Beyond Moore and Von Neumann, Springer, to be published in 2021. #### Contents | l | Intro | oduction | 2 | | | | | |---|---|---|----------|--|--|--|--| | 2 | Major Trends Affecting Main Memory | | | | | | | | 3 | The Need for Intelligent Memory Controllers to Enhance Memory Scaling | | | | | | | | 1 | Perils of Processor-Centric Design | | | | | | | | 5 | Proc
able
5.1 | essing-in-Memory (PIM): Technology En-
rs and Two Approaches New Technology Enablers: 3D-Stacked | 11 | | | | | | | 5.2 | Memory and Non-Volatile Memory Two Approaches: Processing Using Memory (PUM) vs. Processing Near Memory (PNM) | 12
13 | | | | | | 5 | Proc | essing Using Memory (PUM) | 14 | | | | | | • | 6.1 | RowClone | 14 | | | | | | | 6.2 | | 15 | | | | | | | | Ambit | | | | | | | | 6.3 | SIMDRAM | 17 | | | | | | | 6.4 | Gather-Scatter DRAM | 18 | | | | | | | 6.5 | In-DRAM Security Primitives | 18 | | | | | | 7 | Proc | essing Near Memory (PNM) | 20 | | | | | | | 7.1 | Tesseract: Coarse-Grained Application-
Level PNM Acceleration of Graph Pro- | 20 | | | | | | | 7.2 | Function-Level PNM Acceleration of Mobile Consumer Workloads | 20 | | | | | | | 7.3 | Programmer-Transparent Function-
Level PNM Acceleration of GPU | 22 | | | | | | | 7.4 | Applications | 22 | | | | | | | 7.5 | Function-Level PNM Acceleration of Genome Analysis Workloads | 24 | | | | | | | 7.6 | Application-Level PNM Acceleration of Time Series Analysis | 26 | | | | | | 3 | Enal | oling the Adoption of PIM | 26 | | | | | | • | 8.1 | Programming Models and Code Genera- | 20 | | | | | | | | tion for PIM | 26 | | | | | | | 8.2 | PIM Runtime: Scheduling and Data Mapping | 27 | | | | | | | 8.3 | Memory Coherence | 29 | | | | | | | 8.4 | Virtual Memory Support | 30 | | | | | | | 8.5 | Data Structures for PIM | 30 | | | | | | | 8.6 | Benchmarks and Simulation Infrastructures | 31 | | | | | | | 8.7 | Real PIM Hardware Systems and Proto- | | | | | | | | 8.8 | types | 33
36 | | | | | | | | -y | | | | | | 9 Other Resources on PIM 10 Conclusion and Future Outlook #### 1. Introduction Main memory, built using the Dynamic Random Access Memory (DRAM) technology, is a major component in nearly all computing systems, including servers, cloud platforms, mobile/embedded devices, and sensor systems. Across all of these systems, the data working set sizes of modern applications are rapidly growing, while the need for fast analysis of such data is increasing. Thus, main memory is becoming an increasingly significant bottleneck across a wide variety of computing systems and applications [1-26]. Alleviating the main memory bottleneck requires the memory capacity, energy, cost, and performance to all scale in an efficient manner across technology generations. Unfortunately, it has become increasingly difficult in recent years, especially the past decade, to scale all of these dimensions [1, 2, 27–59], and thus the main memory bottleneck has been worsening. A major reason for the main memory bottleneck is the high energy and latency cost associated with data movement. In modern computers, to perform any operation on data that resides in main memory, the processor must retrieve the data from main memory. This requires the memory controller to issue commands to a DRAM module across a relatively slow and power-hungry off-chip
bus (known as the memory channel). The DRAM module sends the requested data across the memory channel, after which the data is placed in the caches and registers. The CPU can perform computation on the data once the data is in its registers. Data movement from the DRAM to the CPU incurs long latency and consumes a significant amount of energy [7-9, 60-64]. These costs are often exacerbated by the fact that much of the data brought into the caches is not reused by the CPU [62, 63, 65, 66], providing little benefit in return for the high latency and energy cost. The cost of data movement is a fundamental issue with the *processor-centric* nature of contemporary computer systems. The CPU is considered to be the master in the system, and computation is performed only in the processor (and accelerators). In contrast, data storage and communication units, including the main memory, are treated as unintelligent workers that are incapable of computation. As a result of this processor-centric design paradigm, data moves a lot in the system between the computation units and communication/storage units so that computation can be done on it. With the increasingly *data-centric* nature of contemporary and emerging applications, the processor-centric design paradigm leads to great inefficiency in performance, energy and cost. For example, most of the real estate within a single compute 37 37 # PIM Review and Open Problems (II) # Processing Data Where It Makes Sense: Enabling In-Memory Computation Onur Mutlu^{a,b}, Saugata Ghose^b, Juan Gómez-Luna^a, Rachata Ausavarungnirun^{b,c} ^aETH Zürich ^bCarnegie Mellon University ^cKing Mongkut's University of Technology North Bangkok Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun, "Processing Data Where It Makes Sense: Enabling In-Memory" Computation" Invited paper in <u>Microprocessors and Microsystems</u> (**MICPRO**), June 2019. [arXiv version] SAFARI # PIM Review and Open Problems (III) #### A Workload and Programming Ease Driven Perspective of Processing-in-Memory Saugata Ghose[†] Amirali Boroumand[†] Jeremie S. Kim[†]§ Juan Gómez-Luna[§] Onur Mutlu^{§†} [†]Carnegie Mellon University §ETH Zürich Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu, "Processing-in-Memory: A Workload-Driven Perspective" Invited Article in IBM Journal of Research & Development, Special Issue on Hardware for Artificial Intelligence, to appear in November 2019. [Preliminary arXiv version] # PIM Runtime: Scheduling and Data Mapping # Example PEI Microarchitecture Example PEI uArchitecture # PEI Performance Delta: Large Data Sets depending on data location # PEI Energy Consumption #### More on PIM-Enabled Instructions Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi, "PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture" Proceedings of the <u>42nd International Symposium on</u> Computer Architecture (ISCA), Portland, OR, June 2015. [Slides (pdf)] [Lightning Session Slides (pdf)] #### PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture Junwhan Ahn Sungjoo Yoo Onur Mutlu[†] Kiyoung Choi junwhan@snu.ac.kr, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi@snu.ac.kr Seoul National University [†]Carnegie Mellon University SAFARI ## **Key Challenge 1: Code Mapping** • Challenge 1: Which operations should be executed in memory vs. in CPU? # Key Challenge 2: Data Mapping Challenge 2: How should data be mapped to different 3D memory stacks? # How to Do the Code and Data Mapping? Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler, "Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems" Proceedings of the <u>43rd International Symposium on Computer</u> <u>Architecture</u> (**ISCA**), Seoul, South Korea, June 2016. [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] ### Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems Kevin Hsieh[‡] Eiman Ebrahimi[†] Gwangsun Kim* Niladrish Chatterjee[†] Mike O'Connor[†] Nandita Vijaykumar[‡] Onur Mutlu^{§‡} Stephen W. Keckler[†] [‡]Carnegie Mellon University [†]NVIDIA *KAIST [§]ETH Zürich # How to Schedule Code? (I) Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K. Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das, "Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities" Proceedings of the <u>25th International Conference on Parallel</u> <u>Architectures and Compilation Techniques</u> (**PACT**), Haifa, Israel, September 2016. # Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities Ashutosh Pattnaik¹ Xulong Tang¹ Adwait Jog² Onur Kayıran³ Asit K. Mishra⁴ Mahmut T. Kandemir¹ Onur Mutlu^{5,6} Chita R. Das¹ ¹Pennsylvania State University ²College of William and Mary ³Advanced Micro Devices, Inc. ⁴Intel Labs ⁵ETH Zürich ⁶Carnegie Mellon University # How to Schedule Code? (II) Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt, "Accelerating Dependent Cache Misses with an Enhanced Memory Controller" Proceedings of the <u>43rd International Symposium on Computer</u> <u>Architecture</u> (**ISCA**), Seoul, South Korea, June 2016. [<u>Slides (pptx) (pdf)</u>] [Lightning Session Slides (pptx) (pdf)] # Accelerating Dependent Cache Misses with an Enhanced Memory Controller Milad Hashemi*, Khubaib[†], Eiman Ebrahimi[‡], Onur Mutlu[§], Yale N. Patt* *The University of Texas at Austin †Apple ‡NVIDIA §ETH Zürich & Carnegie Mellon University # How to Schedule Code? (III) Milad Hashemi, Onur Mutlu, and Yale N. Patt, "Continuous Runahead: Transparent Hardware Acceleration for Memory Intensive Workloads" Proceedings of the 49th International Symposium on Microarchitecture (MICRO), Taipei, Taiwan, October 2016. [Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)] # Continuous Runahead: Transparent Hardware Acceleration for Memory Intensive Workloads Milad Hashemi*, Onur Mutlu§, Yale N. Patt* *The University of Texas at Austin §ETH Zürich # Memory Coherence ## Challenge: Coherence for Hybrid CPU-PIM Apps # How to Maintain Coherence? (I) Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, Hongzhong Zheng, and Onur Mutlu, "LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory" IEEE Computer Architecture Letters (CAL), June 2016. LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory Amirali Boroumand[†], Saugata Ghose[†], Minesh Patel[†], Hasan Hassan[†], Brandon Lucia[†], Kevin Hsieh[†], Krishna T. Malladi^{*}, Hongzhong Zheng^{*}, and Onur Mutlu^{‡†} † Carnegie Mellon University * Samsung Semiconductor, Inc. § TOBB ETÜ [‡] ETH Zürich # How to Maintain Coherence? (II) Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, Hongzhong Zheng, and Onur Mutlu, "CoNDA: Efficient Cache Coherence Support for Near-Data Accelerators" Proceedings of the <u>46th International Symposium on Computer</u> <u>Architecture</u> (**ISCA**), Phoenix, AZ, USA, June 2019. # CoNDA: Efficient Cache Coherence Support for Near-Data Accelerators Amirali Boroumand[†] Saugata Ghose[†] Minesh Patel^{*} Hasan Hasan * Brandon Lucia[†] Rachata Ausavarungnirun^{†‡} Kevin Hsieh[†] Nastaran Hajinazar^{⋄†} Krishna T. Malladi[§] Hongzhong Zheng[§] Onur Mutlu^{*†} †Carnegie Mellon University *ETH Zürich ‡KMUTNB *Simon Fraser University \$Samsung Semiconductor, Inc. ### CoNDA: # Efficient Cache Coherence Support for Near-Data Accelerators #### **Amirali Boroumand** Saugata Ghose, Minesh Patel, Hasan Hassan, Brandon Lucia, Rachata Ausavarungnirun, Kevin Hsieh, Nastaran Hajinazar, Krishna Malladi, Hongzhong Zheng, Onur Mutlu Carnegie Mellon # Specialized Accelerators ### Specialized accelerators are now everywhere! Recent advancement in 3D-stacked technology enabled Near-Data Accelerators (NDA) 120 ### Coherence For NDAs ### Challenge: Coherence between NDAs and CPUs It is impractical to use traditional coherence protocols SAFARI 2 # **Existing Coherence Mechanisms** We extensively study existing NDA coherence mechanisms and make three key observations: These mechanisms eliminate a significant portion of NDA's benefits The majority of off-chip coherence traffic generated by these mechanisms is unnecessary Much of the off-chip traffic can be <u>eliminated</u> if the <u>coherence mechanism</u> has insight into the memory accesses SAFARI # An Optimistic Approach We find that an optimistic approach to coherence can address the challenges related to NDA coherence - Gain insights before any coherence checks happens - **2** Perform only the necessary coherence requests 123 ### CoNDA We propose CoNDA, a mechanism that uses optimistic NDA execution to avoid unnecessary coherence traffic ### CoNDA We propose CoNDA, a mechanism that uses optimistic NDA execution to avoid unnecessary coherence traffic CoNDA comes within 10.4% and 4.4% of performance and energy of an ideal NDA coherence mechanism ### **CoNDA:** # Efficient Cache Coherence Support for Near-Data Accelerators #### **Amirali Boroumand** Saugata Ghose, Minesh Patel, Hasan Hassan, Brandon Lucia, Rachata Ausavarungnirun, Kevin Hsieh, Nastaran Hajinazar, Krishna Malladi, Hongzhong Zheng, Onur Mutlu # How to Maintain Coherence? (II) Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, Hongzhong Zheng, and Onur Mutlu, "CoNDA: Efficient Cache Coherence Support for Near-Data Accelerators" Proceedings of the <u>46th International Symposium on Computer</u> <u>Architecture</u> (**ISCA**), Phoenix, AZ, USA, June 2019. # CoNDA: Efficient Cache Coherence Support for Near-Data
Accelerators Amirali Boroumand[†] Saugata Ghose[†] Minesh Patel^{*} Hasan Hasan * Brandon Lucia[†] Rachata Ausavarungnirun^{†‡} Kevin Hsieh[†] Nastaran Hajinazar^{⋄†} Krishna T. Malladi[§] Hongzhong Zheng[§] Onur Mutlu^{*†} †Carnegie Mellon University *ETH Zürich ‡KMUTNB *Simon Fraser University \$Samsung Semiconductor, Inc. # Synchronization Support # How to Support Synchronization? Christina Giannoula, Nandita Vijaykumar, Nikela Papadopoulou, Vasileios Karakostas, Ivan Fernandez, Juan Gómez-Luna, Lois Orosa, Nectarios Koziris, Georgios Goumas, Onur Mutlu, "SynCron: Efficient Synchronization Support for Near-Data-Processing Architectures" Proceedings of the <u>27th International Symposium on High-Performance Computer</u> <u>Architecture</u> (**HPCA**), Virtual, February-March 2021. [Slides (pptx) (pdf)] [Short Talk Slides (pptx) (pdf)] [Talk Video (21 minutes)] [Short Talk Video (7 minutes)] # SynCron: Efficient Synchronization Support for Near-Data-Processing Architectures Christina Giannoula^{†‡} Nandita Vijaykumar^{*‡} Nikela Papadopoulou[†] Vasileios Karakostas[†] Ivan Fernandez^{§‡} Juan Gómez-Luna[‡] Lois Orosa[‡] Nectarios Koziris[†] Georgios Goumas[†] Onur Mutlu[‡] †National Technical University of Athens ‡ETH Zürich *University of Toronto §University of Malaga # **SynCron** # Efficient Synchronization Support for Near-Data-Processing Architectures #### Christina Giannoula Nandita Vijaykumar, Nikela Papadopoulou, Vasileios Karakostas Ivan Fernandez, Juan Gómez Luna, Lois Orosa Nectarios Koziris, Georgios Goumas, Onur Mutlu ### **Executive Summary** #### **Problem:** Synchronization support is **challenging** for NDP systems **Prior** schemes are **not suitable** or **efficient** for NDP systems #### **Contribution:** **SynCron**: the **first end-to-end** synchronization solution for NDP architectures ### **Key Results:** SynCron comes within **9.5%** and **6.2%** of performance and energy of an **Ideal** zero-overhead synchronization scheme ### Synchronization is Necessary **Graph Analytics** Databases Concurrent Data Structures ### Baseline NDP Architecture Synchronization challenges in NDP systems: - (1) Lack of hardware cache coherence support - (2) Expensive communication across NDP units - (3) Lack of a shared level of cache memory ### NDP Synchronization Solution Space - 1. Hardware support for synchronization acceleration - 2. **Direct buffering** of synchronization variables - 3. Hierarchical message-passing communication - 4. Integrated hardware-only overflow management ### 1. Hardware Synchronization Support - **✓ No Complex Cache Coherence Protocols** - **✓ No Expensive Atomic Operations** - ✓ Low Hardware Cost ## 2. Direct Buffering of Variables # 2. Direct Buffering of Variables ### 3. Hierarchical Communication ### 3. Hierarchical Communication ### 3. Hierarchical Communication **✓ Minimize Expensive Traffic** ## **SynCron** The first end-to-end synchronization solution for NDP architectures #### SynCron's Benefits: - 1. High System Performance - 2. Low Hardware Cost SynCron comes within 9.5% and 6.2% of performance and energy of Ideal zero-overhead synchronization # **SynCron** # Efficient Synchronization Support for Near-Data-Processing Architectures #### Christina Giannoula Nandita Vijaykumar, Nikela Papadopoulou, Vasileios Karakostas Ivan Fernandez, Juan Gómez Luna, Lois Orosa Nectarios Koziris, Georgios Goumas, Onur Mutlu # How to Support Synchronization? Christina Giannoula, Nandita Vijaykumar, Nikela Papadopoulou, Vasileios Karakostas, Ivan Fernandez, Juan Gómez-Luna, Lois Orosa, Nectarios Koziris, Georgios Goumas, Onur Mutlu, "SynCron: Efficient Synchronization Support for Near-Data-Processing Architectures" Proceedings of the <u>27th International Symposium on High-Performance Computer</u> <u>Architecture</u> (**HPCA**), Virtual, February-March 2021. [Slides (pptx) (pdf)] [Short Talk Slides (pptx) (pdf)] [Talk Video (21 minutes)] [Short Talk Video (7 minutes)] # SynCron: Efficient Synchronization Support for Near-Data-Processing Architectures Christina Giannoula^{†‡} Nandita Vijaykumar^{*‡} Nikela Papadopoulou[†] Vasileios Karakostas[†] Ivan Fernandez^{§‡} Juan Gómez-Luna[‡] Lois Orosa[‡] Nectarios Koziris[†] Georgios Goumas[†] Onur Mutlu[‡] †National Technical University of Athens [‡]ETH Zürich *University of Toronto [§]University of Malaga ## Lecture on Synchronization Support for PIM # How to Design Data Structures for PIM? Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu, "Concurrent Data Structures for Near-Memory Computing" Proceedings of the <u>29th ACM Symposium on Parallelism in Algorithms</u> and Architectures (SPAA), Washington, DC, USA, July 2017. [Slides (pptx) (pdf)] #### Concurrent Data Structures for Near-Memory Computing Zhiyu Liu Computer Science Department Brown University zhiyu_liu@brown.edu Maurice Herlihy Computer Science Department Brown University mph@cs.brown.edu Irina Calciu VMware Research Group icalciu@vmware.com Onur Mutlu Computer Science Department ETH Zürich onur.mutlu@inf.ethz.ch # Virtual Memory Support ## How to Support Virtual Memory? Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali Boroumand, Saugata Ghose, and Onur Mutlu, "Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation" Proceedings of the 34th IEEE International Conference on Computer Design (ICCD), Phoenix, AZ, USA, October 2016. # Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation Kevin Hsieh[†] Samira Khan[‡] Nandita Vijaykumar[†] Kevin K. Chang[†] Amirali Boroumand[†] Saugata Ghose[†] Onur Mutlu^{§†} [†] Carnegie Mellon University [‡] University of Virginia [§] ETH Zürich ## Executive Summary - Our Goal: Accelerating pointer chasing inside main memory - Challenges: Parallelism challenge and Address translation challenge - Our Solution: In-Memory PoInter Chasing Accelerator (IMPICA) - Address-access decoupling: enabling parallelism in the accelerator with low cost - IMPICA page table: low cost page table in logic layer #### Key Results: - 1.2X 1.9X speedup for pointer chasing operations, +16% database throughput - □ 6% 41% reduction in energy consumption #### Linked Data Structures Linked data structures are widely used in many important applications ## The Problem: Pointer Chasing Traversing linked data structures requires chasing pointers Serialized and irregular access pattern 6X cycles per instruction in real workloads #### Our Goal # Accelerating pointer chasing inside main memory SAFARI ## Parallelism Challenge # Parallelism Challenge and Opportunity A simple in-memory accelerator can still be slower than multiple CPU cores Opportunity: a pointer-chasing accelerator spends a long time waiting for memory # Our Solution: Address-Access Decoupling #### IMPICA Core Architecture 155 # Address Translation Challenge # Our Solution: IMPICA Page Table Completely decouple the page table of IMPICA from the page table of the CPUs # IMPICA Page Table: Mechanism ## Evaluation Methodology - Simulator: gem5 - System Configuration - CPU - 4 OoO cores, 2GHz - Cache: 32KB L1, 1MB L2 - IMPICA - 1 core, 500MHz, 32KB Cache - Memory Bandwidth - 12.8 GB/s for CPU, 51.2 GB/s for IMPICA - Our simulator code is open source - https://github.com/CMU-SAFARI/IMPICA #### Result – Microbenchmark Performance ■ Baseline + extra 128KB L2 ■ IMPICA #### Result – Database Performance # System Energy Consumption #### Area and Power Overhead | CPU (Cortex-A57) | 5.85 mm ² per core | |----------------------|-------------------------------| | L2 Cache | 5 mm ² per MB | | Memory Controller | 10 mm ² | | IMPICA (+32KB cache) | 0.45 mm ² | Power overhead: average power increases by 5.6% ## How to Support Virtual Memory? Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali Boroumand, Saugata Ghose, and Onur Mutlu, "Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation" Proceedings of the 34th IEEE International Conference on Computer Design (ICCD), Phoenix, AZ, USA, October 2016. # Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation Kevin Hsieh[†] Samira Khan[‡] Nandita Vijaykumar[†] Kevin K. Chang[†] Amirali Boroumand[†] Saugata Ghose[†] Onur Mutlu^{§†} [†] Carnegie Mellon University [‡] University of Virginia [§] ETH Zürich ## Rethinking Virtual Memory Nastaran Hajinazar, Pratyush Patel, Minesh Patel, Konstantinos Kanellopoulos, Saugata Ghose, Rachata Ausavarungnirun, Geraldo Francisco de Oliveira Jr., Jonathan Appavoo, Vivek Seshadri, and Onur Mutlu, "The Virtual Block Interface: A Flexible Alternative to the Conventional Virtual Memory Framework" Proceedings of the <u>47th International Symposium on Computer Architecture</u> (**ISCA**), Virtual, June 2020. [Slides (pptx) (pdf)] [<u>Lightning Talk Slides (pptx) (pdf)</u>] [ARM Research Summit Poster (pptx) (pdf)] [Talk Video (26 minutes)] [Lightning Talk Video (3 minutes)] [Lecture Video (43 minutes)] # The Virtual Block Interface: A Flexible Alternative to the Conventional Virtual Memory Framework Nastaran Hajinazar*† Pratyush Patel[™] Minesh Patel* Konstantinos Kanellopoulos* Saugata Ghose[‡] Rachata Ausavarungnirun[⊙] Geraldo F. Oliveira* Jonathan Appavoo[⋄] Vivek Seshadri[▽] Onur Mutlu*[‡] *ETH Zürich † Simon Fraser University $^{\bowtie}$ University of Washington ‡ Carnegie Mellon University $^{\odot}$ King Mongkut's University of Technology North Bangkok $^{\diamond}$ Boston University $^{\triangledown}$ Microsoft Research India #### **VBI: Overview** **VB 1 VB 4 VBI Address Space Memory Translation Layer** in the memory controller **Physical Memory** **Processes** **Conventional Virtual Memory** **VBI** #### Lecture on Virtual Block Interface # Benchmarks and Simulation Infrastructures #### DAMOV Analysis Methodology & Workloads #### DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks GERALDO F. OLIVEIRA, ETH Zürich, Switzerland JUAN GÓMEZ-LUNA, ETH
Zürich, Switzerland LOIS OROSA, ETH Zürich, Switzerland SAUGATA GHOSE, University of Illinois at Urbana-Champaign, USA NANDITA VIJAYKUMAR, University of Toronto, Canada IVAN FERNANDEZ, University of Malaga, Spain & ETH Zürich, Switzerland MOHAMMAD SADROSADATI, Institute for Research in Fundamental Sciences (IPM), Iran & ETH Zürich, Switzerland ONUR MUTLU, ETH Zürich, Switzerland Data movement between the CPU and main memory is a first-order obstacle against improving performance, scalability, and energy efficiency in modern systems. Computer systems employ a range of techniques to reduce overheads tied to data movement, spanning from traditional mechanisms (e.g., deep multi-level cache hierarchies, aggressive hardware prefetchers) to emerging techniques such as Near-Data Processing (NDP), where some computation is moved close to memory. Prior NDP works investigate the root causes of data movement bottlenecks using different profiling methodologies and tools. However, there is still a lack of understanding about the key metrics that can identify different data movement bottlenecks and their relation to traditional and emerging data movement mitigation mechanisms. Our goal is to methodically identify potential sources of data movement over a broad set of applications and to comprehensively compare traditional compute-centric data movement mitigation techniques (e.g., caching and prefetching) to more memory-centric techniques (e.g., NDP), thereby developing a rigorous understanding of the best techniques to mitigate each source of data movement. With this goal in mind, we perform the first large-scale characterization of a wide variety of applications, across a wide range of application domains, to identify fundamental program properties that lead to data movement to/from main memory. We develop the first systematic methodology to classify applications based on the sources contributing to data movement bottlenecks. From our large-scale characterization of 77K functions across 345 applications, we select 144 functions to form the first open-source benchmark suite (DAMOV) for main memory data movement studies. We select a diverse range of functions that (1) represent different types of data movement bottlenecks, and (2) come from a wide range of application domains. Using NDP as a case study, we identify new insights about the different data movement bottlenecks and use these insights to determine the most suitable data movement mitigation mechanism for a particular application. We open-source DAMOV and the complete source code for our new characterization methodology at https://github.com/CMU-SAFARI/DAMOV. SAFARI https://arxiv.org/pdf/2105.03725.pdf #### **Methodology Overview** #### More on DAMOV Geraldo F. Oliveira, Juan Gomez-Luna, Lois Orosa, Saugata Ghose, Nandita Vijaykumar, Ivan fernandez, Mohammad Sadrosadati, and Onur Mutlu, "DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks" Preprint in <u>arXiv</u>, 8 May 2021. [arXiv preprint] [DAMOV Suite and Simulator Source Code] [SAFARI Live Seminar Video (2 hrs 40 mins)] ONUR MUTLU, ETH Zürich, Switzerland [Short Talk Video (21 minutes)] # DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks GERALDO F. OLIVEIRA, ETH Zürich, Switzerland JUAN GÓMEZ-LUNA, ETH Zürich, Switzerland LOIS OROSA, ETH Zürich, Switzerland SAUGATA GHOSE, University of Illinois at Urbana-Champaign, USA NANDITA VIJAYKUMAR, University of Toronto, Canada IVAN FERNANDEZ, University of Malaga, Spain & ETH Zürich, Switzerland MOHAMMAD SADROSADATI, ETH Zürich, Switzerland #### Lecture on DAMOV #### Simulation Infrastructures for PIM - Ramulator extended for PIM - Flexible and extensible DRAM simulator - Can model many different memory standards and proposals - Kim+, "Ramulator: A Flexible and Extensible DRAM Simulator", IEEE CAL 2015. - https://github.com/CMU-SAFARI/ramulator-pim - https://github.com/CMU-SAFARI/ramulator - [Source Code for Ramulator-PIM] #### Ramulator: A Fast and Extensible DRAM Simulator Yoongu Kim¹ Weikun Yang^{1,2} Onur Mutlu¹ ¹Carnegie Mellon University ²Peking University # PrIM Benchmarks: Application Domains | Domain | Benchmark | Short name | |-----------------------|-------------------------------|------------| | Dense linear algebra | Vector Addition | VA | | | Matrix-Vector Multiply | GEMV | | Sparse linear algebra | Sparse Matrix-Vector Multiply | SpMV | | Databases | Select | SEL | | | Unique | UNI | | Data analytics | Binary Search | BS | | | Time Series Analysis | TS | | Graph processing | Breadth-First Search | BFS | | Neural networks | Multilayer Perceptron | MLP | | Bioinformatics | Needleman-Wunsch | NW | | Image processing | Image histogram (short) | HST-S | | | Image histogram (large) | HST-L | | Parallel primitives | Reduction | RED | | | Prefix sum (scan-scan-add) | SCAN-SSA | | | Prefix sum (reduce-scan-scan) | SCAN-RSS | | | Matrix transposition | TRNS | ## PrIM Benchmarks are Open Source - All microbenchmarks, benchmarks, and scripts - https://github.com/CMU-SAFARI/prim-benchmarks #### Lecture on PrIM Benchmarks # Performance & Energy Models for PIM Gagandeep Singh, Juan Gomez-Luna, Giovanni Mariani, Geraldo F. Oliveira, Stefano Corda, Sander Stujik, Onur Mutlu, and Henk Corporaal, "NAPEL: Near-Memory Computing Application Performance Prediction via Ensemble Learning" Proceedings of the <u>56th Design Automation Conference</u> (**DAC**), Las Vegas, NV, USA, June 2019. [Slides (pptx) (pdf)] [Poster (pptx) (pdf)] [Source Code for Ramulator-PIM] # NAPEL: Near-Memory Computing Application Performance Prediction via Ensemble Learning Gagandeep Singh a,c Juan Gómez-Luna b Stefano Corda a,c Sander Stuijk a a Eindhoven University of Technology b E Juan Gómez-Luna^b Giovanni Mariani^c Geraldo F. Oliveira^b Sander Stuijk^a Onur Mutlu^b Henk Corporaal^a iversity of Technology bETH Zürich cIBM Research - Zurich #### An FPGA-based Test-bed for PIM? Hasan Hassan et al., <u>SoftMC: A</u> Flexible and Practical Open Source Infrastructure for Enabling Experimental DRAM Studies HPCA 2017. - Easy to Use (C++ API) - Open-source github.com/CMU-SAFARI/SoftMC #### Simulation Infrastructures for PIM (in SSDs) Arash Tavakkol, Juan Gomez-Luna, Mohammad Sadrosadati, Saugata Ghose, and Onur Mutlu, "MQSim: A Framework for Enabling Realistic Studies of Modern Multi-Queue SSD Devices" Proceedings of the <u>16th USENIX Conference on File and Storage</u> Technologies (FAST), Oakland, CA, USA, February 2018. [Slides (pptx) (pdf)] [Source Code] # MQSim: A Framework for Enabling Realistic Studies of Modern Multi-Queue SSD Devices Arash Tavakkol[†], Juan Gómez-Luna[†], Mohammad Sadrosadati[†], Saugata Ghose[‡], Onur Mutlu^{†‡} †ETH Zürich [‡]Carnegie Mellon University # Applications that Benefit from PIM # New Applications and Use Cases for PIM Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu, "GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using Processing-in-Memory Technologies" <u>BMC Genomics</u>, 2018. Proceedings of the <u>16th Asia Pacific Bioinformatics Conference</u> (**APBC**), Yokohama, Japan, January 2018. arxiv.org Version (pdf) # GRIM-Filter: Fast seed location filtering in DNA read mapping using processing-in-memory technologies Jeremie S. Kim^{1,6*}, Damla Senol Cali¹, Hongyi Xin², Donghyuk Lee³, Saugata Ghose¹, Mohammed Alser⁴, Hasan Hassan⁶, Oguz Ergin⁵, Can Alkan^{4*} and Onur Mutlu^{6,1*} From The Sixteenth Asia Pacific Bioinformatics Conference 2018 Yokohama, Japan. 15-17 January 2018 ## Genome Read In-Memory (GRIM) Filter: Fast Seed Location Filtering in DNA Read Mapping using Processing-in-Memory Technologies ### Jeremie Kim, Damla Senol, Hongyi Xin, Donghyuk Lee, Saugata Ghose, Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu # Executive Summary - Genome Read Mapping is a very important problem and is the first step in many types of genomic analysis - Could lead to improved health care, medicine, quality of life - Read mapping is an approximate string matching problem - □ Find the best fit of 100 character strings into a 3 billion character dictionary - Alignment is currently the best method for determining the similarity between two strings, but is very expensive - We propose an in-memory processing algorithm GRIM-Filter for accelerating read mapping, by reducing the number of required alignments - We implement GRIM-Filter using in-memory processing within 3Dstacked memory and show up to 3.7x speedup. # Accelerating Approximate String Matching Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu, "GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis" Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual, October 2020. [<u>Lighting Talk Video</u> (1.5 minutes)] [<u>Lightning Talk Slides (pptx) (pdf)</u>] [<u>Talk Video</u> (18 minutes)] [<u>Slides (pptx) (pdf)</u>] ### GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis Damla Senol Cali^{†™} Gurpreet S. Kalsi[™] Zülal Bingöl[▽] Can Firtina[⋄] Lavanya Subramanian[‡] Jeremie S. Kim^{⋄†} Rachata Ausavarungnirun[⊙] Mohammed Alser[⋄] Juan Gomez-Luna[⋄] Amirali Boroumand[†] Anant Nori[™] Allison Scibisz[†] Sreenivas Subramoney[™] Can Alkan[▽] Saugata Ghose^{*†} Onur Mutlu^{⋄†▽} † Carnegie Mellon University [™] Processor Architecture Research Lab, Intel Labs [▽] Bilkent University [⋄] ETH Zürich ‡ Facebook [⊙] King Mongkut's University of Technology North Bangkok ^{*} University of Illinois at Urbana–Champaign 184 # Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks ### **Amirali Boroumand** Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, Onur Mutlu # Accelerating Climate Modeling Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan Gómez-Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal, "NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling" Proceedings of the <u>30th International Conference on Field-Programmable Logic</u> <u>and Applications</u> (**FPL**), Gothenburg, Sweden, September 2020. [Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)] [Talk Video (23 minutes)] Nominated for the Stamatis Vassiliadis Memorial Award. # NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling Gagandeep Singh a,b,c Dionysios Diamantopoulos c Christoph Hagleitner c Juan Gómez-Luna b Sander Stuijk a Onur Mutlu b Henk Corporaal a Eindhoven University of Technology b ETH Zürich c IBM Research Europe, Zurich # Accelerating Time Series Analysis Ivan Fernandez, Ricardo Quislant, Christina Giannoula, Mohammed Alser, Juan Gómez-Luna, Eladio Gutiérrez, Oscar Plata, and Onur Mutlu, "NATSA: A Near-Data Processing Accelerator for Time Series Analysis" Proceedings of the 38th IEEE International Conference on Computer Design (ICCD), Virtual, October 2020. # NATSA: A Near-Data Processing Accelerator for Time Series Analysis Ivan Fernandez § Ricardo Quislant § Christina Giannoula † Mohammed Alser ‡ Juan Gómez-Luna ‡ Eladio Gutiérrez § Oscar Plata § Onur Mutlu ‡ § University of Malaga † National Technical University of Athens ‡ ETH Zürich # PIM Review and Open Problems # A Modern Primer on Processing in Memory Onur Mutlu^{a,b}, Saugata Ghose^{b,c}, Juan Gómez-Luna^a, Rachata Ausavarungnirun^d SAFARI Research Group ^aETH Zürich ^bCarnegie Mellon University ^cUniversity of Illinois at Urbana-Champaign ^dKing Mongkut's University of Technology North Bangkok Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun, "A Modern Primer on Processing in Memory" Invited Book Chapter in Emerging Computing: From Devices to Systems Looking Beyond Moore and Von Neumann, Springer, to be published in 2021. # PIM Review and Open Problems (II) # Processing Data Where It Makes Sense: Enabling In-Memory Computation Onur Mutlu^{a,b}, Saugata Ghose^b, Juan Gómez-Luna^a, Rachata Ausavarungnirun^{b,c} ^aETH Zürich ^bCarnegie Mellon University ^cKing Mongkut's University of Technology North Bangkok Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun, "Processing Data Where It Makes Sense: Enabling In-Memory Computation Invited paper in <u>Microprocessors and Microsystems</u> (**MICPRO**), June 2019. [arXiv version] SAFARI # PIM Review and Open Problems (III) ### A Workload and Programming Ease Driven Perspective of Processing-in-Memory Saugata Ghose[†] Amirali Boroumand[†] Jeremie S. Kim[†]§ Juan Gómez-Luna[§] Onur Mutlu^{§†} †Carnegie Mellon University §ETH Zürich Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu, "Processing-in-Memory: A Workload-Driven Perspective" Invited Article in IBM Journal of Research & Development, Special Issue on Hardware for Artificial Intelligence, to appear in November 2019. [Preliminary arXiv version] SAFARI Fundamentally **Energy-Efficient** (Data-Centric) Computing Architectures Fundamentally High-Performance (Data-Centric) Computing Architectures # Computing Architectures with Minimal Data Movement # One Important Takeaway # Main Memory Needs Intelligent Controllers # Enabling the Paradigm Shift # Recall: Computer Architecture Today - You can revolutionize the way computers are built, if you understand both the hardware and the software (and change each accordingly) - You can invent new paradigms for computation, communication, and storage - Recommended book: Thomas Kuhn, "The Structure of Scientific Revolutions" (1962) - Pre-paradigm science: no clear consensus in the field - Normal science: dominant theory used to explain/improve things (business as usual); exceptions considered anomalies - Revolutionary science: underlying assumptions re-examined # Recall: Computer Architecture Today You can revolutionize the way computers are built, if you understand both the hardware and the software (and change each accordingly) You can ir communic Recomme Scientific I □ Pre-para Normal : things (t Revolution ure of eld improve anomalies examined # UPMEM Processing-in-DRAM Engine (2019) - Processing in DRAM Engine - Includes standard DIMM modules, with a large number of DPU processors combined with DRAM chips. - Replaces standard DIMMs - DDR4 R-DIMM modules - 8GB+128 DPUs (16 PIM chips) - Standard 2x-nm DRAM process - Large amounts of compute & memory bandwidth # 2,560-DPU Processing-in-Memory System ### Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory Architecture JUAN GÓMEZ-LUNA, ETH Zürich, Switzerland IZZAT EL HAJJ, American University of Beirut, Lebanon IVAN FERNANDEZ, ETH Zürich, Switzerland and University of Malaga, Spain CHRISTINA GIANNOULA, ETH Zürich, Switzerland and NTUA, Greece GERALDO F. OLIVEIRA, ETH Zürich, Switzerland ONUR MUTLU, ETH Zürich, Switzerland Many modern workloads, such as neural networks, databases, and graph processing, are fundamentally memory-bound for such workloads, the data movement between main memory and CPU cores imposes a significant overhead in terms of both latency and energy. A major reason is that this communication happens through a narrow bus with high latency and limited bandwidth, and the low data reuse in memory-bound workloads is insufficient to amortize the cost of main memory access. Fundamentally addressing this data movement bottleneck requires a paradigm where the memory system assumes an active role in computing by integrating processing capabilities. This paradigm is known as processing-in-memory (PM). Recent research explores different forms of PIM architectures, motivated by the emergence of new 3Dstacked memory technologies that integrate memory with a logic layer where processing elements can be easily placed. Past works evaluate these architectures in simulation or, at best, with simplified hardware prototypes. In contrast, the UPMEM company has designed and manufactured the first publicly-available real-world PIM architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays with general-purpose in-order cores, called DRAM Processing Units (DPUs), integrated in the same chip. This paper provides the first comprehensive analysis of the first publicly-available real-world PIM architecture. We make two key contributions. First, we conduct an experimental characterization of the UPMEM-based PIM system using microbenchmarks to assess various architecture limits such as compute throughput and memory bandwidth, yielding new insights. Second, we present PIM (Processing,-bendumpy) benchmarks), a benchmark suite of 16 workloads from different application domains (e.g., dense/sparse linear algebra, databases, data analytics, graph processing, which we identify as memory-bound. We evaluate the performance and scaling characteristics of PIM benchmarks on the UPMEM PIM architecture, and compare their performance and energy consumption to their state-of-the-art CPU and CPU counterparts. Our extensive evaluation conducted on two real UPMEM-based PIM systems with 460 and 25.50 DPUs provides new insights about suitability of different workloads to the PIM systems you commendations for software designers, and suggestions and hints for hardware and architecture designers of future PIM systems. # Samsung Function-in-Memory DRAM (2021) ### FIMDRAM based on HBM2 [3D Chip Structure of HBM with FIMDRAM] ### **Chip Specification** 128DQ / 8CH / 16 banks / BL4 32 PCU blocks (1 FIM block/2 banks) 1.2 TFLOPS (4H) FP16 ADD / Multiply (MUL) / Multiply-Accumulate (MAC) / Multiply-and- Add (MAD) ### ISSCC 2021 / SESSION 25 / DRAM / 25.4 25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level Parallelism. for Machine Learning Applications Young-Cheon Kwon', Suk Han Lee', Jaehoon Lee', Sang-Hyuk Kwon', Je Min Ryu', Jong-Pii Son', Seongil O', Hak-Soo Yu', Haesuk Lee', Soo Young Kim', Youngmin Cho', Jin Guk Kim', Jongyoon Choi', Hyun-Sung Shin', Jin Kim', BengSeng Phuah', HyoungMin Kim', Myeong Jun Song', Ahn Choi', Daeho Kim', SooYoung Kim', Eun-Bong Kim', David Wang', Shinhaeng Kang', Yuhwan Ro³, Seungwoo Seo³, JoonHo Song³, Jaeyoun Youn', Kyomin Sohn', Nam Sung Kim' ¹Samsung Electronics, Hwaseong, Korea ²Samsung Electronics, San Jose, CA ³Samsung Electronics, Suwon, Korea # Samsung Function-in-Memory DRAM (2021) ## **Chip Implementation** - Mixed design methodology to implement FIMDRAM - Full-custom + Digital RTL [Digital RTL design for PCU block] ### ISSCC 2021 / SESSION 25 / DRAM / 25.4 25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level Parallelism, for Machine Learning Applications Young-Cheon Kwon', Suk Han Let', Jaehoon Let', Sang-Hvuk Kwon', Je Min Ryu', Jong-Pil Son', Seongil O', Hak-Soo Yu', Haesuk Lee', Soo Young Kim', Youngmin Cho', Jin Guk Kim', Jongyoon Choi', Hyun-Sung Shin', Jin Kim', BengSeng Phuah', HyoungMin Kim', Hyeng Juan Song', Ahn Choi', Jeacho Kim', Soo'Oung Kim', Eun-Bong Kim', David Wang', Shinhaeng Kang', Yuhwan Ro', Seungwoo Seo', JoonHo Song', Jaeyoun Youn', Kyomin Sohn', Man Sung Kim' | Cell array
for bank0 | Cell array
for bank4 | Cell array
for bank0 | Cell array
for bank4 | Pseudo | Pseudo | |---|--|---
--|--------------|-----------| | PCU block
for bank0 & 1 | PCU block
for bank4 & 5 | PCU block
for bank0 & 1 | PCU block
for bank4 & 5 | channel-0 | channel-1 | | Cell array
for bank1
Cell array
for bank2 | Cell array
for bank5
Cell array
for bank6 | Cell array
for bank1
Cell array
for bank2 | Cell array
for bank5
Cell array
for bank6 | | | | PCU block
for bank2 & 3 | PCU block
for bank6 & 7 | PCU block
for bank2 & 3 | PCU block
for bank6 & 7 | | | | Cell array
for bank3 | Cell array
for bank7 | Cell array
for bank3 | Cell array
for bank7 | | | | | | TSV & | Peri C | ontrol Block | | | Cell array
for bank11 | Cell array
for bank15 | Cell array
for bank11 | Cell array
for bank15 | | | | PCU block
for bank10 & 11 | PCU block
for bank14 & 15 | PCU block
for bank10 & 11 | PCU block
for bank14 & 15 | | | | Cell array
for bank10
Cell array
for bank9 | Cell array
for bank14
Cell array
for bank13 | Cell array
for bank10
Cell array
for bank9 | Cell array
for bank14
Cell array
for bank13 | | | | PCU block
for bank8 & 9 | PCU block
for bank12 & 13 | PCU block
for bank8 & 9 | PCU block
for bank12 & 13 | Pseudo | Pseudo | | Cell array
for bank8 | Cell array
for bank12 | Cell array
for bank8 | Cell array
for bank12 | channel-0 | channel-1 | # Samsung AxDIMM (2021) - DIMM-based PIM - DLRM recommendation system ### **AxDIMM System** # SK Hynix AiM: Chip Implementation (2022) 4 Gb AiM die with 16 processing units (PUs) ### AiM Die Photograph ### 1 Process Unit (PU) Area | Total | 0.19mm² | | |--------------------------|---------------------|--| | MAC | 0.11mm ² | | | Activation Function (AF) | 0.02mm ² | | | Reservoir Cap. | 0.05mm ² | | | Etc. | 0.01mm ² | | # SK Hynix AiM: System Organization (2022) ### GDDR6-based AiM architecture # Alibaba HB-PNM: Overall Architecture (2022) 3D-stacked logic die and DRAM die vertically bonded by hybrid bonding (HB) # PIM Course (Spring 2022) ### Spring 2022 Edition: https://safari.ethz.ch/projects and semi nars/spring2022/doku.php?id=processing in memory ### Youtube Livestream: https://www.youtube.com/watch?v=9e4 Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX ### Project course - Taken by Bachelor's/Master's students - Processing-in-Memory lectures - Hands-on research exploration - Many research readings https://www.youtube.com/onurmutlulectures ### Spring 2022 Meetings/Schedule Week Date Livestream M | | | | | Materials | , toolgillion | |-----|---------------|-------------------|---|--|---------------| | W1 | 10.03
Thu. | You Tobe Live | M1: P&S PIM Course Presentation (PDF) (PPT) | Required Materials
Recommended
Materials | HW 0 Out | | W2 | 15.03
Tue. | | Hands-on Project Proposals | | | | | 17.03
Thu. | You the Premiere | M2: Real-world PIM: UPMEM PIM (PDF) (PPT) | | | | W3 | 24.03
Thu. | YouTube Live | M3: Real-world PIM:
Microbenchmarking of UPMEM
PIM
(PDF) im(PPT) | | | | W4 | 31.03
Thu. | You be Live | M4: Real-world PIM: Samsung HBM-PIM (PDF) (PPT) | | | | W5 | 07.04
Thu. | You Tobe Live | M5: How to Evaluate Data
Movement Bottlenecks
(PDF) (PPT) | | | | W6 | 14.04
Thu. | You Tube Live | M6: Real-world PIM: SK Hynix AiM | | | | W7 | 21.04
Thu. | You Tobe Premiere | M7: Programming PIM Architectures (PDF) (PPT) | | | | W8 | 28.04
Thu. | YouTube Premiere | M8: Benchmarking and Workload
Suitability on PIM
(PDF) (PPT) | | | | W9 | 05.05
Thu. | You Tube Premiere | M9: Real-world PIM: Samsung AXDIMM (PDF) (PPT) | | | | W10 | 12.05
Thu. | You De Premiere | M10: Real-world PIM: Alibaba HB-PNM (PDF) (PPT) | | | | W11 | 19.05
Thu. | YouTube Live | M11: SpMV on a Real PIM Architecture (PDF) (PPT) | | | | W12 | 26.05
Thu. | You Tube Live | M12: End-to-End Framework for
Processing-using-Memory | | | | W13 | 02.06
Thu. | YouTube Live | M13: Bit-Serial SIMD Processing using DRAM (PDF) (PPT) | | | | W14 | 09.06
Thu. | You Tube Live | M14: Analyzing and Mitigating ML
Inference Bottlenecks | | | | W15 | 15.06
Thu. | You tobe Live | M15: In-Memory HTAP Databases with HW/SW Co-design (PDF) im (PPT) | | | | W16 | 23.06
Thu. | YouTube Live | M16: In-Storage Processing for Genome Analysis (PDF) (PPT) | | | | W17 | 18.07
Mon. | You Tube Premiere | M17: How to Enable the Adoption of PIM? | | | | W18 | 09.08
Tue. | You Tube Premiere | SS1: ISVLSI 2022 Special Session on PIM (PDF & PPT) | | | # Sub-Agenda: In-Memory Computation - Major Trends Affecting Main Memory - The Need for Intelligent Memory Controllers - Bottom Up: Push from Circuits and Devices - Top Down: Pull from Systems and Applications - Processing in Memory: Two Directions - Processing using Memory - Processing near Memory - How to Enable Adoption of Processing in Memory - Conclusion ## Maslow's Hierarchy of Needs, A Third Time Maslow, "A Theory of Human Motivation," Psychological Review, 1943. Maslow, "Motivation and Personality," Book, 1954-1970. Fundamentally High-Performance (Data-Centric) Computing Architectures Fundamentally **Energy-Efficient** (Data-Centric) Computing Architectures Fundamentally Low-Latency (Data-Centric) Computing Architectures # Computing Architectures with Minimal Data Movement # PIM: Concluding Remarks # A Quote from A Famous Architect "architecture [...] based upon principle, and not upon precedent" # Precedent-Based Design? "architecture [...] based upon principle, and not upon precedent" # Principled Design "architecture [...] based upon principle, and not upon precedent" 216 ## The Overarching Principle ## Organic architecture From Wikipedia, the free encyclopedia Organic architecture is a philosophy of architecture which promotes harmony between human habitation and the natural world through design approaches so sympathetic and well integrated with its site, that buildings, furnishings, and surroundings become part of a unified, interrelated composition. A well-known example of organic architecture is Fallingwater, the residence Frank Lloyd Wright designed for the Kaufmann family in rural Pennsylvania. Wright had many choices to locate a home on this large site, but chose to place the home directly over the waterfall and creek creating a close, yet noisy dialog with the rushing water and the steep site. The horizontal striations of stone masonry with daring cantilevers of colored beige concrete blend with native rock outcroppings and the wooded environment. ## Another Example: Precedent-Based Design # Principled Design ## Another Principled Design # Another Principled Design # Principle Applied to Another Structure 223 Source: By 準建築人手札網站 Forgemind ArchiMedia - Flickr: IMG_2489.JPG, CC BY 2.0, SOURCE: https://www.dezeen.gom/APL6/08/29/sop,thgg-yelating/engody/shkysrldatradenage-transportation-hub-new-york-photographs-hufton-crow/ ## The Overarching Principle #### Zoomorphic architecture From Wikipedia, the free encyclopedia **Zoomorphic architecture** is the practice of using animal forms as the inspirational basis and blueprint for architectural design. "While animal forms have always played a role adding some of the deepest layers of meaning in architecture, it is now becoming evident that a new strand of biomorphism is emerging where the meaning derives not from any specific representation but from a more general allusion to biological processes."^[1] Some well-known examples of Zoomorphic architecture can be found in the TWA Flight Center building in New York City, by Eero Saarinen, or the Milwaukee Art Museum by Santiago Calatrava, both inspired by the form of a bird's wings.^[3] ## Overarching Principle for Computing? ## Concluding Remarks - It is time to design principled system architectures to solve the memory problem - Design complete systems to be balanced, high-performance, and energy-efficient, i.e., data-centric (or memory-centric) - Enable computation capability inside and close to memory - This can - Lead to orders-of-magnitude improvements - Enable new applications & computing platforms - Enable better understanding of nature #### The Future of Processing in Memory is Bright - Regardless of challenges - in underlying technology and overlying problems/requirements #### Can enable: - Orders of magnitude improvements - New applications and computing systems Yet, we have to - Think across the stack - Design enabling systems #### We Need to Revisit the Entire Stack We can get there step by step #### We Need to Exploit Good Principles - Data-centric system design - All components intelligent - Better cross-layer communication, better interfaces - Better-than-worst-case design - Heterogeneity - Flexibility, adaptability ## **Open minds** #### If In Doubt, See Other Doubtful Technologies - A very "doubtful" emerging technology - for at least two decades Proceedings of the IEEE, Sept. 2017 # Error Characterization, Mitigation, and Recovery in Flash-Memory-Based Solid-State Drives This paper reviews the most recent advances in solid-state drive (SSD) error characterization, mitigation, and data recovery techniques to improve both SSD's reliability and lifetime. By Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu ## Flash Memory Timeline ## Flash Memory Timeline #### PIM Review and Open Problems #### A Modern Primer on Processing in Memory Onur Mutlu^{a,b}, Saugata Ghose^{b,c}, Juan Gómez-Luna^a, Rachata Ausavarungnirun^d SAFARI Research Group ^aETH Zürich ^bCarnegie Mellon University ^cUniversity of Illinois at Urbana-Champaign ^dKing Mongkut's University of Technology North Bangkok Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun, "A Modern Primer on Processing in Memory" Invited Book Chapter in <u>Emerging Computing: From Devices to Systems -</u>
Looking Beyond Moore and Von Neumann, Springer, to be published in 2021. #### PIM Review and Open Problems (II) #### Processing Data Where It Makes Sense: Enabling In-Memory Computation Onur Mutlu^{a,b}, Saugata Ghose^b, Juan Gómez-Luna^a, Rachata Ausavarungnirun^{b,c} ^aETH Zürich ^bCarnegie Mellon University ^cKing Mongkut's University of Technology North Bangkok Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun, Processing Data Where It Makes Sense: Enabling In-Memory Computation Invited paper in <u>Microprocessors and Microsystems</u> (**MICPRO**), June 2019. [arXiv version] SAFARI ## PIM Review and Open Problems (III) #### A Workload and Programming Ease Driven Perspective of Processing-in-Memory Saugata Ghose[†] Amirali Boroumand[†] Jeremie S. Kim[†]§ Juan Gómez-Luna[§] Onur Mutlu^{§†} [†]Carnegie Mellon University §ETH Zürich Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu, "Processing-in-Memory: A Workload-Driven Perspective" Invited Article in IBM Journal of Research & Development, Special Issue on Hardware for Artificial Intelligence, to appear in November 2019. [Preliminary arXiv version] # Computer Architecture Lecture 4: Processing near Memory Prof. Onur Mutlu ETH Zürich Fall 2022 7 October 2022