Computer Architecture
Lecture 4: Processing near Memory

Prof. Onur Mutlu
ETH Zurich
Fall 2022
/ October 2022

Sub-Agenda: In-Memory Computation

Major Trends Affecting Main Memory
The Need for Intelligent Memory Controllers

o Bottom Up: Push from Circuits and Devices
o Top Down: Pull from Systems and Applications

Processing in Memory: Two Directions
o Processing using Memory
o Processing near Memory

How to Enable Adoption of Processing in Memory
Conclusion

SAFARI

Two PIM Approaches

5.2. Two Approaches:

Processing Using Memory

(PUM) vs. Processing Near Memory (PNM)

Many recent works take advantage of the memory
technology innovations that we discuss in Section 5.1/
to enable and implement PIM. We find that these works
generally take one of two approaches, which are cat-
egorized in Table 1: (1) processing using memory or
(2) processing near memory. We briefly describe each
approach here. Sections 6 and 7 will provide example
approaches and more detail for both.

Table 1: Summary of enabling technologies for the two approaches to
PIM used by recent works. Adapted from [341] and extended.

Approach

Example Enabling Technologies

Processing Using Memory

SRAM

DRAM

Phase-change memory (PCM)
Magnetic RAM (MRAM)

Resistive RAM (RRAM)/memristors

Processing Near Memory

Logic layers in 3D-stacked memory
Silicon interposers

Logic in memory controllers

Logic in memory chips (e.g., near bank)
Logic in memory modules

Logic near caches

Logic near/in storage devices

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna,
and Rachata Ausavarungnirun,

"A Modern Primer on Processing in
Memory"

Invited Book Chapter in Emerging
Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann,
Springer, to be published in 2021.

[Tutorial Video on "Memory-Centric Computing
Systems" (1 hour 51 minutes)]

SAFAR)] nhtips://people.inf.ethz.ch/omutiu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf

3

https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://www.youtube.com/watch?v=H3sEaINPBOE
https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf

Processing in Memory:

Two Approaches

1. Processing using Memory
2. Processing near Memory

More on RowClone

Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata

Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A.
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,

"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and
Initialization"
Proceedings of the 46th International Symposium on Microarchitecture

(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session
Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

RowClone: Fast and Energy-Efficient
In-DRAM Bulk Data Copy and Initialization

Vivek Seshadri Yoongu Kim Chris Fallin™ Donghyuk Lee

vseshadr@cs.cmu.edu yoongukim@cmu.edu cfallin@cif.net donghyuki@cmu.edu

Rachata Ausavarungnirun Gennady Pekhimenko Yixin Luo
rachata@cmu.edu gpekhime@cs.cmu.edu yixinluo@andrew.cmu.edu

Onur Mutlu Phillip B. Gibbonst Michael A. Kozucht Todd C. Mowry

onur@cmu.edu phillip.b.gibbons@intel.com michael.a.kozuch@intel.com tcm@cs.cmu.edu

Carnegie Mellon University fIntel Pittsburgh

http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://www.microarch.org/micro46/
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pdf

More on In-DRAM Bulk AND/OR

Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk

Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and
Todd C. Mowry,

"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015.

Fast Bulk Bitwise AND and OR in DRAM

Vivek Seshadri*, Kevin Hsieh*, Amirali Boroumand*, Donghyuk Lee*,
Michael A. Kozuch', Onur Mutlu*, Phillip B. GibbonsT, Todd C. Mowry*

*Carnegie Mellon University TIntel Pittsburgh

SAFARI 6

http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal

More on In-DRAM Bitwise Operations

Vivek Seshadri et al., "TAmbit: In-Memory Accelerator
for Bulk Bitwise Operations Using Commodity DRAM
Technology,” MICRO 2017.

Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology

Vivek Seshadri'® Donghyuk Lee*®> Thomas Mullins®® Hasan Hassan® ~Amirali Boroumand”®
Jeremie Kim*® Michael A. Kozuch® Onur Mutlu®® Phillip B. Gibbons® Todd C. Mowry”®

!Microsoft Research India ?NVIDIA Research Z3Intel “ETH Ziirich °Carnegie Mellon University

SAFARI /

https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf

More on In-DRAM Bulk Bitwise Execution

Vivek Seshadri and Onur Mutlu,
"In-DRAM Bulk Bitwise Execution Engine"

Invited Book Chapter in Advances in Computers, to appear
in 2020.

[Preliminary arXiv version]

In-DRAM Bulk Bitwise Execution Engine

Vivek Seshadri Onur Mutlu
Microsoft Research India ETH Zirich

visesha@microsoft.com onur .mutlu@inf.ethz.ch

SAFARI 8

https://arxiv.org/pdf/1905.09822.pdf
https://arxiv.org/pdf/1905.09822.pdf

RowClone & Bitwise Ops 1n Real DRAM Chips

ComputeDRAM: In-Memory Compute Using Off-the-Shelf

DRAMs
Fei Gao Georgios Tziantzioulis David Wentzlaff
feig@princeton.edu georgios.tziantzioulis@princeton.edu wentzlaf@princeton.edu
Department of Electrical Engineering Department of Electrical Engineering Department of Electrical Engineering
Princeton University Princeton University Princeton University

SAFARI https://parallel.princeton.edu/papers/micro19-gao.pdf g

https://parallel.princeton.edu/papers/micro19-gao.pdf

Pinatubo: RowClone and Bitwise Ops in PCM

Pinatubo: A Processing-in-Memory Architecture for Bulk
Bitwise Operations in Emerging Non-volatile Memories

Shuangchen Li*; Cong Xu?, Qiaosha Zou**, Jishen Zhao?, Yu Lu*, and Yuan Xie*

University of California, Santa Barbara®, Hewlett Packard Labs?
University of California, Santa Cruz?, Qualcomm Inc.*, Huawei Technologies Inc.?
{shuangchenli, yuanxie}ece.ucsb.edu’

SAFARI https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf 10

https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

SIMDRAM Framework

= Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, Joao Dinis Ferreira, Nika Mansouri
Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gomez-Luna, and Onur Mutlu,
"SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM"
Proceedings of the 26th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Virtual, March-April 2021.
[2-page Extended Abstract]
[Short Talk Slides (pptx) (pdf)]
[Talk Slides (pptx) (pdf)]
[Short Talk Video (5 mins)]
[Full Talk Video (27 mins)]

SIMDRAM: A Framework for
Bit-Serial SIMD Processing using DRAM

*Nastaran Hajinazar!-? *Geraldo F. Oliveira' Sven Gregorio' Jodo Dinis Ferreira’
Nika Mansouri Ghiasi' =~ Minesh Patel! =~ Mohammed Alser! Saugata Ghose®
Juan Gémez-Luna’ Onur Mutlu?

'ETH Ziirich 2Simon Fraser University 3University of lllinois at Urbana—Champaign

SAFARI i

https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21.pdf
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-extended-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-talk.pdf
https://www.youtube.com/watch?v=g0fE1c7w0xk&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=115
https://www.youtube.com/watch?v=bas9U7djW_8&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=116

In-DRAM Lookup-Table Based Execution

= To appear at MICRO 2022

in DRAM via Lookup Tables
Jodo Dinis Ferreira$ Gabriel Falcaof Juan Gémez-Luna? Mohammed Alser$
Lois OrosaV Mohammad Sadrosadati$ Jeremie S. Kim? Geraldo F. Oliveira$
Taha Shahroodi¥ Anant Nori* Onur Mutlu$

SETH Ziirich TIT, University of Coimbra V Galicia Supercomputing Center *TU Delft *Intel

SAFARI https:/ /arxiv.org/pdf/2104.07699.pdf 12

https://arxiv.org/pdf/2104.07699.pdf

In-Flash Bulk Bitwise Execution

To appear at MICRO 2022

Flash-Cosmos: In-Flash Bulk Bitwise Operations Using
Inherent Computation Capability of NAND Flash Memory

Jisung Park®V Roknoddin Azizi® Geraldo F. Oliveira® Mohammad Sadrosadati®
Rakesh Nadig® David Novo' Juan Gémez-Luna® Myungsuk Kim*¥ Onur Mutlu®

SETH Ziirich VPOSTECH TLIRMM, Univ. Montpellier, CNRS *Kyungpook National University

SAFARI https:/ /arxiv.org/pdf/2209.05566.pdf 1

https://arxiv.org/pdf/2209.05566.pdf

Sub-Agenda: In-Memory Computation

Major Trends Affecting Main Memory
The Need for Intelligent Memory Controllers

o Bottom Up: Push from Circuits and Devices
o Top Down: Pull from Systems and Applications

Processing in Memory: Two Directions
o Processing using Memory
o Processing near Memory

How to Enable Adoption of Processing in Memory
Conclusion

SAFARI 14

We Need to Think Ditferently
from the Past Approaches

Memory as an Accelerator

Memory

mini-CPUl 31 GPU GPU |:
CPU CPU core : |throughput)] |(throughput)| :
core core : core core :
video -
core
cPU - :] GPU GPU [t
, , | : |throughput)] |ithroughput)] :
core core 'mcaogrgg 1| core core :
LLC
N
Nemory Controller

Specialized
compute-capability
In_memory

Memory similar to a “conventiona

Memory Bus

III

accelerator

Processing in Memory:

Two Approaches

1. Processing using Memory
2. Processing near Memory

Opportunity: 3D-Stacked Logic+Memory

Hybrid Memory Cube

Logic

Other “True 3D" technologies
under development

SAFARI 18

DRAM Landscape (circa 2015)

Segment DRAM Standards & Architectures
Commodity DDR3 (2007) [14]; DDR4 (2012) [1¥]
Low-Power = LPDDR3 (2012) [17]; LPDDR4 (2014) [20]
Graphics GDDRS5 (2009) [15]

Performance eDRAM [2%], [32]; RLDRAM3 (2011) [29]

SBA/SSA (2010) [38]; Staged Reads (2012) [8]; RAIDR (2012) [27];
SALP (2012) [24]; TL-DRAM (2013) [26]; RowClone (2013) [37];
Half-DRAM (2014) [39]; Row-Bufter Decoupling (2014) [33];

SARP (2014) [6]; AL-DRAM (2015) [25]

Academic

Table 1. Landscape of DRAM-based memory

Kim+, "Ramulator: A Flexible and Extensible DRAM Simulator”, IEEE CAL 2015.

SAFARI 19

Several Questions in 3D-Stacked PIM

=| What are the performance and energy benefits of using
3D-stacked memory as a coarse-grained accelerator?
a | By changing the entire system

o By performing simple function offloading

= What is the minimal processing-in-memory support we can
provide?
a With minimal changes to system and programming

SAFARI 20

Another Example: In-Memory Graph Processing

= Large graphs are everywhere (circa 2015)

oo [L 3

36 Million 1.4 Billion 300 Million 30 Billion
Wikipedia Pages = Facebook Users Twitter Users Instagram Photos

= Scalable large-scale graph processing is challenging

Speedup

21

Key Bottlenecks in Graph Processing

for (v: graph.vertices) {
for (w: v.successors) {

w.next_rank += weight * v.rank;

1. Frequent random memory accesses

w.rank

w.next_rank

w.edges

2. Little amount of computation

SAFARI 22

Tesseract System for Graph Processing

Interconnected set of 3D-stacked memory+logic chips with simple cores

Host Processor

Memory-Mapped

Accelerator Interface :
Noncacheable, Physically Addressed) !

~ 2 Y BRE
— T | .
q Z
Wt il 1
") 1 A
® A\ & ,
N, itw] g ;
3 X
- - | : 1
Nt = Ll '
' 1
1 1)
| NG 1 ,
1] ,
1 1 /
1 1 /
1 [
1 1 /
[-
7/
/
7 /
7 7/
’

o
X
>

LI B | , z
| | | [A
II LI B | g
1] [y T BN 1 oo LP PF Buffer =
' Crossbar Network > o
/ I S CE)
LI B | \\\ MTP
QO [E— -1 ¢
v Message Queue NI

SAFAR/ Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Communications via

Remote Function Calls

Message Queue

Communications In Tesseract (1)

for (v: graph.vertices) {
for (w: v.successors) {
w.next_rank += weight * v.rank;

}
}

SAFARI

25

Communications In Tesseract (1I)

for (v: graph.vertices) {
for (w: v.successors) {

SAFARI

w.next_rank += weight * v.rank;

Vault #1

\\\
-~

Vault #2

—]
—

——»

—_—
—_—
—_——

26

Communications In Tesseract (I11)

for (v: graph.vertices) {

for (w: v.successors) { Non-blocking Remote Function Call
put(w.id, function() { w.next_rank += weight * v.rank; });
i Can be delayed
} until the nearest barrier
barrier();
Vault #1 Vault #2
put ~
Y > &w
<———-”/// ‘\
put \\\
S put
TSl » W
put |

SAFARI 27

Remote Function Call (Non-Blocking)

1. Send function address & args to the remote core

2. Store the incoming message to the message queue
3. Flush the message queue when it is full or a

synchronization barrier is reached

Local
Core

,

NI

&func, &w, value

NI

_>

Remote
Core K
MQ -

put(w.id, function() { w.next_rank +=value; })

SAFARI

28

Prefetching

LP PF Buffer

MTP

Evaluated Systems

DDR3-000 = HMC-000 HMC-MC | Tesseract

BCE =0 |
= = JE 1= B . .
I T + T = T + T I i y ¥ y § y y y ¥ L x X y ¥ : 32
CECE CaCs | , | Tesseract
i X X X /\ i / \ X X X i Cores
A 4 A 4 A 4 A 4 : vy vy \A 4 \A4 : \ 4 vy vy vy 1
: 128 128
8 OI(-)IO 8 OI?IO A “«> 2022 In-Order <> In-Order
4GHz || 4GHz 4GHz || 4GHz . o o o] o
| | T Tl
A\ 4 A\ 4 : A 4 \ 4 : A 4 A 4 PN P
8000 8000 | 8000 |8000 oo | @ 28 : :
4GHz 4GHz ! 4GHz 4GHz ! 2GHz IGH3z | - o
! AA AA AA AA i t ¢ ¢ e
v v v v \4 \ 4 \ 4 A : \ 4 \4 \4 \ 4 : PR PN PR
CECs CaCs '
CaCE CaCs
| | | | \ 4 \4 \4 \4 \ 4 \4 \ 4 \4
CECs CaCs
I I I [
CECs CaCs
102.4GB/s 640GB/s 640GB/s 8TB/s

SAFAR]/ Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Tesseract Graph Processing Performance

>13X Performance Improvement

16
On five graph processing algorithms 13.8x
14
1 11.6x
o 10 9.0x
>
® 8
()]
o
Y 6
4
2 +356% +25%
, == [
DDR3-000 HMC-Oo0 HMC-MC Tesseract Tesseract- Tesseract-

LP LP-MTP

SAFAR/ Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Memory Bandwidth Consumption

2.9TB/s

Memory Bandwidth (TB/s)

2.2TB/s
1.3TB/s
190GB/s 243GB/s
80GB/s
— TR

DDR3-000 HMC-000 HMC-MC Tesseract Tesseract- Tesseract-
LP LP-MTP

|

Effect of Bandwidth & Programming Model

] HMC-MC Bandwidth (640GB/s) [[] Tesseract Bandwidth (8TB/s)

Programming Model

3.0x

Speedup

2.3X v

-
0
HMC-MC HMC-MC + Tesseract + Tesseract
PIM BW Conventional BW (No Prefetching)

SAFARI 33

Tesseract Graph Processing System Energy

B Memory Layers © Logic Layers [Cores
1.2

0.8
0.6
0.4

0.2 > 8X Energy Reduction

HMC-000 Tesseract with Prefetching

SAFARI| Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Tesseract: Advantages & Disadvantages

Advantages

+ Specialized graph processing accelerator using PIM

+ Large system performance and energy benefits

+ Takes advantage of 3D stacking for an important workload
+ More general than just graph processing

Disadvantages
- Changes a lot in the system
- New programming model

- Specialized Tesseract cores for graph processing
- Cost

- Scalability limited by off-chip links or graph partitioning
SAFARI 35

More on Tesseract

= Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and
Kiyoung Choi,
"A Scalable Processing-in-Memory Accelerator for
Parallel Graph Processing”
Proceedings of the 42nd International Symposium on Computer
Architecture (ISCA), Portland, OR, June 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]
Top Picks Honorable Mention by ITEEE Micro.

A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing

Junwhan Ahn Sungpack Hong® Sungjoo Yoo Onur Mutlu' Kiyoung Choi

junwhan@snu.ac.kr, sungpack.hong @oracle.com, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi@snu.ac.kr

Seoul National University YOracle Labs fCarnegie Mellon University

SAFARI 36

https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pdf

Sub-Agenda: In-Memory Computation

Major Trends Affecting Main Memory
The Need for Intelligent Memory Controllers

o Bottom Up: Push from Circuits and Devices
o Top Down: Pull from Systems and Applications

Processing in Memory: Two Directions
o Processing using Memory
o Processing near Memory

How to Enable Adoption of Processing in Memory
Conclusion

SAFARI 37

Several Questions in 3D-Stacked PIM

=| What are the performance and energy benefits of using
3D-stacked memory as a coarse-grained accelerator?

a By changing the entire system

o | By performing simple function offloading

= What is the minimal processing-in-memory support we can
provide?
a With minimal changes to system and programming

SAFARI 38

3D-Stacked PIM on Mobile Devices

Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata
Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki
Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,

'Google Workloads for Consumer Devices: Mitigating Data
Movement Bottlenecks"

Proceedings of the 23rd International Conference on Architectural
Support for Programming Languages and Operating

Systemns (ASPLOS), Williamsburg, VA, USA, March 2018.

Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks
Amirali Boroumand' Saugata Ghose' Youngsok Kim?

Rachata Ausavarungnirun’ Eric Shiv> Rahul Thakur’> Daehyun Kim*?
Aki Kuusela® Allan Knies® Parthasarathy Ranganathan® Onur Mutlu”!

SAFARI 39

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/

Consumer Devices

Consumer devices are everywhere!

Energy consumption is
a first-class concern in consumer devices

SAFARI

Four Important Workloads

Z 12

Chrome TensorFlow Mobile
Google’s web browser Google’s machine learning
framework
@ O YouTube @ O YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec

SAFARI

Energy Cost of Data Movement

|5t key observation: 62.7% of the total system
energy is spent on data movement

Data Movement

Processing-In-Memory (PIM)

Potential solution: move computation close to data

Challenge: limited area and energy budget
SAFARI

Using PIM to Reduce Data Movement

2"d key observation: a significant fraction of the
data movement often comes from simple functions

We can design lightweight logic to implement
these simple functions in memory

Small embedded Small fixed-function
low-power core accelerators

Offloading to PIM logic reduces energy and improves
performance, on average, by 55.4% and 54.2%

SAFARI

Workload Analysis

Z 12

Chrome TensorFlow Mobile
Google’s web browser Google’s machine learning
framework
@ O YouTube @ O YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec

SAFARI

)

TensorFlow Mob

Prediction
9

Inferenc

(¢

57.3% of the inference energy is spent on
data movement

\

54.4% of the data movement energy comes from
packing/unpacking and quantization

SAFARI

Packing

Matrix Packed Matrix
l Packing l

Reorders elements of matrices to minimize
cache misses during matrix multiplication

v v

Up to 40% of the Packing’s data movement
inference energy and 3 1% of accounts for up to
inference execution time 35.3% of the inference energy

A simple data reorganization process
that requires simple arithmetic

SAFARI

Quantization

floating point integer

Converts 32-bit floating point to 8-bit integers to improve
inference execution time and energy consumption

v v

Up to 16.8% of the Majority of quantization
inference energy energy comes from
and 16.1% of data movement

inference execution time

A simple data conversion operation that requires
shift, addition, and multiplication operations

SAFARI

Normalized Energy

CPU-Only mPIM-Core 0OPIM-Acc

>N
o
O 0.8 T W NN NN NN
c
Ll
o 06 TPl
()
s
Té’ 04 1N W W NNWNO W N
-
S 0.2
Z
0 N T T
Texture Color Com- Decom- Packing Quantization Sub-Pixel Deblocking Motion
Tiling Blitting pression pression Interpolation Filter Estimation
Chrome Browser TensorFlow Video Playback and
Mobile Capture

PIM core and PIM accelerator reduce

energy consumption on average by 49.1% and 55.4%
SAFARI

Normalized Runtime

Normalized Runtime

=

o

o

o

o

o

CPU-Only B PIM-Core [0 PIM-Acc

O _
8
6
4]
2
O 7 I I
Texture Color Comp- Decomp- | Sub-Pixel Deblocking Motion |TensorFlow
Tiling Blitting ression ression [Interpolation Filter Estimation
Chrome Browser Video Playback TensorFlow
and Capture Mobile

Offloading these kernels to PIM core and PIM accelerator
improves performance on average by 44.6% and 54.2%

Workload Analysis

Chrome TensorFlow
Google’s web browser Google’s machine learning
framework
& 03 Youlube I,YouTuhe
Video Playback Vldeo Capture
Google’s video codec Google’s video codec

SAFARI 50

How Chrome Renders a Web Page

A
|

HTML
Parser

HTML

Render Rasteriza- Composi-

Tree tion ting

SAFARI 14

Loading and Layouting Painting
Parsing

assembles all layers

into a final screen image

|
|
|
|
|
| .
HTML HTML | | 3
Parser : : SS
| Render Lavout | Rasteriza- Composi-
LGS Y | tion ting
css €SS 1y L N
Parser 1/ R I N
| ! ,/ I AN
| ,’ 7 ' A3
N G %e

paints those objects

calculates the
visual elements and

and generates the bitmaps

position of each object

Browser Analysis

* To satisfy user experience, the browser must
provide:
— Fast loading of webpages
— Smooth scrolling of webpages
— Quick switching between browser tabs

* We focus on two important user interactions:
) Page Scrolling
2) Tab Switching

— Both include page loading

SAFARI

16

SAFARI

Tab Switching

26

What Happens During Tab Switching?

 Chrome employs a multi-process architecture
— Each tab is a separate process

| Chrome Process t :

\————-I —————

(_L ~_L_ -L_
| 9%

I__

\

=P

\——-

Tab | Tab 2 Tab N
Process Process Process

* Main operations during tab switching:
— Context switch
— Load the new page

SAFARI 27

Memory Consumption

* Primary concerns during tab switching:

— How fast a new tab loads and becomes interactive
— Memory consumption

Chrome uses compression to
reduce each tab’s memory footprint

SAFARI 28

Data Movement Study

* To study data movement during tab switching,
we emulate a user switching through 50 tabs

We make two key observations:

1 Compression and decompression
contribute tol8.1% of the total system energy

2 19.6 GB of data moves between
CPU and ZRAM

SAFARI

29

Can We Use PIM to Mitigate the Cost?

 CPU-Only time CPU +PIM

IWmnmy uw
Swap out N pages - Swap out N pages

-

data movement | No Off"Ch'P data

: mov'ement
Ouher s [

compression

v

PIM core and PIM accelerator are feasible to

implement in-memory compression/decompression

SAFARI 30

Tab Switching Wrap Up

A large amount of data movement happens
during tab switching as Chrome attempts to
compress and decompress tabs

Both functions can benefit from PIM execution

and can be implemented as PIM logic

SAFARI 31

More on PIM for Mobile Devices

Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul
Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

62.7% of the total system energy
Is spent on data movement

Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand* Saugata Ghose’ Youngsok Kim?
Rachata Ausavarungnirun’ Eric Shiv> Rahul Thakur’> Daehyun Kim*?
Aki Kuusela®> Allan Knies® Parthasarathy Ranganathan® Onur Mutlu®!
SAFARI 60

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/

Truly Distributed GPU Processing with PIM?

__global__
void applyScaleFactorsKernel(uint8 T * const out,
uint8_T const * const in, const double *factor,
size_t const numRows, size_t const numCols)
{
// Work out which pixel we are working on.
const int rowIdx = blockIdx.x * blockDim.x + threadIdx.x:;
const int colldx = blockIdx.y:
const int sliceldx = threadIdx.z;

// Check this thread isn't off the image
if(rowIdx >= numRows) return;

// Compute the index of my element

3 D-StaCked memory size_t linearIdx = rowIdx + colIdx*numRows +

sliceIdx*numRows*numCols;

(memory stack) SM (Streaming Multiprocessor)

_______________ Logic layer

Logic layer
SM
I

Crossbar switch
[[

Vault| |Vault
Ctrl Ctrl

Main GPU

Accelerating GPU Execution with PIM (I)

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,

"Transparent Offloading and Mapping (TOM): Enablin
Programmer-Transparent Near-Data Processing in GPU

Systems”
Proceedings of the 43rd International Symposium on Computer

Architecture (ISCA), Seoul, South Korea, June 2016.

[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh! Eiman Ebrahimi Gwangsun Kim* Niladrish Chatterjee]L Mike O’Connor'
Nandita Vij aykumari Onur Mutlu$? Stephen W. Keckler!

ICarnegie Mellon University 'NVIDIA *KAIST SETH Ziirich

SAFARI 62

https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf

Accelerating GPU Execution with PIM (II)

Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,

'Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities”

Proceedings of the 25th International Conference on Parallel
Architectures and Compilation Techniques (PACT), Haifa, Israel,
September 2016.

Scheduling Techniques for GPU Architectures
with Processing-In-Memory Capabilities

Ashutosh Pattnaik® Xulong Tang* Adwait Jog> Onur Kayiran?
Asit K. Mishrat Mahmut T. Kandemir® Onur Mutlu®¢ Chita R. Das!

'Pennsylvania State University =~ *College of William and Mary
3Advanced Micro Devices, Inc. “Intel Labs SETH Zirich ¢Carnegie Mellon University

SAFARI 63

https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
http://pactconf.org/

Accelerating LLinked Data Structures

Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu,

"Accelerating Pointer Chasing in 3D-Stacked Memory:

Challenges, Mechanisms, Evaluation”
Proceedings of the 34th IEEE International Conference on Computer

Design (ICCD), Phoenix, AZ, USA, October 2016.

Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation

Kevin Hsieh! Samira Khan* Nandita Vijaykumar!
Kevin K. Chang' Amirali Boroumand' Saugata Ghose! Onur Mutlu®!

"Carnegie Mellon University — *University of Virginia SETH Ziirich

SAFARI 64

https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/

Accelerating Dependent Cache Misses

Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,

'Accelerating Dependent Cache Misses with an Enhanced

Memory Controller”
Proceedings of the 43rd International Symposium on Computer

Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Accelerating Dependent Cache Misses with an
Enhanced Memory Controller

Milad Hashemi*, Khubaib, Eiman Ebrahimi*, Onur Mutlu®, Yale N. Patt*

*The University of Texas at Austin TApple *NVIDIA SETH Ziirich & Carnegie Mellon University

SAFARI 65

https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pdf

Accelerating Runahead Execution

= Milad Hashemi, Onur Mutlu, and Yale N. Patt,

'Continuous Runahead: Transparent Hardware Acceleration for

Memory Intensive Workloads"
Proceedings of the 49th International Symposium on

Microarchitecture (MICRO), Taipei, Taiwan, October 2016.
[Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)]

Continuous Runahead: Transparent Hardware Acceleration
for Memory Intensive Workloads

Milad Hashemi*, Onur Mutlu®, Yale N. Patt*

*The University of Texas at Austin SETH Ziirich

SAFARI 66

https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16.pdf
http://www.microarch.org/micro49/
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-lightning-session-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pdf

Accelerating Climate Modeling

= Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan
Gomez-Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal,
"NERO: A Near High-Bandwidth Memory Stencil Accelerator for

Weather Prediction Modeling"”
Proceedings of the 30th International Conference on Field-Programmable Logic

and Applications (FPL), Gothenburg, Sweden, September 2020.
[Slides (pptx) (pdf)]

[Lightning Talk Slides (pptx) (pdf)]

[Talk Video (23 minutes)]

Nominated for the Stamatis Vassiliadis Memorial Award.

NERO: A Near High-Bandwidth Memory Stencil Accelerator
for Weather Prediction Modeling
Gagandeep Singh®?¢ Dionysios Diamantopoulos® Christoph Hagleitner Juan Gémez-Luna”

Sander Stuijk? Onur Mutlu® Henk Corporaal?
9Eindhoven University of Technology PETH Ziirich ‘IBM Research Europe, Zurich

SAFARI 07

https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20.pdf
https://www.fpl2020.org/
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pdf
https://www.youtube.com/watch?v=xMiuqUyjkk0

Accelerating Approximate String Matching

Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S.
Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand,
Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
"GenASM: A High-Performance, Low-Power Approximate String Matching
Acceleration Framework for Genome Sequence Analysis"

Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual,
October 2020.

[Lighting Talk Video (1.5 minutes)]

[Lightning Talk Slides (pptx) (pdf)]

[Talk Video (18 minutes)]

[Slides (pptx) (pdf)]

GenASM: A High-Performance, Low-Power
Approximate String Matching Acceleration Framework
for Genome Sequence Analysis

Damla Senol Cali ™ Gurpreet S. Kalsi® Ziilal BingolV Can Firtina® Lavanya Subramanian Jeremie S. Kim®1
Rachata Ausavarungnirun® Mohammed Alser® Juan Gomez-Luna® Amirali Boroumand! Anant Nori™
Allison Scibisz| Sreenivas Subramoney™ Can Alkan” Saugata Ghose*T Onur Mutlu®TV

TCarnegie Mellon University ™ Processor Architecture Research Lab, Intel Labs ¥ Bilkent University ~ °ETH Ziirich
YFacebook ©King Mongkut’s University of Technology North Bangkok — * University of Illinois at Urbana—Champaign

SAFARI 08

https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
http://www.microarch.org/micro53/
https://www.youtube.com/watch?v=nJs3RRnvk_k
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pdf
https://www.youtube.com/watch?v=srQVqPJFqjo
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pdf

Accelerating Time Series Analysis

Ivan Fernandez, Ricardo Quislant, Christina Giannoula, Mohammed Alser, Juan
Gomez-Luna, Eladio Gutiérrez, Oscar Plata, and Onur Mutlu,

"NATSA: A Near-Data Processing Accelerator for Time Series Analysis"
Proceedings of the 38th IEEE International Conference on Computer

Design (ICCD), Virtual, October 2020.

NATSA: A Near-Data Processing Accelerator
for Time Series Analysis

Ivan Fernandez® Ricardo Quislant® Christina Giannoula' Mohammed Alser?
Juan Gémez-Luna? Eladio Gutiérrez® Oscar Plata’ Onur Mutlu?
SUniversity of Malaga T National Technical University of Athens YETH Ziirich

SAFARI 69

https://people.inf.ethz.ch/omutlu/pub/NATSA_time-series-analysis-near-data_iccd20.pdf
http://www.iccd-conf.com/

Several Questions in 3D-Stacked PIM

= What are the performance and energy benefits of using
3D-stacked memory as a coarse-grained accelerator?

a By changing the entire system
o By performing simple function offloading

= | What is the minimal processing-in-memory support we can
provide?

ith minimal changes to system and programming

SAFARI 7

PIM-Enabled Instructions

= Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
"PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture"
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture

Junwhan Ahn Sungjoo Yoo Onur Mutlu’ Kiyoung Choi
junwhan@snu.ac.kr, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi @snu.ac.kr

Seoul National University TCarnegie Mellon University

SAFARI

http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-lightning-talk.pdf

PEI: PIM-Enabled Instructions (Ideas)

Goal: Develop mechanisms to get the most out of near-data
processing with minimal cost, minimal changes to the system, no
changes to the programming model

Key Idea 1: Expose each PIM operation as a cache-coherent,
virtually-addressed host processor instruction (called PEI) that
operates on only a single cache block

0 e.g., __pim_add(&w.next_rank, value) = pim.add r1, (r2)

No changes sequential execution/programming model

No changes to virtual memory

Minimal changes to cache coherence

No need for data mapping: Each PEI restricted to a single memory module

o O O O

Key Idea 2: Dynamically decide where to execute a PEI (i.e., the
host processor or PIM accelerator) based on simple locality
characteristics and simple hardware predictors

o Execute each operation at the location that provides the best performance

SAFARI 72

Simple PIM Operations as ISA |

“xtensions (1)

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {

w.next_rank += value;

64 bytes in
64 bytes out

Conventional Architecture

Main Memory

;

w.next_rank

|

SAFARI

73

Simple PIM Operations as ISA Extensions (I1I)

for (v: graph.vertices) {
—_ H %k .
value = weight * v.rank; oim.add r1, (r2)
for (w: v.successors) {

___pim_add(&w.next_rank, value);

Main Memory

==
|

8 bytes in S b
0 bytes out

In-Memory Addition

SAFARI 74

Always Executing in Memory? Not A Good Idea

60%

50%
(o)
40% Increased
30% Memory Bandwidth
20% Consumption
10% Caching very effective I
0% ‘ \ E—

Speedup

.

-10%
-20%

Reduced Memory Bandwidth
Consumption due to

C

2 - S5 2 goo In-Memory Computation

OR B of i -

2= %o ¢t 838 ZR 7 © £ Tt 593
v 08 3@ £ w © > ~

Q S © N © n 2 =

More Vertices

—
SAFARI 75

PEIL: PIM-Enabled Instructions (Example)

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {
__pim_add(&w.next_rank, value);

pim.add r1, (r2)

} Table 1: Summary of Supported PIM Operations
} Operation R W Input Output Applications
pfe nce 8-byte integer increment O O Obytes Obytes AT
pfe nce () . 8-byte integer min O O 8bytes Obytes BFS, SP, WCC
) Floating-point add O O S8bytes Obytes PR
Hash table probing O X 8bytes 9bytes HJ
Histogram bin index O X 1byte 16bytes HG, RP
Euclidean distance O X 64bytes 4bytes SC
Dot product O X 32bytes 8bytes SVM

Executed either in memory or in the processor: dynamic decision
o Low-cost locality monitoring for a single instruction

Cache-coherent, virtually-addressed, single cache block only

Atomic between different PEIs

Not atomic with normal instructions (use pfence for ordering)

SAFARI

76

PIM-Enabled Instructions

Key to practicality: single-cache-block restriction
a Each PEI can access at most one last-level cache block
o Similar restrictions exist in atomic instructions

Benefits

o Localization: each PEI is bounded to one memory module

o Interoperability: easier support for cache coherence and
virtual memory

o Simplified locality monitoring: data locality of PEIs can be
identified simply by the cache control logic

SAFARI

PEI: Initial Evaluation Results

= Initial evaluations with 10 emerging data-intensive workloads
o Large-scale graph processing

QO In-memory data analytlcs Table 2: Baseline Simulation Configuration
o Machine learning and data mining i
Core 16 out-of-order cores, 4 GHz, 4-issue
1 1 L1 I/D-Cache Private, 32 KB, 4/8-way, 64 B blocks, 16 MSHRs
J Th ree in pUt SetS (Sma I ll med U ml Ia rge) L2 Cache Private, 256 KB, 8-way, 64 B blocks, 16 MSHRs
1 L3 Cache Shared, 16 MB, 16-way, 64 B blocks, 64 MSHRs
for eaCh Workload to a na Iyze the Im paCt On-Chip Network Crossbar, 2 GHz, 144-bit links
i Main Memory 32 GB, 8 HMCs, daisy-chain (80 GB/s full-duplex)
Of data Ioca I Ity HMC 4 GB, 16 vaults, 256 DRAM banks [20]
- DRAM FR-FCEFS, tCL = tRCD =tRP = 13.75ns [27]

— Vertical Links 64 TSVs per vault with 2 Gb/s signaling rate [23]

= Pin-based cycle-level x86-64 simulation

= Performance Improvement and Energy Reduction:
= 47% average speedup with large input data sets
= 32% speedup with small input data sets
= 25% avg. energy reduction in a single node with large input data sets

SAFARI 78

Evaluated Data-Intensive Applications

Ten emerging data-intensive workloads

o Large-scale graph processing

Average teenage follower, BFS, PageRank, single-source shortest
path, weakly connected components

o In-memory data analytics
Hash join, histogram, radix partitioning
o Machine learning and data mining
Streamcluster, SVM-RFE

Three input sets (small, medium, large) for each workload
to show the impact of data locality

SAFARI

PEI Performance Delta: Large Data Sets

70%

60%

50%

40%

30%

20%

10%

0%

(Large Inputs, Baseline: Host-Only)

WCC

M PIM-Only [Locality-Aware

SVM GM

SAFARI

80

Normalized Amount of Off-chip Transfer

ATF BFS PR SP WCC HJ HG RP SC
M Host-Only EPIM-Only [Locality-Aware

PEI Performance Delta: Small Data Sets

(Small Inputs, Baseline: Host-Only)
60%

40%

20%

0% Jjj.;#é

[
-

-20%
-40%

-60%
ATF BFS PR SP WCC HJ HG RP SC SVM GM

M PIM-Only [Locality-Aware

SAFARI 82

Normalized Amount of Off-chip Transfer

8
7
6
5
4
3
2
1
0

dhldd].]

M Host-Only EPIM-Only [Locality-Aware

SC

PEI Performance Delta: Medium Data Sets

(Medium Inputs, Baseline: Host-Only)
70%

60%

50%

40%

30%

20%

~ 11k Wh [ﬂ 1

0% — -W
WCC RP SC SVM GM

-10%
M PIM-Only [Locality-Aware

SAFARI 54

PEI Energy Consumption

15 Host-Only
PIM-Only
Locality-Aware
1
0.5
0
Small Medium Large
M Cache B HMC Link @ DRAM
[0 Host-side PCU [0 Memory-side PCU 1 PMU

SAFARI

85

PEI: Advantages & Disadvantages

Advantages

+ Simple and low cost approach to PIM

+ No changes to programming model, virtual memory
+ Dynamically decides where to execute an instruction

Disadvantages

- Does not take full advantage of PIM potential
- Single cache block restriction is limiting

SAFARI

86

Simpler PIM: PIM-Enabled Instructions

= Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
"PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture"
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture

Junwhan Ahn Sungjoo Yoo Onur Mutlu' Kiyoung Choi
junwhan@snu.ac.kr, sungjoo.yoo@gmail.com, onur @cmu.edu, kchoi @snu.ac.kr

Seoul National University *Carnegie Mellon University

SAFARI

http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-lightning-talk.pdf

Automatic Code and Data Mapping

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,

"Transparent Offloading and Mapping (TOM): Enablin
Programmer-Transparent Near-Data Processing in GPU

Systems”
Proceedings of the 43rd International Symposium on Computer

Architecture (ISCA), Seoul, South Korea, June 2016.

[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh! Eiman Ebrahimi Gwangsun Kim* Niladrish Chatterjee]L Mike O’Connor'
Nandita Vij aykumari Onur Mutlu$? Stephen W. Keckler!

ICarnegie Mellon University 'NVIDIA *KAIST SETH Ziirich

SAFARI 58

https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf

Automatic Offloading of Critical Code

Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,

'Accelerating Dependent Cache Misses with an Enhanced

Memory Controller”
Proceedings of the 43rd International Symposium on Computer

Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Accelerating Dependent Cache Misses with an
Enhanced Memory Controller

Milad Hashemi*, Khubaib, Eiman Ebrahimi*, Onur Mutlu®, Yale N. Patt*

*The University of Texas at Austin TApple *NVIDIA SETH Ziirich & Carnegie Mellon University

SAFARI 89

https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pdf

Automatic Offloading of Prefetch Mechanisms

= Milad Hashemi, Onur Mutlu, and Yale N. Patt,

'Continuous Runahead: Transparent Hardware Acceleration for

Memory Intensive Workloads"
Proceedings of the 49th International Symposium on

Microarchitecture (MICRO), Taipei, Taiwan, October 2016.
[Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)]

Continuous Runahead: Transparent Hardware Acceleration
for Memory Intensive Workloads

Milad Hashemi*, Onur Mutlu®, Yale N. Patt*

*The University of Texas at Austin SETH Ziirich

SAFARI 20

https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16.pdf
http://www.microarch.org/micro49/
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-lightning-session-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pdf

Eftficient Automatic Data Coherence Support

Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu,

"LazyPIM: An Efficient Cache Coherence Mechanism
for Processing-in-Memory"

TEEE Computer Architecture Letters (CAL), June 2016.

LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory

Amirali Boroumand', Saugata Ghose', Minesh Patel’, Hasan Hassan'$, Brandon Lucia’,
Kevin Hsieht, Krishna T. Malladi*, Hongzhong Zheng*, and Onur Mutlu*f

f Carnegie Mellon University *Samsung Semiconductor, Inc. $TOBB ETU *ETH Ziirich

SAFARI o1

https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal

Eftficient Automatic Data Coherence Support

Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutluy,

"CoNDA: Efficient Cache Coherence Support for Near-
Data Accelerators”
Proceedings of the 46th International Symposium on Computer
Architecture (ISCA), Phoenix, AZ, USA, June 2019.

CoNDA: Efficient Cache Coherence Support
for Near-Data Accelerators

Amirali Boroumand" Saugata Ghose' Minesh Patel* Hasan Hassan™
Brandon Lucia’ Rachata Ausavarungnirun’* Kevin Hsieh'
Nastaran Hajinazar®" Krishna T. Malladi® Hongzhong Zheng® Onur Mutlu*"

TCarnegie Mellon University *ETH Zurich *KMUTNB
°Simon Fraser University $Samsung Semiconductor, Inc.

SAFARI)2

https://people.inf.ethz.ch/omutlu/pub/CONDA-coherence-for-near-data-accelerators_isca19.pdf
http://iscaconf.org/isca2019/

Challenge and Opportunity for Future

Fundamentally
Energy-Efficient
(Data-Centric)
Computing Architectures

SAFARI

Challenge and Opportunity for Future

Fundamentally
High-Performance
(Data-Centric)
Computing Architectures

SAFARI

Challenge and Opportunity for Future

Computing Architectures
with
Minimal Data Movement

SAFARI

Sub-Agenda: In-Memory Computation

Major Trends Affecting Main Memory
The Need for Intelligent Memory Controllers

o Bottom Up: Push from Circuits and Devices
o Top Down: Pull from Systems and Applications

Processing in Memory: Two Directions

o Processing using Memory

o Processing near Memory

How to Enable Adoption of Processing in Memory

Conclusion

SAFARI %6

Eliminating the Adoption Barriers

How to Enable Adoption
of Processing in Memory

SAFARI

Potential Barriers to Adoption of PIM

1. Applications & software for PIM
2. Ease of programming (interfaces and compiler/HW support)

3. System and security support: coherence, synchronization,
virtual memory, isolation, communication interfaces, ...

4. Runtime and compilation systems for adaptive scheduling,
data mapping, access/sharing control, ...

5. Infrastructures to assess benefits and feasibility

All can be solved with change of mindset
SAFARI 78

We Need to Revisit the Entire Stack

SW/HW Interface

We can get there step by step

SAFARI

99

PIM Review and Open Problems

A Modern Primer on Processing in Memory

Onur Mutlu®?, Saugata Ghose®™°, Juan Gémez-Luna?, Rachata Ausavarungnirun®

SAFARI Research Group

ETH Ziirich
bCarnegie Mellon University
¢University of Illinois at Urbana-Champaign
4King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,

"A Modern Primer on Processing in Memory"

Invited Book Chapter in Emerqging Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann, Springer, to be published in 2021.

SAFARI https: / /arxiv.org/pdf/1903.03988.pdf 100

https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://arxiv.org/pdf/1903.03988.pdf

SAFARI

Contents

1 Introduction 2
2 Major Trends Affecting Main Memory 4
3 The Need for Intelligent Memory Controllers
to Enhance Memory Scaling
4 Perils of Processor-Centric Design 9
5 Processing-in-Memory (PIM): Technology En-
ablers and Two Approaches 11
5.1 New Technology Enablers: 3D-Stacked
Memory and Non-Volatile Memory . . 12

5.2 Two Approaches: Processing Using
Memory (PUM) vs. Processing Near

Memory (PNM) 13

6 Processing Using Memory (PUM) 14
61 RowWCIone': : o s 5 5 6 ovivasin o 14
62 Ambit 15

63 SIMDRAM 17
6.4 Gather-Scatter DRAM 18

6.5 In-DRAM Security Primitives 18

7 Processing Near Memory (PNM) 20

7.1 Tesseract: Coarse-Grained Application-
Level PNM Acceleration of Graph Pro-

CESSING ... « o o eamwis i & & swwanssss % 20
7.2 Function-Level PNM Acceleration of
Mobile Consumer Workloads 21

7.3 Programmer-Transparent Function-
Level PNM Acceleration of GPU
Applications, 22

7.4 Instruction-Level PNM Acceleration
with PIM-Enabled Instructions (PEI) . . 23

7.5 Function-Level PNM Acceleration of

Genome Analysis Workloads 24
7.6 Application-Level PNM Acceleration of
Time Series Analysis 26

Enabling the Adoption of PIM

8.1 Programming Models and Code Genera-
tion for PIM
PIM Runtime: Scheduling and Data
Mapping
Memory Coherence

Virtual Memory Support
Data Structures for PIM
Benchmarks and Simulation Infrastruc-

Real PIM Hardware Systems and Proto-
types
Security Considerations

9 Other Resources on PIM 37

10 Conclusion and Future Outlook 37

1. Introduction

Main memory, built using the Dynamic Random Ac-
cess Memory (DRAM) technology, is a major compo-
nent in nearly all computing systems, including servers,
cloud platforms, mobile/embedded devices, and sensor
systems. Across all of these systems, the data working
set sizes of modern applications are rapidly growing,
while the need for fast analysis of such data is increas-
ing. Thus, main memory is becoming an increasingly
significant bottleneck across a wide variety of comput-
ing systems and applications [1-26]. Alleviating the
main memory bottleneck requires the memory capac-
ity, energy, cost, and performance to all scale in an ef-
ficient manner across technology generations. Unfor-
tunately, it has become increasingly difficult in recent
years, especially the past decade, to scale all of these
dimensions [1, 2, 27-59], and thus the main memory
bottleneck has been worsening.

A major reason for the main memory bottleneck is the
high energy and latency cost associated with data move-
ment. In modern computers, to perform any operation
on data that resides in main memory, the processor must
retrieve the data from main memory. This requires the
memory controller to issue commands to a DRAM mod-
ule across a relatively slow and power-hungry off-chip
bus (known as the memory channel). The DRAM mod-
ule sends the requested data across the memory channel,
after which the data is placed in the caches and registers.
The CPU can perform computation on the data once the
data is in its registers. Data movement from the DRAM
to the CPU incurs long latency and consumes a signifi-
cant amount of energy [7-9, 60—64]. These costs are of-
ten exacerbated by the fact that much of the data brought
into the caches is not reused by the CPU [62, 63, 65, 66],
providing little benefit in return for the high latency and
energy cost.

The cost of data movement is a fundamental issue
with the processor-centric nature of contemporary com-
puter systems. The CPU is considered to be the master
in the system, and computation is performed only in the
processor (and accelerators). In contrast, data storage
and communication units, including the main memory,
are treated as unintelligent workers that are incapable of
computation. As a result of this processor-centric design
paradigm, data moves a lot in the system between the
computation units and communication/storage units so
that computation can be done on it. With the increasingly
data-centric nature of contemporary and emerging appli-
cations, the processor-centric design paradigm leads to
great inefficiency in performance, energy and cost. For
example, most of the real estate within a single compute

101

PIM Review and Open Problems (1I)

Processing Data Where It Makes Sense:
Enabling In-Memory Computation

Onur Mutlu®®, Saugata Ghose®, Juan Gémez-Luna?, Rachata Ausavarungnirun®®

“ETH Ziirich
bCarnegie Mellon University
“King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory

Computation”
Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]

SAFARI https: / /arxiv.org/pdf/1903.03988.pdf 102

https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
https://arxiv.org/pdf/1903.03988.pdf

PIM Review and Open Problems (11I)

A Workload and Programming Ease Driven Perspective of Processing-in-Memory
Saugata Ghose’ Amirali Boroumand® Jeremie S. Kim™ Juan Gémez-Luna® Onur Mutlu®'

"Carnegie Mellon University SETH Ziirich

Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,
"Processing-in-Memory: A Workload-Driven Perspective"

Invited Article in IBM Journal of Research & Development, Special Issue on
Hardware for Artificial Intelligence, to appear in November 2019,

[Preliminary arXiv version]

SAFARI https:/ /arxiv.org/pdf/1907.12947.pdf 103

https://arxiv.org/pdf/1907.12947.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://arxiv.org/pdf/1907.12947.pdf

PIM Runtime:
Scheduling and Data Mapping

Example PEI Microarchitecture

Host Processor

Out-Of-Order

) () K3
Core S Yo &=
(4] (q0] - O
@) @) 4~ (@©
— ~ e
PCU (PEl = = -
Computation Unit)
PMU (PEI[—
Mgmt Umt) Directory
Locality
Monitor

HMC Controller

3D-stacked Memory

DRAM
PCU Controller

DRAM
PCU Controller

Network

DRAM
PCU Controller

Example PEI uArchitecture

SAFARI

105

PEI Performance Delta: Large Data Sets

(Large Inputs, Baseline: CPU-Only)

70%
5
£ 60%
]
S
© ~
g:é; 50%
g3
%3 40%
€ o
o £
to 30%
a ©
q6 om
0§ 20%
o))
(]
€
3 10%
[}
a

0%
ATF BFS PR SP WCC HIJ HG RP sc svm GeoMean

M PIM-Only [Localitv-Aware

Locality-Aware = PIM or CPU
depending on data location 106

SAFARI

PEI Energy Consumption

Host-Only (CPU)

1.5
PIM-Only
S Locality-Aware
Q
E 1
S
5
5 0.5
S
0
Small Medium Large
M Cache B HMC Link M DRAM | Breakdown of Energy
) . Consumption on Different
[0 Host-side PCU [0 Memory-side PCU [JPMU | system Components

SAFARI 107

More on PIM-Enabled Instructions

= Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
"PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture"”
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture

Junwhan Ahn Sungjoo Yoo Onur Mutlu’ Kiyoung Choi
junwhan@snu.ac.kr, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi @snu.ac.kr

Seoul National University TCarnegie Mellon University

SAFARI

http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-lightning-talk.pdf

Key Challenge 1: Code Mapping

* Challenge 1: Which operations should be executed
in memory vs.in CPU!? ey

void applyScaleFactorsKernel(uint8 T * const out,

? {

3D-stacked memory
(memory stack)

JIIIIIIIIIIII

SM (Streaming Multiprocessor)

uint8_T const * const in, const double *factor,
size_t const numRows, size_t const numCols)

// Work out which pixel we are working on.

const int rowIdx = blockIdx.x * blockDim.x + threadIdx.x:;
const int colldx = blockIdx.y:

const int sliceldx = threadIdx.z;

// Check this thread isn't off the image
if(rowIdx >= numRows) return;

// Compute the index of my element

size_t linearIdx = rowIdx + colIdx*numRows +
sliceIdx*numRows*numCols;

?

/@
/ /

Main GPU

_______________ Logic layer

\ 4

Logic layer
SM
I

Crossbar switch
[[

Vault| |Vault
Ctrl Ctrl

Key Challenge 2: Data Mapping

* Challenge 2: How should data be mapped to

different 3D memory stacks!?

3D-stacked memory

(memory stack) SM (Streammg Multiprocessor)

Logic layer

SM

I

Crossbar switch

Vault
Ctrl

Vault
Ctrl

How to Do the Code and Data Mapping?

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,

"Transparent Offloading and Mapping (TOM): Enablin
Programmer-Transparent Near-Data Processing in GPU

Systems”
Proceedings of the 43rd International Symposium on Computer

Architecture (ISCA), Seoul, South Korea, June 2016.

[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh! Eiman Ebrahimi Gwangsun Kim* Niladrish Chatterjee]L Mike O’Connor'
Nandita Vij aykumari Onur Mutlu$? Stephen W. Keckler!

fCarnegie Mellon University 'NVIDIA *KAIST SETH Ziirich

https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf

How to Schedule Code? (I)

Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,

'Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities”

Proceedings of the 25th International Conference on Parallel
Architectures and Compilation Techniques (PACT), Haifa, Israel,
September 2016.

Scheduling Techniques for GPU Architectures
with Processing-In-Memory Capabilities

Ashutosh Pattnaik® Xulong Tang* Adwait Jog> Onur Kayiran?
Asit K. Mishrat Mahmut T. Kandemir® Onur Mutlu®¢ Chita R. Das!

'Pennsylvania State University =~ *College of William and Mary
3Advanced Micro Devices, Inc. “Intel Labs SETH Zirich ¢Carnegie Mellon University

SAFARI 12

https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
http://pactconf.org/

How to Schedule Code? (1)

Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,

'Accelerating Dependent Cache Misses with an Enhanced

Memory Controller”
Proceedings of the 43rd International Symposium on Computer

Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Accelerating Dependent Cache Misses with an
Enhanced Memory Controller

Milad Hashemi*, Khubaib, Eiman Ebrahimi*, Onur Mutlu®, Yale N. Patt*

*The University of Texas at Austin TApple *NVIDIA SETH Ziirich & Carnegie Mellon University

SAFARI s

https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pdf

How to Schedule Code? (111)

= Milad Hashemi, Onur Mutlu, and Yale N. Patt,

'Continuous Runahead: Transparent Hardware Acceleration for

Memory Intensive Workloads"
Proceedings of the 49th International Symposium on

Microarchitecture (MICRO), Taipei, Taiwan, October 2016.
[Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)]

Continuous Runahead: Transparent Hardware Acceleration
for Memory Intensive Workloads

Milad Hashemi*, Onur Mutlu®, Yale N. Patt*

*The University of Texas at Austin SETH Ziirich

SAFARI 114

https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16.pdf
http://www.microarch.org/micro49/
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-lightning-session-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pdf

Memory Coherence

Coherence for Hybrid CPU-PIM Apps

Challenge

Traditional

® > = S
o E 2| &,
a |l o
S Gl2 © 2|8z o =
(&) &
BN B B|2|0O m >
.............. UB3IAID
8¢T-dV1H 5
a
>
9G9¢-dV1H ==
)ueyasded
S
lpey =
Ll
sjuauodwo)
| yueyased
L
npey S
=
C)
sjuauodwo)
)ueyasded
=
lpey x
©
sjuauodwo)

116

SAFARI

How to Maintain Coherencer (I)

Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu,

"LazyPIM: An Efficient Cache Coherence Mechanism
for Processing-in-Memory"

TEEE Computer Architecture Letters (CAL), June 2016.

LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory

Amirali Boroumand', Saugata Ghose', Minesh Patel’, Hasan Hassan'$, Brandon Lucia’,
Kevin Hsieht, Krishna T. Malladi*, Hongzhong Zheng*, and Onur Mutlu*f

f Carnegie Mellon University *Samsung Semiconductor, Inc. $TOBB ETU *ETH Ziirich

SAFARI 7

https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal

How to Maintain Coherencer (I1)

Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutluy,

"CoNDA: Efficient Cache Coherence Support for Near-
Data Accelerators”
Proceedings of the 46th International Symposium on Computer
Architecture (ISCA), Phoenix, AZ, USA, June 2019.

CoNDA: Efficient Cache Coherence Support
for Near-Data Accelerators

Amirali Boroumand" Saugata Ghose' Minesh Patel* Hasan Hassan™
Brandon Lucia’ Rachata Ausavarungnirun’* Kevin Hsieh'
Nastaran Hajinazar®" Krishna T. Malladi® Hongzhong Zheng® Onur Mutlu*"

TCarnegie Mellon University *ETH Zurich *KMUTNB
°Simon Fraser University $Samsung Semiconductor, Inc.

SAFARI 18

https://people.inf.ethz.ch/omutlu/pub/CONDA-coherence-for-near-data-accelerators_isca19.pdf
http://iscaconf.org/isca2019/

CoNDA:

Efficient Cache Coherence Support
for Near-Data Accelerators

Amirali Boroumand

Saugata Ghose, Minesh Patel, Hasan Hassan,
Brandon Lucia, Rachata Ausavarungnirun, Kevin Hsieh,
Nastaran Hajinazar, Krishna Malladi, Hongzhong Zheng,

Onur Mutlu

““““

SAFARI Carnegie Mellon @

m Ziirich

Specialized Accelerators

Specialized accelerators are now everywhere!

L] FPGAs — =

FPGA ASIC

Recent advancement in 3D-stacked technology
enabled Near-Data Accelerators (NDA)

SAFARI 120

Coherence For NDAs

Challenge: Coherence between NDAs and CPUs

(1) Large cost of
off-chip communication

(2) NDA applications generate NDA
a large amount of off-chip data movement

It is impractical to use traditional coherence protocols

SAFARI 121

Existing Coherence Mechanisms

We extensively study existing NDA coherence
mechanisms and make three key observations:

1 These mechanisms eliminate
a significant portion of NDA'’s benefits

2 The majority of off-chip coherence traffic
generated by these mechanisms is unnecessary

Much of the off-chip traffic can be eliminated
3 if the coherence mechanism has insight
into the memory accesses

SAFARI 122

An Optimistic Approach

We find that an optimistic approach to coherence can
address the challenges related to NDA coherence

| Gain insights before any coherence checks happens

2 Perform only the necessary coherence requests

SAFARI 123

CoNDA

We propose CoNDA, a mechanism that uses optimistic
NDA execution to avoid unnecessary coherence traffic

CPU NDA
ECPU Thread
Execution || 1OfMoad npa o | |
. Concurrent Optimistic
. CPU + NDA ¢
. Execution execution

v
SAFARI 124

CoNDA

We propose CoNDA, a mechanism that uses optimistic
NDA execution to avoid unnecessary coherence traffic

CPU NDA

——

ECPU Thread
. Execution

__

———

. Concurrent
. CPU + NDA
. Execution

| Signature | S'e"ﬁd‘ si nat

Coherence Request
ures_

CoNDA comes within 10.4% and 4.4% of performance

and energy of an ideal NDA coherence mechanism
7 Ne-execyt,

CoNDA:

Efficient Cache Coherence Support
for Near-Data Accelerators

Amirali Boroumand

Saugata Ghose, Minesh Patel, Hasan Hassan,
Brandon Lucia, Rachata Ausavarungnirun, Kevin Hsieh,
Nastaran Hajinazar, Krishna Malladi, Hongzhong Zheng,

Onur Mutlu

““““

SAFARI Carnegie Mellon @

m Ziirich

How to Maintain Coherencer (I1)

Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutluy,

"CoNDA: Efficient Cache Coherence Support for Near-
Data Accelerators”
Proceedings of the 46th International Symposium on Computer
Architecture (ISCA), Phoenix, AZ, USA, June 2019.

CoNDA: Efficient Cache Coherence Support
for Near-Data Accelerators

Amirali Boroumand" Saugata Ghose' Minesh Patel* Hasan Hassan™
Brandon Lucia’ Rachata Ausavarungnirun’* Kevin Hsieh'
Nastaran Hajinazar®" Krishna T. Malladi® Hongzhong Zheng® Onur Mutlu*"

TCarnegie Mellon University *ETH Zurich *KMUTNB
°Simon Fraser University $Samsung Semiconductor, Inc.

SAFARI 127

https://people.inf.ethz.ch/omutlu/pub/CONDA-coherence-for-near-data-accelerators_isca19.pdf
http://iscaconf.org/isca2019/

Synchronization Support

How to Support Synchronization?

= Christina Giannoula, Nandita Vijaykumar, Nikela Papadopoulou, Vasileios Karakostas, Ivan
Fernandez, Juan Gdmez-Luna, Lois Orosa, Nectarios Koziris, Georgios Goumas, Onur Mutlu,
"SynCron: Efficient Synchronization Support for Near-Data-Processing
Architectures"”
Proceedings of the 2/th International Symposium on High-Performance Computer
Architecture (HPCA), Virtual, February-March 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Talk Video (21 minutes)]
[Short Talk Video (7 minutes)]

SynCron: Efficient Synchronization Support
for Near-Data-Processing Architectures

Christina Giannoula™ Nandita Vijaykumar** Nikela Papadopoulou’ Vasileios Karakostas’ Ivan Fernandez®*
Juan Gémez-Luna* Lois Orosa* Nectarios Koziris' Georgios Goumas' Onur Mutlu*

"National Technical University of Athens ~ *ETH Ziirich *University of Toronto $University of Malaga

SAFARI 129

https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21.pdf
https://www.hpca-conf.org/2021/
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21-short-talk.pdf
https://www.youtube.com/watch?v=2DNDjQjNDTw
https://www.youtube.com/watch?v=kGiN-YjeUUA

SynCron

Efficient Synchronization Support
for Near-Data-Processing Architectures

Christina Giannoula

Nandita Vijaykumar, Nikela Papadopoulou, Vasileios Karakostas
Ivan Fernandez, Juan GoOmez Luna, Lois Orosa
Nectarios Koziris, Georgios Goumas, Onur Mutlu

OO QQ National Technical University of Athens

% UNIVERSITY OF
SAFARI °§@SLab 3 TORONTO
ETHzurich

Executive Summary

Problem:

I Synchronization support is challenging for NDP systems

Prior schemes are not suitable or efficient for NDP systems

Contribution:

SynCron: the first end-to-end synchronization solution for
NDP architectures

Key Results:

SynCron comes within 9.5% and 6.2% of performance and
energy of an Ideal zero-overhead synchronization scheme

SAFARI 131

Synchronization is Necessary

Bioinformatics

Databases

Graph Analytics

N
N

N

1

3 Jjoe weight[v, u] < distance[u]
lock_acquire(u)
if distance[v] + edge_weight[v, u] < distance[u]

distance|u] = distance[v] + edge_weight[v, u]
lock_release(u)

for vin Graph:
for u in neighbors|[v]:
ifdj : :

Single Source Shortest Path (SSSP) | ks Barriers

L

Image Processing

Concurrent
Data Structures

SAFARI

132

Baseline NDP Architecture

NDP System NDP Unit
o N N . | _ W -4 ™
-4~ Programmable
NDP Core -
I l l | J o |a-=" Core /
>_(>_(\ =~ Main Accelerator
\ [NDP Core
| X | \ '~ - . Memory { Private J
~~~~~ Cache
— — \\ DP === ~\ /
| [ NDP Core ]—\ ]

Synchronization challenges in NDP systems:

(1) Lack of hardware cache coherence support

(2) Expensive communication across NDP units

(3) Lack of a shared level of cache memory

SAFARI 133



NDP Synchronization Solution Space

4/\

(1) Shared Memory ( (2) Message-passing J
Hardware Remote Specialized Software- Specialized
Cache Atomics Hardware based Hardware
Coherence Support Schemes \_Support |
SynCron’s Key Techniques: /,NDPs: A

1. Hardware support for synchronization acceleration

2. Direct buffering of synchronization variables

3. Hierarchical message-passing communication

4. Integrated hardware-only overflow management

SAFARI 134



1. Hardware Synchronization Support

NDP Unit 0 NDP Unit 1

) (O D e ) D
NDP Core 0 ~— NDP Core 0 —
J g J
> Main - > Main
NDP Core 1 — ' ' NDP Core1 —
\ ~ Memory L 7~ Memory
Engine 0 \_ ) Engine 1 _ Y,

Local
lock acquire

v" No Complex Cache Coherence Protocols
v" No Expensive Atomic Operations
v" Low Hardware Cost

SAFARI 135




2. Direct Buffering of Variables

NDP Unit O NDP Unit 1
4 N O B\ 4 N O N\
>4}|| NDP Core 0 — NDP Core 0 —
& ) & )
‘ N Main ‘ > Main
NDP Core1 ' | NDPCorel —
L 7~ Memory N ~ Memory
Synchronization
Engine 0 ~._ U ) Engine 1 \ )
// ~~~~~~~
/ == ~ -~
/ T=< -~
, -
r N _ -
Synchronization ACRIERS
. Table Local
Synchronization - lock acquire

Processing Unit \

Indexing >
Counters Y

A\

SAFARI 136



2. Direct Buffering of Variables

NDP Unit O NDP Unit 1
e N O N\ e N O N\
NDP Core 0 — NDP Core 0 —
& ) & )
‘ N Main ‘ N Main
NDP Core1 ' > NDPCorel —
5 ~ Memory L 7~ Memory
Synchronization
Engine 0 ~._ U ) Engine 1 \_ Y
Synchronization T ACRIERS
Table  — Local

v" No Costly Memory Accesses

v" Low Latency

SAFARI

137




3. Hierarchical Communication

NDP Unit 0 NDP Unit 1

' N N ' N N
NDP Core 0 ~— NDP Core 0 —

A J (S J

‘ \ Main ‘ ) Main
NDP Core1 ~— NDP Core1 —

L ore L = Memory § ore L = Memory

Engine 0 Y ) Engine 1 \ )

NDP Unit 2 ><NDP Unit 3

e N\ [ N\ a N\ O N\
NDP Core 0 — NDP Core 0 —
\§ J \§ J
a > Main - N Main
NDP Core1l — ' ' NDP Core1 ~—
L '~ Memory 5 7~ Memory
Engine 2 S Y, Engine 3 N J

SAFARI 138



3. Hierarchical Communication

NDP Unit 0

e N O
2= NDP Core 0 —

A J

X NDP Core1l ~

(S %

Synchronization
Engine 0 \_

Main
Memory

NDP Unit 2

b NDP Core 0 —

A\ )

X NDP Core1l —

A\ )

Synchronization
Engine 2 \_

Main
Memory

SAFARI

NDP Unit 1

><]

Local

e

NDP Core 0

(&

N

%

i

NDP Unit 3

/

NDP Core 1

AU

\

)

Synchronization syncronVar
Engine 1 o

~—

Main

~

Memory

Z

Master

e

NDP Core 0

(&

N

%

b 2.

e

NDP Core 1

(&

~

%

Synchronization
Engine 3 N\

Main

Memory

lock acquire

139



3. Hierarchical Communication

Global
NDP Unit 0 NDP Unit 1 lock acquire
e ) D e ) D
NDP Core 0 — NDP Core 0 —
N\ J \ J
- N Main - N Main
NDP Core1l ~ ' ' NDP Core1 ~—
5 ~ Memory L 7~ Memory
Synchronization
Engine 0 S \_ ) Engine 1 \ y)

~—

NDP Unit 2 ><NDP Unit3 [ Master
( NDP Core 0 M W ( NDP Core O M W

v' Minimize Expensive Traffic

SAFARI 140




SynCron

The first end-to-end synchronization solution for
NDP architectures

SynCron’s Benefits.
1. High System Performance

2. Low Hardware Cost

SynCron comes within 9.5% and 6.2% of performance
and energy of Ideal zero-overhead synchronization

SAFARI 141




SynCron

Efficient Synchronization Support
for Near-Data-Processing Architectures

Christina Giannoula

Nandita Vijaykumar, Nikela Papadopoulou, Vasileios Karakostas
Ivan Fernandez, Juan GoOmez Luna, Lois Orosa
Nectarios Koziris, Georgios Goumas, Onur Mutlu

OO QQ National Technical University of Athens

% UNIVERSITY OF
SAFARI °§@SLab 3 TORONTO
ETHzurich




How to Support Synchronization?

= Christina Giannoula, Nandita Vijaykumar, Nikela Papadopoulou, Vasileios Karakostas, Ivan
Fernandez, Juan Gdmez-Luna, Lois Orosa, Nectarios Koziris, Georgios Goumas, Onur Mutlu,
"SynCron: Efficient Synchronization Support for Near-Data-Processing
Architectures"”
Proceedings of the 2/th International Symposium on High-Performance Computer
Architecture (HPCA), Virtual, February-March 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Talk Video (21 minutes)]
[Short Talk Video (7 minutes)]

SynCron: Efficient Synchronization Support
for Near-Data-Processing Architectures

Christina Giannoula™ Nandita Vijaykumar** Nikela Papadopoulou’ Vasileios Karakostas’ Ivan Fernandez®*
Juan Gémez-Luna* Lois Orosa* Nectarios Koziris' Georgios Goumas' Onur Mutlu*

"National Technical University of Athens ~ *ETH Ziirich *University of Toronto $University of Malaga

SAFARI 143


https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21.pdf
https://www.hpca-conf.org/2021/
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21-short-talk.pdf
https://www.youtube.com/watch?v=2DNDjQjNDTw
https://www.youtube.com/watch?v=kGiN-YjeUUA

Lecture on Synchronization Support for PIM

o . - a \."
1. Hardware Synchronization Support .» H:"
Chnistina'Gian...
NDP Unit O NDP Unit 1
NDP Core 0 — NDP Core 0 —

Main Main
NDP Core 1 — Memory . " NDPCore1 -— Memory

==

-~

synchronization

¥ Sy Tabie
v" No Complex Cache Coherence Protocols
v" No Expensive Atomic Operations

v" Low Hardware Cost

-

o3 |11 24 5 I I R

P Pl W) 1947/10455 -0

Processing in Memory Course: Meeting 11: Synchronization Support for PIM Architectures - Fall'21

360 views * Streamed live on Dec 14, 2021 i 20 CJ DISLIKE 4> SHARE =+ SAVE
@ Onur MutIu'Lectures SUBSCRIBED Q
&b 20.9K subscribers -

144
SAFARI https://youtu.be/GHZKRHp AGO



https://youtu.be/GHZkRHp_AG0

How to Design Data Structures tor PIM?

= Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu,

'Concurrent Data Structures for Near-Memory Computing"
Proceedings of the 29th ACM Symposium on Parallelism in Algorithims
and Architectures (SPAA), Washington, DC, USA, July 2017.

[Slides (pptx) (pdf)]

Concurrent Data Structures for Near-Memory Computing

Zhiyu Liu Irina Calciu
Computer Science Department VMware Research Group
Brown University icalciu@vmware.com
zhiyu_liu@brown.edu
Maurice Herlihy Onur Mutlu
Computer Science Department Computer Science Department
Brown University ETH Zirich
mph@cs.brown.edu onur.mutlu@inf.ethz.ch

SAFARI 145


https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17.pdf
https://spaa.acm.org/
https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17-talk.pdf

Virtual Memory Support




How to Support Virtual Memory?

Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu,

"Accelerating Pointer Chasing in 3D-Stacked Memory:

Challenges, Mechanisms, Evaluation”
Proceedings of the 34th IEEE International Conference on Computer

Design (ICCD), Phoenix, AZ, USA, October 2016.

Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation

Kevin Hsieh! Samira Khan* Nandita Vijaykumar!
Kevin K. Chang' Amirali Boroumand' Saugata Ghose! Onur Mutlu®!

"Carnegie Mellon University — *University of Virginia SETH Ziirich

SAFARI 147


https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/

Executive Summary

Our Goal: Accelerating pointer chasing inside
main memory

Challenges: Parallelism challenge and Address
translation challenge

Our Solution: In-Memory Polnter Chasing Accelerator
(IMPICA)

o Address-access decoupling: enabling parallelism in the
accelerator with low cost

o IMPICA page table: low cost page table in logic layer

Key Results:

o 1.2X — 1.9X speedup for pointer chasing operations, +16%
database throughput

a 6% - 41% reduction in energy consumption

SAFARI 148



Linked Data Structures

Linked data structures are widely
used in many important applications

Key Value |

Data Storacs w

ked data structures are

Lin .
connected by pointers
k s Key 1m————_ ]
fﬁ—‘zu& 'Keyz,__/ :_’l N |
d.1 d2 %TLLJ/}SBG}I7 Key 3b— E
B-Tree Hash Table
SAFARI

149



The Problem: Pointer Chasing

Traversing linked data structures
requires chasing pointers

Serialized and irregular access pattern
6X cycles per instruction in real workloads

SAFARI 150




Our Goal

Accelerating pointer chasing

inside main memory

Find(A)

O
) @ b

Logic layer

SAFARI 151




Parallelism Challenge

> Time

CPU core  |Comp

CPU core
In-Memory
Accelerator
A
slower for two operations |
J
S -

SAFARI —



Parallelism Challenge and Opportunity

= A simple in-memory accelerator can still be
slower than multiple CPU cores

CPU core CPU core CPU core

T

Accelerator

= Opportunity: a pointer-chasing accelerator
spends a long time waiting for memory

SAFARI 153




Our Solution: Address-Access Decoupling

ng enables
with low cost

> Time
CPU core  |Comp

N

CPU core Pz
Address-access decoupli

Addr parallelism in both engines
Engink - ) A :

Access
Engine

SAFARI —



IMPICA Core Architecture

DRAM

DRAM Layers

Logic Layer

Memory
Controller
Access Queue t
Request Qllle_ui Ad dl:'eSS > |_’ Access
Traversal Englne 4_-| ] Englne

Response Queue



Address Translation Challenge

The page

multiple memory

table walk requires

accesses

0. ‘Q
------------------------------------

-----------------------------------------------------------------------------------------------------------------------------
A d ~
* L4

* *

___Virtual Address

‘I4L#P.ML4 $ #PDPT _1 arReYare - de
~  NoTLB/MMU on the memory s:: ;
Duplicating ¢ is costly and create
ompat|b|||ty issue sJ
K . PML4 i [ PGT B :
[ Page fable Walk .
SAFARI




Our Solution: IMPICA Page Table

= Completely decouple the page table of
IMPICA from the page table of the CPUs

INERO/R Rodablele

i \
g re into IMPICA regions

inked data structu
Tr:lla’llgxepage tableis a partial-to-any mapping

k 7N
WITHUE) (PR i Physical Page

Virtual Address Space | Physical Address Space
SAFARI 157




IMPICA Page Table: Mechanism

Virtual Address

Flat page table
saves one memory access

----------------

-----------------------------
* 3

. Region Table |

¥
*

. .
------------------------------

—

Tiny region table is almost:
always in the cache

Small Page Table °
5‘(2M B) (4KB)

LN o*
---------------------------

.

Physical Address

SAFARI 158



Evaluation Methodology

Simulator: gem5
System Configuration
a CPU
4 000 cores, 2GHz
Cache: 32KB L1, 1MB L2
o IMPICA
1 core, 500MHz, 32KB Cache
o Memory Bandwidth
12.8 GB/s for CPU, 51.2 GB/s for IMPICA
Our simulator code is open source
o https://github.com/CMU-SAFARI/IMPICA

SAFARI

159


https://github.com/CMU-SAFARI/IMPICA

Result — Microbenchmark Performance

0 Baseline + extra 128KB L2 ®IMPICA

1.9X

2.0

1.3X

1.5 1.2X

10 -

Speedup

0.5

0.0

Linked List Hash Table B-Tree

SAFARI 160



Result — Database Performance

+16%

—
N
o

O = =
O O =
o O O

Database
Throughput

Baseline + extra Baseline + extra
128KB L2 1MB L2

1.00 = — 0%
0.95
0.90 -13%
0.85
0.80

Database
Latency

Baseline + extra Baseline + extra IMPICA
128KB L2 1MB L2

SAFARI 161



System Energy Consumption

1.0

O
U

Normalized Energy

Linked Hash B-Tree DBx1000
List Table

SAFARI 162



Area and Power Overhead

CPU (Cortex-A57)

5.85 mm? per core

cache)

L2 Cache 5 mm? per MB
Memory Controller 10 mm?
IMPICA (+32KB 0.45 mm?

Power overhead: average power

increases by 5.6%

SAFARI

163



How to Support Virtual Memory?

Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu,

"Accelerating Pointer Chasing in 3D-Stacked Memory:

Challenges, Mechanisms, Evaluation”
Proceedings of the 34th IEEE International Conference on Computer

Design (ICCD), Phoenix, AZ, USA, October 2016.

Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation

Kevin Hsieh! Samira Khan* Nandita Vijaykumar!
Kevin K. Chang' Amirali Boroumand' Saugata Ghose! Onur Mutlu®!

"Carnegie Mellon University — *University of Virginia SETH Ziirich

SAFARI 1o4


https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/

Rethinking Virtual Memory

Nastaran Hajinazar, Pratyush Patel, Minesh Patel, Konstantinos Kanellopoulos, Saugata Ghose, Rachata
Ausavarungnirun, Geraldo Francisco de Oliveira Jr., Jonathan Appavoo, Vivek Seshadri, and Onur Mutlu,
"The Virtual Block Interface: A Flexible Alternative to the Conventional Virtual Memory
Framework"

Proceedings of the 4/th International Symposium on Computer Architecture (ISCA), Virtual, June 2020.
[Slides (pptx) (pdf)]

[Lightning Talk Slides (pptx) (pdf)]

[ARM Research Summit Poster (pptx) (pdf)]

[Talk Video (26 minutes)]

[Lightning Talk Video (3 minutes)]

[Lecture Video (43 minutes)]

The Virtual Block Interface: A Flexible Alternative
to the Conventional Virtual Memory Framework

Nastaran Hajinazar"‘]L Pratyush Patel® Minesh Patel* Konstantinos Kanellopoulos* Saugata Ghose!
Rachata Ausavarungnirun®  Geraldo F. Oliveira* Jonathan Appavoo® Vivek Seshadri’ Onur Mutlu*¥

*ETH Ziirich  TSimon Fraser University —* University of Washington ~*Carnegie Mellon University
©King Mongkut’s University of Technology North Bangkok  °Boston University Y Microsoft Research India

SAFARI 165


https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20.pdf
http://iscaconf.org/isca2020/
https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20-ARM-Research-Summit-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20-ARM-Research-Summit-poster.pdf
https://www.youtube.com/watch?v=7c6LgVrCwPo
https://youtu.be/04l-Zlaue0k
https://www.youtube.com/watch?v=PPR7YrBi7IQ

VBI: Overview

Processes
L4 . .

o O

VAS1 VAS2 VAS n
Virtual Address Space (VAS)

Page Tables
managed by the OS

Physical Memory

Conventional Virtual Memory

SAFARI

VB1 VB2 VB3
VBI Address Space

Memory Translation Layer

in the memory controller

Physical Memory

VBI

166



Lecture on Virtual Block Interface

Challenges

* Three examples of the challenges in adapting
conventional virtual memory frameworks for
increasingly-diverse systems:

- Requiring a rigid page table structure
- High address translation overhead in virtual machines

- Inefficient heterogeneous memory management

Q ETH ZURICH HAUPTGEBAUDE
Computer Architecture - Lecture 12c: The Virtual Block Interface (ETH Ziirich, Fall 2020)

726 views *+ Oct 31, 2020 ip1s Jlo SHARE =i SAVE

@ 106I'1l51}: Ml;ﬂu Lectures ANALYTICS EDIT VIDEO
&> .5K subscribers

SAFAR] nttos://www.youtube.com/watch?v=2RhGMpY18zw8list=PL5PHM2{kkXmi5CxxI7b3ICL1 TWybTDtKa&index=22 107



https://www.youtube.com/watch?v=2RhGMpY18zw&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=22

Benchmarks and
Simulation Infrastructures




DAMOYV Analysis Methodology & Workloads

DAMOV: A New Methodology and Benchmark Suite
for Evaluating Data Movement Bottlenecks

GERALDO F. OLIVEIRA, ETH Ziirich, Switzerland

JUAN G OMEZ-LUN A, ETH Ziirich, Switzerland

LOIS OROSA, ETH Ziirich, Switzerland

SAUGATA GHOSE, University of Illinois at Urbana-Champaign, USA

NANDITA VIJAYKUMAR, University of Toronto, Canada

IVAN FERNANDEZ, University of Malaga, Spain & ETH Ziirich, Switzerland

MOHAMMAD SADROSADATI, Institute for Research in Fundamental Sciences (IPM), Iran & ETH

Zirich, Switzerland

ONUR MUTLU, ETH Ziirich, Switzerland

Data movement between the CPU and main memory is a first-order obstacle against improving performance,
scalability, and energy efficiency in modern systems. Computer systems employ a range of techniques to
reduce overheads tied to data movement, spanning from traditional mechanisms (e.g., deep multi-level cache
hierarchies, aggressive hardware prefetchers) to emerging techniques such as Near-Data Processing (NDP),
where some computation is moved close to memory. Prior NDP works investigate the root causes of data
movement bottlenecks using different profiling methodologies and tools. However, there is still a lack of
understanding about the key metrics that can identify different data movement bottlenecks and their relation
to traditional and emerging data movement mitigation mechanisms. Our goal is to methodically identify
potential sources of data movement over a broad set of applications and to comprehensively compare traditional
compute-centric data movement mitigation techniques (e.g., caching and prefetching) to more memory-centric
techniques (e.g., NDP), thereby developing a rigorous understanding of the best techniques to mitigate each
source of data movement.

With this goal in mind, we perform the first large-scale characterization of a wide variety of applications,
across a wide range of application domains, to identify fundamental program properties that lead to data
movement to/from main memory. We develop the first systematic methodology to classify applications based
on the sources contributing to data movement bottlenecks. From our large-scale characterization of 77K
functions across 345 applications, we select 144 functions to form the first open-source benchmark suite
(DAMOV) for main memory data movement studies. We select a diverse range of functions that (1) represent
different types of data movement bottlenecks, and (2) come from a wide range of application domains.
Using NDP as a case study, we identify new insights about the different data movement bottlenecks and
use these insights to determine the most suitable data movement mitigation mechanism for a particular

application. We open-source DAMOV and the complete source code for our new characterization methodology

S A FA R l at https://github.com/CMU-SAFAR/DAMOV. httos: / /arxiv.or df/2105.03725.pdf


https://arxiv.org/pdf/2105.03725.pdf

Methodology Overview

.

------------------------------
Od e

User Input Step 1
Target Application \ Application Profiling
— \ roi_begin st OxAF

— N\ :
) — !  1d OxFF

/ roi end || | Tt M
1

Step 2
Locality-based Clustering

e |
Source Code
N
v
n =
o
o O
X X
SRS
=
3+ \\\\\-...
(@)
(=]
H
(¢
(7]
|

SAFARI




More on DAMOYV

= Geraldo F. Oliveira, Juan Gomez-Luna, Lois Orosa, Saugata Ghose, Nandita
Vijaykumar, Ivan fernandez, Mohammad Sadrosadati, and Onur Mutlu,
"DAMOV: A New Methodology and Benchmark Suite for Evaluating
Data Movement Bottlenecks"
Preprint in arXiv, 8 May 2021.

[arXiv preprint]

[DAMOV Suite and Simulator Source Code]

[SAFARI Live Seminar Video (2 hrs 40 mins)]

[Short Talk Video (21 minutes)]

DAMOV: A New Methodology and Benchmark Suite
for Evaluating Data Movement Bottlenecks

GERALDO F. OLIVEIRA, ETH Ziirich, Switzerland

JUAN GOMEZ-LUNA, ETH Ziirich, Switzerland

LOIS OROSA, ETH Ziirich, Switzerland

SAUGATA GHOSE, University of Illinois at Urbana—Champaign, USA
NANDITA VIJAYKUMAR, University of Toronto, Canada

IVAN FERNANDEZ, University of Malaga, Spain & ETH Ziirich, Switzerland

MOHAMMAD SADROSADATI, ETH Ziirich, Switzerland
s A FA R l ONUR MUTLU, ETH Ziirich, Switzerland 171


http://people.inf.ethz.ch/omutlu/pub/DAMOV-Bottleneck-Analysis-and-DataMovement-Benchmarks_arxiv21.pdf
https://arxiv.org/abs/2105.03725
https://arxiv.org/pdf/2105.03725.pdf
https://github.com/CMU-SAFARI/DAMOV
https://www.youtube.com/watch?v=GWideVyo0nM&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=156
https://www.youtube.com/watch?v=HkMYuYMuZOg&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=161

Lecture on DAMOV

Step 3: Memory Bottleneck Classification (2/ ]

* Goal: identify the specific sources of data movement
bottlenecks

DAMOV-SIM Simulator

o

# Cores

Scalability Analysis

Integrated ZSim and Ramulator Losl Lt

 Scalability Analysis:
- 1,4,16, 64, and 256 out-of—order/m-order host and NDP CPU cores

Processing-in-Memory Course: Lecture 5: How to Evaluate Data Movement Bottlenecks - Spring

2022

346 views * Streamed live on Apr 7, 2022 75 12 CJ DISLIKE A) SHARE % CLIP =+ SAVE
@ Onur Mutlu Lectures SUBSGRIBED A
>  25.9Ksubscribers =

SAFARI https://youtu.be/SOYGTIRO7UA 172



https://youtu.be/8OYGTIR07uA

Simulation Infrastructures for PIM

Ramulator extended for PIM

Q

Q

Q

Flexible and extensible DRAM simulator
Can model many different memory standards and proposals

Kim+, "Ramulator: A Flexible and Extensible DRAM
Simulator”, IEEE CAL 2015.

https://qgithub.com/CMU-SAFARI/ramulator-pim

https://github.com/CMU-SAFARI/ramulator

[Source Code for Ramulator-PIM]

Ramulator: A Fast and Extensible DRAM Simulator

Yoongu Kim!  Weikun Yang'?  Onur Mutlu®
1Carnegie Mellon University 2peking University

SAFARI 173


https://github.com/CMU-SAFARI/ramulator-pim
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator-pim

PrIM Benchmarks: Application Domains

Domain Benchmark Short name
Vector Addition VA
Dense linear algebra
Matrix-Vector Multiply GEMV
Sparse linear algebra Sparse Matrix-Vector Multiply SpMV
Select SEL
Databases
Unique UNI
Binary Search BS
Data analytics
Time Series Analysis TS
Graph processing Breadth-First Search BFS
Neural networks Multilayer Perceptron MLP
Bioinformatics Needleman-Wunsch NW
Image histogram (short) HST-S
Image processing
Image histogram (large) HST-L
Reduction RED
Prefix sum (scan-scan-add) SCAN-SSA
Parallel primitives
Prefix sum (reduce-scan-scan) SCAN-RSS
Matrix transposition TRNS
174

SAFARI




PrIM Benchmarks are Open Source

= All microbenchmarks, benchmarks, and scripts
= https://qithub.com/CMU-SAFARI/prim-benchmarks

H CMU-SAFARI/prim-benchmarks ® Unwatch ~ 2 ¥ star | 2 % Fork 1

<> Code () Issues 1 Pull requests (») Actions [T Projects [ wiki () Security [~ Insights 5! Settings

¥ main v prim-benchmarks / README.md Go to file

Juan Gomez Luna PrIM -- first commit Latest commit 3de4bs9 9 days ago O History

A 1 contributor

‘= 168 lines (132 sloc) 5.79 KB Raw Blame GJ 2 U

PrIM (Processing-In-Memory Benchmarks)

PrIM is the first benchmark suite for a real-world processing-in-memory (PIM) architecture. PrIM is developed to evaluate,
analyze, and characterize the first publicly-available real-world processing-in-memory (PIM) architecture, the UPMEM PIM
architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays with general-purpose in-order cores, called
DRAM Processing Units (DPUs), integrated in the same chip.

PrIM provides a common set of workloads to evaluate the UPMEM PIM architecture with and can be useful for programming,
architecture and system researchers all alike to improve multiple aspects of future PIM hardware and software. The workloads
have different characteristics, exhibiting heterogeneity in their memory access patterns, operations and data types, and
communication patterns. This repository also contains baseline CPU and GPU implementations of PrIM benchmarks for
comparison purposes.

Prim also includes a set of microbenchmarks can be used to assess various architecture limits such as compute throughput and
memory bandwidth.

SAFARI 175


https://github.com/CMU-SAFARI/prim-benchmarks

Lecture on PrIM Benchmarks

[The amount of time spent on CPL

DPU and DPU-CPU transfers is low

compared to the time spent on DPU
execution

N

4
/TRNS performs step 1 of the matrix\
transposition via the CPU-DPU
transfer.
Using small transfers (8 elements)

does not exploit full CPU-DPU

\hm:‘,»'.\dth /

KEY OBSERVATION 13

Transferring large data
chunks from/to the host
CPU is preferred for input
data and output results due
to higher sustained CPU-

\ DPU/DPU-CPU bandwidths.)

#tasklets per DPU

Processing-in-Memory Course: Lecture 8: Benchmarking and Workload Suitability on PIM - Spring

2022

213 views * Premiered Apr 28, 2022 55 CJ DISLIKE > SHARE K CLIP =+ SAVE
EA Onur Mutlu Lectures CUBSeRIBED a
< - > 25.9K subscribers i

SA FARI https://youtu.be/S1h1yw-94iw 176



https://youtu.be/S1h1yw-94iw

Performance & Energy Models for PIM

Gagandeep Singh, Juan Gomez-Luna, Giovanni Mariani, Geraldo F.
Oliveira, Stefano Corda, Sander Stujik, Onur Mutlu, and Henk Corporaal,
"NAPEL: Near-Memory Computing Application Performance
Prediction via Ensemble Learning”

Proceedings of the 56th Design Automation Conference (DAC), Las Vegas,
NV, USA, June 2019.

[Slides (pptx) (pdf)]

[Poster (pptx) (pdf)]

[Source Code for Ramulator-PIM]

NAPEL: Near-Memory Computing Application Performance
Prediction via Ensemble Learning

Gagandeep Singh®¢ Juan Gémez-Luna® Giovanni Mariani® Geraldo F. Oliveira®
Stefano Corda®‘ Sander Stuijk® Onur Mutlu? Henk Corporaal®
%Eindhoven University of Technology bETH Ziirich “IBM Research - Zurich

SAFARI b7


https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19.pdf
https://dac.com/
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19-poster.pdf
https://github.com/CMU-SAFARI/ramulator-pim

An FPGA-based Test-bed for PIM?

= Hasan Hassan et al., SoftMC: A
Flexible and Practical Open-
Source Infrastructure for
Enabling Experimental DRAM
Studies HPCA 2017.

11 | Host

g el Machme
= Flexible | o
= Easy to Use (C++ API) [ G Contropller y,
= Open-source Heater B

o
github.com/CMU-SAFART/SORMC

SAFARI 178


https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf

Simulation Infrastructures for PIM (in SSDs)

Arash Tavakkol, Juan Gomez-Luna, Mohammad Sadrosadati,
Saugata Ghose, and Onur Mutlu,

"MQOSim: A Framework for Enabling Realistic Studies of
Modern Multi-Queue SSD Devices"
Proceedings of the 16th USENIX Conference on File and Storage

[echnologies (FAST), Oakland, CA, USA, February 2018.
Slides (pptx) (pdf)]

[Source Code]

MQSim: A Framework for Enabling Realistic Studies of
Modern Multi-Queue SSD Devices

Arash Tavakkol, Juan Gémez-Luna', Mohammad Sadrosadati’, Saugata Ghose*, Onur Mutlu'*
YETH Ziirich *Carnegie Mellon University

SAFARI 179


https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18.pdf
https://www.usenix.org/conference/fast18
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pdf
https://github.com/CMU-SAFARI/MQSim

Applications that
Benetit from PIM




New Applications and Use Cases for PIM

Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose,
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using
Processing-in-Memory Technologies"

BMC Genomics, 2018.

Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC),
Yokohama, Japan, January 2018.

arxiv.org Version (pdf)

GRIM-Filter: Fast seed location filtering in
DNA read mapping using

processing-in-memory technologies

Jeremie S.Kim'®”, Damla Senol Cali', Hongyi Xin?, Donghyuk Lee?, Saugata Ghose',
Mohammed Alser*, Hasan Hassan®, Oguz Ergin®, Can Alkan*" and Onur Mutlu®'”

From The Sixteenth Asia Pacific Bioinformatics Conference 2018
Yokohama, Japan. 15-17 January 2018

SAFARI tsl


http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf

SAFARI

Genome Read In-Memory (GRIM) Filter:

Fast Seed Location Filtering in DNA Read Mapping
using Processing-in-Memory Technologies

Jeremie Kim,
Damla Senol, Hongyi Xin, Donghyuk Lee,
Saugata Ghose, Mohammed Alser, Hasan Hassan,
Oguz Ergin, Can Alkan, and Onur Mutlu

N Emzicich

TOBB
UNIVERSITY OF
ECONOMICS AND TECHNOLOGY

Carnegie Mellon




Executive Summary

Genome Read Mapping is a very important problem and is the first
step in many types of genomic analysis

o Could lead to improved health care, medicine, quality of life

Read mapping is an approximate string matching problem
o Find the best fit of 100 character strings into a 3 billion character dictionary

o Alignment is currently the best method for determining the similarity between
two strings, but is very expensive

We propose an in-memory processing algorithm GRIM-Filter for
accelerating read mapping, by reducing the number of required
alignments

We implement GRIM-Filter using in-memory processing within 3D-
stacked memory and show up to 3.7x speedup.

SAFARI 183



Accelerating Approximate String Matching

Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S.
Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand,
Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
"GenASM: A High-Performance, Low-Power Approximate String Matching
Acceleration Framework for Genome Sequence Analysis"

Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual,
October 2020.

[Lighting Talk Video (1.5 minutes)]

[Lightning Talk Slides (pptx) (pdf)]

[Talk Video (18 minutes)]

[Slides (pptx) (pdf)]

GenASM: A High-Performance, Low-Power
Approximate String Matching Acceleration Framework
for Genome Sequence Analysis

Damla Senol Cali ™ Gurpreet S. Kalsi®  Ziilal BingolV Can Firtina® Lavanya Subramanian Jeremie S. Kim®1
Rachata Ausavarungnirun® Mohammed Alser® Juan Gomez-Luna® Amirali Boroumand! Anant Nori™
Allison Scibisz|  Sreenivas Subramoney™ Can Alkan” Saugata Ghose*T  Onur Mutlu®TV

TCarnegie Mellon University ™ Processor Architecture Research Lab, Intel Labs ¥ Bilkent University ~ °ETH Ziirich
YFacebook  ©King Mongkut’s University of Technology North Bangkok — * University of Illinois at Urbana—Champaign

SAFARI 184


https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
http://www.microarch.org/micro53/
https://www.youtube.com/watch?v=nJs3RRnvk_k
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pdf
https://www.youtube.com/watch?v=srQVqPJFqjo
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pdf

Google Workloads

for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand

Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun,
Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela,
Allan Knies, Parthasarathy Ranganathan, Onur Mutlu

SAFARI CarnegieMellon  Google
WGHR
@ %: EET%LJ /;YE ETH .




Accelerating Climate Modeling

= Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan
Gomez-Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal,
"NERO: A Near High-Bandwidth Memory Stencil Accelerator for

Weather Prediction Modeling"”
Proceedings of the 30th International Conference on Field-Programmable Logic

and Applications (FPL), Gothenburg, Sweden, September 2020.
[Slides (pptx) (pdf)]

[Lightning Talk Slides (pptx) (pdf)]

[Talk Video (23 minutes)]

Nominated for the Stamatis Vassiliadis Memorial Award.

NERO: A Near High-Bandwidth Memory Stencil Accelerator
for Weather Prediction Modeling
Gagandeep Singh®?¢  Dionysios Diamantopoulos®  Christoph Hagleitner  Juan Gémez-Luna”

Sander Stuijk? Onur Mutlu® Henk Corporaal?
9Eindhoven University of Technology PETH Ziirich ‘IBM Research Europe, Zurich

SAFARI 186


https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20.pdf
https://www.fpl2020.org/
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pdf
https://www.youtube.com/watch?v=xMiuqUyjkk0

Accelerating Time Series Analysis

Ivan Fernandez, Ricardo Quislant, Christina Giannoula, Mohammed Alser, Juan
Gomez-Luna, Eladio Gutiérrez, Oscar Plata, and Onur Mutlu,

"NATSA: A Near-Data Processing Accelerator for Time Series Analysis"
Proceedings of the 38th IEEE International Conference on Computer

Design (ICCD), Virtual, October 2020.

NATSA: A Near-Data Processing Accelerator
for Time Series Analysis

Ivan Fernandez® Ricardo Quislant® Christina Giannoula' Mohammed Alser?
Juan Gémez-Luna? Eladio Gutiérrez® Oscar Plata’ Onur Mutlu?
SUniversity of Malaga T National Technical University of Athens YETH Ziirich

SAFARI 187


https://people.inf.ethz.ch/omutlu/pub/NATSA_time-series-analysis-near-data_iccd20.pdf
http://www.iccd-conf.com/

PIM Review and Open Problems

A Modern Primer on Processing in Memory

Onur Mutlu®?, Saugata Ghose®™°, Juan Gémez-Luna?, Rachata Ausavarungnirun®

SAFARI Research Group

ETH Ziirich
bCarnegie Mellon University
¢University of Illinois at Urbana-Champaign
4King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,

"A Modern Primer on Processing in Memory"

Invited Book Chapter in Emerqging Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann, Springer, to be published in 2021.

SAFARI https:/ /arxiv.org/pdf/1903.03988.pdf 188


https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://arxiv.org/pdf/1903.03988.pdf

PIM Review and Open Problems (1I)

Processing Data Where It Makes Sense:
Enabling In-Memory Computation

Onur Mutlu®®, Saugata Ghose®, Juan Gémez-Luna?, Rachata Ausavarungnirun®®

“ETH Ziirich
bCarnegie Mellon University
“King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory

Computation”
Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]

SAFARI https: / /arxiv.org/pdf/1903.03988.pdf 189



https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
https://arxiv.org/pdf/1903.03988.pdf

PIM Review and Open Problems (11I)

A Workload and Programming Ease Driven Perspective of Processing-in-Memory
Saugata Ghose’  Amirali Boroumand®  Jeremie S. Kim™  Juan Gémez-Luna®  Onur Mutlu®'

"Carnegie Mellon University SETH Ziirich

Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,
"Processing-in-Memory: A Workload-Driven Perspective"

Invited Article in IBM Journal of Research & Development, Special Issue on
Hardware for Artificial Intelligence, to appear in November 2019,

[Preliminary arXiv version]

SAFARI https:/ /arxiv.org/pdf/1907.12947.pdf 190


https://arxiv.org/pdf/1907.12947.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://arxiv.org/pdf/1907.12947.pdf

Challenge and Opportunity for Future

Fundamentally
Energy-Efficient
(Data-Centric)
Computing Architectures

SAFARI




Challenge and Opportunity for Future

Fundamentally
High-Performance
(Data-Centric)
Computing Architectures

SAFARI




Challenge and Opportunity for Future

Computing Architectures
with
Minimal Data Movement

SAFARI



One Important Takeaway

Main Memory Needs
Intelligent Controllers

SAFARI



Enabling the Paradigm Shift




Recall: Computer Architecture Today

You can revolutionize the way computers are built, if you
understand both the hardware and the software (and
change each accordingly)

You can invent new paradigms for computation,
communication, and storage

Recommended book: Thomas Kuhn, “The Structure of
Scientific Revolutions” (1962)
o Pre-paradigm science: no clear consensus in the field

o Normal science: dominant theory used to explain/improve
things (business as usual); exceptions considered anomalies

o Revolutionary science: underlying assumptions re-examined

196



Recall: Computer Architecture Today

You can revolutionize the way computers are built, if you
understand both the hardware and the software (and
change each accordingly) :

IH
STRUC TURI

SCIEN TTFIC
REVOLUTIONS

WITH AN INTRODUCTORY ESSAY BY AN HACKING

Q Pre-pare THOMAS s.KUH? - | eld

things (I"S&&
o Revoluti

anomalies
examined

197



UPMEM Processing-in-DRAM Engine (2019)

Processing in DRAM Engine

Includes standard DIMM modules, with a large
number of DPU processors combined with DRAM chips.

Replaces standard DIMMs

o DDR4 R-DIMM modules

8GB+128 DPUs (16 PIM chips)
Standard 2x-nm DRAM process

o Large amounts of compute & memory bandW|dth

H 8GB/128xDPU PIM R-DIMM Module

UPMEM UPMEM LUPMEM UPMEM LIPMIEM UPMEM UPMEM
PiM PrinA PiM P PN P PIM
chip chip chi i ¢ hip chip chip

https:/fwww.anandtech.com/show/14750/hot-chips-3 T-analysis-inmemory-processing-by-upmem 198
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/



https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

2.560-DPU

Processing-in-Memory System

Main Memory

[fﬁﬁﬁﬁf_\f_\f_\f_\
; »-| \ crie ) chi )\ chip |\ chie )\ chip |\ chie ){ chip |\ chip
(oram\(oram\(oram\(oram\(oram (oram (oram\(oram

Host
CPU O

\\

\Chip chip || chip || chip )| chip || chip )| chip Chip/ AZ

Z,

\\

!

PIM-enabled Memory

)

Main Memory

x10

&= | e )| chie )\ criv || chip )| chie )\ crip | chip )| chie
(oram\(oram\(Gram(oram(oram (oram (Gram\(oram

Host
CPU 1

N
S —

\Chip chip || chip || chip )| chip || chip || chip Chip/ f2
X

Z,

7

PIM-enabled Memory

Benchmarking a New Paradigm: An Experimental Analysis of
a Real Processing-in-Memory Architecture

JUAN GOMEZ-LUNA, ETH Zirich, Switzerland

IZZAT EL HAJJ, American University of Beirut, Lebanon

IVAN FERNANDEZ, ETH Zirich, Switzerland and University of Malaga, Spain
CHRISTINA GIANNOULA, ETH Ziirich, Switzerland and NTUA, Greece
GERALDO F. OLIVEIRA, ETH Ziirich, Switzerland

ONUR MUTLU, ETH Ziirich, Switzerland

Many modern workloads, such as neural networks, databases, and graph processing, are fundamentally
‘memory-bound. For such workloads, the data movement between main memory and CPU cores imposes a
significant overhead in terms of both latency and energy. A major reason is that this communication happens
through a narrow bus with high latency and limited bandwidth, and the low data reuse in memory-bound
workloads is insufficient to amortize the cost of main memory access. Fundamentally addressing this data
movement bottleneck requires a paradigm where the memory system assumes an active role in computing by
integrating processing capabilities. This paradigm is known as processing-in-memory (PIM).

Recent research explores different forms of PIM archi motivated by the of new 3D-
stacked memory technologies that integrate memory with a logic layer where processing elements can be
easily placed. Past works evaluate these architectures in simulation or, at best, with simplified hardware
prototypes. In contrast, the UPMEM company has designed and manufactured the first publicly-available
real-world PIM i ‘The UPMEM PIM i combines traditional DRAM memory arrays with
general-purpose in-order cores, called DRAM Processing Units (DPUS), integrated in the same chip.

This paper provides the first comprehensive analysis of the first publicly-available real-world PIM architec-
ture. We make two key ions. First, we conduct an exper i of the UPMEM-based
PIM system using microbenchmarks to assess various architecture limits such as compute throughput and
‘memory bandwidth, yielding new insights. Second, we present PriM (Processing-In-Memory benchmarks),
a benchmark suite of 16 workloads from different application domains (e.g., dense/sparse linear algebra,
databases, data analytics, graph processing, neural networks, bioinformatics, image processing), which we
identify as memory-bound. We evaluate the and scaling istics of PrIM

on the UPMEM PIM architecture, and compare their and energy ion to their state-
of-the-art CPU and GPU counterparts. Our extensive evaluation conducted on two real UPMEM-based PIM
systems with 640 and 2,556 DPUs provides new insights about suitability of different workloads to the PIM
system, programming recommendations for software designers, and suggestions and hints for hardware and
architecture designers of future PIM systems.

https://arxiv.org/pdf/2105.03814.pdf

199


https://arxiv.org/pdf/2105.03814.pdf

Samsung Function-in-Memory DRAM (2021)

B FIMDRAM based on HBM2

Chip Specification

SID1 128DQ / 8CH / 16 banks / BL4

Core-die -

32 PCU blocks (1 FIM block/2 banks)
(HBM2)

1.2 TFLOPS (4H)

FP16 ADD /
Multiply (MUL) /
Multiply-Accumulate (MAC) /
Multiply-and- Add (MAD)

SIDO
Core-die -
(FIMDRAM)

Buffer-die —»

[3D Chip Structure of HBM with FIMDRAM] T ———

25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2
with a 1.2TFLOPS Programmable Computing Unit Using
Bank-Level Parallelism, for Machine Learning Applications

Young-Cheon Kwon', Suk Han Lee', Jaehoon Lee', Sang-Hyuk Kwon',

Je Min Ryu, Jong-Pil Son', Seongil 0", Hak-Soo Yu', Haesuk Lee',

Soo Young Kim', Youngmin Cho', Jin Guk Kim', Jongyoon Choi',

Hyun-Sung Shin', Jin Kim', BengSeng Phuah’, HyoungMin Kim’',

Myeong Jun Song', Ahn Choi', Daeho Kim', SooYoung Kim', Eun-Bong Kim',
David Wang?, Shinhaeng Kang', Yuhwan Ro?, Seungwoo Seo?, JoonHo Song?,
Jaeyoun Youn', Kyomin Sohn', Nam Sung Kim'

‘Samsung Electronics, Hwaseong, Korea
*Samsung Electronics, San Jose, CA
*Samsung Electronics, Suwon, Korea

200



Samsung Function-in-Memory DRAM (2021)

Chip Implementation

. 1 1 m(":ell array Cell array Cell Snay Cellarray
Ixe e S Ig n « - for bank0 for bank4 | - for bank0 for bank4

! il

| PCU block PCU block PCU block PCU block ||

r'lethOdOIOQy to |.for bank0 & 1 |, for bank4 & 5 |, for bank0 & 1 |, for bank4 & 5 |

\ |

Cellarray. Cell-array Cell érray Cell érray

1 nn I nn t F I M D R AM for bank1 for bank5 for: bank1 for bank5
I p e e n Cell array Cell array Cell array Cell array
;. for bank2 for bank6 for bank2 for bank6

@ Fu I |-CU Stom + Di ital RTL PCUblock | PCUblock | PCUblock | PCUblock |
g | for bank2 & 3 | for bank6 & 7 | for bank2 & 3 | for bank6 & 7 |
Cell array i Cell array Cell array Cell array
|

for bank3 for bank7 for bank3

TSV & Peri Control Block

Cell array Cell array ‘ Cell array Cell array
for bank11 - | - for bank15 | = for bank11 | ' for bank15
‘{ PCU block PCU block PCU block PCU block
Ffor bank10 & 11|for bank14 & 15|for bank10 & 11|for bank14 & 1

Celra;ray Cell array Cell array Cell array
for bank10 for bank14 for bank10 for bank14

Cellarrgy |- Cell array Cell array Cell array

[Digrtal RTL design for PCU block] | for bank9 " |  for.bank13 - | "' for bank | " for bank13

{

' PCU block PCU block PCU block PCU block

f for bank8 & 9 |for bank12 & 13| for bank8 & 9 |for bank12 & 13|
{ i |
1SSCC 2021 / SESSION 25 / DRAM / 25.4 i :Cellarray | Cell'array | Cell array Cell array

i for bank8 for bank12 for bank8 for bank12

25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 e
with a 1.2TFLOPS Programmable Computing Unit Using
Bank-Level Parallelism, for Machine Learning Applications

Young-Cheon Kwon', Suk Han Lee', Jaghoon Lee', Sang-Hyuk Kwon',

Je Min Ryu', Jong-Pil Son', Seongil 0', Hak-Soo Yu', Haesuk Lee’,

Soo Young Kim', Youngmin Cho', Jin Guk Kim', Jongyoon Choi',
Hyun-Sung Shin', Jin Kim', BengSeng Phuah’, HyoungMin Kim’,

Myeong Jun Song’, Ahn Choi', Daeho Kim’, SooYoung Kim', Eun-Bong Kim',
David Wang?, Shinhaeng Kang', Yuhwan Ro?, Seungwoo Seo, JoonHo Song?,
Jaeyoun Youn', Kyomin Sohn', Nam Sung Kim'

'Samsung Electronics, Hwaseong, Korea
28amsung Electronics, San Jose, CA
*Samsung Electronics, Suwon, Korea



Samsung AXDIMM (2021)

m DIMM-based PIM o Baseline Systm
o DLRM recommendation system

CHo! CH1! CH3!
1 1

CH2!
1
OS/FC/Others SLS Offload OS/FC/Others

AxDIMM System

_ AxDIMM

CHO! CH2!
1 1

OS/FC/Others SLS Offload OS/FC/Others

Ke et al. "Near-Memory Processing in Action: Accelerating Personalized Recommendation with AxDIMM", IEEE Micro (2021) 202



SK Hynix AiM: Chip Implementation (2022)

= 4 Gb AiM die with 16 processing units (PUs)

AiM Die Photograph 1 Process Unit (PU) Area
; Total 0.19mm?

MAC 0.11mm?

Activation Function (AF) 0.02mm?

Reservoir Cap. 0.05mm?2

Etc. 0.01mm?

Lee et al., A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TTFLOPS MAC Operation and Various Activation Functions for 203
Deep-Learning Applications, ISSCC 2022



SK Hynix AiM: System Organization (2022)

= GDDR6-based AiM architecture

I h
1 1
1 1
: 1
r 1
. . . iy :\: 16b 16bJ, 16b/|, 18bL o551 :
A 4 \4 v v ~ ~ ~ eee 7
L eyl | "eul L Teul Jal TPl T o] Tiew) Jieo +=- | Tieb !
=1 1
H X| | x| [ x| e [x]||mutipierx s !
L 4Pyl | L ,epul || ,rul | [ ,rul | ! 0 T 5 ~ I
* + * ¥ ! + + I
] ] il il 1 L Adder Tree 1
I + ose I
[ [ [ [ [ [ [ [
EEEEEEE EEEEEEE EEEEEEE HA H 5 '
+
1 1
1 1
1 Accumulator I
- —— [ ——— 1 PU I AF &AF 1
ek o8 ! !
1
i RDMAC H
1 1
PR PR PR P L A ;
[ [ [ [ [ [ [ [
i il i i
................................ "
£ £ £ £ 1 1
Cee ) e ] | [Cfew ] [Cew ] — |
1 1
1
i i
| PU | | PU | | PU | | PU | 1 I
3 3 - > ! < > I
i 2KB :
1 1
1 1
]

Lee et al., A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TTFLOPS MAC Operation and Various Activation Functions for 204
Deep-Learning Applications, ISSCC 2022



Alibaba HB-PNM: Overall Architecture (2022)

= 3D-stacked logic die and DRAM die vertically bonded by
hybrid bonding (HB)

3D-stacked illustration of A 1Gb DRAM Core

the DRAM die and logic die = =
128Mb | @ T | 128Mb
+8MbY) | 5 5| @8mb)
Decoder/Control/Buffer
128Mb | & @ | 128Mb
+8Mb) | & 5| 8mb)
17} 7]
128Mb | & & | 128Mb
(+8Mb) | © O | (+8Mb)
o 173
Decoder/Control/Buffer
128Mb | B % | 128Mb
+8Mb) | 5 5| @amb)
x4
*On-die ECC

__________________________________________________________________

DRAM array layout illustration and its imposed
design constraints on logic die

el £ el [
we | we| (3
"""" | ) Neural Engine | )
] IP blocks W] ]
H e | §>- e | §>
e | EE e | EE
Chip Package Ludi )
Thormat Adhentve e =
DRAM Die M| o L
v RRORRRRRR RN Rnnnnnnil el |5z MC| | 5 >
Logic Die vel|ga we| |3
[we] = i [we] (=
= Match Engine [MC)
Substrate o IP blocks T
00 e e b we| | £> e [ €
we| [B& || B &
] | £ [ve] |
Cross-section illustration of the logic die and DRAM die Logic die physical constraints due to hybrid
vertically bonded by HB in a chip package bonding PHY and MC

Niu et al., 184QPS/W 64Mb/mm2 3D Logic-to-DRAM Hybrid Bonding with Process-Near-Memory Engine for Recommendation System, ISSCC 2022 205



PIM Course (Spring 2022)

A Modern Primer on Processing in Memoryj

Onur Mutlu*®, Saugata Ghose®®, Juan Gémez-Luna*, Rachata Ausavarungnirun

SAFARI Research Group

b Carne iversity

= Spring 2022 Edition:
o https://safari.ethz.ch/projects and semi

nars/spring2022/doku.php?id=processing

in_memory

= Youtube Livestream:

o https://www.youtube.com/watch?v=9e4

Chnwdovo&list=PL50Q2s0oXY2Zi-

841fUYYUK9ESXKhQKRPyX

= Project course

o Taken by Bachelor's/Master’s students
o Processing-in-Memory lectures

o Hands-on research exploration

o Many research readings

https://www.youtube.com/onurmutlulectures

SAFARI

]

“University of ina-Champaign
“King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,

Invit

Watch on  @YouTube

jted Book Chapter in Emergin ymputing: From Devices to Sy
ooking Beyond Moore and Von Neumann, Springer, to be published in 2021.

https://arxiv.org/pdf/1903.03988.pdf

Spring 2022 Meetings/Schedule

Week Date Livestream Meeting
W1 10.03 Yol Live M1: P&S PIM Course Presentation
Thu. (i (PDF) zm (PPT)
w2 1503 Hands-on Project Proposals
Tue.

17.03 Yol Premiere = M2: Real-world PIM: UPMEM PIM

Thu. (i (PDF) am (PPT)
w3 2403 Yol Live M3: Real-world PIM:
Thu. Microbenchmarking of UPMEM
PIM
(@ (PDF) am (PPT)
w4 3103 Yol Live M4: Real-world PIM: Samsung
Thu. HBM-PIM
(@ (PDF) am (PPT)
w5 07.04 YoflD Live MS5: How to Evaluate Data
Thu. Movement Bottlenecks

am (PDF) zm (PPT)

we 1404 YouflD Live M6: Real-world PIM: SK Hynix AiM
Thu. @ (PDF) @m (PPT)

W7 21.04 Yo Premiere = M7: Programming PIM
Thu. Architectures
@ (PDF) s (PPT)
w8 28.04 Yol Premiere  M8: Benchmarking and Workload
Thu. Suitability on PIM
am (PDF) s (PPT)

W9  05.05 Yol Premiere =M9: Real-world PIM: Samsung
Thu. AXDIMM
m (PDF) s (PPT)

W10 12,05 Yol Premiere =M10: Real-world PIM: Alibaba HB-

Thu. PNM
m (PDF) zm (PPT)
Wil 19.05 Yol Live M11: SpMV on a Real PIM
Thu Architecture
am (PDF) s (PPT)
w12 2605 Yol Live M12: End-to-End Framework for
Thu Processing-using-Memory
am (PDF) s (PPT)
W13 0206 Yol Live M13: Bit-Serial SIMD Processing
Thu. using DRAM
i (PDF) am (PPT)
W14 09.06 Yol Live M14: Analyzing and Mitigating ML
Thu. Inference Bottlenecks

i (PDF) m (PPT)

w15 1506 Yol Live M15: In-Memory HTAP Databases
Thu. with HW/SW Co-design
(@ (PDF) m (PPT)
w16  23.06 YoullD Live M16: In-Storage Processing for
Thu. Genome Analysis

am (PDF) @m (PPT)

W17 18.07 Yol Premiere M17: How to Enable the Adoption
Mon. of PIM?
(@ (PDF) @ (PPT)
w18  09.08 Yol Premiere = SS1: ISVLSI 2022 Special Session

Tue. on PIM
(PDF & PPT)

108

Learning Assignments
Materials

Required Materials HW 0 Out
Recommended
Materials


https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=processing_in_memory
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=processing_in_memory
https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://www.youtube.com/onurmutlulectures

Sub-Agenda: In-Memory Computation

Major Trends Affecting Main Memory
The Need for Intelligent Memory Controllers

o Bottom Up: Push from Circuits and Devices
o Top Down: Pull from Systems and Applications

Processing in Memory: Two Directions
o Processing using Memory
o Processing near Memory

How to Enable Adoption of Processing in Memory
Conclusion

SAFARI 207



Maslow’s Hierarchy of Needs, A Third Time

Maslow, “"A Theory of Human Motivation,”
Psychological Review, 1943.

Self-fulfillment
needs

Self-
Maslow, “Motivation and Personality,” actualization:

Book, 1954-1970.

Speed

achvihies

prestige ¢ SpEEd plishment

Belongi needs:

win Sppeed
Speed
& Speed &

Psychological
needs

Basic
needs

SA FA R l Source: https://www.simplypsychology.org/maslow.html 208



Challenge and Opportunity for Future

Fundamentally
High-Performance
(Data-Centric)
Computing Architectures

SAFARI




Challenge and Opportunity for Future

Fundamentally
Energy-Efficient
(Data-Centric)
Computing Architectures

SAFARI




Challenge and Opportunity for Future

Fundamentally
Low-Latency
(Data-Centric)
Computing Architectures

SAFARI




Challenge and Opportunity for Future

Computing Architectures
with
Minimal Data Movement

SAFARI



PIM: Concluding Remarks




A Quote from A Famous Architect

= architecture [...] based upon principle, and not upon
precedent”

214



Precedent-Based Design?

= architecture [...] based upon principle, and not upon
precedent”




Principled Design

= architecture [...] based upon principle, and not upon
precedent’




217




The Overarching Principle

Organic architecture

From Wikipedia, the free encyclopedia

Organic architecture is a philosophy of architecture which promotes harmony
between human habitation and the natural world through design approaches so
sympathetic and well integrated with its site, that buildings, furnishings, and
surroundings become part of a unified, interrelated composition.

A well-known example of organic architecture is Fallingwater, the residence Frank Lloyd Wright
designed for the Kaufmann family in rural Pennsylvania. Wright had many choices to locate a
home on this large site, but chose to place the home directly over the waterfall and creek creating
a close, yet noisy dialog with the rushing water and the steep site. The horizontal striations of
stone masonry with daring cantilevers of colored beige concrete blend with native rock
outcroppings and the wooded environment.

218



Another Example: Precedent-Based Design

e

MDA P o> o
T L A —— ——

Source: http://cookiemagik.deviantart.com/art/Train-station-207266944



Principled Design

'é

¥ 00— e
i

Lt
|

S bad

II“‘Iu,,,,H
LKL

|

i‘“‘”w”" If

1

Source: By Toni_V, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=4087256




Another Principled Design

Source: By Martin Gomez Tagle - Lisbon, Portugal, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=13764903 221
Source: http://www.arcspace.com/exhibitions/unsorted/santiago-calatrava/



Another Principled Design

Source: CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=172107 222



Pr1nc1ple Apphed to Another Structure

m&% ,Wm,gjg@@nﬂ@@m@&ﬁ/@aﬂ%§§@ﬂ@g@ﬁg{axr@y@j-g%yﬁmgmag@@m@ger transportatlon hub -new- york-photographs-hufton-crow/



https://commons.wikimedia.org/w/index.php?curid=31493356

The Overarching Principle

Zoomorphic architecture

From Wikipedia, the free encyclopedia

Zoomorphic architecture is the practice of using animal
forms as the inspirational basis and blueprint for architectural
design. "While animal forms have always played a role adding
some of the deepest layers of meaning in architecture, it is
now becoming evident that a new strand of biomorphism is
emerging where the meaning derives not from any specific
representation but from a more general allusion to biological
processes."[!]

Some well-known examples of Zoomorphic architecture can be found in the TWA
Flight Center building in New York City, by Eero Saarinen, or the Milwaukee Art

Museum by Santiago Calatrava, both inspired by the form of a bird’s wings.!3!
224




Overarching Principle for Computing?

Source: http://spectrum.ieee.org/image/MjYzMzAyMg.jpeg




Concluding Remarks

= It is time to design principled system architectures to solve
the memory problem

= Design complete systems to be balanced, high-performance,
and energy-efficient, i.e., data-centric (or memory-centric)

= Enable computation capability inside and close to memory

= This can

o Lead to orders-of-magnitude improvements

o Enable new applications & computing platforms
o Enable better understanding of nature
Q

226



The Future of Processing in Memory 1s Bright

= Regardless of challenges
a in underlying technology and overlying problems/requirements

Problem
Can enable: Yet, we have to
- Orders of magnitude Program/Language - Think across the stack
improvements System Software

SW/HW Interface - Design enabling systems

- New applications and
computing systems

SAFARI 221



We Need to Revisit the Entire Stack

SW/HW Interface

We can get there step by step

SAFARI 228



We Need to Exploit Good Principles

= Data-centric system design

= All components intelligent

= Better cross-layer communication, better interfaces
= Better-than-worst-case design

= Heterogeneity

« Flexibility, adaptability Open minds

229



If In Doubt, See Other Doubttul Technologies

A very “doubtful” emerging technology
o for at least two decades

§H'H+ sk Proceedings of the IEFE, Sept. 2017

Error Characterization,
Mitigation, and Recovery
in Flash-Memory-Based
Solid-State Drives

This paper reviews the most recent advances in solid-state drive (SSD) error
characterization, mitigation, and data recovery techniques to improve both SSD’s

reliability and lifetime.

By Yu Cai, SauGaTta GHOsSE, EricH F. HARATSCH, YIXIN Luo, AND ONUR MUTLU

SAFARI https:/ /arxiv.org/pdf/1706.08642 >0



https://arxiv.org/pdf/1706.08642

Flash Memory Timeline

Award

Flash Memory Timelin

SAFARI

Dov Frohman-

Bentchkowsky

invents the Erasable

P imable Read
mory (EPROM|

as "Memory Behavior
in a Floating-
Avalanche-Injection
MOS (FAMOS) Structure’
in April 1971 (Applied

B

Gate publication

El Harari of Hughes
Microelectronics

Conduction

NET AT
Thermal SiO:

Physics Letters)

li Harari of Hughes
Microelectronics
publishes “Dielectric
Breakdown in
Electrically Stressed
Thin Films of Thermal
Si0:" (Journal of Applied
Physics)

Hughes
Microelectronics
ntroducestfirst CMOS
NOVRAM 256-bit chip
{non-volatile SRAM)
employing Fowler
Nordheim floating gate
EEPROM at IEEE

1SSCC

IEEE Solid State Circuits
publishes paper titied
*An Electrically Alterable
Non-Volatile Memory
Cell Using Floating Gate
Structure” by Guterman,
Rinawi, Chieu,
Holvorson, and McElroy
of Texas Instruments

Hughes
Microelectronics
introduces the 3108,
first CMOS EEPROM
8Kb chip employing
Fowler Nordheim
tunneling

Intel introduces the
2816, 16Kb HMOS
EEPROM employing
Fowler Nordheim
tunneling

S ]
Flash Memory Summit

British scientist and
inventor Kane Kramer
designs first digital
audio player (IXI) based
on magnetic bubble
memory chips

SEEQ Technology
introduces the' 5218,
first EEPROM with
on-chip charge pump
for in-system write and
erase, an invention used
in all flash memory
devices

Intel introduces 2817A
16Kb EEPROM

lasuoka of Toshiba
at IEEE International
Electron Devices
Meeting (EDM) in
San Francisco; Fujio
Masuoka went on to
receive the 2013 FMS
Lifetime
Awarg

Intel begins
process deve

the 2017 Lifetime

Achievement A




SAFARI

Email your suggested
additions and changes to
timeline@FlashMemorySummit.com

Micron and o
companes sam

16nm f

s out
second generation 30
V-NAND with 32 layers
Spanson

HyperfFlash NOR

333 MB/s HyperBus.

Tosh

$49,727,000,000

$56,227,000,000

FMS 2020 August 4-6
Santa Clara Convention
Center




PIM Review and Open Problems

A Modern Primer on Processing in Memory

Onur Mutlu®?, Saugata Ghose®™°, Juan Gémez-Luna?, Rachata Ausavarungnirun®

SAFARI Research Group

ETH Ziirich
bCarnegie Mellon University
¢University of Illinois at Urbana-Champaign
4King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,

"A Modern Primer on Processing in Memory"

Invited Book Chapter in Emerqging Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann, Springer, to be published in 2021.

SAFARI https: / /arxiv.org/pdf/1903.03988.pdf 233


https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://arxiv.org/pdf/1903.03988.pdf

PIM Review and Open Problems (1I)

Processing Data Where It Makes Sense:
Enabling In-Memory Computation

Onur Mutlu®®, Saugata Ghose®, Juan Gémez-Luna?, Rachata Ausavarungnirun®®

“ETH Ziirich
bCarnegie Mellon University
“King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory

Computation”
Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]

SAFARI https: / /arxiv.org/pdf/1903.03988.pdf 234



https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
https://arxiv.org/pdf/1903.03988.pdf

PIM Review and Open Problems (11I)

A Workload and Programming Ease Driven Perspective of Processing-in-Memory
Saugata Ghose’  Amirali Boroumand®  Jeremie S. Kim™  Juan Gémez-Luna®  Onur Mutlu®'

"Carnegie Mellon University SETH Ziirich

Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,
"Processing-in-Memory: A Workload-Driven Perspective"

Invited Article in IBM Journal of Research & Development, Special Issue on
Hardware for Artificial Intelligence, to appear in November 2019,

[Preliminary arXiv version]

SAFARI https:/ /arxiv.org/pdf/1907.12947.pdf 235


https://arxiv.org/pdf/1907.12947.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://arxiv.org/pdf/1907.12947.pdf

Computer Architecture
Lecture 4: Processing near Memory

Prof. Onur Mutlu
ETH Zurich
Fall 2022
/ October 2022




