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A Curious Discovery [Kim et al., ISCA 2014]

One can 
predictably induce errors 

in most DRAM memory chips
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DRAM RowHammer

A simple hardware failure mechanism 
can create a widespread 

system security vulnerability
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First RowHammer Analysis
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n Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris 
Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An Experimental 
Study of DRAM Disturbance Errors"
Proceedings of the 41st International Symposium on Computer Architecture
(ISCA), Minneapolis, MN, June 2014. 
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code and 
Data] [Lecture Video (1 hr 49 mins), 25 September 2020]
One of the 7 papers of 2012-2017 selected as Top Picks in Hardware and 
Embedded Security for IEEE TCAD (link).

https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_isca14.pdf
http://cag.engr.uconn.edu/isca2014/
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pdf
https://github.com/CMU-SAFARI/rowhammer
https://www.youtube.com/watch?v=KDy632z23UE
https://wp.nyu.edu/toppicksinhardwaresecurity/


Retrospective on RowHammer & Future

5https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf

n Onur Mutlu,
"The RowHammer Problem and Other Issues We May Face as 
Memory Becomes Denser"
Invited Paper in Proceedings of the Design, Automation, and Test in 
Europe Conference (DATE), Lausanne, Switzerland, March 2017. 
[Slides (pptx) (pdf)] 

https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pdf


A More Recent RowHammer Retrospective
n Onur Mutlu and Jeremie Kim,

"RowHammer: A Retrospective"
IEEE Transactions on Computer-Aided Design of Integrated Circuits and 
Systems (TCAD) Special Issue on Top Picks in Hardware and 
Embedded Security, 2019.
[Preliminary arXiv version]
[Slides from COSADE 2019 (pptx)]
[Slides from VLSI-SOC 2020 (pptx) (pdf)]
[Talk Video (1 hr 15 minutes, with Q&A)]
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https://people.inf.ethz.ch/omutlu/pub/RowHammer-Retrospective_ieee_tcad19.pdf
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
https://arxiv.org/pdf/1904.09724.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-COSADE-Keynote-April-4-2019.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-VLSI-SOC-October-9-2020.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-VLSI-SOC-October-9-2020.pdf
https://www.youtube.com/watch?v=sgd7PHQQ1AI&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=39


A Key Takeaway

Main Memory Needs 
Intelligent Controllers
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RowHammer in 2020-2022



Revisiting RowHammer



RowHammer is Getting Much Worse
n Jeremie S. Kim, Minesh Patel, A. Giray Yaglikci, Hasan Hassan, 

Roknoddin Azizi, Lois Orosa, and Onur Mutlu,
"Revisiting RowHammer: An Experimental Analysis of Modern 
Devices and Mitigation Techniques"
Proceedings of the 47th International Symposium on Computer 
Architecture (ISCA), Valencia, Spain, June 2020.
[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (3 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20.pdf
http://iscaconf.org/isca2020/
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-lightning-talk.pdf
https://youtu.be/Lqxc4_ToMUw
https://youtu.be/wDhqi3f1a3Q


Industry-Adopted Solutions Do Not Work
n Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen, Onur Mutlu, 

Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi,
"TRRespass: Exploiting the Many Sides of Target Row Refresh"
Proceedings of the 41st IEEE Symposium on Security and Privacy (S&P), San Francisco, 
CA, USA, May 2020.
[Slides (pptx) (pdf)]
[Lecture Slides (pptx) (pdf)]
[Talk Video (17 minutes)]
[Lecture Video (59 minutes)]
[Source Code]
[Web Article]
Best paper award.
Pwnie Award 2020 for Most Innovative Research. Pwnie Awards 2020
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http://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20.pdf
https://www.ieee-security.org/TC/SP2020/
http://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20-talk.pptx
http://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20-talk.pdf
https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture5a-rowhammerin2020-trrespass-afterlecture.pptx
https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture5a-rowhammerin2020-trrespass-afterlecture.pdf
https://www.youtube.com/watch?v=u2C0prK-w7Q
https://www.youtube.com/watch?v=pwRw7QqK_qA
https://github.com/vusec/trrespass
https://www.vusec.net/projects/trrespass/
https://pwnies.com/winners/


Infrastructures to Understand Such Issues

12Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

HeaterFPGAs FPGAs



SoftMC: Open Source DRAM Infrastructure

n Hasan Hassan et al., “SoftMC: A 
Flexible and Practical Open-
Source Infrastructure for 
Enabling Experimental DRAM 
Studies,” HPCA 2017.

n Flexible
n Easy to Use (C++ API)
n Open-source 

github.com/CMU-SAFARI/SoftMC 
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https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf


SoftMC

n https://github.com/CMU-SAFARI/SoftMC
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https://github.com/CMU-SAFARI/SoftMC


Industry-Adopted Solutions Are Very Poor
n Hasan Hassan, Yahya Can Tugrul, Jeremie S. Kim, Victor van der Veen, Kaveh Razavi, 

and Onur Mutlu,
"Uncovering In-DRAM RowHammer Protection Mechanisms: A New 
Methodology, Custom RowHammer Patterns, and Implications"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), 
Virtual, October 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (25 minutes)]
[Lightning Talk Video (100 seconds)]
[arXiv version]
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https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=YkBR9yeLHRs&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=11
https://www.youtube.com/watch?v=HHxeuWVqq8w&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=5
https://arxiv.org/abs/2110.10603


New RowHammer 
Characteristics



RowHammer Has Many Dimensions
n Lois Orosa, Abdullah Giray Yaglikci, Haocong Luo, Ataberk Olgun, Jisung Park, Hasan Hassan, 

Minesh Patel, Jeremie S. Kim, and Onur Mutlu,
"A Deeper Look into RowHammer’s Sensitivities: Experimental Analysis of Real DRAM 
Chips and Implications on Future Attacks and Defenses"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, 
October 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (21 minutes)]
[Lightning Talk Video (1.5 minutes)]
[arXiv version]

n
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https://people.inf.ethz.ch/omutlu/pub/ADeeperLookIntoRowhammer_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/ADeeperLookIntoRowhammer_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ADeeperLookIntoRowhammer_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ADeeperLookIntoRowhammer_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ADeeperLookIntoRowhammer_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ADeeperLookIntoRowhammer_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ADeeperLookIntoRowhammer_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=fkM32oA0u6U&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=12
https://www.youtube.com/watch?v=slFNdmPVD-Q&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=6
https://arxiv.org/abs/2110.10291
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Our	Goal

Provide	insights	into	three	fundamental	properties	

To	find	effective	and	efficient attacks	and	defenses



Lecture on A Deeper Look Into RowHammer

19https://www.youtube.com/watch?v=MMO7PHTaBY0&t=3285s

https://www.youtube.com/watch?v=MMO7PHTaBY0&t=3285s


More RowHammer Analysis



RowHammer vs. Wordline Voltage (2022)
n A. Giray Yağlıkçı, Haocong Luo, Geraldo F. de Oliviera, Ataberk Olgun, Minesh 

Patel, Jisung Park, Hasan Hassan, Jeremie S. Kim, Lois Orosa, and Onur Mutlu,
"Understanding RowHammer Under Reduced Wordline Voltage: An 
Experimental Study Using Real DRAM Devices"
Proceedings of the 52nd Annual IEEE/IFIP International Conference on 
Dependable Systems and Networks (DSN), Baltimore, MD, USA, June 2022.
[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[arXiv version]
[Talk Video (34 minutes, including Q&A)]
[Lightning Talk Video (2 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/RowHammerUnderReducedWordlineVoltage_dsn22.pdf
https://dsn2022.github.io/
https://people.inf.ethz.ch/omutlu/pub/RowHammerUnderReducedWordlineVoltage_dsn22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/RowHammerUnderReducedWordlineVoltage_dsn22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/RowHammerUnderReducedWordlineVoltage_dsn22-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/RowHammerUnderReducedWordlineVoltage_dsn22-lightning-talk.pdf
https://arxiv.org/pdf/2206.09999.pdf
https://www.youtube.com/watch?v=CJoBROgFbwc
https://www.youtube.com/watch?v=_njHx34GgXo
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Updated	DRAM	Testing	Infrastructure
FPGA-based	SoftMC (Xilinx	Virtex UltraScale+	XCU200)

Fine-grained	control	over	DRAM	commands,	
timing	parameters	(±1.5ns),	temperature	(±0.1°C	),

andwordline voltage	(±1mV)
*Hassan	et	al.,	"SoftMC:	A	Flexible	and	Practical	Open-Source	Infrastructure	for	Enabling	Experimental	
DRAM	Studies,"	in	HPCA,	2017.	[Available	on	GitHub:	https://github.com/CMU-SAFARI/SoftMC]

*

https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf
https://github.com/CMU-SAFARI/SoftMC
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Summary

Reducing	wordline voltage	can	reduce	RowHammer	vulnerability				
without significantly	affecting	reliable	DRAM	operation

We	provide	the	first	RowHammer	characterization under	reduced	wordline voltage

Experimental	results	with	272	real	DRAM	chips	show	that	reducing	wordline voltage:

1. Reduces	RowHammer	vulnerability
• Bit	error	rate caused	by	a	RowHammer	attack	reduces	by	15.2%	(66.9%	max)
• A	row	needs	to	be	activated	7.4%	more	times	(85.8%	max) to	induce	the	first bit	flip

2. Increases	row	activation	latency	
• More	than	76% of	the	tested	DRAM	chips	reliably	operate	using	nominal timing	parameters
• Remaining	24% reliably	operate	with	increased (up	to	24ns)	row	activation	latency	

3. Reduces	data	retention	time
• 80% of	the	tested	DRAM	chips	reliably	operate	using	nominal	refresh	rate	
• Remaining	20% reliably	operate	by

• Using	single	error	correcting	codes
• Doubling	the	refresh	rate for	a	small	fraction	(16.4%)	of	DRAM	rows	



Talk on RowHammer vs. Wordline Voltage

24https://www.youtube.com/watch?v=CJoBROgFbwc

https://www.youtube.com/watch?v=CJoBROgFbwc


New RowHammer Solutions



BlockHammer Solution in 2021
n A. Giray Yaglikci, Minesh Patel, Jeremie S. Kim, Roknoddin Azizi, Ataberk Olgun, Lois Orosa, 

Hasan Hassan, Jisung Park, Konstantinos Kanellopoulos, Taha Shahroodi, Saugata Ghose, 
and Onur Mutlu,
"BlockHammer: Preventing RowHammer at Low Cost by Blacklisting Rapidly-
Accessed DRAM Rows"
Proceedings of the 27th International Symposium on High-Performance Computer 
Architecture (HPCA), Virtual, February-March 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Intel Hardware Security Academic Awards Short Talk Slides (pptx) (pdf)]
[Talk Video (22 minutes)]
[Short Talk Video (7 minutes)]
[Intel Hardware Security Academic Awards Short Talk Video (2 minutes)]
[BlockHammer Source Code]
Intel Hardware Security Academic Award Finalist (one of 4 finalists out of 34 
nominations)
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https://people.inf.ethz.ch/omutlu/pub/BlockHammer_preventing-DRAM-rowhammer-at-low-cost_hpca21.pdf
https://www.hpca-conf.org/2021/
https://people.inf.ethz.ch/omutlu/pub/BlockHammer-preventing-rowhammer-at-low-cost-by-blacklisting-rapidly-accessed-dram-rows_hpca21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/BlockHammer-preventing-rowhammer-at-low-cost-by-blacklisting-rapidly-accessed-dram-rows_hpca21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/BlockHammer-preventing-rowhammer-at-low-cost-by-blacklisting-rapidly-accessed-dram-rows_hpca21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/BlockHammer-preventing-rowhammer-at-low-cost-by-blacklisting-rapidly-accessed-dram-rows_hpca21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/BlockHammer-IntelHardwareSecurityAcademicAwards-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/BlockHammer-IntelHardwareSecurityAcademicAwards-short-talk.pdf
https://www.youtube.com/watch?v=4Y01N1BhWv4&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=102
https://www.youtube.com/watch?v=h0WiOTVIH70&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=124
https://www.youtube.com/watch?v=5TymwquygZM
https://github.com/CMU-SAFARI/BlockHammer
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RowHammer	Solution	Approaches
• More	robust	DRAM	chips	and/or	error-correcting	codes
• Increased	refresh	rate	

• Physical	isolation

• Reactive	refresh

• Proactive	throttling

DRAM Bank

Aggressor Row

Victim Rows

Isolation Rows Large-enough	distance

DRAM BankAggressor Row

Victim rows

RefreshVictim Rows

Refresh

Rapidly	activated	(hammered)

Fewer	activations	possible
in	a	refresh	interval

Fewer	activations	allowed	for	aggressive	applications

Cost, Power, Performance, Complexity
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Two	Key	Challenges

Scalability
with	worsening	RowHammer	vulnerability1

Compatibility
with	commodity	DRAM	chips2 Compatibility
with	commodity	DRAM	chips2 Compatibility
with	commodity	DRAM	chips2
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RowHammer	Solution	Approaches	
with	Worsening	RowHammer	Vulnerability

DRAM Bank

Aggressor Row

Victim Rows

Isolation RowsIsolation Rows Larger distance
more isolation rows

DRAM BankAggressor row

Victim rows

Refresh more frequently
Refresh more rows Victim rows

Refresh more frequently
Refresh more rows 

REF-to-REF	time	reduces
Fewer	activations	can	fit

• Increased	refresh	rate	

• Physical	isolation

• Reactive	refresh

• Proactive	throttling

More	aggressively	throttle	row	activations	
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RowHammer	Solution	Approaches	
with	Worsening	RowHammer	Vulnerability

DRAM Bank

Aggressor Row

Victim Rows

Isolation RowsIsolation Rows Larger distance
more isolation rows

DRAM BankAggressor row

Victim rows

Refresh more frequently
Refresh more rows Victim rows

Refresh more frequently
Refresh more rows 

REF-to-REF	time	reduces
Fewer	activations	can	fit

• Increased	refresh	rate	

• Physical	isolation

• Reactive	refresh

• Proactive	throttling

More	aggressively	throttles	row	activations	

Mitigation	mechanisms	face	the	challenge	of	
scalability	with	worsening	RowHammer
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Two	Key	Challenges

Scalability
with	worsening	RowHammer	vulnerability1

Compatibility
with	commodity	DRAM	chips2 Compatibility
with	commodity	DRAM	chips2 Compatibility
with	commodity	DRAM	chips2
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Compatibility	
with	Commodity	DRAM	Chips

Application
Level Virtual Memory Address

System
Level

Physical Memory Address

Memory
Controller

DRAM Bus Addresses 
(Channel, Rank, Bank Group, Bank, Row, Col)

Vi
sib

le
 w

ith
in

 
th

e 
Pr

oc
es

so
r

In-DRAM
Mapping Physical Rows and Columns

DR
AM

Ch
ip
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Compatibility	
with	Commodity	DRAM	Chips

Vendors	apply	in-DRAM	mapping	for	two	reasons:
• Design	Optimizations: By	simplifying	DRAM	circuitry
to	provide	better	density,	performance,	and	power

• Yield	Improvement:	By	mapping	faulty	rows	and	columns	
to	redundant	ones

• In-DRAM	mapping	scheme	includes	insights	into	chip	design	
and	manufacturing	quality

In-DRAM	mapping	is	proprietary	information
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RowHammer	Solution	Approaches
• Increased	refresh	rate	

• Physical	isolation

• Reactive	refresh

• Proactive	throttling

REF-to-REF	time	reduces
Fewer	activations	can	fit

Fewer	activations	can	be	performed

DRAM Bank

Aggressor Row

Victim Rows

Isolation Rows

DRAM BankAggressor Row

Victim rows

Victim Rows

Identifying victim and isolation rows requires 
proprietary knowledge of in-DRAM mapping
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Our	Goal

To	prevent	RowHammer	efficiently and scalably
without knowledge	of	or	modifications	to	DRAM	internals
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BlockHammer	
Key	Idea

Selectively	throttle	memory	accesses	
that	may	cause	RowHammer	bit-flips
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• A	RowHammer	attack	hammers	Row	A

• BlockHammer detects	a	RowHammer
attack	using	area-efficient	Bloom	filters

• BlockHammer selectively	throttles		accesses
from	within	the	memory	controller

• Bit	flips	do	not occur

• BlockHammer	can	optionally	inform	the	system	software	about	the	attack

Physical
Row	Layout

Row A

BlockHammer	is	compatible	with	commodity	DRAM	chips
No	need	for proprietary	info	of	or	modifications to DRAM	chips

BlockHammer:	Practical	Throttling-based	Mechanism



38

BlockHammer	
Overview	of	Approach

RowBlocker
Tracks row	activation	rates	using	area-efficient	Bloom	filters
Blacklists rows	that	are	activated	at	a	high	rate
Throttles activations targeting	a	blacklisted	row

AttackThrottler
Identifies threads	that	perform	a	RowHammer	attack
Reduces memory	bandwidth	usage	of	identified	threads

No	row	can	be	activated	at	a	high	enough	rate	to	induce	bit-flips

Greatly	reduces	the	performance	degradation	
and energy	wastage	a	RowHammer	attack	inflicts	on	a	system
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RowBlocker

• Modifies	the	memory	request	scheduler	to	throttle	row	activations
• Blacklists rows	with	a	high	activation	rate	and	delays subsequent	
activations	targeting	blacklisted	rows

Blacklisting 
Logic

Delaying
Logic
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AttackThrottler

• Tackles	a	RowHammer	attack’s	performance	degradation	
and	energy	wastage	on	a	system

• A	RowHammer	attack	intrinsically	keeps	activating	blacklisted	rows

• RowHammer	Likelihood	Index	(RHLI):	Number	of	activations	that	target	
blacklisted	rows	(normalized	to	maximum	possible	activation	count)	

RHLI	is	larger	when	the	thread’s	access	pattern	
is	more	similar	to	a	RowHammer	attack

0.0 1.0
RHLI

Benign application
No blacklisted row activations

RowHammer attack
Blacklisted row activation count 
approaches RowHammer threshold
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AttackThrottler

• Applies	a	smaller	quota	to	a	thread’s	in-flight	request	count	as	RHLI	increases

• Reduces	a	RowHammer	attack’s	memory	bandwidth	consumption,	enabling	a	
larger	memory	bandwidth	for	concurrent	benign	applications

• RHLI	can	also	be	used	as	a	RowHammer	attack	indicator	by	the	system	software

Greatly	reduces	the	perfomance degradation	and energy	wastage	
a	RowHammer	attack	inflicts	on	a	system

RHLI

Benign application
No blacklisted row activations
No quota applied

RowHammer attack
Blacklisted row activation count 
approaches RowHammer threshold
No request is allowed

0.0 1.0
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Evaluation:	BlockHammer
Performance	and	DRAM	Energy

• System	throughput	(weighted	speedup)
• Job	turnaround	time	(harmonic	speedup)

• Unfairness	(maximum	slowdown)
• DRAM	energy	consumption	

RowHammer
Attack
Present

No 
RowHammer
Attack

BlockHammer introduces very low performance (<0.5%) and DRAM energy (<0.4%) overheads

BlockHammer significantly increases benign application performance (by 45% on average) 
and reduces DRAM energy consumption (by 29% on average)
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Evaluation:	BlockHammer
Scaling	with	RowHammer	Vulnerability

RowHammer
Attack Present

No RowHammer
Attack

BlockHammer’s performance and energy overheads remain negligible (<0.6%)

BlockHammer scalably provides much higher performance (71% on average)
and lower energy consumption (32% on average) than state-of-the-art mechanisms

• System	throughput	(weighted	speedup)
• Job	turnaround	time	(harmonic	speedup)

• Unfairness	(maximum	slowdown)
• DRAM	energy	consumption	
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Evaluation:	BlockHammer
BlockHammer’s	Hardware	Complexity
• We	analyze	six	state-of-the-art	mechanisms	and BlockHammer
• We	calculate	area,	access	energy,	and	static	power	consumption*

Mitigation SRAM CAM Area Access	Energy Static	Power
Mechanism KB KB mm2 %CPU pJ mW
BlockHammer
PARA	[73]
ProHIT [137]
MRLoc [161]
CBT	[132]
TWiCe	[84]
Graphene	[113]

Mitigation SRAM CAM Area Access	Energy Static	Power
Mechanism KB KB mm2 %CPU pJ mW
BlockHammer 51.48 1.73 0.14 0.06 20.30 22.27
PARA	[73] - - <0.01 - - -
ProHIT [137] - 0.22 <0.01 <0.01 3.67 0.14
MRLoc [161] - 0.47 <0.01 <0.01 4.44 0.21
CBT	[132] 16.00 8.50 0.20 0.08 9.13 35.55
TWiCe	[84] 23.10 14.02 0.15 0.06 7.99 21.28
Graphene	[113] - 5.22 0.04 0.02 40.67 3.11

N R
H=
32
K

BlockHammer	is	low	cost	and competitive
with	state-of-the-art	mechanisms

*Assuming	a	high-end	28-core	Intel	Xeon	processor	system	with	4-channel	single-rank	DDR4	DIMMs
with	a	RowHammer	threshold	(NRH)	of	32K
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Evaluation:	BlockHammer
BlockHammer’s	Hardware	Complexity
Mitigation SRAM CAM Area Access	Energy Static	Power
Mechanism KB KB mm2 %CPU pJ mW
BlockHammer 51.48 1.73 0.14 0.06 20.30 22.27
PARA	[73] - - <0.01 - - -
ProHIT [137] - 0.22 <0.01 <0.01 3.67 0.14
MRLoc [161] - 0.47 <0.01 <0.01 4.44 0.21
CBT	[132] 16.00 8.50 0.20 0.08 9.13 35.55
TWiCe	[84] 23.10 14.02 0.15 0.06 7.99 21.28
Graphene	[113] - 5.22 0.04 0.02 40.67 3.11

Mitigation SRAM CAM Area Access	Energy Static	Power
Mechanism KB KB mm2 %CPU pJ mW
BlockHammer 51.48 1.73 0.14 0.06 20.30 22.27
PARA	[73] - - <0.01 - - -
ProHIT [137] - 0.22 <0.01 <0.01 3.67 0.14
MRLoc [161] - 0.47 <0.01 <0.01 4.44 0.21
CBT	[132] 16.00 8.50 0.20 0.08 9.13 35.55
TWiCe	[84] 23.10 14.02 0.15 0.06 7.99 21.28
Graphene	[113] - 5.22 0.04 0.02 40.67 3.11
BlockHammer 441.33 55.58 1.57 0.64 99.64 220.99
PARA	[73] - - <0.01 - - -
ProHIT [137] x x x x x x
MRLoc [161] x x x x x x
CBT	[132] 512.00 272.00 3.95 1.60 127.93 535.50
TWiCe	[84] 738.32 448.27 5.17 2.10 124.79 631.98
Graphene	[113] - 166.03 1.14 0.46 917.55 93.96

Mitigation SRAM CAM Area Access	Energy Static	Power
Mechanism KB KB mm2 %CPU pJ mW
BlockHammer 0.06 20.30 22.27
PARA	[73]
ProHIT [137]
MRLoc [161]
CBT	[132] 0.08 35.55
TWiCe	[84] 0.06 21.28
Graphene	[113] 0.02 40.67 3.11
BlockHammer 0.64 99.64 220.99
PARA	[73]
ProHIT [137]
MRLoc [161]
CBT	[132] 1.60 535.50
TWiCe	[84] 2.10 631.98
Graphene	[113] 0.46 917.55 93.96

20x
35x
23x

10x

15x
30x
30x

10x

23x

5x

N R
H=
32
K

N R
H=
1K

BlockHammer’s	hardware	complexity scales more	efficiently	
than	state-of-the-art	mechanisms



46

Key	Results:	BlockHammer
• Competitivewith	state-of-the-art	mechanisms	when	there	is	no	attack
• Superior performance	and	DRAM	energy	when	RowHammer	attack	present
• Better	hardware	area	scaling	with	RowHammer	vulnerability
• Security	Proof
• Addresses	Many-Sided Attacks
• Evaluation	of	14	mechanisms across	four	desirable	properties

- Comprehensive	Protection
- Compatibility	with	Commodity	DRAM	Chips
- Scalability	with	RowHammer	Vulnerability
- Deterministic	Protection

BlockHammer is	the	
only solution that	

satisfies	
all	four	desirable	

properties
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More	in	the	Paper:	BlockHammer
• Using	area-efficient	Bloom	filters	for RowHammer	detection

• Security	Proof
- Mathematically	represent	all	possible	access	patterns	
- No	row	can	be	activated	high-enough	times to	induce	bit-flips

• BlockHammer	prevents	many-sided attacks
- TRRespass [Frigo+,	S&P’20]
- U-TRR	[Hassan+,	MICRO’21]
- BlackSmith [Jattke+,	S&P’22]
- Half-Double	[Kogler+,	USENIX	Security’22]

• System	Integration	
- BlockHammer can	detect	RowHammer	attacks	with	high	accuracy	
and	inform	system	software

- Measures	RowHammer	likelihood	of	each	thread	

• Hardware	complexity	analysis

Full	Paper

https://arxiv.org/pdf/2102.05981.pdf
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Summary:	BlockHammer
• BlockHammer	is	the	first	work	to	practically	enable	
throttling-based	RowHammer	mitigation	

• BlockHammer	is	implemented	in	the	memory	controller	
(no proprietary	information	of	/	no modifications	to DRAM	chips)

• BlockHammer	is	both scalable	with	worsening	RowHammer	
and	compatible	with	commodity	DRAM	chips

• BlockHammer	is	open-source along	with	six	state-of-the-art	
mechanisms:	https://github.com/CMU-SAFARI/BlockHammer

Source

https://github.com/CMU-SAFARI/BlockHammer
https://github.com/CMU-SAFARI/BlockHammer


Lecture on BlockHammer

49https://www.youtube.com/watch?v=MMO7PHTaBY0&t=6210s

https://www.youtube.com/watch?v=MMO7PHTaBY0&t=6210s


A Takeaway

Main Memory Needs 
Intelligent Controllers
for Security, Safety, 
Reliability, Scaling
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More RowHammer in 2020-2022



RowHammer in 2020 (I)
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RowHammer in 2020 (II)
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RowHammer in 2020 (III)

54



RowHammer in 2021 (I)
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RowHammer in 2021 (II)
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RowHammer in 2021 (III)
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RowHammer in 2022 (I)
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RowHammer in 2022 (II)
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RowHammer in 2022 (III)
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RowHammer in 2022 (IV)
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RowHammer in 2022 (V)
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RowHammer in 2022 (VI)
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RowHammer in 2022 (VII)
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RowHammer in 2022 (VII)
n Appears at MICRO 2022
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RowHammer in 2022 (VIII)

https://arxiv.org/pdf/2204.10378.pdf
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RowHammer in 2022 (IX)

https://arxiv.org/pdf/2207.13358.pdf
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https://arxiv.org/pdf/2207.13358.pdf
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Self-Managing	DRAM:	Overview

Self-Managing	DRAM	(SMD)
enables	autonomous	in-DRAM	maintenance	operations

ACT_NACK	pin

Memory	
Controller

DRAM
Chip

command	bus

data	bus

Leveraging	the	ability	to	reject	an	ACT,	a maintenance	operation
can	be	implemented	completelywithin	a	DRAM	chip

Key	Idea:
Prevent	the	memory	controller	from	accessing	DRAM	regions	that	are
under	maintenance by	rejecting row	activation	(ACT)	commands
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SMD-Based	Maintenance	Mechanisms

DRAM	
Refresh

RowHammer	
Protection

Memory	
Scrubbing

Fixed	Rate	(SMD-FR) Variable	Rate	(SMD-VR)

uniformly refreshes	all DRAM	rows	
with	a	fixed refresh	period

skips refreshing	rows	that	
can	retain	their	data	for	longer than	

the	default	refresh	period

Probabilistic	(SMD-PRP) Deterministic	(SMD-DRP)
keeps	track	of	most	

frequently activated rows	and	
performs	neighbor row	refresh	when	
activation	count	threshold	is	exceeded

Periodic	Scrubbing	(SMD-MS)
periodically	scans the	entire DRAM	for	errors	and	corrects	them

Performs	neighbor	row	refresh	
with	a	small	probability	
on	every	row	activation
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Self-Managing	DRAM:	Summary

Implementing	new	maintenance	mechanisms often	requires	difficult-to-realize changes

The	three	major	DRAM	maintenance	operations:
vRefresh
vRowHammer	Protection
vMemory	Scrubbing

Our	Goal
Ease	the	process	of	enabling	new	DRAM	maintenance	operations1
Enable	more	efficient	in-DRAM	maintenance	operations2

Self-Managing	DRAM	(SMD)
Enables	implementing	new	in-DRAMmaintenance	mechanisms	

with	no	further	changes	in	the	DRAM	interface	and	memory	controller

SMD-based	refresh,	RowHammer	protection,	and	scrubbing achieve	
9.2%	speedup and	6.2%	lower	DRAM	energy	vs.	conventional	DRAM



Talk on Self-Managing DRAM

71https://www.youtube.com/watch?v=mGa6-vpExbE

https://www.youtube.com/watch?v=mGa6-vpExbE


Much More in Our Preprint…

https://arxiv.org/pdf/2207.13358.pdf
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https://arxiv.org/pdf/2207.13358.pdf


RowHammer in 2023 
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More to Come…



Future Memory 
Reliability/Security Challenges



Future of Main Memory Security/Reliability
n DRAM is becoming less reliable à more vulnerable

n Due to difficulties in DRAM scaling, other problems may 
also appear (or they may be going unnoticed)

n Some errors may already be slipping into the field
q Read disturb errors (Rowhammer)
q Retention errors
q Read errors, write errors
q …

n These errors can also pose security vulnerabilities
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Future of Main Memory Security/Reliability

n DRAM

n Flash memory

n Emerging Technologies
q Phase Change Memory
q STT-MRAM
q RRAM, memristors
q … 
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Many Errors and Their Mitigation [PIEEE’17]

78
Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.



A Survey on Flash Memory Errors

79https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642


A Takeaway

Main Memory Needs 
Intelligent Controllers
for Security, Safety, 
Reliability, Scaling
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The Takeaway

Intelligent 
Memory Controllers

Can Avoid Many Failures
& Enable Better Scaling
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Architecting Future Memory for Security 
n Understand: Methods for vulnerability modeling & discovery

q Modeling and prediction based on real (device) data and analysis
q Understanding vulnerabilities
q Developing reliable metrics

n Architect: Principled architectures with security as key concern
q Good partitioning of duties across the stack
q Cannot give up performance and efficiency
q Patch-ability in the field

n Design & Test: Principled design, automation, (online) testing
q Design for security
q High coverage and good interaction with system reliability 

methods
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Better Communication Between DRAM & Controller

https://arxiv.org/pdf/2204.10378.pdf
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Better Coordination of DRAM & Controller

https://arxiv.org/pdf/2207.13358.pdf
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https://arxiv.org/pdf/2207.13358.pdf


85Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

HeaterFPGAs FPGAs

Understand and Model with Experiments (DRAM)



Understand and Model with Experiments (Flash)

USB Jack

Virtex-II Pro
(USB controller)

Virtex-V FPGA
(NAND Controller)

HAPS-52 Mother Board

USB Daughter Board

NAND Daughter Board

1x-nm
NAND Flash

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014, 
HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017, 
PIEEE 2017, HPCA 2018, SIGMETRICS 2018]
Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.



An Example Intelligent Controller

87https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642


Collapse of the “Galloping Gertie” (1940)

88Source: AP
http://www.wsdot.wa.gov/tnbhistory/connections/connections3.htm



Another Example (1994)

89Source:  By 최광모 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=35197984



Yet Another Example (2007)

90Source:  Morry Gash/AP,
https://www.npr.org/2017/08/01/540669701/10-years-after-bridge-collapse-america-is-still-crumbling?t=1535427165809



A More Recent Example (2018)

91Source: AFP / Valery HACHE, https://www.capitalfm.co.ke/news/2018/08/genoa-bridge-collapse-what-we-know/



A Most Recent Example (2022)

92https://www.post-gazette.com/local/city/2022/01/28/pittsburgh-bridge-collapse-forbes-braddock-avenue-point-breeze-squirrel-hill/stories/202201280075



A Most Recent Example (2022)

93https://www.reuters.com/world/us/biden-highlight-manufacturing-jobs-gdp-growth-pittsburgh-2022-01-28/



A Most Recent Example (2022)

94https://usa.streetsblog.org/2022/01/28/pittsburgh-bridge-collapse-underscores-urgent-need-for-fix-it-first-policy/



A Most Recent Example (2022)

95https://www.npr.org/2022/01/28/1076343656/pittsburgh-bridge-collapse-biden-visit



The Takeaway, Again

In-Field Patch-ability
(Intelligent Memory)

Can Avoid Such Failures
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An Early Proposal for Intelligent Controllers [IMW’13]

n Onur Mutlu,
"Memory Scaling: A Systems Architecture Perspective"
Proceedings of the 5th International Memory 
Workshop (IMW), Monterey, CA, May 2013. Slides 
(pptx) (pdf)
EETimes Reprint

https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf

https://people.inf.ethz.ch/omutlu/pub/memory-scaling_imw13.pdf
http://www.ewh.ieee.org/soc/eds/imw/
https://people.inf.ethz.ch/omutlu/pub/mutlu_memory-scaling_imw13_invited-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/mutlu_memory-scaling_imw13_invited-talk.pdf
http://www.eetimes.com/document.asp?doc_id=1280950
https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf


Industry Is Writing Papers About It, Too
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Industry Is Writing Papers About It, Too
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Final Thoughts on RowHammer



Aside: Byzantine Failures
n This class of failures is known as Byzantine failures

n Characterized by
q Undetected erroneous computation
q Opposite of “fail fast (with an error or no result)”

n “erroneous” can be “malicious” (intent is the only 
distinction)

n Very difficult to detect and confine Byzantine failures
n Do all you can to avoid them

n Lamport et al., “The Byzantine Generals Problem,” ACM TOPLAS 1982.

101Slide credit: Mahadev Satyanarayanan, CMU, 15-440, Spring 2015



Aside: Byzantine Generals Problem

102https://dl.acm.org/citation.cfm?id=357176

https://dl.acm.org/citation.cfm?id=357176


Before RowHammer (I)

103https://www.cs.princeton.edu/~appel/papers/memerr.pdf

IEEE S&P 2003

https://www.cs.princeton.edu/~appel/papers/memerr.pdf


Before RowHammer (II)

104https://www.cs.princeton.edu/~appel/papers/memerr.pdf

IEEE S&P 2003

https://www.cs.princeton.edu/~appel/papers/memerr.pdf


After RowHammer

A simple memory error
can be induced by software
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RowHammer: Retrospective
n New mindset that has enabled a renewed interest in HW 

security attack research:
q Real (memory) chips are vulnerable, in a simple and widespread manner 

à this causes real security problems
q Hardware reliability à security connection is now mainstream discourse 

n Many new RowHammer attacks…
q Tens of papers in top security & architecture venues 
q More to come as RowHammer is getting worse (DDR4 & beyond)

n Many new RowHammer solutions…
q Apple security release; Memtest86 updated
q Many solution proposals in top venues (latest in ASPLOS 2022)
q Principled system-DRAM co-design (in original RowHammer paper)
q More to come…
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Perhaps Most Importantly…
n RowHammer enabled a shift of mindset in mainstream 

security researchers
q General-purpose hardware is fallible, in a widespread manner
q Its problems are exploitable

n This mindset has enabled many systems security 
researchers to examine hardware in more depth
q And understand HW’s inner workings and vulnerabilities

n It is no coincidence that two of the groups that discovered 
Meltdown and Spectre heavily worked on RowHammer 
attacks before
q More to come…
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Conclusion



Summary: RowHammer
n Memory reliability is reducing
n Reliability issues open up security vulnerabilities

q Very hard to defend against
n Rowhammer is a prime example 

q First example of how a simple hardware failure mechanism can create 
a widespread system security vulnerability

q Its implications on system security research are tremendous & exciting

n Bad news: RowHammer is getting worse

n Good news: We have a lot more to do 
q We are now fully aware hardware is easily fallible
q We are developing both attacks and solutions
q We are developing principled models, methodologies, solutions
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A RowHammer Survey Across the Stack
n Onur Mutlu and Jeremie Kim,

"RowHammer: A Retrospective"
IEEE Transactions on Computer-Aided Design of Integrated Circuits and 
Systems (TCAD) Special Issue on Top Picks in Hardware and 
Embedded Security, 2019.
[Preliminary arXiv version]
[Slides from COSADE 2019 (pptx)]
[Slides from VLSI-SOC 2020 (pptx) (pdf)]
[Talk Video (1 hr 15 minutes, with Q&A)]
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https://people.inf.ethz.ch/omutlu/pub/RowHammer-Retrospective_ieee_tcad19.pdf
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
https://arxiv.org/pdf/1904.09724.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-COSADE-Keynote-April-4-2019.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-VLSI-SOC-October-9-2020.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-VLSI-SOC-October-9-2020.pdf
https://www.youtube.com/watch?v=sgd7PHQQ1AI&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=39


Detailed Lectures on RowHammer
n Computer Architecture, Fall 2021, Lecture 5

q RowHammer (ETH Zürich, Fall 2021)
q https://www.youtube.com/watch?v=7wVKnPj3NVw&list=P

L5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF&index=5

n Computer Architecture, Fall 2021, Lecture 6
q RowHammer and Secure & Reliable Memory (ETH Zürich, 

Fall 2021)
q https://www.youtube.com/watch?v=HNd4skQrt6I&list=PL

5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF&index=6

https://www.youtube.com/onurmutlulectures
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https://www.youtube.com/watch?v=7wVKnPj3NVw&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF&index=5
https://www.youtube.com/watch?v=HNd4skQrt6I&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF&index=6
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Thank you!
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SAFARI Research Group
n https://safari.ethz.ch/safari-newsletter-december-2021/
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https://safari.ethz.ch/safari-newsletter-december-2021/


Comp Arch (Fall 2021)
n Fall 2021 Edition: 

q https://safari.ethz.ch/architecture/fall2021/doku.
php?id=schedule

n Fall 2020 Edition: 
q https://safari.ethz.ch/architecture/fall2020/doku.

php?id=schedule

n Youtube Livestream (2021):
q https://www.youtube.com/watch?v=4yfkM_5EFg

o&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
n Youtube Livestream (2020):

q https://www.youtube.com/watch?v=c3mPdZA-
Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN

n Master’s level course
q Taken by Bachelor’s/Masters/PhD students
q Cutting-edge research topics + fundamentals in 

Computer Architecture
q 5 Simulator-based Lab Assignments
q Potential research exploration
q Many research readings

117https://www.youtube.com/onurmutlulectures

https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2020/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2020/doku.php?id=schedule
https://www.youtube.com/watch?v=4yfkM_5EFgo&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
https://www.youtube.com/watch?v=4yfkM_5EFgo&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
https://www.youtube.com/watch?v=c3mPdZA-Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN
https://www.youtube.com/watch?v=c3mPdZA-Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN
https://www.youtube.com/onurmutlulectures


DDCA (Spring 2022)

https://www.youtube.com/onurmutlulectures

n Spring 2022 Edition: 
q https://safari.ethz.ch/digitaltechnik/spring2022/do

ku.php?id=schedule
n Spring 2021 Edition: 

q https://safari.ethz.ch/digitaltechnik/spring2021/do
ku.php?id=schedule

n Youtube Livestream (Spring 2022):
q https://www.youtube.com/watch?v=cpXdE3HwvK

0&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6
n Youtube Livestream (Spring 2021):

q https://www.youtube.com/watch?v=LbC0EZY8yw
4&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LlN

n Bachelor’s course
q 2nd semester at ETH Zurich
q Rigorous introduction into “How Computers Work”
q Digital Design/Logic
q Computer Architecture
q 10 FPGA Lab Assignments

https://www.youtube.com/onurmutlulectures
https://safari.ethz.ch/digitaltechnik/spring2022/doku.php?id=schedule
https://safari.ethz.ch/digitaltechnik/spring2022/doku.php?id=schedule
https://safari.ethz.ch/digitaltechnik/spring2021/doku.php?id=schedule
https://safari.ethz.ch/digitaltechnik/spring2021/doku.php?id=schedule
https://www.youtube.com/watch?v=cpXdE3HwvK0&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6
https://www.youtube.com/watch?v=cpXdE3HwvK0&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6
https://www.youtube.com/watch?v=LbC0EZY8yw4&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LlN
https://www.youtube.com/watch?v=LbC0EZY8yw4&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LlN


Projects & Seminars: SoftMC
FPGA-Based Exploration of DRAM and RowHammer (Fall 2022)

https://www.youtube.com/onurmutlulectures

n Fall 2022 Edition: 
q https://safari.ethz.ch/projects_and_seminars/fall2

022/doku.php?id=softmc
n Spring 2022 Edition: 

q https://safari.ethz.ch/projects_and_seminars/sprin
g2022/doku.php?id=softmc

n Youtube Livestream (Spring 2022):
q https://www.youtube.com/watch?v=r5QxuoJWttg

&list=PL5Q2soXY2Zi_1trfCckr6PTN8WR72icUO

n Bachelor’s course
q Elective at ETH Zurich
q Introduction to DRAM organization & operation
q Tutorial on using FPGA-based infrastructure
q Verilog & C++
q Potential research exploration

https://www.youtube.com/onurmutlulectures
https://safari.ethz.ch/digitaltechnik/spring2022/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=softmc
https://safari.ethz.ch/digitaltechnik/spring2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=softmc
https://www.youtube.com/watch?v=cpXdE3HwvK0&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6
https://www.youtube.com/watch?v=r5QxuoJWttg&list=PL5Q2soXY2Zi_1trfCckr6PTN8WR72icUO


Projects & Seminars: Ramulator
Exploration of Emerging Memory Systems (Fall 2022)

https://www.youtube.com/onurmutlulectures

n Fall 2022 Edition: 
q https://safari.ethz.ch/projects_and_seminars/fall2

022/doku.php?id=ramulator
n Spring 2022 Edition: 

q https://safari.ethz.ch/projects_and_seminars/sprin
g2022/doku.php?id=ramulator

n Youtube Livestream (Spring 2022):
q https://www.youtube.com/watch?v=aM-

llXRQd3s&list=PL5Q2soXY2Zi_TlmLGw_Z8hBo292
5ZApqV

n Bachelor’s course
q Elective at ETH Zurich
q Introduction to memory system simulation
q Tutorial on using Ramulator
q C++
q Potential research exploration

https://www.youtube.com/onurmutlulectures
https://safari.ethz.ch/digitaltechnik/spring2022/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=ramulator
https://safari.ethz.ch/digitaltechnik/spring2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=ramulator
https://www.youtube.com/watch?v=cpXdE3HwvK0&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6
https://www.youtube.com/watch?v=r5QxuoJWttg&list=PL5Q2soXY2Zi_1trfCckr6PTN8WR72icUO


RowHammer Review History



Some More Historical Perspective
n RowHammer is the first example of a circuit-level failure 

mechanism causing a widespread system security 
vulnerability

n It led to a large body of work in security attacks, mitigations, 
architectural solutions, analyses, …

n Work building on RowHammer still continues
q See MICRO 2022, S&P 2022, and many top venues in 2020-2023

n Initially, it was dismissed by some reviewers
q Rejected from MICRO 2013 conference
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Initial RowHammer Reviews (MICRO 2013)



Reviewer A -- Security is Not “Realistic”



Reviewer A -- Security is Not “Realistic”



Rebuttal to Reviewer A



Reviewer A -- Demands



Reviewer C – No Architectural Content



Reviewer C -- Leave It to DRAM Vendors



Reviewer D -- Nothing New in RowHammer



ISCA 2014 Submission



Reviewer D – Already Done on Youtube





Reviewer D Continued…



Rebuttal to Reviewer D



Reviewer E





Rebuttal to Reviewer E



Suggestions to Reviewers
n Be fair; you do not know it all

n Be open-minded; you do not know it all

n Be accepting of diverse research methods: there is no 
single way of doing research

n Be constructive, not destructive

n Do not have double standards…

Do not block or delay scientific progress for non-reasons



A Fun Reading: Food for Thought
n https://www.livemint.com/science/news/could-einstein-get-

published-today-11601014633853.html
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https://www.livemint.com/science/news/could-einstein-get-published-today-11601014633853.html


Aside: A Recommended Book

141

Raj Jain, “The Art of 
Computer Systems 
Performance Analysis,” 
Wiley, 1991.
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Raj Jain, “The Art of 
Computer Systems 
Performance Analysis,” 
Wiley, 1991.
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Raj Jain, “The Art of 
Computer Systems 
Performance Analysis,” 
Wiley, 1991.



Reviews After the Paper Was Published
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Suggestions to Reviewers
n Be fair; you do not know it all

n Be open-minded; you do not know it all

n Be accepting of diverse research methods: there is no 
single way of doing research or writing papers

n Be constructive, not destructive

n Enable heterogeneity, but do not have double standards…

Do not block or delay scientific progress for non-reasons



Suggestion to Community

We Need to Fix the 
Reviewer Accountability 

Problem



Takeaway

Main Memory Needs 
Intelligent Controllers



Takeaway

Research Community 
Needs

Accountable Reviewers



An Interview on Research and Education

n Computing Research and Education (@ ISCA 2019)
q https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2

soXY2Zi_4oP9LdL3cc8G6NIjD2Ydz

n Maurice Wilkes Award Speech (10 minutes)
q https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2

soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=15
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https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2soXY2Zi_4oP9LdL3cc8G6NIjD2Ydz
https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=15
https://www.youtube.com/onurmutlulectures


More Thoughts and Suggestions
n Onur Mutlu,

"Some Reflections (on DRAM)"
Award Speech for ACM SIGARCH Maurice Wilkes Award, at the ISCA Awards 
Ceremony, Phoenix, AZ, USA, 25 June 2019.
[Slides (pptx) (pdf)]
[Video of Award Acceptance Speech (Youtube; 10 minutes) (Youku; 13 minutes)]
[Video of Interview after Award Acceptance (Youtube; 1 hour 6 minutes) (Youku; 
1 hour 6 minutes)]
[News Article on "ACM SIGARCH Maurice Wilkes Award goes to Prof. Onur Mutlu"]

n Onur Mutlu,
"How to Build an Impactful Research Group"
57th Design Automation Conference Early Career Workshop (DAC), Virtual, 
19 July 2020.
[Slides (pptx) (pdf)]

https://www.youtube.com/onurmutlulectures

https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pptx
https://www.sigarch.org/benefit/awards/acm-sigarch-maurice-wilkes-award/
https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pdf
https://www.youtube.com/watch?v=tcQ3zZ3JpuA
https://v.youku.com/v_show/id_XNDI3MjU2ODIwNA
https://www.youtube.com/watch?v=8ffSEKZhmvo
https://v.youku.com/v_show/id_XNDI3MjU3MTM0OA
https://inf.ethz.ch/news-and-events/spotlights/2019/06/mutlu-ACM-SIGARCH-award.html
https://people.inf.ethz.ch/omutlu/pub/onur-DAC-EarlyCareerWorkshopPanel-ImpactfulResearch-July-19-2020-withbackup-FINAL.pptx
https://sites.google.com/gapp.nthu.edu.tw/dac-ecw20/
https://people.inf.ethz.ch/omutlu/pub/onur-DAC-EarlyCareerWorkshopPanel-ImpactfulResearch-July-19-2020-withbackup-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DAC-EarlyCareerWorkshopPanel-ImpactfulResearch-July-19-2020-withbackup-FINAL.pdf
https://www.youtube.com/onurmutlulectures


Suggestion to Researchers: Principle: Passion

Follow Your Passion
(Do not get derailed

by naysayers)



Suggestion to Researchers: Principle: Resilience

Be Resilient



Principle: Learning and Scholarship

Focus on
learning and scholarship



Principle: Learning and Scholarship

The quality of your work 
defines your impact



Principle: Work Hard

Work Hard to       
Enable Your Passion



Principle: Good Mindset, Goals & Focus

You can make a      
good impact
on the world



Recommended Interview on Research & Education

n Computing Research and Education (@ ISCA 2019)
q https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2

soXY2Zi_4oP9LdL3cc8G6NIjD2Ydz

n Maurice Wilkes Award Speech (10 minutes)
q https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2

soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=15

n Onur Mutlu,
"Some Reflections (on DRAM)"
Award Speech for ACM SIGARCH Maurice Wilkes Award, at the ISCA Awards Ceremony, 
Phoenix, AZ, USA, 25 June 2019.
[Slides (pptx) (pdf)]
[Video of Award Acceptance Speech (Youtube; 10 minutes) (Youku; 13 minutes)]
[Video of Interview after Award Acceptance (Youtube; 1 hour 6 minutes) (Youku; 1 hour 
6 minutes)]
[News Article on "ACM SIGARCH Maurice Wilkes Award goes to Prof. Onur Mutlu"]
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https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2soXY2Zi_4oP9LdL3cc8G6NIjD2Ydz
https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=15
https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pptx
https://www.sigarch.org/benefit/awards/acm-sigarch-maurice-wilkes-award/
https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pdf
https://www.youtube.com/watch?v=tcQ3zZ3JpuA
https://v.youku.com/v_show/id_XNDI3MjU2ODIwNA
https://www.youtube.com/watch?v=8ffSEKZhmvo
https://v.youku.com/v_show/id_XNDI3MjU3MTM0OA
https://inf.ethz.ch/news-and-events/spotlights/2019/06/mutlu-ACM-SIGARCH-award.html


Recommended Interview

158https://www.youtube.com/watch?v=8ffSEKZhmvo

https://www.youtube.com/watch?v=8ffSEKZhmvo


A Talk on Impactful Research & Education

159
https://www.youtube.com/watch?v=83tlorht7Mc&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=54

https://www.youtube.com/watch?v=83tlorht7Mc&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=54


Suggested Reading

https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=youandyourresearch.pdf
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https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=youandyourresearch.pdf
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Lecture 7a: The Story of RowHammer 

Memory Security & Reliability

Prof. Onur Mutlu
ETH Zürich
Fall 2022
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Revisiting RowHammer



RowHammer in 2020 (I)
n Jeremie S. Kim, Minesh Patel, A. Giray Yaglikci, Hasan Hassan, 

Roknoddin Azizi, Lois Orosa, and Onur Mutlu,
"Revisiting RowHammer: An Experimental Analysis of Modern 
Devices and Mitigation Techniques"
Proceedings of the 47th International Symposium on Computer 
Architecture (ISCA), Valencia, Spain, June 2020.
[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (3 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20.pdf
http://iscaconf.org/isca2020/
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-lightning-talk.pdf
https://youtu.be/Lqxc4_ToMUw
https://youtu.be/wDhqi3f1a3Q


Revisiting	RowHammer
An	Experimental	Analysis	of	Modern	Devices	

and	Mitigation	Techniques

Jeremie S.	Kim Minesh Patel		
A.	Giray Yağlıkçı Hasan	Hassan

Roknoddin Azizi								Lois	Orosa Onur Mutlu
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Executive	Summary
• Motivation:	Denser	DRAM	chips	are	more	vulnerable	to	RowHammer but	no	
characterization-based	study	demonstrates	how	vulnerability	scales

• Problem:	Unclear	if	existing	mitigation	mechanisms	will	remain	viable	for	
future	DRAM	chips	that	are	likely	to	be	more	vulnerable	to	RowHammer

• Goal:	
1. Experimentally	demonstrate	how	vulnerable	modern	DRAM	chips	are	to	

RowHammer and	study	how	this	vulnerability	will	scale	going	forward
2. Study	viability	of	existing	mitigation	mechanisms	on	more	vulnerable	chips

• Experimental	Study: First	rigorous	RowHammer characterization	study	across	
a	broad	range	of	DRAM	chips	
- 1580	chips	of	different	DRAM	{types,	technology	node	generations,	manufacturers}
- We	find	that	RowHammer vulnerability	worsens	in	newer	chips

• RowHammer Mitigation	Mechanism	Study: How	five	state-of-the-art	
mechanisms	are	affected	by	worsening	RowHammer vulnerability
- Reasonable	performance	loss	(8%	on	average)	on	modern	DRAM	chips
- Scale	poorly	to	more	vulnerable	DRAM	chips	(e.g.,	80%	performance	loss)

• Conclusion: it	is	critical	to	research	more	effective	solutions	to	RowHammer for	
future	DRAM	chips	that	will	likely	be	even	more	vulnerable	to	RowHammer
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Motivation
- Denser	DRAM	chips	are	more	vulnerable	to	RowHammer

- Three	prior	works	[Kim+,	ISCA’14],	[Park+,	MR’16],	[Park+,	MR’16],	
over	the	last	six	years provide	RowHammer
characterization	data	on	real	DRAM

- However,	there	is	no	comprehensive	experimental	
study that	demonstrates	how	vulnerability	scales	across	
DRAM	types	and	technology	node	generations	

- It	is	unclear	whether	current	mitigation	mechanisms	
will	remain	viable for	future	DRAM	chips	that	are	likely	
to	be	more	vulnerable	to	RowHammer
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Goal

1. Experimentally	demonstrate	how	vulnerable	modern	
DRAM	chips	are	to	RowHammer and	predict	how	this	
vulnerability	will	scale going	forward

2. Examine	the	viability	of	current	mitigation	mechanisms	
on	more	vulnerable	chips



169

DRAM	Testing	Infrastructures
Three	separate	testing	infrastructures
1. DDR3: FPGA-based	SoftMC [Hassan+,	HPCA’17]	

(Xilinx	ML605)	
2. DDR4: FPGA-based	SoftMC [Hassan+,	HPCA’17]	

(Xilinx	Virtex UltraScale 95)
3. LPDDR4: In-house	testing	hardware	for	LPDDR4	chips

All	provide	fine-grained	control	over	DRAM	commands,	timing	
parameters	and	temperature

DDR4	DRAM	testing	infrastructure
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DRAM	Chips	Tested

1580 total	DRAM	chips	tested	from	300 DRAM	modules
• Threemajor	DRAM	manufacturers	{A,	B,	C}
• Three DRAM	types	or standards {DDR3,	DDR4,	LPDDR4}

• LPDDR4	chips	we	test	implement	on-die	ECC
• Two technology	nodes	per	DRAM	type	{old/new,	1x/1y}

• Categorized	based	on	manufacturing	date,	datasheet	publication	date,	purchase	
date,	and	characterization	results

Type-node:	configuration	describing	a	chip’s	type	and	technology	
node	generation:	DDR3-old/new,	DDR4-old/new,	LPDDR4-1x/1y

storage density and reduce technology node size for future
chip designs. To achieve this goal, we perform a rigorous
experimental characterization study of DRAM chips from
three di�erent DRAM types (i.e., DDR3, DDR4, and LPDDR4),
three major DRAM manufacturers, and at least two di�erent
process technology nodes from each DRAM type. We show
how di�erent chips from di�erent DRAM types and technol-
ogy nodes (abbreviated as “type-node” con�gurations) have
varying levels of vulnerability to RowHammer. We compare
the chips’ vulnerabilities against each other and project how
they will likely scale when reducing the technology node
size even further (Section 5). Finally, we study how e�ec-
tive existing RowHammer mitigation mechanisms will be,
based on our observed and projected experimental data on
the RowHammer vulnerability (Section 6).
4. Experimental Methodology
We describe our methodology for characterizing DRAM

chips for RowHammer.
4.1. Testing Infrastructure

In order to characterize the e�ects of RowHammer across
a broad range of modern DRAM chips, we experimentally
study DDR3, DDR4, and LPDDR4 DRAM chips across a
wide range of testing conditions. To achieve this, we use
two di�erent testing infrastructures: (1) the SoftMC frame-
work [39, 104] capable of testing DDR3 and DDR4 DRAM
modules in a temperature-controlled chamber and (2) an in-
house temperature-controlled testing chamber capable of
testing LPDDR4 DRAM chips.
SoftMC. Figure 3 shows our SoftMC setup for testing

DDR4 chips. In this setup, we use an FPGA board with a
Xilinx Virtex UltraScale 95 FPGA [130], two DDR4 SODIMM
slots, and a PCIe interface. To open up space around the
DDR4 chips for temperature control, we use a vertical DDR4
SODIMM riser board to plug a DDR4 module into the FPGA
board. We heat the DDR4 chips to a target temperature using
silicone rubber heaters pressed to both sides of the DDR4
module. We control the temperature using a thermocouple,
which we place between the rubber heaters and the DDR4
chips, and a temperature controller. To enable fast data trans-
fer between the FPGA and a host machine, we connect the
FPGA to the host machine using PCIe via a 30 cm PCIe ex-
tender. We use the host machine to program the SoftMC
hardware and collect the test results. Our SoftMC setup for
testing DDR3 chips is similar but uses a Xilinx ML605 FPGA
board [129]. Both infrastructures provide �ne-grained con-
trol over the types and timings of DRAM commands sent to
the chips under test and provide precise temperature control
at typical operating conditions.

Figure 3: Our SoftMC infrastructure [39, 104] for testing
DDR4 DRAM chips.

LPDDR4 Infrastructure. Our LPDDR4 DRAM testing
infrastructure uses industry-developed in-house testing hard-
ware for package-on-package LPDDR4 chips. The LPDDR4
testing infrastructure is further equipped with cooling and

heating capabilities that also provide us with precise temper-
ature control at typical operating conditions.
4.2. Characterized DRAM Chips
Table 1 summarizes the DRAM chips that we test using

both infrastructures. We have chips from all of the three
major DRAMmanufacturers spanning DDR3, DDR4, and two
known technology nodes of LPDDR4. We refer to the DRAM
type (e.g., LPDDR4) and technology node of a DRAM chip
as a DRAM type-node con�guration (e.g., LPDDR4-1x). For
DRAM chips whose technology node we do not exactly know,
we identify their node as old or new.

Table 1: Summary of DRAM chips tested.

DRAM Number of Chips (Modules) Tested
type-node Mfr. A Mfr. B Mfr. C Total
DDR3-old 56 (10) 88 (11) 28 (7) 172 (28)
DDR3-new 80 (10) 52 (9) 104 (13) 236 (32)
DDR4-old 112 (16) 24 (3) 128 (18) 264 (37)
DDR4-new 264 (43) 16 (2) 108 (28) 388 (73)
LPDDR4-1x 12 (3) 180 (45) N/A 192 (48)
LPDDR4-1y 184 (46) N/A 144 (36) 328 (82)

DDR3 and DDR4. Among our tested DDR3 modules, we
identify two distinct batches of chips based on their manu-
facturer date, datasheet publication date, their purchase date,
and their RowHammer characteristics. We categorize DDR3
devices with a manufacturing date earlier than 2014 as DDR3-
old chips, and devices with a manufacturing date including
and after 2014 as DDR3-new chips. Using the same set of
properties, we identify two distinct batches of devices among
the DDR4 devices. We categorize DDR4 devices with a man-
ufacturing date before 2018 or a datasheet publication date
of 2015 as DDR4-old chips and devices with a manufacturing
date including and after 2018 or a datasheet publication date
of 2016 or 2017 as DDR4-new chips. Based on our observa-
tions on RowHammer characteristics from these chips, we
expect that DDR3-old/DDR4-old chips are manufactured at
an older date with an older process technology compared to
DDR3-new/DDR4-new chips, respectively. This enables us
to directly study the e�ects of shrinking process technology
node sizes in DDR3 and DDR4 DRAM chips.
LPDDR4. For our LPDDR4 chips, we have two known

distinct generations manufactured with di�erent technology
node sizes, 1x-nm and 1y-nm, where 1y-nm is smaller than
1x-nm. Unfortunately, we are missing data from some genera-
tions of DRAM from speci�c manufacturers (i.e., LPDDR4-1x
from manufacturer C and LPDDR4-1y from manufacturer B)
since we did not have access to chips of these manufacturer-
technology node combinations due to con�dentiality issues.
Note that while we know the external technology node val-
ues for the chips we characterize (e.g., 1x-nm, 1y-nm), these
values are not standardized across di�erent DRAM manufac-
turers and the actual values are con�dential. This means that
a 1x chip from one manufacturer is not necessarily manufac-
tured with the same process technology node as a 1x chip
from another manufacturer. However, since we do know rela-
tive process node sizes of chips from the same manufacturer,
we can directly observe how technology node size a�ects
RowHammer on LPDDR4 DRAM chips.
4.3. E�ectively Characterizing RowHammer

In order to characterize RowHammer e�ects on our DRAM
chips at the circuit-level, we want to test our chips at the
worst-case RowHammer conditions. We identify two condi-
tions that our tests must satisfy to e�ectively characterize
RowHammer at the circuit level: our testing routines must
both: 1) run without interference (e.g., without DRAM refresh
or RowHammer mitigation mechanisms) and 2) systemati-
cally test each DRAM row’s vulnerability to RowHammer

4
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Effective	RowHammer Characterization	

To	characterize	our	DRAM	chips	at	worst-case conditions,	we:

1. Prevent	sources	of	interference	during	core	test	loop
- We	disable:	

• DRAM	refresh:	to	avoid	refreshing	victim	row
• DRAM	calibration	events:	to	minimize	variation	in	test	timing
• RowHammer mitigation	mechanisms:	to	observe	circuit-level	effects	
- Test	for	less	than	refresh	window	(32ms)	to	avoid	retention	failures

2. Worst-case	access	sequence
- We	use	worst-case access	sequence	based	on	prior	works’	observations
- For	each	row,	repeatedly	access	the	two	directly	physically-adjacent	
rows	as	fast	as	possible	

[More	details	in	the	paper]
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Testing	Methodology

Row	3
Row	4
Row	3
Row	4

Aggressor	Row
Victim	Row

Row

Row

RowRow	5 Row

Row	0
Row	1
Row	2 Row

Row

RowRow	0 Aggressor	Row

Row	2 Aggressor	Row
Row	1 Victim	RowREFRESH

Disable	refresh	to	prevent	
interruptions in	the	core	loop	of	
our	test	from	refresh	operations

Induce	RowHammer bit	flips	on	a	
fully	charged	row	

by issuing the worst-case sequence of DRAM accesses for that
particular row.
Disabling Sources of Interference. To directly observe
RowHammer e�ects at the circuit level, we want to mini-
mize the external factors that may limit 1) the e�ectiveness of
our tests or 2) our ability to e�ectively characterize/observe
circuit-level e�ects of RowHammer on our DRAM chips.
First, we want to ensure that we have control over how our
RowHammer tests behave without disturbing the desired ac-
cess pattern in any way. Therefore, during the core loop of
each RowHammer test (i.e., when activations are issued at
a high rate to induce RowHammer bit �ips), we disable all
DRAM self-regulation events such as refresh and calibration
using control registers in the memory controller. This guar-
antees consistent testing without interruptions from inter-
mittent events (e.g., to avoid the possibility that a victim row
is refreshed during a RowHammer test routine such that we
observe fewer RowHammer bit �ips). Second, we want to di-
rectly observe the circuit-level bit �ips such that we can make
conclusions about DRAM’s vulnerability to RowHammer at
the circuit technology level rather than the system level. To
this end, to the best of our knowledge, we disable all DRAM-
level (e.g., TRR [25, 45, 47]) and system-level RowHammer
mitigationmechanisms (e.g., pTRR [1]) along with all forms of
rank-level error-correction codes (ECC), which could obscure
RowHammer bit �ips. Unfortunately, all of our LPDDR4-
1x and LPDDR4-1y chips use on-die ECC [52, 67, 68, 86, 96]
(i.e., an error correcting mechanism that corrects single-bit
failures entirely within the DRAM chip [96]), which we can-
not disable. In addition, we ensure that the core loop of our
RowHammer test runs for less than 64 ms (i.e., the refresh
interval speci�ed by manufacturers to prevent DRAM data
retention failures [53, 82, 97]) so that we do not con�ate re-
tention failures with RowHammer bit �ips.
Worst-case RowHammer Access Sequence. We leverage
three key observations from prior work [3, 20, 33, 62, 128] in
order to craft a worst-case RowHammer test pattern. First,
a repeatedly accessed row (i.e., aggressor row) has the great-
est impact on its immediate physically-adjacent rows (i.e.,
repeatedly accessing physical row N will cause the highest
number of RowHammer bit �ips in physical rows N + 1 and
N – 1). Second, a double-sided hammer targeting physical
victim row N (i.e., repeatedly accessing physical rows N – 1
and N + 1) causes the highest number of RowHammer bit
�ips in row N compared to any other access pattern. Third,
increasing the rate of DRAM activations (i.e., issuing the same
number of activations within shorter time periods) results in
an increasing number of RowHammer bit �ips. This rate of
activations is limited by the DRAM timing parameter tRC (i.e.,
the time between two successive activations) which depends
on the DRAM clock frequency and the DRAM type: DDR3
(52.5ns) [44], DDR4 (50ns) [45], LPDDR4 (60ns) [47]. Using
these observations, we test each row’s worst-case vulnerabil-
ity to RowHammer by repeatedly accessing the two directly
physically-adjacent rows as fast as possible.
To enable the quick identi�cation of physical rows N –

1 and N + 1 for a given row N , we reverse-engineer the
undocumented and con�dential logical-to-physical DRAM
row address mapping. To do this, we exploit RowHammer’s
key observation that repeatedly accessing an arbitrary row
causes the two directly physically-adjacent rows to contain
the highest number of RowHammer bit �ips. By repeating
this analysis across rows throughout the DRAM chip, we can
deduce the address mappings for each type of chip that we
test. We can then use this mapping information to quickly
test RowHammer e�ects at worst-case conditions. We note
that for our LPDDR4-1x chips from Manufacturer B, when
we repeatedly access a single row within two consecutive
rows such that the �rst row is an even row (e.g., rows 2 and

3) in the logical row address space as seen by the memory
controller, we observe 1) no RowHammer bit �ips in either of
the two consecutive rows and 2) a near equivalent number of
RowHammer bit �ips in each of the four immediately adjacent
rows: the two previous consecutive rows (e.g., rows 0 and 1)
and the two subsequent consecutive rows (e.g., rows 4 and 5).
This indicates a row address remapping that is internal to the
DRAM chip such that every pair of consecutive rows share the
same internal wordline. To account for this DRAM-internal
row address remapping, we test each row N in LPDDR4-1x
chips from manufacturer B by repeatedly accessing physical
rows N – 2 and N + 2.
Additional Testing Parameters. To investigate RowHam-
mer characteristics, we explore two testing parameters at a
stable ambient temperature of 50¶C:
1. Hammer count (HC). We test the e�ects of changing the

number of times we access (i.e., activate) a victim row’s
physically-adjacent rows (i.e., aggressor rows). We count
each pair of activations to the two neighboring rows as
one hammer (e.g., one activation each to rows N – 1 and
N +1 counts as one hammer). We sweep the hammer count
from 2k to 150k (i.e., 4k to 300k activations) across our
chips so that the hammer test runs for less than 64ms.

2. Data pattern (DP). We test several commonly-used
DRAM data patterns where every byte is written with
the same data: Solid0 (SO0: 0x00), Solid1 (SO1: 0xFF), Col-
stripe0 (CO0: 0x55), Colstripe1 (CO1: 0xAA) [53,82,97]. In
addition, we test data patterns where each byte in every
other row, including the row being hammered, is written
with the same data, Checkered0 (CH0: 0x55) or Rowstripe0
(RS0: 0x00), and all other rows are written with the inverse
data, Checkered1 (CH1: 0xAA) or Rowstripe1 (RS1: 0xFF),
respectively.

RowHammer Testing Routine. Algorithm 1 explains the
general testing methodology we use to characterize RowHam-
mer on DRAM chips. For di�erent data patterns (DP) (line 2)
and hammer counts (HC) (line 8), the test individually tar-

Algorithm 1: DRAM RowHammer Characterization
1 DRAM_RowHammer_Characterization():
2 foreach DP in [Data Patterns]:
3 write DP into all cells in DRAM
4 foreach row in DRAM:
5 set victim_row to row
6 set aggressor_row1 to victim_row – 1
7 set aggressor_row2 to victim_row + 1
8 foreach HC in [HC sweep]:
9 Disable DRAM refresh

10 Refresh victim_row
11 for n = 1 æ HC: // core test loop
12 activate aggressor_row1
13 activate aggressor_row2
14 Enable DRAM refresh
15 Record RowHammer bit �ips to storage
16 Restore bit �ips to original values

gets each row in DRAM (line 4) as a victim row (line 5). For
each victim row, we identify the two physically-adjacent
rows (aggressor_row1 and aggressor_row2) as aggressor rows
(lines 6 and 7). Before beginning the core loop of our
RowHammer test (Lines 11-13), two things happen: 1) the
memory controller disables DRAM refresh (line 9) to ensure
no interruptions in the core loop of our test due to refresh
operations, and 2) we refresh the victim row (line 10) so that
we begin inducing RowHammer bit �ips on a fully-charged
row, which ensures that bit �ips we observe are not due to
retention time violations. The core loop of our RowHammer
test (Lines 11-13) induces RowHammer bit �ips in the victim
row by �rst activating aggressor_row1 then aggressor_row2,
HC times. After the core loop of our RowHammer test, we
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by issuing the worst-case sequence of DRAM accesses for that
particular row.
Disabling Sources of Interference. To directly observe
RowHammer e�ects at the circuit level, we want to mini-
mize the external factors that may limit 1) the e�ectiveness of
our tests or 2) our ability to e�ectively characterize/observe
circuit-level e�ects of RowHammer on our DRAM chips.
First, we want to ensure that we have control over how our
RowHammer tests behave without disturbing the desired ac-
cess pattern in any way. Therefore, during the core loop of
each RowHammer test (i.e., when activations are issued at
a high rate to induce RowHammer bit �ips), we disable all
DRAM self-regulation events such as refresh and calibration
using control registers in the memory controller. This guar-
antees consistent testing without interruptions from inter-
mittent events (e.g., to avoid the possibility that a victim row
is refreshed during a RowHammer test routine such that we
observe fewer RowHammer bit �ips). Second, we want to di-
rectly observe the circuit-level bit �ips such that we can make
conclusions about DRAM’s vulnerability to RowHammer at
the circuit technology level rather than the system level. To
this end, to the best of our knowledge, we disable all DRAM-
level (e.g., TRR [25, 45, 47]) and system-level RowHammer
mitigationmechanisms (e.g., pTRR [1]) along with all forms of
rank-level error-correction codes (ECC), which could obscure
RowHammer bit �ips. Unfortunately, all of our LPDDR4-
1x and LPDDR4-1y chips use on-die ECC [52, 67, 68, 86, 96]
(i.e., an error correcting mechanism that corrects single-bit
failures entirely within the DRAM chip [96]), which we can-
not disable. In addition, we ensure that the core loop of our
RowHammer test runs for less than 64 ms (i.e., the refresh
interval speci�ed by manufacturers to prevent DRAM data
retention failures [53, 82, 97]) so that we do not con�ate re-
tention failures with RowHammer bit �ips.
Worst-case RowHammer Access Sequence. We leverage
three key observations from prior work [3, 20, 33, 62, 128] in
order to craft a worst-case RowHammer test pattern. First,
a repeatedly accessed row (i.e., aggressor row) has the great-
est impact on its immediate physically-adjacent rows (i.e.,
repeatedly accessing physical row N will cause the highest
number of RowHammer bit �ips in physical rows N + 1 and
N – 1). Second, a double-sided hammer targeting physical
victim row N (i.e., repeatedly accessing physical rows N – 1
and N + 1) causes the highest number of RowHammer bit
�ips in row N compared to any other access pattern. Third,
increasing the rate of DRAM activations (i.e., issuing the same
number of activations within shorter time periods) results in
an increasing number of RowHammer bit �ips. This rate of
activations is limited by the DRAM timing parameter tRC (i.e.,
the time between two successive activations) which depends
on the DRAM clock frequency and the DRAM type: DDR3
(52.5ns) [44], DDR4 (50ns) [45], LPDDR4 (60ns) [47]. Using
these observations, we test each row’s worst-case vulnerabil-
ity to RowHammer by repeatedly accessing the two directly
physically-adjacent rows as fast as possible.
To enable the quick identi�cation of physical rows N –

1 and N + 1 for a given row N , we reverse-engineer the
undocumented and con�dential logical-to-physical DRAM
row address mapping. To do this, we exploit RowHammer’s
key observation that repeatedly accessing an arbitrary row
causes the two directly physically-adjacent rows to contain
the highest number of RowHammer bit �ips. By repeating
this analysis across rows throughout the DRAM chip, we can
deduce the address mappings for each type of chip that we
test. We can then use this mapping information to quickly
test RowHammer e�ects at worst-case conditions. We note
that for our LPDDR4-1x chips from Manufacturer B, when
we repeatedly access a single row within two consecutive
rows such that the �rst row is an even row (e.g., rows 2 and

3) in the logical row address space as seen by the memory
controller, we observe 1) no RowHammer bit �ips in either of
the two consecutive rows and 2) a near equivalent number of
RowHammer bit �ips in each of the four immediately adjacent
rows: the two previous consecutive rows (e.g., rows 0 and 1)
and the two subsequent consecutive rows (e.g., rows 4 and 5).
This indicates a row address remapping that is internal to the
DRAM chip such that every pair of consecutive rows share the
same internal wordline. To account for this DRAM-internal
row address remapping, we test each row N in LPDDR4-1x
chips from manufacturer B by repeatedly accessing physical
rows N – 2 and N + 2.
Additional Testing Parameters. To investigate RowHam-
mer characteristics, we explore two testing parameters at a
stable ambient temperature of 50¶C:
1. Hammer count (HC). We test the e�ects of changing the

number of times we access (i.e., activate) a victim row’s
physically-adjacent rows (i.e., aggressor rows). We count
each pair of activations to the two neighboring rows as
one hammer (e.g., one activation each to rows N – 1 and
N +1 counts as one hammer). We sweep the hammer count
from 2k to 150k (i.e., 4k to 300k activations) across our
chips so that the hammer test runs for less than 64ms.

2. Data pattern (DP). We test several commonly-used
DRAM data patterns where every byte is written with
the same data: Solid0 (SO0: 0x00), Solid1 (SO1: 0xFF), Col-
stripe0 (CO0: 0x55), Colstripe1 (CO1: 0xAA) [53,82,97]. In
addition, we test data patterns where each byte in every
other row, including the row being hammered, is written
with the same data, Checkered0 (CH0: 0x55) or Rowstripe0
(RS0: 0x00), and all other rows are written with the inverse
data, Checkered1 (CH1: 0xAA) or Rowstripe1 (RS1: 0xFF),
respectively.

RowHammer Testing Routine. Algorithm 1 explains the
general testing methodology we use to characterize RowHam-
mer on DRAM chips. For di�erent data patterns (DP) (line 2)
and hammer counts (HC) (line 8), the test individually tar-

Algorithm 1: DRAM RowHammer Characterization
1 DRAM_RowHammer_Characterization():
2 foreach DP in [Data Patterns]:
3 write DP into all cells in DRAM
4 foreach row in DRAM:
5 set victim_row to row
6 set aggressor_row1 to victim_row – 1
7 set aggressor_row2 to victim_row + 1
8 foreach HC in [HC sweep]:
9 Disable DRAM refresh

10 Refresh victim_row
11 for n = 1 æ HC: // core test loop
12 activate aggressor_row1
13 activate aggressor_row2
14 Enable DRAM refresh
15 Record RowHammer bit �ips to storage
16 Restore bit �ips to original values

gets each row in DRAM (line 4) as a victim row (line 5). For
each victim row, we identify the two physically-adjacent
rows (aggressor_row1 and aggressor_row2) as aggressor rows
(lines 6 and 7). Before beginning the core loop of our
RowHammer test (Lines 11-13), two things happen: 1) the
memory controller disables DRAM refresh (line 9) to ensure
no interruptions in the core loop of our test due to refresh
operations, and 2) we refresh the victim row (line 10) so that
we begin inducing RowHammer bit �ips on a fully-charged
row, which ensures that bit �ips we observe are not due to
retention time violations. The core loop of our RowHammer
test (Lines 11-13) induces RowHammer bit �ips in the victim
row by �rst activating aggressor_row1 then aggressor_row2,
HC times. After the core loop of our RowHammer test, we
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by issuing the worst-case sequence of DRAM accesses for that
particular row.
Disabling Sources of Interference. To directly observe
RowHammer e�ects at the circuit level, we want to mini-
mize the external factors that may limit 1) the e�ectiveness of
our tests or 2) our ability to e�ectively characterize/observe
circuit-level e�ects of RowHammer on our DRAM chips.
First, we want to ensure that we have control over how our
RowHammer tests behave without disturbing the desired ac-
cess pattern in any way. Therefore, during the core loop of
each RowHammer test (i.e., when activations are issued at
a high rate to induce RowHammer bit �ips), we disable all
DRAM self-regulation events such as refresh and calibration
using control registers in the memory controller. This guar-
antees consistent testing without interruptions from inter-
mittent events (e.g., to avoid the possibility that a victim row
is refreshed during a RowHammer test routine such that we
observe fewer RowHammer bit �ips). Second, we want to di-
rectly observe the circuit-level bit �ips such that we can make
conclusions about DRAM’s vulnerability to RowHammer at
the circuit technology level rather than the system level. To
this end, to the best of our knowledge, we disable all DRAM-
level (e.g., TRR [25, 45, 47]) and system-level RowHammer
mitigationmechanisms (e.g., pTRR [1]) along with all forms of
rank-level error-correction codes (ECC), which could obscure
RowHammer bit �ips. Unfortunately, all of our LPDDR4-
1x and LPDDR4-1y chips use on-die ECC [52, 67, 68, 86, 96]
(i.e., an error correcting mechanism that corrects single-bit
failures entirely within the DRAM chip [96]), which we can-
not disable. In addition, we ensure that the core loop of our
RowHammer test runs for less than 64 ms (i.e., the refresh
interval speci�ed by manufacturers to prevent DRAM data
retention failures [53, 82, 97]) so that we do not con�ate re-
tention failures with RowHammer bit �ips.
Worst-case RowHammer Access Sequence. We leverage
three key observations from prior work [3, 20, 33, 62, 128] in
order to craft a worst-case RowHammer test pattern. First,
a repeatedly accessed row (i.e., aggressor row) has the great-
est impact on its immediate physically-adjacent rows (i.e.,
repeatedly accessing physical row N will cause the highest
number of RowHammer bit �ips in physical rows N + 1 and
N – 1). Second, a double-sided hammer targeting physical
victim row N (i.e., repeatedly accessing physical rows N – 1
and N + 1) causes the highest number of RowHammer bit
�ips in row N compared to any other access pattern. Third,
increasing the rate of DRAM activations (i.e., issuing the same
number of activations within shorter time periods) results in
an increasing number of RowHammer bit �ips. This rate of
activations is limited by the DRAM timing parameter tRC (i.e.,
the time between two successive activations) which depends
on the DRAM clock frequency and the DRAM type: DDR3
(52.5ns) [44], DDR4 (50ns) [45], LPDDR4 (60ns) [47]. Using
these observations, we test each row’s worst-case vulnerabil-
ity to RowHammer by repeatedly accessing the two directly
physically-adjacent rows as fast as possible.
To enable the quick identi�cation of physical rows N –

1 and N + 1 for a given row N , we reverse-engineer the
undocumented and con�dential logical-to-physical DRAM
row address mapping. To do this, we exploit RowHammer’s
key observation that repeatedly accessing an arbitrary row
causes the two directly physically-adjacent rows to contain
the highest number of RowHammer bit �ips. By repeating
this analysis across rows throughout the DRAM chip, we can
deduce the address mappings for each type of chip that we
test. We can then use this mapping information to quickly
test RowHammer e�ects at worst-case conditions. We note
that for our LPDDR4-1x chips from Manufacturer B, when
we repeatedly access a single row within two consecutive
rows such that the �rst row is an even row (e.g., rows 2 and

3) in the logical row address space as seen by the memory
controller, we observe 1) no RowHammer bit �ips in either of
the two consecutive rows and 2) a near equivalent number of
RowHammer bit �ips in each of the four immediately adjacent
rows: the two previous consecutive rows (e.g., rows 0 and 1)
and the two subsequent consecutive rows (e.g., rows 4 and 5).
This indicates a row address remapping that is internal to the
DRAM chip such that every pair of consecutive rows share the
same internal wordline. To account for this DRAM-internal
row address remapping, we test each row N in LPDDR4-1x
chips from manufacturer B by repeatedly accessing physical
rows N – 2 and N + 2.
Additional Testing Parameters. To investigate RowHam-
mer characteristics, we explore two testing parameters at a
stable ambient temperature of 50¶C:
1. Hammer count (HC). We test the e�ects of changing the

number of times we access (i.e., activate) a victim row’s
physically-adjacent rows (i.e., aggressor rows). We count
each pair of activations to the two neighboring rows as
one hammer (e.g., one activation each to rows N – 1 and
N +1 counts as one hammer). We sweep the hammer count
from 2k to 150k (i.e., 4k to 300k activations) across our
chips so that the hammer test runs for less than 64ms.

2. Data pattern (DP). We test several commonly-used
DRAM data patterns where every byte is written with
the same data: Solid0 (SO0: 0x00), Solid1 (SO1: 0xFF), Col-
stripe0 (CO0: 0x55), Colstripe1 (CO1: 0xAA) [53,82,97]. In
addition, we test data patterns where each byte in every
other row, including the row being hammered, is written
with the same data, Checkered0 (CH0: 0x55) or Rowstripe0
(RS0: 0x00), and all other rows are written with the inverse
data, Checkered1 (CH1: 0xAA) or Rowstripe1 (RS1: 0xFF),
respectively.

RowHammer Testing Routine. Algorithm 1 explains the
general testing methodology we use to characterize RowHam-
mer on DRAM chips. For di�erent data patterns (DP) (line 2)
and hammer counts (HC) (line 8), the test individually tar-

Algorithm 1: DRAM RowHammer Characterization
1 DRAM_RowHammer_Characterization():
2 foreach DP in [Data Patterns]:
3 write DP into all cells in DRAM
4 foreach row in DRAM:
5 set victim_row to row
6 set aggressor_row1 to victim_row – 1
7 set aggressor_row2 to victim_row + 1
8 foreach HC in [HC sweep]:
9 Disable DRAM refresh

10 Refresh victim_row
11 for n = 1 æ HC: // core test loop
12 activate aggressor_row1
13 activate aggressor_row2
14 Enable DRAM refresh
15 Record RowHammer bit �ips to storage
16 Restore bit �ips to original values

gets each row in DRAM (line 4) as a victim row (line 5). For
each victim row, we identify the two physically-adjacent
rows (aggressor_row1 and aggressor_row2) as aggressor rows
(lines 6 and 7). Before beginning the core loop of our
RowHammer test (Lines 11-13), two things happen: 1) the
memory controller disables DRAM refresh (line 9) to ensure
no interruptions in the core loop of our test due to refresh
operations, and 2) we refresh the victim row (line 10) so that
we begin inducing RowHammer bit �ips on a fully-charged
row, which ensures that bit �ips we observe are not due to
retention time violations. The core loop of our RowHammer
test (Lines 11-13) induces RowHammer bit �ips in the victim
row by �rst activating aggressor_row1 then aggressor_row2,
HC times. After the core loop of our RowHammer test, we
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by issuing the worst-case sequence of DRAM accesses for that
particular row.
Disabling Sources of Interference. To directly observe
RowHammer e�ects at the circuit level, we want to mini-
mize the external factors that may limit 1) the e�ectiveness of
our tests or 2) our ability to e�ectively characterize/observe
circuit-level e�ects of RowHammer on our DRAM chips.
First, we want to ensure that we have control over how our
RowHammer tests behave without disturbing the desired ac-
cess pattern in any way. Therefore, during the core loop of
each RowHammer test (i.e., when activations are issued at
a high rate to induce RowHammer bit �ips), we disable all
DRAM self-regulation events such as refresh and calibration
using control registers in the memory controller. This guar-
antees consistent testing without interruptions from inter-
mittent events (e.g., to avoid the possibility that a victim row
is refreshed during a RowHammer test routine such that we
observe fewer RowHammer bit �ips). Second, we want to di-
rectly observe the circuit-level bit �ips such that we can make
conclusions about DRAM’s vulnerability to RowHammer at
the circuit technology level rather than the system level. To
this end, to the best of our knowledge, we disable all DRAM-
level (e.g., TRR [25, 45, 47]) and system-level RowHammer
mitigationmechanisms (e.g., pTRR [1]) along with all forms of
rank-level error-correction codes (ECC), which could obscure
RowHammer bit �ips. Unfortunately, all of our LPDDR4-
1x and LPDDR4-1y chips use on-die ECC [52, 67, 68, 86, 96]
(i.e., an error correcting mechanism that corrects single-bit
failures entirely within the DRAM chip [96]), which we can-
not disable. In addition, we ensure that the core loop of our
RowHammer test runs for less than 64 ms (i.e., the refresh
interval speci�ed by manufacturers to prevent DRAM data
retention failures [53, 82, 97]) so that we do not con�ate re-
tention failures with RowHammer bit �ips.
Worst-case RowHammer Access Sequence. We leverage
three key observations from prior work [3, 20, 33, 62, 128] in
order to craft a worst-case RowHammer test pattern. First,
a repeatedly accessed row (i.e., aggressor row) has the great-
est impact on its immediate physically-adjacent rows (i.e.,
repeatedly accessing physical row N will cause the highest
number of RowHammer bit �ips in physical rows N + 1 and
N – 1). Second, a double-sided hammer targeting physical
victim row N (i.e., repeatedly accessing physical rows N – 1
and N + 1) causes the highest number of RowHammer bit
�ips in row N compared to any other access pattern. Third,
increasing the rate of DRAM activations (i.e., issuing the same
number of activations within shorter time periods) results in
an increasing number of RowHammer bit �ips. This rate of
activations is limited by the DRAM timing parameter tRC (i.e.,
the time between two successive activations) which depends
on the DRAM clock frequency and the DRAM type: DDR3
(52.5ns) [44], DDR4 (50ns) [45], LPDDR4 (60ns) [47]. Using
these observations, we test each row’s worst-case vulnerabil-
ity to RowHammer by repeatedly accessing the two directly
physically-adjacent rows as fast as possible.
To enable the quick identi�cation of physical rows N –

1 and N + 1 for a given row N , we reverse-engineer the
undocumented and con�dential logical-to-physical DRAM
row address mapping. To do this, we exploit RowHammer’s
key observation that repeatedly accessing an arbitrary row
causes the two directly physically-adjacent rows to contain
the highest number of RowHammer bit �ips. By repeating
this analysis across rows throughout the DRAM chip, we can
deduce the address mappings for each type of chip that we
test. We can then use this mapping information to quickly
test RowHammer e�ects at worst-case conditions. We note
that for our LPDDR4-1x chips from Manufacturer B, when
we repeatedly access a single row within two consecutive
rows such that the �rst row is an even row (e.g., rows 2 and

3) in the logical row address space as seen by the memory
controller, we observe 1) no RowHammer bit �ips in either of
the two consecutive rows and 2) a near equivalent number of
RowHammer bit �ips in each of the four immediately adjacent
rows: the two previous consecutive rows (e.g., rows 0 and 1)
and the two subsequent consecutive rows (e.g., rows 4 and 5).
This indicates a row address remapping that is internal to the
DRAM chip such that every pair of consecutive rows share the
same internal wordline. To account for this DRAM-internal
row address remapping, we test each row N in LPDDR4-1x
chips from manufacturer B by repeatedly accessing physical
rows N – 2 and N + 2.
Additional Testing Parameters. To investigate RowHam-
mer characteristics, we explore two testing parameters at a
stable ambient temperature of 50¶C:
1. Hammer count (HC). We test the e�ects of changing the

number of times we access (i.e., activate) a victim row’s
physically-adjacent rows (i.e., aggressor rows). We count
each pair of activations to the two neighboring rows as
one hammer (e.g., one activation each to rows N – 1 and
N +1 counts as one hammer). We sweep the hammer count
from 2k to 150k (i.e., 4k to 300k activations) across our
chips so that the hammer test runs for less than 64ms.

2. Data pattern (DP). We test several commonly-used
DRAM data patterns where every byte is written with
the same data: Solid0 (SO0: 0x00), Solid1 (SO1: 0xFF), Col-
stripe0 (CO0: 0x55), Colstripe1 (CO1: 0xAA) [53,82,97]. In
addition, we test data patterns where each byte in every
other row, including the row being hammered, is written
with the same data, Checkered0 (CH0: 0x55) or Rowstripe0
(RS0: 0x00), and all other rows are written with the inverse
data, Checkered1 (CH1: 0xAA) or Rowstripe1 (RS1: 0xFF),
respectively.

RowHammer Testing Routine. Algorithm 1 explains the
general testing methodology we use to characterize RowHam-
mer on DRAM chips. For di�erent data patterns (DP) (line 2)
and hammer counts (HC) (line 8), the test individually tar-
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3 write DP into all cells in DRAM
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12 activate aggressor_row1
13 activate aggressor_row2
14 Enable DRAM refresh
15 Record RowHammer bit �ips to storage
16 Restore bit �ips to original values

gets each row in DRAM (line 4) as a victim row (line 5). For
each victim row, we identify the two physically-adjacent
rows (aggressor_row1 and aggressor_row2) as aggressor rows
(lines 6 and 7). Before beginning the core loop of our
RowHammer test (Lines 11-13), two things happen: 1) the
memory controller disables DRAM refresh (line 9) to ensure
no interruptions in the core loop of our test due to refresh
operations, and 2) we refresh the victim row (line 10) so that
we begin inducing RowHammer bit �ips on a fully-charged
row, which ensures that bit �ips we observe are not due to
retention time violations. The core loop of our RowHammer
test (Lines 11-13) induces RowHammer bit �ips in the victim
row by �rst activating aggressor_row1 then aggressor_row2,
HC times. After the core loop of our RowHammer test, we
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RowHammer e�ects at the circuit level, we want to mini-
mize the external factors that may limit 1) the e�ectiveness of
our tests or 2) our ability to e�ectively characterize/observe
circuit-level e�ects of RowHammer on our DRAM chips.
First, we want to ensure that we have control over how our
RowHammer tests behave without disturbing the desired ac-
cess pattern in any way. Therefore, during the core loop of
each RowHammer test (i.e., when activations are issued at
a high rate to induce RowHammer bit �ips), we disable all
DRAM self-regulation events such as refresh and calibration
using control registers in the memory controller. This guar-
antees consistent testing without interruptions from inter-
mittent events (e.g., to avoid the possibility that a victim row
is refreshed during a RowHammer test routine such that we
observe fewer RowHammer bit �ips). Second, we want to di-
rectly observe the circuit-level bit �ips such that we can make
conclusions about DRAM’s vulnerability to RowHammer at
the circuit technology level rather than the system level. To
this end, to the best of our knowledge, we disable all DRAM-
level (e.g., TRR [25, 45, 47]) and system-level RowHammer
mitigationmechanisms (e.g., pTRR [1]) along with all forms of
rank-level error-correction codes (ECC), which could obscure
RowHammer bit �ips. Unfortunately, all of our LPDDR4-
1x and LPDDR4-1y chips use on-die ECC [52, 67, 68, 86, 96]
(i.e., an error correcting mechanism that corrects single-bit
failures entirely within the DRAM chip [96]), which we can-
not disable. In addition, we ensure that the core loop of our
RowHammer test runs for less than 64 ms (i.e., the refresh
interval speci�ed by manufacturers to prevent DRAM data
retention failures [53, 82, 97]) so that we do not con�ate re-
tention failures with RowHammer bit �ips.
Worst-case RowHammer Access Sequence. We leverage
three key observations from prior work [3, 20, 33, 62, 128] in
order to craft a worst-case RowHammer test pattern. First,
a repeatedly accessed row (i.e., aggressor row) has the great-
est impact on its immediate physically-adjacent rows (i.e.,
repeatedly accessing physical row N will cause the highest
number of RowHammer bit �ips in physical rows N + 1 and
N – 1). Second, a double-sided hammer targeting physical
victim row N (i.e., repeatedly accessing physical rows N – 1
and N + 1) causes the highest number of RowHammer bit
�ips in row N compared to any other access pattern. Third,
increasing the rate of DRAM activations (i.e., issuing the same
number of activations within shorter time periods) results in
an increasing number of RowHammer bit �ips. This rate of
activations is limited by the DRAM timing parameter tRC (i.e.,
the time between two successive activations) which depends
on the DRAM clock frequency and the DRAM type: DDR3
(52.5ns) [44], DDR4 (50ns) [45], LPDDR4 (60ns) [47]. Using
these observations, we test each row’s worst-case vulnerabil-
ity to RowHammer by repeatedly accessing the two directly
physically-adjacent rows as fast as possible.
To enable the quick identi�cation of physical rows N –

1 and N + 1 for a given row N , we reverse-engineer the
undocumented and con�dential logical-to-physical DRAM
row address mapping. To do this, we exploit RowHammer’s
key observation that repeatedly accessing an arbitrary row
causes the two directly physically-adjacent rows to contain
the highest number of RowHammer bit �ips. By repeating
this analysis across rows throughout the DRAM chip, we can
deduce the address mappings for each type of chip that we
test. We can then use this mapping information to quickly
test RowHammer e�ects at worst-case conditions. We note
that for our LPDDR4-1x chips from Manufacturer B, when
we repeatedly access a single row within two consecutive
rows such that the �rst row is an even row (e.g., rows 2 and

3) in the logical row address space as seen by the memory
controller, we observe 1) no RowHammer bit �ips in either of
the two consecutive rows and 2) a near equivalent number of
RowHammer bit �ips in each of the four immediately adjacent
rows: the two previous consecutive rows (e.g., rows 0 and 1)
and the two subsequent consecutive rows (e.g., rows 4 and 5).
This indicates a row address remapping that is internal to the
DRAM chip such that every pair of consecutive rows share the
same internal wordline. To account for this DRAM-internal
row address remapping, we test each row N in LPDDR4-1x
chips from manufacturer B by repeatedly accessing physical
rows N – 2 and N + 2.
Additional Testing Parameters. To investigate RowHam-
mer characteristics, we explore two testing parameters at a
stable ambient temperature of 50¶C:
1. Hammer count (HC). We test the e�ects of changing the

number of times we access (i.e., activate) a victim row’s
physically-adjacent rows (i.e., aggressor rows). We count
each pair of activations to the two neighboring rows as
one hammer (e.g., one activation each to rows N – 1 and
N +1 counts as one hammer). We sweep the hammer count
from 2k to 150k (i.e., 4k to 300k activations) across our
chips so that the hammer test runs for less than 64ms.

2. Data pattern (DP). We test several commonly-used
DRAM data patterns where every byte is written with
the same data: Solid0 (SO0: 0x00), Solid1 (SO1: 0xFF), Col-
stripe0 (CO0: 0x55), Colstripe1 (CO1: 0xAA) [53,82,97]. In
addition, we test data patterns where each byte in every
other row, including the row being hammered, is written
with the same data, Checkered0 (CH0: 0x55) or Rowstripe0
(RS0: 0x00), and all other rows are written with the inverse
data, Checkered1 (CH1: 0xAA) or Rowstripe1 (RS1: 0xFF),
respectively.

RowHammer Testing Routine. Algorithm 1 explains the
general testing methodology we use to characterize RowHam-
mer on DRAM chips. For di�erent data patterns (DP) (line 2)
and hammer counts (HC) (line 8), the test individually tar-

Algorithm 1: DRAM RowHammer Characterization
1 DRAM_RowHammer_Characterization():
2 foreach DP in [Data Patterns]:
3 write DP into all cells in DRAM
4 foreach row in DRAM:
5 set victim_row to row
6 set aggressor_row1 to victim_row – 1
7 set aggressor_row2 to victim_row + 1
8 foreach HC in [HC sweep]:
9 Disable DRAM refresh

10 Refresh victim_row
11 for n = 1 æ HC: // core test loop
12 activate aggressor_row1
13 activate aggressor_row2
14 Enable DRAM refresh
15 Record RowHammer bit �ips to storage
16 Restore bit �ips to original values

gets each row in DRAM (line 4) as a victim row (line 5). For
each victim row, we identify the two physically-adjacent
rows (aggressor_row1 and aggressor_row2) as aggressor rows
(lines 6 and 7). Before beginning the core loop of our
RowHammer test (Lines 11-13), two things happen: 1) the
memory controller disables DRAM refresh (line 9) to ensure
no interruptions in the core loop of our test due to refresh
operations, and 2) we refresh the victim row (line 10) so that
we begin inducing RowHammer bit �ips on a fully-charged
row, which ensures that bit �ips we observe are not due to
retention time violations. The core loop of our RowHammer
test (Lines 11-13) induces RowHammer bit �ips in the victim
row by �rst activating aggressor_row1 then aggressor_row2,
HC times. After the core loop of our RowHammer test, we
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each RowHammer test (i.e., when activations are issued at
a high rate to induce RowHammer bit �ips), we disable all
DRAM self-regulation events such as refresh and calibration
using control registers in the memory controller. This guar-
antees consistent testing without interruptions from inter-
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gets each row in DRAM (line 4) as a victim row (line 5). For
each victim row, we identify the two physically-adjacent
rows (aggressor_row1 and aggressor_row2) as aggressor rows
(lines 6 and 7). Before beginning the core loop of our
RowHammer test (Lines 11-13), two things happen: 1) the
memory controller disables DRAM refresh (line 9) to ensure
no interruptions in the core loop of our test due to refresh
operations, and 2) we refresh the victim row (line 10) so that
we begin inducing RowHammer bit �ips on a fully-charged
row, which ensures that bit �ips we observe are not due to
retention time violations. The core loop of our RowHammer
test (Lines 11-13) induces RowHammer bit �ips in the victim
row by �rst activating aggressor_row1 then aggressor_row2,
HC times. After the core loop of our RowHammer test, we
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Key	Takeaways	from	1580	Chips
• Chips	of	newer	DRAM	technology	nodes	are	more	
vulnerable to	RowHammer

• There	are	chips	today	whose	weakest	cells	fail	after	
only	4800	hammers

• Chips	of	newer	DRAM	technology	nodes	can	exhibit	
RowHammer bit	Klips	1)	in	more	rows	and	2)	farther	
away	from	the	victim	row.	



175

1.	RowHammer Vulnerability

Newer	DRAM	chips	are	more	vulnerable	to	RowHammer

Q.	Can	we	induce	RowHammer bit	flips	in	all	of	our	DRAM	chips?

All	chips	are	vulnerable,	except	many	DDR3	chips	

• A	total	of	1320	out	of	all	1580	chips	(84%)	are	vulnerable

• Within	DDR3-old chips,	only	12% of	chips	(24/204)	are	vulnerable

• Within	DDR3-new chips,	65% of	chips	(148/228)	are	vulnerable
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2.	Data	Pattern	Dependence
Q.	Are	some	data	patterns	more	effective	in	inducing	RowHammer bit	flips?

• We	test	several	data	patterns typically	examined	in	prior	
work	to	identify	the	worst-case	data	pattern	

• The	worst-case	data	pattern	is	consistent	across	chips	of	the	
same	manufacturer	and	DRAM	type-node	configuration

• We	use	the	worst-case	data	pattern	per	DRAM	chip	to	
characterize	each	chip	at	worst-case	conditions and	
minimize	the	extensive	testing	time

[More detail and figures in paper]



177

3.	Hammer	Count	(HC)	Effects
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3.	Hammer	Count	(HC)	Effects

RowHammer bit	flip	rates	(i.e.,	RowHammer vulnerability)
increase	with	technology	node	generation
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4.	Spatial	Effects:	Row	Distance
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Chips	of	newer	DRAM	technology	nodes	can	exhibit	RowHammer
bit	flips	1)	in	more	rows	and	2)	farther	away	from	the	victim	row.	

We	normalize	data	by	inducing	a	bit	flip	rate	of	10-6 in	each	chip



181

4.	Spatial	Effects:	Row	Distance
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[More analysis in the paper]

We	plot	this	data	for	each	DRAM	type-node	configuration	per	manufacturer	
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4.	Spatial	Distribution	of	Bit	Flips
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The	distribution	of	RowHammer bit	flip	density	per	word	
changes	significantly	in	LPDDR4	chips	from	other	DRAM	types

Representative of DDR3/DDR4 chip Representative of LPDDR4 chip

We	normalize	data	by	inducing	a	bit	flip	rate	of	10-6 in	each	chip

At	a	bit	flip	rate	of	10-6,	a	64-bit	word	can	contain	up	to	4	bit	flips.
Even	at	this	very	low	bit	flip	rate,	a	very	strong	ECC is	required
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4.	Spatial	Distribution	of	Bit	Flips
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We	plot	this	data	for	each	DRAM	type-node	conQiguration	per	manufacturer	

[More analysis in the paper]
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5.	First	RowHammer Bit	Flips	per	Chip
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5.	First	RowHammer Bit	Flips	per	Chip
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We	note	the	different	
DRAM	types	on	the	x-axis:	
DDR3,	DDR4,	LPDDR4.

We	focus	on	trends	across	
chips	of	the	same	DRAM	
type	to	draw	conclusions
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5.	First	RowHammer Bit	Flips	per	Chip

Newer chips from a given DRAM manufacturer 
more vulnerable to RowHammer

Mfr. A Mfr. B Mfr. C
H

am
m

er
 C

ou
nt

 n
ee

de
d


 fo
r t

he
 fi

rs
t b

it 
fli

p 
(H

C
fir

st
)

N
o 

Bi
t F

lip
s

N
o 

Bi
t F

lip
s

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

LP
DD

R4
-1

x
LP

DD
R4

-1
y

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

LP
DD

R4
-1

x

LP
DD

R4
-1

y0K

20K

40K

60K

80K

100K

120K
Mfr. A Mfr. B Mfr. C

H
am

m
er

 C
ou

nt
 n

ee
de

d

 fo

r t
he

 fi
rs

t b
it 

fli
p 

(H
C

fir
st

)

N
o 

Bi
t F

lip
s

N
o 

Bi
t F

lip
s

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

LP
DD

R4
-1

x
LP

DD
R4

-1
y

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

LP
DD

R4
-1

x

LP
DD

R4
-1

y0K

20K

40K

60K

80K

100K

120K
Mfr. A Mfr. B Mfr. C

H
am

m
er

 C
ou

nt
 n

ee
de

d

 fo

r t
he

 fi
rs

t b
it 

fli
p 

(H
C

fir
st

)

N
o 

Bi
t F

lip
s

N
o 

Bi
t F

lip
s

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

LP
DD

R4
-1

x
LP

DD
R4

-1
y

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

LP
DD

R4
-1

x

LP
DD

R4
-1

y0K

20K

40K

60K

80K

100K

120K



187

5.	First	RowHammer Bit	Flips	per	Chip

Newer chips from a given DRAM manufacturer 
more vulnerable to RowHammer
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There	are	chips	whose	weakest	cells	fail	
after	only	4800	hammers

In	a	DRAM	type,	HCfirst reduces	significantly	from	
old	to	new	chips,	i.e.,	DDR3: 69.2k	to	22.4k,	
DDR4: 17.5k	to	10k,	LPDDR4:	16.8k	to	4.8k
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Key	Takeaways	from	1580	Chips
• Chips	of	newer	DRAM	technology	nodes	are	more	
vulnerable to	RowHammer

• There	are	chips	today	whose	weakest	cells	fail	after	
only	4800	hammers

• Chips	of	newer	DRAM	technology	nodes	can	exhibit	
RowHammer bit	flips	1)	in	more	rows	and	2)	farther	
away	from	the	victim	row.	
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Evaluation	Methodology
• Cycle-level	simulator: Ramulator [Kim+,	CAL’15]
https://github.com/CMU-SAFARI/ramulator
- 4GHz,	4-wide,	128	entry	instruction	window	
- 48		8-core	workload	mixes	randomly	drawn	from	SPEC	
CPU2006	(10	<	MPKI	<	740)

• Metrics	to	evaluate	mitigation	mechanisms
1. DRAM	Bandwidth	Overhead: fraction	of	total	system	DRAM	

bandwidth	consumption	from	mitigation	mechanism	
2. Normalized	System	Performance: normalized	weighted	

speedup	to	a	100%	baseline

https://github.com/CMU-SAFARI/ramulator
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Evaluation	Methodology
• We	evaluate	five state-of-the-art	mitigation	mechanisms:
- Increased	Refresh	Rate	[Kim+,	ISCA’14]
- PARA [Kim+,	ISCA’14]

- ProHIT [Son+,	DAC’17]

- MRLoc [You+,	DAC’19]
- TWiCe [Lee+,	ISCA’19]

• and	one ideal	refresh-based	mitigation	mechanism:
- Ideal

• More	detailed	descriptions	in	the	paper	on:
- Descriptions	of	mechanisms	in	our	paper	and	the	original	publications
- How	we	scale	each	mechanism	to	more	vulnerable	DRAM	chips	(lower	HCfirst)
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Mitigation	Mech.	Eval.	(Increased	Refresh)
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Substantial overhead	for	high	HCfirst values.

This	mechanism	does	not	support	HCfirst <	32k	
due	to	the	prohibitively	high	refresh	rates	required



192

D
R

AM
 b

an
dw

id
th

 o
ve

rh
ea

d 
of

 R
ow

H
am

m
er

 m
iti

ga
tio

n 
(%

)

HCfirst

N
or

m
al

iz
ed

 
 S

ys
te

m
 P

er
fo

rm
an

ce
 (%

)

a)

b)

LPDDR4-1y
DDR4-new

DDR4-old
DDR3-old

LPDDR4-1x

LPDDR4-1x

DDR3-old
DDR4-old

DDR4-new

DDR4-new
DDR4-old

DDR3-old

}
}
}Mfr. A

Mfr. B

Mfr. C

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w
105 104 103 102

105 104 103 102

10-3

10-2

10-1

100

101

102

103

0

 20

 40

 60

 80

 100

 10

 30

 50

 70

 90

DDR3-new

LPDDR4-1y

DDR3-new

DDR3-new

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

PARA

TWiCe-ideal

Ideal

Ideal

TWiCe-ideal

PARA

105 104 103 102

105 104 103 102
D

R
AM

 b
an

dw
id

th
 o

ve
rh

ea
d 

of
 R

ow
H

am
m

er
 m

iti
ga

tio
n 

(%
)

HCfirst

N
or

m
al

iz
ed

 
 S

ys
te

m
 P

er
fo

rm
an

ce
 (%

)

a)

b)

LPDDR4-1y
DDR4-new

DDR4-old
DDR3-old

LPDDR4-1x

LPDDR4-1x

DDR3-old
DDR4-old

DDR4-new

DDR4-new
DDR4-old

DDR3-old

}
}
}Mfr. A

Mfr. B

Mfr. C

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

105 104 103 102

105 104 103 102

10-3

10-2

10-1

100

101

102

103

0

 20

 40

 60

 80

 100

 10

 30

 50

 70

 90

DDR3-new

LPDDR4-1y

DDR3-new

DDR3-new

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

PARA

TWiCe-ideal

Ideal

Ideal

TWiCe-ideal

PARA

Mitigation	Mechanism	Evaluation	(PARA)	

HCfirst (number	of	hammers	required	to	induce	first	RowHammer bit	flip)

Low	Performance	Overhead High	Performance	Overhead

80%	performance	loss



193

105 104 103 102

105 104 103 102
D

R
AM

 b
an

dw
id

th
 o

ve
rh

ea
d 

of
 R

ow
H

am
m

er
 m

iti
ga

tio
n 

(%
)

HCfirst

N
or

m
al

iz
ed

 
 S

ys
te

m
 P

er
fo

rm
an

ce
 (%

)

a)

b)

LPDDR4-1y
DDR4-new

DDR4-old
DDR3-old

LPDDR4-1x

LPDDR4-1x

DDR3-old
DDR4-old

DDR4-new

DDR4-new
DDR4-old

DDR3-old

}
}
}Mfr. A

Mfr. B

Mfr. C

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

105 104 103 102

105 104 103 102

10-3

10-2

10-1

100

101

102

103

0

 20

 40

 60

 80

 100

 10

 30

 50

 70

 90

DDR3-new

LPDDR4-1y

DDR3-new

DDR3-new

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

PARA

TWiCe-ideal

Ideal

Ideal

TWiCe-ideal

PARA

Mitigation	Mechanism	Evaluation	(ProHIT)
D

R
AM

 b
an

dw
id

th
 o

ve
rh

ea
d 

of
 R

ow
H

am
m

er
 m

iti
ga

tio
n 

(%
)

HCfirst

N
or

m
al

iz
ed

 
 S

ys
te

m
 P

er
fo

rm
an

ce
 (%

)

a)

b)

LPDDR4-1y
DDR4-new

DDR4-old
DDR3-old

LPDDR4-1x

LPDDR4-1x

DDR3-old
DDR4-old

DDR4-new

DDR4-new
DDR4-old

DDR3-old

}
}
}Mfr. A

Mfr. B

Mfr. C

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w
105 104 103 102

105 104 103 102

10-3

10-2

10-1

100

101

102

103

0

 20

 40

 60

 80

 100

 10

 30

 50

 70

 90

DDR3-new

LPDDR4-1y

DDR3-new

DDR3-new

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

PARA

TWiCe-ideal

Ideal

Ideal

TWiCe-ideal

PARA

HCfirst (number	of	hammers	required	to	induce	first	RowHammer bit	flip)



194

105 104 103 102

105 104 103 102
D

R
AM

 b
an

dw
id

th
 o

ve
rh

ea
d 

of
 R

ow
H

am
m

er
 m

iti
ga

tio
n 

(%
)

HCfirst

N
or

m
al

iz
ed

 
 S

ys
te

m
 P

er
fo

rm
an

ce
 (%

)

a)

b)

LPDDR4-1y
DDR4-new

DDR4-old
DDR3-old

LPDDR4-1x

LPDDR4-1x

DDR3-old
DDR4-old

DDR4-new

DDR4-new
DDR4-old

DDR3-old

}
}
}Mfr. A

Mfr. B

Mfr. C

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

105 104 103 102

105 104 103 102

10-3

10-2

10-1

100

101

102

103

0

 20

 40

 60

 80

 100

 10

 30

 50

 70

 90

DDR3-new

LPDDR4-1y

DDR3-new

DDR3-new

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

PARA

TWiCe-ideal

Ideal

Ideal

TWiCe-ideal

PARA

Mitigation	Mechanism	Evaluation	(MRLoc)
D

R
AM

 b
an

dw
id

th
 o

ve
rh

ea
d 

of
 R

ow
H

am
m

er
 m

iti
ga

tio
n 

(%
)

HCfirst

N
or

m
al

iz
ed

 
 S

ys
te

m
 P

er
fo

rm
an

ce
 (%

)

a)

b)

LPDDR4-1y
DDR4-new

DDR4-old
DDR3-old

LPDDR4-1x

LPDDR4-1x

DDR3-old
DDR4-old

DDR4-new

DDR4-new
DDR4-old

DDR3-old

}
}
}Mfr. A

Mfr. B

Mfr. C

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w
105 104 103 102

105 104 103 102

10-3

10-2

10-1

100

101

102

103

0

 20

 40

 60

 80

 100

 10

 30

 50

 70

 90

DDR3-new

LPDDR4-1y

DDR3-new

DDR3-new

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

PARA

TWiCe-ideal

Ideal

Ideal

TWiCe-ideal

PARA

HC&irst (number	of	hammers	required	to	induce	:irst	RowHammer bit	:lip)

Models	for	scaling ProHIT and	MRLoc for	HCfirst <	2k	
are	not	provided	and	how	to	do	so	is	not	intuitive

Supported Not	supported
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Supported Not	supported

TWiCe does	not	support	HCfirst <	32k.	

We	evaluate	an	ideal	scalable	version	(TWiCe-ideal)	
assuming	it	solves	two	critical	design	issues
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Ideal	mechanism	issues	a	refresh	command	
to	a	row	only	right	before	the	row	

can	potentially	experience	a	RowHammer bit	flip	

6%	performance	loss
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Mitigation	Mechanism	Evaluation

PARA,	ProHIT,	and	MRLoc mitigate	RowHammer bit	elips
in	worst	chips	today	with	reasonable	system	performance	

(92%,	100%,	100%)
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Mitigation	Mechanism	Evaluation

Only	PARA’s	design	scales	to	low	HCfirst values
but	has	very	low	normalized	system	performance	
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Mitigation	Mechanism	Evaluation

Ideal mechanism	is	significantly	better	
than	any	existing	mechanism	for	HCfirst <	1024

Significant	opportunity	for	developing	a	RowHammer solution	
with	low	performance	overhead	that	supports	low	HCfirst
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Key	Takeaways	from	Mitigation	Mechanisms

• Existing	RowHammer mitigation	mechanisms	can	prevent	
RowHammer attacks	with	reasonable	system	performance	
overhead in	DRAM	chips	today

• Existing	RowHammer mitigation	mechanisms	do	not	scale	
well to	DRAM	chips	more	vulnerable	to	RowHammer

• There	is	still	significant	opportunity	for	developing	a	
mechanism	that	is	scalable	with	low	overhead
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Additional	Details	in	the	Paper	
• Single-cell	RowHammer bit	flip	probability

• More	details	on	our	data	pattern	dependence study

• Analysis	of	Error	Correcting	Codes	(ECC) in	mitigating	
RowHammer bit	flips

• Additional	observations on	our	data	

• Methodology	details	for	characterizing	DRAM

• Further	discussion	on	comparing	data	across	different	
infrastructures

• Discussion	on	scaling	each	mitigation	mechanism
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RowHammer Solutions	Going	Forward

Two promising	directions	for	new	RowHammer solutions:

1. DRAM-system	cooperation
- We	believe	the	DRAM	and	system	should	cooperate	more	to	provide	a	
holistic solution	can	prevent	RowHammer at	low	cost

2. Profile-guided
- Accurate	profile	of	RowHammer-susceptible	cells	in	DRAM	provides	a	
powerful	substrate	for	building	targeted RowHammer solutions,	e.g.:

• Only	increase	the	refresh	rate	for	rows	containing	RowHammer-susceptible	cells

- A	fast	and	accurate	profiling	mechanism	is	a	key	research	challenge	for	
developing	low-overhead	and	scalable	RowHammer solutions
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Conclusion
• We	characterized	1580	DRAM	chips	of	different	DRAM	types,	
technology	nodes,	and	manufacturers.	

• We	studied	five state-of-the-art	RowHammer mitigation	
mechanisms	and	an	ideal	refresh-based	mechanism

• We	made	two	key	observations
1. RowHammer is	getting	much	worse.	It	takes	much	fewer	hammers	to	

induce	RowHammer bit	flips	in	newer	chips	
• e.g.,	DDR3: 69.2k	to	22.4k,	DDR4: 17.5k	to	10k,	LPDDR4:	16.8k	to	4.8k

2. Existing	mitigation	mechanisms	do	not	scale	to	DRAM	chips	that	are	
more	vulnerable	to	RowHammer
• e.g.,	80%	performance	loss	when	the	hammer	count	to	induce	the	first	bit	flip	is	128

• We	conclude that	it	is	critical to	do	more	research	on	
RowHammer and	develop	scalable	mitigation	mechanisms	to	
prevent	RowHammer in	future	systems
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Proceedings of the 47th International Symposium on Computer 
Architecture (ISCA), Valencia, Spain, June 2020.
[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (3 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20.pdf
http://iscaconf.org/isca2020/
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-lightning-talk.pdf
https://youtu.be/Lqxc4_ToMUw
https://youtu.be/wDhqi3f1a3Q
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RowHammer in 2020 (II)
n Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen, Onur Mutlu, 

Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi,
"TRRespass: Exploiting the Many Sides of Target Row Refresh"
Proceedings of the 41st IEEE Symposium on Security and Privacy (S&P), San Francisco, 
CA, USA, May 2020.
[Slides (pptx) (pdf)]
[Lecture Slides (pptx) (pdf)]
[Talk Video (17 minutes)]
[Lecture Video (59 minutes)]
[Source Code]
[Web Article]
Best paper award.
Pwnie Award 2020 for Most Innovative Research. Pwnie Awards 2020
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http://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20.pdf
https://www.ieee-security.org/TC/SP2020/
http://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20-talk.pptx
http://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20-talk.pdf
https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture5a-rowhammerin2020-trrespass-afterlecture.pptx
https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture5a-rowhammerin2020-trrespass-afterlecture.pdf
https://www.youtube.com/watch?v=u2C0prK-w7Q
https://www.youtube.com/watch?v=pwRw7QqK_qA
https://github.com/vusec/trrespass
https://www.vusec.net/projects/trrespass/
https://pwnies.com/winners/


TRRespass
n First work to show that TRR-protected DRAM chips are 

vulnerable to RowHammer in the field
q Mitigations advertised as secure are not secure

n Introduces the Many-sided RowHammer attack
q Idea: Hammer many rows to bypass TRR mitigations (e.g., by 

overflowing proprietary TRR tables that detect aggressor rows)

n (Partially) reverse-engineers the TRR and pTRR mitigation 
mechanisms implemented in DRAM chips and memory 
controllers

n Provides an automatic tool that can effectively create many-
sided RowHammer attacks in DDR4 and LPDDR4(X) chips
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Example Many-Sided Hammering Patterns
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Target	Row	Refresh	(TRR)

• How	does	it	work?

1. Track activation	count	of	each	DRAM	row

2. Refresh neighbor	rows	if	row	activation	count	exceeds	a	threshold

• Many	possible	implementations	in	practice

• Security	through	obscurity

• In-DRAM	TRR

• Embedded	in	the	DRAM	circuitry,	i.e.,	not	exposed	to	the	memory	controller
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Timeline	of	TRR	Implementations

'12 '14 '15'13 '16 '18'17 '19

pTRR	DDR3
Intel	reports	pTRR	
on	DDR3	server	

systems

pTRR	DDR4
First	DDR4	generation	is	

pTRR	protected

In-DRAM	TRR
Earliest	manufacturing	
date	of	RH-free	DRAM

modules

Last	generation	DIMMs	we	focus	on
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Our	Goals

• Reverse engineer	in-DRAM	TRR	to	demystify	how	it	works

• Bypass	TRR	protection

• A Novel	hammering	pattern:	The	Many-sided	RowHammer

• Hammering	up	to	20	aggressor	rows	allows	bypassing	TRR

• Automatically	test	memory	devices:	TRRespass

• Automate	hammering	pattern	generation



Infrastructures to Understand Such Issues

213Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

HeaterFPGAs FPGAs



SoftMC: Open Source DRAM Infrastructure

n Hasan Hassan et al., “SoftMC: A 
Flexible and Practical Open-
Source Infrastructure for 
Enabling Experimental DRAM 
Studies,” HPCA 2017.

n Flexible
n Easy to Use (C++ API)
n Open-source 

github.com/CMU-SAFARI/SoftMC 
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https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf


SoftMC

n https://github.com/CMU-SAFARI/SoftMC
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https://github.com/CMU-SAFARI/SoftMC


Components of In-DRAM TRR

n Sampler
q Tracks aggressor rows activations
q Design options:

n Frequency based (record every Nth row activation)
n Time based (record first N row activations)
n Random seed (record based on a coin flip)

q Regardless, the sampler has a limited size

n Inhibitor
q Prevents bit flips by refreshing victim rows

n The latency of performing victim row refreshes is squeezed into 
slack time available in tRFC (i.e., the latency of regular Refresh
command)



Case Study: Vendor C

How big is the sampler?
n Pick N aggressor rows
n Perform a series of hammers (i.e., activations of 

aggressors)
q 8K activations 

n After each series of hammers, issue R refreshes
n 10 Rounds

hammers refreshes hammers refreshes

Round



#Corruptions

Case Study: Vendor C



#Corruptions

Case Study: Vendor C



#Corruptions

Case Study: Vendor C

1. The TRR mitigation acts on a refresh command



#Corruptions

Case Study: Vendor C



Case Study: Vendor C

#Corruptions

2. The mitigation can sample more than one aggressor per refresh interval
3. The mitigation can refresh only a single victim within a refresh operation



#Corruptions

Case Study: Vendor C



#Corruptions

Case Study: Vendor C

4. Sweeping the number of refresh operations and aggressor 
rows while hammering reveals the sampler size



Many-Sided Hammering
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Some Observations
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Case Study: Vendor C

Hammering using the default refresh rate



BitFlips vs. Number of Aggressor Rows
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TRRespass Vulnerable DRAM Modules
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TRRespass Vulnerable Mobile Phones
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TRRespass Based RowHammer Attack
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TRRespass Key Results
n 13 out of 42 tested DDR4 DRAM modules are vulnerable

q From all 3 major manufacturers
q 3-, 9-, 10-, 14-, 19-sided hammer attacks needed

n 5 out of 13 mobile phones tested vulnerable
q From 4 major manufacturers
q With LPDDR4(X) DRAM chips

n These results are scratching the surface
q TRRespass tool is not exhaustive
q There is a lot of room for uncovering more vulnerable chips 

and phones

232



TRRespass Key Takeaways

RowHammer is still 
an open problem

Security by obscurity 
is likely not a good solution
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More on TRRespass
n Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen, Onur Mutlu, 

Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi,
"TRRespass: Exploiting the Many Sides of Target Row Refresh"
Proceedings of the 41st IEEE Symposium on Security and Privacy (S&P), San Francisco, 
CA, USA, May 2020.
[Slides (pptx) (pdf)]
[Lecture Slides (pptx) (pdf)]
[Talk Video (17 minutes)]
[Lecture Video (59 minutes)]
[Source Code]
[Web Article]
Best paper award.
Pwnie Award 2020 for Most Innovative Research. Pwnie Awards 2020
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http://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20.pdf
https://www.ieee-security.org/TC/SP2020/
http://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20-talk.pptx
http://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20-talk.pdf
https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture5a-rowhammerin2020-trrespass-afterlecture.pptx
https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture5a-rowhammerin2020-trrespass-afterlecture.pdf
https://www.youtube.com/watch?v=u2C0prK-w7Q
https://www.youtube.com/watch?v=pwRw7QqK_qA
https://github.com/vusec/trrespass
https://www.vusec.net/projects/trrespass/
https://pwnies.com/winners/


BlockHammer Solution



BlockHammer Solution in 2021
n A. Giray Yaglikci, Minesh Patel, Jeremie S. Kim, Roknoddin Azizi, Ataberk Olgun, Lois Orosa, 

Hasan Hassan, Jisung Park, Konstantinos Kanellopoulos, Taha Shahroodi, Saugata Ghose, 
and Onur Mutlu,
"BlockHammer: Preventing RowHammer at Low Cost by Blacklisting Rapidly-
Accessed DRAM Rows"
Proceedings of the 27th International Symposium on High-Performance Computer 
Architecture (HPCA), Virtual, February-March 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Intel Hardware Security Academic Awards Short Talk Slides (pptx) (pdf)]
[Talk Video (22 minutes)]
[Short Talk Video (7 minutes)]
[Intel Hardware Security Academic Awards Short Talk Video (2 minutes)]
[BlockHammer Source Code]
Intel Hardware Security Academic Award Finalist (one of 4 finalists out of 34 
nominations)
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https://people.inf.ethz.ch/omutlu/pub/BlockHammer_preventing-DRAM-rowhammer-at-low-cost_hpca21.pdf
https://www.hpca-conf.org/2021/
https://people.inf.ethz.ch/omutlu/pub/BlockHammer-preventing-rowhammer-at-low-cost-by-blacklisting-rapidly-accessed-dram-rows_hpca21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/BlockHammer-preventing-rowhammer-at-low-cost-by-blacklisting-rapidly-accessed-dram-rows_hpca21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/BlockHammer-preventing-rowhammer-at-low-cost-by-blacklisting-rapidly-accessed-dram-rows_hpca21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/BlockHammer-preventing-rowhammer-at-low-cost-by-blacklisting-rapidly-accessed-dram-rows_hpca21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/BlockHammer-IntelHardwareSecurityAcademicAwards-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/BlockHammer-IntelHardwareSecurityAcademicAwards-short-talk.pdf
https://www.youtube.com/watch?v=4Y01N1BhWv4&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=102
https://www.youtube.com/watch?v=h0WiOTVIH70&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=124
https://www.youtube.com/watch?v=5TymwquygZM
https://github.com/CMU-SAFARI/BlockHammer


BlockHammer
Preventing	RowHammer	at	Low	Cost	

by	Blacklisting	Rapidly-Accessed	DRAM	Rows

Abdullah	Giray Yağlıkçı
Minesh Patel				Jeremie S.	Kim				Roknoddin Azizi

Ataberk Olgun Lois	Orosa Hasan	Hassan				Jisung Park			
Konstantinos	Kanellopoulos Taha	Shahroodi

Saugata Ghose*	 Onur Mutlu

*
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Executive	Summary
• Motivation:	RowHammer	is	a	worsening	DRAM	reliability	and	security	problem

• Problem:	Mitigation	mechanisms	have	limited	support	for	current/future	chips
- Scalabilitywith	worsening	RowHammer	vulnerability	
- Compatibilitywith	commodity	DRAM	chips

• Goal:	Ef\iciently and	scalably prevent	RowHammer	bit-glips	
without knowledge	of	or	modigications	to	DRAM	internals	

• Key	Idea: Selectively	throttle	memory	accesses	that	may	cause	RowHammer	bit-glips

• Mechanism:	BlockHammer	
- Tracks activation	rates	of	all	rows	by	using	area-ef`icient	Bloom	`ilters
- Throttles row	activations	that	could	cause	RowHammer	bit	`lips
- Identi[ies	and	throttles	threads	that	perform	RowHammer	attacks

• Scalability	with	Worsening	RowHammer	Vulnerability:
- Competitivewith	state-of-the-art	mechanisms	when	there	is	no	attack
- Superior performance	and	DRAM	energy	when	a	RowHammer	attack	is	present

• Compatibility	with	Commodity	DRAM	Chips:	
- No	proprietary	information	of	DRAM	internals
- No	modi[ications	to	DRAM	circuitry
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Outline

DRAM	and	RowHammer	Background	
Motivation	and	Goal
BlockHammer

RowBlocker
AttackThrottler

Evaluation
Conclusion
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Outline

DRAM	and	RowHammer	Background	
Motivation	and	Goal
BlockHammer

RowBlocker
AttackThrottler

Evaluation
Conclusion
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Organizing	and	Accessing	
DRAM	Cells

A	row	needs	to	be	activated to	access	its	content

A	DRAM	cell	consists	of	a	capacitor and	an	access transistor



242

DRAM	Refresh

Periodic	refresh	operations	preserve	stored	data

Ca
pa
ci
to
r	v
ol
ta
ge
	(V
dd
) 100%

0%

Vmin

Refresh	Window
tREFW

Refresh	Operations

time
REF REFREF

[Patel+ ISCA’17, Kim+ ISCA’20]
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The	RowHammer	Phenomenon

Row	0

Row	1

Row	2

Row	3

Row	4

Repeatedly	opening (activating)	and	closing (precharging)	
a	DRAM	row	causes	RowHammer	bit	flips in	nearby	cells

Row	2open
Row	1

Row	3

Row	2closed Row	2open
Row	1

Row	3

Row	0

Row	4

Victim	Row

Victim	Row

Victim	Row

Victim	Row

Aggressor	RowRow	2open Row	2closed

DRAM Bank

[Kim+ ISCA’20]
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Outline

DRAM	and	RowHammer	Background	
Motivation	and	Goal
BlockHammer

RowBlocker
AttackThrottler

Evaluation
Conclusion
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RowHammer	Mitigation	Approaches
• Increased	refresh	rate	

• Physical	isolation

• Reactive	refresh

• Proactive	throttling

DRAM Bank

Aggressor Row

Victim Rows

Isolation Rows Large-enough	distance

DRAM BankAggressor Row

Victim rows

RefreshVictim Rows

Refresh

Rapidly	activated	(hammered)

REF-to-REF	time	reduces
Fewer	activations	can	`it

Fewer	activations	can	be	performed
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Two	Key	Challenges

Scalability
with	worsening	RowHammer	vulnerability1

Compatibility
with	commodity	DRAM	chips2 Compatibility
with	commodity	DRAM	chips2 Compatibility
with	commodity	DRAM	chips2
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Scalability
with	Worsening	RowHammer	Vulnerability
• DRAM	chips	are	more	vulnerable	to	RowHammer	today
• RowHammer	bit-flips	occur	at	much	lower	activation	counts	
(more	than	an	order	of	magnitude	decrease):
- 139.2K	 [Y.	Kim+,	ISCA	2014]	
- 9.6K	 [J.	S.	Kim+,	ISCA	2020]

• RowHammer	blast	radius	has	increased	by	33%:
- 9	rows [Y.	Kim+,	ISCA	2014]
- 12	rows	 [J.	S.	Kim+,	ISCA	2020]

• In-DRAM	mitigation	mechanisms	are	ineffective	[Frigo+,	S&P	2020]

RowHammer	is	a	more	serious	problem	than	ever
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Mitigation	Approaches	
with	Worsening	RowHammer	Vulnerability

DRAM Bank

Aggressor Row

Vic3m Rows

Isolation RowsIsolation Rows Larger distance
more isolaXon rows

DRAM BankAggressor row

Victim rows

Refresh more frequently
Refresh more rows Vic3m rows

Refresh more frequently
Refresh more rows 

REF-to-REF	time	further	reduces
Even	fewer	activations	can	`it

• Increased	refresh	rate	

• Physical	isolation

• Reactive	refresh

• Proactive	throttling

More	aggressively	throttles	row	activations	
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Mitigation	Approaches	
with	Worsening	RowHammer	Vulnerability

DRAM Bank

Aggressor Row

Victim Rows

Isola3on RowsIsolation Rows Larger distance
more isolaXon rows

DRAM BankAggressor row

Vic3m rows

Refresh more frequently
Refresh more rows Victim rows

Refresh more frequently
Refresh more rows 

REF-to-REF	time	further	reduces
Even	fewer	activations	can	`it

• Increased	refresh	rate	

• Physical	isolation

• Reactive	refresh

• Proactive	throttling

More	aggressively	throttles	row	activations	

Mitigation	mechanisms	face	the	challenge	of	
scalability	with	worsening	RowHammer
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Two	Key	Challenges

Compatibility
with	commodity	DRAM	chips2

Scalability
with	worsening	RowHammer	vulnerability1

Compatibility
with	commodity	DRAM	chips2

Scalability
with	worsening	RowHammer	vulnerability1
Scalability
with	worsening	RowHammer	vulnerability1
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Compatibility	
with	Commodity	DRAM	Chips

Application
Level Virtual Memory Address

System
Level

Physical Memory Address

Memory
Controller

DRAM Bus Addresses 
(Channel, Rank, Bank Group, Bank, Row, Col)

Vi
sib

le
 w

ith
in

 
th

e 
Pr

oc
es

so
r

In-DRAM
Mapping Physical Rows and Columns

DR
AM

Ch
ip
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Compatibility	
with	Commodity	DRAM	Chips

Vendors	apply	in-DRAM	mapping	for	two	reasons:
• Design	Optimizations: By	simplifying	DRAM	circuitry
to	provide	better	density,	performance,	and	power

• Yield	Improvement:	By	mapping	faulty	rows	and	columns	
to	redundant	ones

• In-DRAM	mapping	scheme	includes	insights	into	chip	design	
and	manufacturing	quality

In-DRAM	mapping	is	proprietary	information
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RowHammer	Mitigation	Approaches
• Increased	refresh	rate	

• Physical	isolation

• Reactive	refresh

• Proactive	throttling

REF-to-REF	time	reduces
Fewer	activations	can	`it

Fewer	activations	can	be	performed

DRAM Bank

Aggressor Row

Victim Rows

Isola3on Rows

DRAM BankAggressor Row

Vic3m rows

Victim Rows

Iden4fying vic6m and isola6on rows requires 
proprietary knowledge of in-DRAM mapping
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Our	Goal

To	prevent	RowHammer	efKiciently and scalably
without knowledge	of	or	modiKications	to	DRAM	internals
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Outline

DRAM	and	RowHammer	Background	
Motivation	and	Goal
BlockHammer

RowBlocker
AttackThrottler

Evaluation
Conclusion
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BlockHammer	
Key	Idea

Selectively	throttle	memory	accesses	
that	may	cause	RowHammer	bit-flips
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BlockHammer	
Overview	of	Approach

RowBlocker
Tracks row	activation	rates	using	area-efficient	Bloom	filters
Blacklists rows	that	are	activated	at	a	high	rate
Throttles activations targeting	a	blacklisted	row

AttackThrottler
Identifies threads	that	perform	a	RowHammer	attack
Reduces memory	bandwidth	usage	of	identified	threads

No	row	can	be	activated	at	a	high	enough	rate	to	induce	bit-elips

Greatly	reduces	the	performance	degradation	
and energy	wastage	a	RowHammer	attack	inflicts	on	a	system
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Outline

DRAM	and	RowHammer	Background	
Motivation	and	Goal
BlockHammer

RowBlocker
AttackThrottler

Evaluation
Conclusion
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RowBlocker

• Modi_ies	the	memory	request	scheduler	to	throttle	row	activations
• Blacklists rows	with	a	high	activation	rate	and	delays subsequent	
activations	targeting	blacklisted	rows

Blacklisting 
Logic

Delaying
Logic
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RowBlocker

• Blocks	a	row	activation	if	the	row	is	both blacklisted
and recently	activated



261

RowBlocker

• When	a	row	activation	is	performed,	both	RowBlocker-BL and	
RowBlocker-HB are	updated	with	the	row	activation	information
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RowBlocker-BL	
Blacklisting	Logic

• Blacklists a	row	when	the	row’s	
activation	count	in	a	time	window	
exceeds	a	threshold

• Employs	two	counting	Bloom	filters	
for	area-efficient	activation	rate	tracking
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Counting	Bloom	Filters

• Blacklisting	logic	counts	activations	using	counting	Bloom	filters
• A	row’s	activation	count	

- can	be	observed	more	than	it	is	(false	positive)
- cannot	be observed	less	than	it	is	(no	false	negative)

• To	avoid	saturating	counters,	we	use	a	time-interleaving	approach

0 0 0 0 0 0 0 0 00

Hash functions

ACT Row A

1 1 1 11 1 11

ACT Row B

1 1 2 11 1 2 1

Minimum

1

Test Row A

1 1 2 1
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RowBlocker-BL	
Blacklisting	Logic
• Blacklisting	logic	employs	two	counting	Bloom	Vilters
• A	new	row	activation	is	inserted	in	both	Vilters
• Only	one	Vilter	(active	Vilter)	responds	to	test	queries
• The	active	Vilter	changes	at	every	epoch

CBFA is active

CBFB is active

CBFA is passive

CBFB is passive



265

RowBlocker-BL	
Blacklisting	Logic
• Blacklisting	logic	employs	two	counting	Bloom	filters
• A	new	row	activation	is	inserted	in	both	filters
• Only	one	filter	(active	filter)	responds	to	test	queries
• The	active	filter	changes	at	every	epoch
• Blacklists	a	row	if	its	activation	count	reaches	the	blacklisting	threshold	(NBL)

Assume that the row is 
ac3vated at a high rate

Assume that the row is 
not activated at a high rate
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Limiting	the	Row	Activation	Rate

• The	activation	rate	is	RowHammer-safe if	it	is	smaller	than	or	equal	to	
RowHammer	threshold	(NRH) activations	in	a	refresh	window	(tREFW)	

• RowBlocker limits	the	activation	count	(NCBF)	in	a	CBF’s	lifetime	(tCBF)

tCBF

tCBF

Clear CBFB Clear CBFB

Clear CBFAClear CBFA

𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 𝑖𝑛 𝑎 𝑡$%& ≤ 𝑁'( 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑎 𝑟𝑒𝑓𝑟𝑒𝑠ℎ 𝑤𝑖𝑛𝑑𝑜𝑤 (𝑡')&*)
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Limiting	the	Row	Activation	Rate

• The	activation	rate	is	RowHammer-safe if	it	is	smaller	than	or	equal	to	
RowHammer	threshold	(NRH) activations	in	a	refresh	window	(tREFW)	

• RowBlocker limits	the	activation	count	(NCBF)	in	a	CBF’s	lifetime	(tCBF)

tCBF

tCBF

Clear CBFB Clear CBFB

Clear CBFAClear CBFA

𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 𝑖𝑛 𝑎 𝑡$%& ≤ 𝑁'( 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑎 𝑟𝑒𝑓𝑟𝑒𝑠ℎ 𝑤𝑖𝑛𝑑𝑜𝑤 (𝑡')&*)

!𝑵𝑪𝑩𝑭
𝒕𝑪𝑩𝑭

!𝑵𝑹𝑯
𝒕𝑹𝑬𝑭𝑾≤

RowHammer Safety Constraint
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RowBlocker-HB	
Limiting	the	Row	Activation	Rate
• Ensures	that	all	rows	experience	
a	RowHammer-safe	activation	rate

• We	limit	NCBF by	con_iguring	tDelay :

Row 
activation

tDelay tDelay

NCBF row	activations

⁄𝑁./0 𝑡./0 ⁄𝑁12 𝑡1304≤

tDelay

𝑡./0 − (𝑡1.×𝑁/5)
𝑡6789:

tCBF

timetDelay

tRC x	NBL tCBF – (tRC
✖

NBL)
tRC

NBL row	activations Blacklisted row activation

𝑁./0 ≤ 𝑁/5 +
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RowBlocker-HB
Delaying	Row	Activations
• RowBlocker-HB	ensures	no	subsequent	blacklisted	row	activation	
is	performed	sooner	than	tDelay

• RowBlocker-HB	implements	a	history	buffer	for	row	activations	
that	can	fit	in	a	tDelay time	window
• A	blacklisted	row	activation	is	blocked	as	long	as	a	valid	activation	
record	of	the	row	exists	in	the	history	buffer

No	row	can	be	activated	at	a	high	enough	rate	
to	induce	bit-Klips
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AttackThrottler

• Tackles	a	RowHammer	attack’s	performance	degradation	
and	energy	wastage	on	a	system

• A	RowHammer	attack	intrinsically	keeps	activating	blacklisted	rows

• RowHammer	Likelihood	Index	(RHLI):	Number	of	activations	that	target	
blacklisted	rows	(normalized	to	maximum	possible	activation	count)	

RHLI	is	larger	when	the	thread’s	access	pattern	
is	more	similar	to	a	RowHammer	attack

0.0 1.0
RHLI

Benign applicaWon
No blacklisted row acXvaXons

RowHammer attack
Blacklisted row activation count 
approaches RowHammer threshold
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AttackThrottler

• Applies	a	smaller	quota	to	a	thread’s	in-Vlight	request	count	as	RHLI	increases

• Reduces	a	RowHammer	attack’s	memory	bandwidth	consumption,	enabling	a	
larger	memory	bandwidth	for	concurrent	benign	applications

• RHLI	can	also	be	used	as	a	RowHammer	attack	indicator	by	the	system	software

Greatly	reduces	the	perfomance degradation	and energy	wastage	
a	RowHammer	attack	inflicts	on	a	system

RHLI

Benign application
No blacklisted row activations
No quota applied

RowHammer aXack
Blacklisted row acXvaXon count 
approaches RowHammer threshold
No request is allowed

0.0 1.0
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Evaluation
BlockHammer’s	Hardware	Complexity
• We	analyze	six	state-of-the-art	mechanisms	and BlockHammer
• We	calculate	area,	access	energy,	and	static	power	consumption*

Mitigation SRAM CAM Area Access	Energy Static	Power
Mechanism KB KB mm2 %CPU pJ mW
BlockHammer
PARA	[73]
ProHIT [137]
MRLoc [161]
CBT	[132]
TWiCe	[84]
Graphene	[113]

Mitigation SRAM CAM Area Access	Energy Static	Power
Mechanism KB KB mm2 %CPU pJ mW
BlockHammer 51.48 1.73 0.14 0.06 20.30 22.27
PARA	[73] - - <0.01 - - -
ProHIT [137] - 0.22 <0.01 <0.01 3.67 0.14
MRLoc [161] - 0.47 <0.01 <0.01 4.44 0.21
CBT	[132] 16.00 8.50 0.20 0.08 9.13 35.55
TWiCe	[84] 23.10 14.02 0.15 0.06 7.99 21.28
Graphene	[113] - 5.22 0.04 0.02 40.67 3.11

N R
H=
32
K

BlockHammer	is	low	cost	and competitive
with	state-of-the-art	mechanisms

*Assuming	a	high-end	28-core	Intel	Xeon	processor	system	with	4-channel	single-rank	DDR4	DIMMs
with	a	RowHammer	threshold	(NRH)	of	32K
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Evaluation
BlockHammer’s	Hardware	Complexity
Mitigation SRAM CAM Area Access	Energy Static	Power
Mechanism KB KB mm2 %CPU pJ mW
BlockHammer 51.48 1.73 0.14 0.06 20.30 22.27
PARA	[73] - - <0.01 - - -
ProHIT [137] - 0.22 <0.01 <0.01 3.67 0.14
MRLoc [161] - 0.47 <0.01 <0.01 4.44 0.21
CBT	[132] 16.00 8.50 0.20 0.08 9.13 35.55
TWiCe	[84] 23.10 14.02 0.15 0.06 7.99 21.28
Graphene	[113] - 5.22 0.04 0.02 40.67 3.11

Mitigation SRAM CAM Area Access	Energy Static	Power
Mechanism KB KB mm2 %CPU pJ mW
BlockHammer 51.48 1.73 0.14 0.06 20.30 22.27
PARA	[73] - - <0.01 - - -
ProHIT [137] - 0.22 <0.01 <0.01 3.67 0.14
MRLoc [161] - 0.47 <0.01 <0.01 4.44 0.21
CBT	[132] 16.00 8.50 0.20 0.08 9.13 35.55
TWiCe	[84] 23.10 14.02 0.15 0.06 7.99 21.28
Graphene	[113] - 5.22 0.04 0.02 40.67 3.11
BlockHammer 441.33 55.58 1.57 0.64 99.64 220.99
PARA	[73] - - <0.01 - - -
ProHIT [137] x x x x x x
MRLoc [161] x x x x x x
CBT	[132] 512.00 272.00 3.95 1.60 127.93 535.50
TWiCe	[84] 738.32 448.27 5.17 2.10 124.79 631.98
Graphene	[113] - 166.03 1.14 0.46 917.55 93.96

Mitigation SRAM CAM Area Access	Energy Static	Power
Mechanism KB KB mm2 %CPU pJ mW
BlockHammer 0.06 20.30 22.27
PARA	[73]
ProHIT [137]
MRLoc [161]
CBT	[132] 0.08 35.55
TWiCe	[84] 0.06 21.28
Graphene	[113] 0.02 40.67 3.11
BlockHammer 0.64 99.64 220.99
PARA	[73]
ProHIT [137]
MRLoc [161]
CBT	[132] 1.60 535.50
TWiCe	[84] 2.10 631.98
Graphene	[113] 0.46 917.55 93.96

20x
35x
23x

10x

15x
30x
30x

10x

23x

5x

N R
H=
32
K

N R
H=
1K

BlockHammer’s	hardware	complexity scales more	efficiently	
than	state-of-the-art	mechanisms
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Evaluation
Performance	and	DRAM	Energy
• Cycle-level	simulations	using	Ramulator and	DRAMPower
• System	Configuration:	

• Single-Core	Benign	Workloads:
- 22	SPEC	CPU	2006
- 4	YCSB	Disk	I/O
- 2	Network	Accelerator	Traces
- 2	Bulk	Data	Copy	with	Non-Temporal	Hint	(movnti)

• Randomly	Chosen	MultiprogrammedWorkloads:	
- 125	workloads	containing	8	benign	applications
- 125	workloads	containing	7	benign	applications	and	1	RowHammer	attack	thread

Processor 3.2	GHz,	{1,8}	core,	4-wide	issue,	128-entry	instr.	window
LLC 64-byte	cacheline,		8-way	set-associative,	{2,16}	MB
Memory	scheduler FR-FCFS
Address	mapping Minimalistic	Open	Pages
DRAM DDR4	1	channel,	1	rank,	4	bank	group,	4	banks	per	bank	group
RowHammer	Threshold 32K	
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Evaluation
Performance	and	DRAM	Energy
• We	classify	single-core	workloads	into	three	categories	based	on	
row	buffer	conflicts	per	thousand	instructions

• No	application’s	row	activation	count	exceeds	BlockHammer’s	
blacklisting	threshold	(NBL)

0.0 1.0 5.0
RBCPKI

Low (L) Medium (M) High (H)

BlockHammer does not incur performance or DRAM energy overheads 
for single-core benign applications
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Evaluation
Performance	and	DRAM	Energy

• System	throughput	(weighted	speedup)
• Job	turnaround	time	(harmonic	speedup)

• Unfairness	(maximum	slowdown)
• DRAM	energy	consumption	

RowHammer
Attack
Present

No 
RowHammer
Attack

BlockHammer introduces very low performance (<0.5%) and DRAM energy (<0.4%) overheads

BlockHammer significantly increases benign application performance (by 45% on average) 
and reduces DRAM energy consumption (by 29% on average)
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Evaluation
Scaling	with	RowHammer	Vulnerability

RowHammer
Attack Present

No RowHammer
Attack

BlockHammer’s performance and energy overheads remain negligible (<0.6%)

BlockHammer scalably provides much higher performance (71% on average)
and lower energy consumption (32% on average) than state-of-the-art mechanisms

• System	throughput	(weighted	speedup)
• Job	turnaround	time	(harmonic	speedup)

• Unfairness	(maximum	slowdown)
• DRAM	energy	consumption	
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More	in	the	Paper

• Security	Proof
- Mathematically	represent	all	possible	access	patterns	
- We	show	that	no	row	can	be	activated	high-enough	times to	induce	bit-flips
when	BlockHammer	is	configured	correctly

• Addressing	Many-Sided Attacks
• Evaluation	of	14	mechanisms representing four	mitigation	approaches

- Comprehensive	Protection
- Compatibility	with	Commodity	DRAM	Chips
- Scalability	with	RowHammer	Vulnerability
- Deterministic	Protection
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Conclusion
• Motivation:	RowHammer	is	a	worsening	DRAM	reliability	and	security	problem

• Problem:	Mitigation	mechanisms	have	limited	support	for	current/future	chips
- Scalabilitywith	worsening	RowHammer	vulnerability	
- Compatibilitywith	commodity	DRAM	chips

• Goal:	Efficiently and	scalably prevent	RowHammer	bit-flips	
without knowledge	of	or	modifications	to	DRAM	internals	

• Key	Idea: Selectively	throttle	memory	accesses	that	may	cause	RowHammer	bit-flips

• Mechanism:	BlockHammer	
- Tracks activation	rates	of	all	rows	by	using	area-efficient	Bloom	filters
- Throttles row	activations	that	could	cause	RowHammer	bit	flips
- Identifies	and	throttles	threads	that	perform	RowHammer	attacks

• Scalability	with	Worsening	RowHammer	Vulnerability:
- Competitivewith	state-of-the-art	mechanisms	when	there	is	no	attack
- Superior performance	and	DRAM	energy	when	a	RowHammer	attack	is	present

• Compatibility	with	Commodity	DRAM	Chips:	
- No	proprietary	information	of	DRAM	internals
- No	modifications	to	DRAM	circuitry
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More on BlockHammer
n A. Giray Yaglikci, Minesh Patel, Jeremie S. Kim, Roknoddin Azizi, Ataberk Olgun, Lois Orosa, 

Hasan Hassan, Jisung Park, Konstantinos Kanellopoulos, Taha Shahroodi, Saugata Ghose, 
and Onur Mutlu,
"BlockHammer: Preventing RowHammer at Low Cost by Blacklisting Rapidly-
Accessed DRAM Rows"
Proceedings of the 27th International Symposium on High-Performance Computer 
Architecture (HPCA), Virtual, February-March 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Intel Hardware Security Academic Awards Short Talk Slides (pptx) (pdf)]
[Talk Video (22 minutes)]
[Short Talk Video (7 minutes)]
[Intel Hardware Security Academic Awards Short Talk Video (2 minutes)]
[BlockHammer Source Code]
Intel Hardware Security Academic Award Finalist (one of 4 finalists out of 34 
nominations)
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https://people.inf.ethz.ch/omutlu/pub/BlockHammer_preventing-DRAM-rowhammer-at-low-cost_hpca21.pdf
https://www.hpca-conf.org/2021/
https://people.inf.ethz.ch/omutlu/pub/BlockHammer-preventing-rowhammer-at-low-cost-by-blacklisting-rapidly-accessed-dram-rows_hpca21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/BlockHammer-preventing-rowhammer-at-low-cost-by-blacklisting-rapidly-accessed-dram-rows_hpca21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/BlockHammer-preventing-rowhammer-at-low-cost-by-blacklisting-rapidly-accessed-dram-rows_hpca21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/BlockHammer-preventing-rowhammer-at-low-cost-by-blacklisting-rapidly-accessed-dram-rows_hpca21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/BlockHammer-IntelHardwareSecurityAcademicAwards-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/BlockHammer-IntelHardwareSecurityAcademicAwards-short-talk.pdf
https://www.youtube.com/watch?v=4Y01N1BhWv4&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=102
https://www.youtube.com/watch?v=h0WiOTVIH70&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=124
https://www.youtube.com/watch?v=5TymwquygZM
https://github.com/CMU-SAFARI/BlockHammer


Read Disturb in Flash Memory



Experimental Testing Platform

USB Jack

Virtex-II Pro
(USB controller)

Virtex-V FPGA
(NAND Controller)

HAPS-52 Mother Board

USB Daughter Board

NAND Daughter Board

1x-nm
NAND Flash

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014, 
HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017, 
PIEEE 2017, HPCA 2018, SIGMETRICS 2018]
Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.



NAND Flash Usage and Error Model

…

(Page0  - Page128)
Program 

Page
Erase 
Block

Retention1
(t1 days)

Read 
Page

Retention j
(tj days)

Read 
Page

P/E cycle 0

P/E cycle i

Start

…

P/E cycle n

…

End of life

Erase Errors Program Errors

Retention Errors Read Errors

Read ErrorsRetention Errors
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More on Flash Error Analysis

n Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai,
"Error Patterns in MLC NAND Flash Memory: 
Measurement, Characterization, and Analysis"
Proceedings of the Design, Automation, and Test in Europe 
Conference (DATE), Dresden, Germany, March 2012. Slides 
(ppt)
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http://users.ece.cmu.edu/~omutlu/pub/flash-error-patterns_date12.pdf
http://www.date-conference.com/
http://users.ece.cmu.edu/~omutlu/pub/cai_date12_talk.ppt


Many Errors and Their Mitigation [PIEEE’17]

289
Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.
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https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

Many Errors and Their Mitigation [PIEEE’17]

https://arxiv.org/pdf/1706.08642


One Issue: Read Disturb in Flash Memory
n All scaled memories are prone to read disturb errors

n DRAM
n SRAM
n Hard Disks: Adjacent Track Interference
n NAND Flash
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NAND Flash Memory Background

Flash Memory

Page 1

Page 0

Page 2

Page 255

…
…

Page 257

Page 256

Page 258

Page 511

…
…

……

Page M+1

Page M

Page M+2

Page M+255

…
…

Flash 
Controller
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Block 0 Block 1 Block N

Read
Pass
Pass

…

Pass



Sense Amplifiers

Flash Cell Array

Block X

Page Y

Sense Amplifiers
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Row
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lu

m
n



Flash Cell

Floating 
Gate

Gate

Drain

Source

Floating Gate Transistor
(Flash Cell)

Vth = 
2.5 V
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Flash Read

Vread = 2.5 V Vth = 
3 V

Vth = 
2 V

1 0

Vread = 2.5 V
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Gate



Flash Pass-Through

Vpass = 5 V Vth = 
2 V

1

Vpass = 5 V
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Gate

1

Vth = 
3 V



More on Flash Read Disturb Errors [DSN’15]
n Yu Cai, Yixin Luo, Saugata Ghose, Erich F. Haratsch, Ken Mai, 

and Onur Mutlu,
"Read Disturb Errors in MLC NAND Flash Memory: 
Characterization and Mitigation"
Proceedings of the 45th Annual IEEE/IFIP International 
Conference on Dependable Systems and Networks (DSN), Rio de 
Janeiro, Brazil, June 2015. 
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http://users.ece.cmu.edu/~omutlu/pub/flash-read-disturb-errors_dsn15.pdf
http://2015.dsn.org/


Read from Flash Cell Array

3.0V 3.8V 3.9V 4.8V

3.5V 2.9V 2.4V 2.1V

2.2V 4.3V 4.6V 1.8V

3.5V 2.3V 1.9V 4.3V

Vread = 2.5 V

Vpass = 5.0 V

Vpass = 5.0 V

Vpass = 5.0 V

1 100Correct values 
for page 2: 298

Page 1

Page 2

Page 3

Page 4

Pass (5V)

Read (2.5V)

Pass (5V)

Pass (5V)



Read Disturb Problem: “Weak Programming” Effect

3.0V 3.8V 3.9V 4.8V

3.5V 2.9V 2.4V 2.1V

2.2V 4.3V 4.6V 1.8V

3.5V 2.3V 1.9V 4.3V

Repeatedly read page 3 (or any page other than page 2) 299

Read (2.5V)

Pass (5V)

Pass (5V)

Pass (5V)

Page 1

Page 2

Page 3

Page 4



Vread = 2.5 V

Vpass = 5.0 V

Vpass = 5.0 V

Vpass = 5.0 V

0 100

Read Disturb Problem: “Weak Programming” Effect

High pass-through voltage induces “weak-programming” effect

3.0V 3.8V 3.9V 4.8V

3.5V 2.9V 2.1V

2.2V 4.3V 4.6V 1.8V

3.5V 2.3V 1.9V 4.3V

Incorrect values 
from page 2: 
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2.4V2.6V

Page 1

Page 2

Page 3

Page 4



Executive Summary [DSN’15]
•Read disturb errors limit flash memory lifetime today
– Apply a high pass-through voltage (Vpass)to multiple pages on a read
– Repeated application of Vpasscan alter stored values in unread pages

•We characterize read disturb on real NAND flash chips
– Slightly lowering Vpass greatly reduces read disturb errors
– Some flash cells are more prone to read disturb

• Technique 1: Mitigate read disturb errors online
– Vpass Tuning dynamically finds and applies a lowered Vpass per block
– Flash memory lifetime improves by 21%

• Technique 2: Recover after failure to prevent data loss
– Read Disturb Oriented Error Recovery (RDR) selectively corrects 

cells more susceptible to read disturb errors
– Reduces raw bit error rate (RBER) by up to 36%
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Read Disturb Prone vs. Resistant Cells
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R

P

Disturb-Resistant

Disturb-Prone

Normalized Vth

PDF
N read 

disturbs

N read disturbs

R

P



Observation 2: Some Flash Cells Are
More Prone to Read Disturb
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P1ER

Normalized Vth

PDF

P

P

P

P

R
P

R
P

R
P

R
P

Disturb-prone cells have higher threshold voltages

Disturb-resistant cells have lower threshold voltages

After 250K read disturbs:

Disturb-prone
àER state

Disturb-resistant
àP1 state



Read Disturb Oriented Error Recovery (RDR)

•Triggered by an uncorrectable flash error
–Back up all valid data in the faulty block
–Disturb the faulty page 100K times (more)
–Compare Vth’s before and after read disturb
–Select cells susceptible to flash errors (Vref−σ<Vth<Vref−σ)
–Predict among these susceptible cells
• Cells with more Vth shifts are disturb-prone à Higher Vth state
• Cells with less Vth shifts are disturb-resistant à Lower Vth state
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Reduces total error count by up to 36% @ 1M read disturbs
ECC can be used to correct the remaining errors



More on Flash Read Disturb Errors [DSN’15]
n Yu Cai, Yixin Luo, Saugata Ghose, Erich F. Haratsch, Ken Mai, 

and Onur Mutlu,
"Read Disturb Errors in MLC NAND Flash Memory: 
Characterization and Mitigation"
Proceedings of the 45th Annual IEEE/IFIP International 
Conference on Dependable Systems and Networks (DSN), Rio de 
Janeiro, Brazil, June 2015. 
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http://users.ece.cmu.edu/~omutlu/pub/flash-read-disturb-errors_dsn15.pdf
http://2015.dsn.org/


Data Retention in Flash Memory
n Yu Cai, Yixin Luo, Erich F. Haratsch, Ken Mai, and Onur Mutlu,

"Data Retention in MLC NAND Flash Memory: Characterization, 
Optimization and Recovery"
Proceedings of the 21st International Symposium on High-Performance 
Computer Architecture (HPCA), Bay Area, CA, February 2015. 
[Slides (pptx) (pdf)] 
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http://users.ece.cmu.edu/~omutlu/pub/flash-memory-data-retention_hpca15.pdf
http://darksilicon.org/hpca/
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-data-retention_yixin_hpca15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-data-retention_yixin_hpca15-talk.pdf


Large-Scale SSD Error Analysis [SIGMETRICS’15]
n First large-scale field study of flash memory errors

n Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"A Large-Scale Study of Flash Memory Errors in the Field"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Portland, OR, June 
2015. 
[Slides (pptx) (pdf)] [Coverage at ZDNet] [Coverage on The Register] 
[Coverage on TechSpot] [Coverage on The Tech Report] 
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http://users.ece.cmu.edu/~omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15.pdf
http://www.sigmetrics.org/sigmetrics2015/
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15-talk.pdf
http://www.zdnet.com/article/facebooks-ssd-experience/
http://www.theregister.co.uk/2015/06/22/facebook_reveals_ssd_failure_rate_trough/
http://www.techspot.com/news/61090-researchers-publish-first-large-scale-field-ssd-reliability.html
http://techreport.com/news/28519/facebook-ssd-reliability-study-shows-early-burnouts
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https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

Many Errors and Their Mitigation [PIEEE’17]

https://arxiv.org/pdf/1706.08642


More Up-to-date Version 
n Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu,

"Errors in Flash-Memory-Based Solid-State Drives: Analysis, 
Mitigation, and Recovery"
Invited Book Chapter in Inside Solid State Drives, 2018.
[Preliminary arxiv.org version]
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https://arxiv.org/pdf/1711.11427.pdf
https://link.springer.com/book/10.1007%2F978-981-13-0599-3/
https://arxiv.org/pdf/1711.11427.pdf


More on Flash Memory Issues

310https://www.youtube.com/watch?v=rninK6KWBeM&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=47

https://www.youtube.com/watch?v=rninK6KWBeM&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=47

