Computer Architecture ## Lecture 8a: Data Retention and Memory Refresh Prof. Onur Mutlu ETH Zürich Fall 2022 21 October 2022 #### SAFARI Live Seminar (Oct 25, 16:00) SAFARI Live Seminar: Sudhanva Gurumurthi, Oct 25 2022 Posted on September 6, 2022 by ewent #### SAFARI Live Seminar (Oct 25, 16:00) Title: HBM3 RAS: The Journey to Enhancing Die-Stacked DRAM Resilience at Scale #### **Abstract:** HBM3 is the next-generation technology of the JEDEC High Bandwidth Memory™ DRAM standard. HBM3 is expected to be widely used in future SoCs to accelerate data center and automotive workloads. Reliability, Availability, and Serviceability (RAS) are key requirements in most of these computing domains and use cases, and essential for attaining sufficient resilience at scale. In the first part of the talk, we will review some key terminology and concepts, explain the set of RAS challenges that was facing HBM3, and certain key considerations for standardization. Data and analyses will be presented that justified the need for a new RAS architecture for HBM3. Next, we will present the overall solution space that was explored, the specific direction taken for HBM3, and explain why this path was chosen. Finally, the details of the HBM3 RAS architecture and an evaluation of its resilience at scale will be presented. #### **Speaker Bio:** Sudhanva Gurumurthi is a Fellow at AMD, where he leads advanced development in RAS. Prior to joining industry, Sudhanva was an Associate Professor with tenure in the Computer Science Department at the University of Virginia. He is a recipient of an NSF CAREER Award, a Google Focused Research Award, an IEEE Computer Society Distinguished Contributor recognition, and several other awards and recognitions. Sudhanva has served as an editor for the IEEE Micro Top Picks from Computer Architecture Conferences special issue, IEEE Transactions on Computers, and IEEE Computer Architecture Letters. He also serves on the Advisory Council of the College of Science and Engineering at Texas State University. Sudhanva received his PhD in Computer Science and Engineering from Penn State in 2005. ### A Leaky DRAM Cell #### Reading on RAIDR Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu, "RAIDR: Retention-Aware Intelligent DRAM Refresh" Proceedings of the 39th International Symposium on Computer Architecture (ISCA), Portland, OR, June 2012. Slides (pdf) One potential reading for your homework assignment #### RAIDR: Retention-Aware Intelligent DRAM Refresh Jamie Liu Ben Jaiyen Richard Veras Onur Mutlu Carnegie Mellon University { jamiel, bjaiyen, rveras, onur } @cmu.edu # Digging Deeper: Making RAIDR Work "Good ideas are a dime a dozen" "Making them work is oftentimes the real contribution" #### Recall: RAIDR: Mechanism - 1. Profiling: Identify the retention time of all DRAM rows - → can be done at design time or during operation - 2. Binning: Store rows into bins by retention time - → use Bloom Filters for efficient and scalable storage - 1.25KB storage in controller for 32GB DRAM memory - 3. Refreshing: Memory controller refreshes rows in different bins at different rates - > check the bins to determine refresh rate of a row ### DRAM Retention Time Profiling Q: Is it really this easy? • A: No... ### Two Challenges to Retention Time Profiling Data Pattern Dependence (DPD) of retention time Variable Retention Time (VRT) phenomenon #### More on DRAM Retention Analysis Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu, "An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms" Proceedings of the 40th International Symposium on Computer Architecture (ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf) ## An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms Jamie Liu* Carnegie Mellon University 5000 Forbes Ave. Pittsburgh, PA 15213 jamiel@alumni.cmu.edu Ben Jaiyen* Carnegie Mellon University 5000 Forbes Ave. Pittsburgh, PA 15213 bjaiyen@alumni.cmu.edu Yoongu Kim Carnegie Mellon University 5000 Forbes Ave. Pittsburgh, PA 15213 yoonguk@ece.cmu.edu Chris Wilkerson Intel Corporation 2200 Mission College Blvd. Santa Clara, CA 95054 chris.wilkerson@intel.com Onur Mutlu Carnegie Mellon University 5000 Forbes Ave. Pittsburgh, PA 15213 onur@cmu.edu ### Finding DRAM Retention Failures #### Finding DRAM Retention Failures - How can we reliably find the retention time of all DRAM cells? - Goals: so that we can - Make DRAM reliable and secure - Make techniques like RAIDR work - → improve performance and energy #### Mitigation of Retention Issues [SIGMETRICS'14] Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, Chris Wilkerson, and Onur Mutlu, "The Efficacy of Error Mitigation Techniques for DRAM Retention **Failures: A Comparative Experimental Study**" Proceedings of the <u>ACM International Conference on Measurement and</u> Modeling of Computer Systems (SIGMETRICS), Austin, TX, June 2014. [Slides (pptx) (pdf)] [Poster (pptx) (pdf)] [Full data sets] #### The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study Samira Khan⁺∗ samirakhan@cmu.edu Donghyuk Lee[†] donghyuk1@cmu.edu Yoongu Kim[†] yoongukim@cmu.edu Alaa R. Alameldeen* alaa.r.alameldeen@intel.com chris.wilkerson@intel.com Chris Wilkerson* Onur Mutlu[†] onur@cmu.edu [†]Carnegie Mellon University *Intel Labs #### Handling Variable Retention Time [DSN'15] Moinuddin Qureshi, Dae Hyun Kim, Samira Khan, Prashant Nair, and Onur Mutlu, "AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems" Proceedings of the <u>45th Annual IEEE/IFIP International Conference on</u> <u>Dependable Systems and Networks</u> (**DSN**), Rio de Janeiro, Brazil, June 2015. [Slides (pptx) (pdf)] ## AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems Moinuddin K. Qureshi[†] Dae-Hyun Kim[†] [†]Georgia Institute of Technology {moin, dhkim, pnair6}@ece.gatech.edu Samira Khan‡ Prashant J. Nair[†] Onur Mutlu[‡] [‡]Carnegie Mellon University {samirakhan, onur}@cmu.edu 14 #### **AVATAR** Insight: Avoid retention failures → Upgrade row on ECC error Observation: Rate of VRT >> Rate of soft error (50x-2500x) **AVATAR** mitigates VRT by increasing refresh rate on error #### **RESULTS: REFRESH REDUCTION** AVATAR reduces refresh by 60%-70%, similar to multi-rate refresh but with VRT tolerance #### **SPEEDUP** AVATAR obtains 2/3rd the performance of NoRefresh. Higher benefits in higher density DRAM chips. #### **ENERGY DELAY PRODUCT REDUCTION** AVATAR reduces EDP. Higher benefits in higher density DRAM chips. #### More on AVATAR [DSN'15] Moinuddin Qureshi, Dae Hyun Kim, Samira Khan, Prashant Nair, and Onur Mutlu, "AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems" Proceedings of the <u>45th Annual IEEE/IFIP International Conference on</u> <u>Dependable Systems and Networks</u> (**DSN**), Rio de Janeiro, Brazil, June 2015. [Slides (pptx) (pdf)] ## AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems Moinuddin K. Qureshi[†] Dae-Hyun Kim[†] [†]Georgia Institute of Technology {moin, dhkim, pnair6}@ece.gatech.edu Samira Khan‡ Prashant J. Nair[†] Onur Mutlu[‡] [‡]Carnegie Mellon University {samirakhan, onur}@cmu.edu 19 #### Handling Data-Dependent Failures [DSN'16] Samira Khan, Donghyuk Lee, and Onur Mutlu, "PARBOR: An Efficient System-Level Technique to Detect Data-Dependent Failures in DRAM" Proceedings of the <u>45th Annual IEEE/IFIP International Conference on</u> <u>Dependable Systems and Networks</u> (**DSN**), Toulouse, France, June 2016. [Slides (pptx) (pdf)] ## PARBOR: An Efficient System-Level Technique to Detect Data-Dependent Failures in DRAM Samira Khan* Donghyuk Lee^{†‡} Onur Mutlu*[†] *University of Virginia [†]Carnegie Mellon University [‡]Nvidia *ETH Zürich SAFARI 20 #### Handling Data-Dependent Failures [MICRO'17] Samira Khan, Chris Wilkerson, Zhe Wang, Alaa R. Alameldeen, Donghyuk Lee, and Onur Mutlu, <u>"Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting Current Memory Content"</u> Proceedings of the <u>50th International Symposium on Microarchitecture</u> (**MICRO**), Boston, MA, USA, October 2017. [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)] ### Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting Current Memory Content Samira Khan* Chris Wilkerson[†] Zhe Wang[†] Alaa R. Alameldeen[†] Donghyuk Lee[‡] Onur Mutlu* *University of Virginia [†]Intel Labs [‡]Nvidia Research *ETH Zürich SAFARI #### Handling Both DPD and VRT [ISCA'17] - Minesh Patel, Jeremie S. Kim, and Onur Mutlu, "The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions" Proceedings of the 44th International Symposium on Computer Architecture (ISCA), Toronto, Canada, June 2017. [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] - First experimental analysis of (mobile) LPDDR4 chips - Analyzes the complex tradeoff space of retention time profiling - Idea: enable fast and robust profiling at higher refresh intervals & temperatures ## The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions Minesh Patel^{§‡} Jeremie S. Kim^{‡§} Onur Mutlu^{§‡} ETH Zürich [‡]Carnegie Mellon University 22 ### **Making Refresh More Efficient** Only a few cells require frequent refreshing Goal: quickly and efficiently identify the error-prone cells ### **Experimental Error Characterization** We study the data-retention error characteristics in 368 real LPDDR4 DRAM chips 1 Cells are **more likely** to fail at an **increased** (1) refresh interval; or (2) temperature 2 Profiling involves a complex **tradeoff space**: (1) **speed**; (2) **coverage**; and (3) **false positives** ### **Reach Profiling** ### **Evaluating Reach Profiling** - 2.5x faster than the state-of-the-art baseline for 99% coverage and a 50% false positive rate - Even faster (>3.5x) with more false positives (>100%) - 2. Enables operating at **longer refresh intervals** by reducing the overall profiling overhead - 16.3% end-to-end performance improvement - 36.4% **DRAM power** reduction #### More on Reach Profiling [ISCA'17] - Minesh Patel, Jeremie S. Kim, and Onur Mutlu, "The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions" Proceedings of the 44th International Symposium on Computer Architecture (ISCA), Toronto, Canada, June 2017. [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] - First experimental analysis of (mobile) LPDDR4 chips - Analyzes the complex tradeoff space of retention time profiling - Idea: enable fast and robust profiling at higher refresh intervals & temperatures #### The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions Minesh Patel^{§‡} Jeremie S. Kim^{‡§} Onur Mutlu^{§‡} ETH Zürich [‡]Carnegie Mellon University 27 #### In-DRAM ECC Complicates Things [DSN'19] Minesh Patel, Jeremie S. Kim, Hasan Hassan, and Onur Mutlu, "Understanding and Modeling On-Die Error Correction in Modern DRAM: An Experimental Study Using Real Devices" Proceedings of the 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Portland, OR, USA, June 2019. [Slides (pptx) (pdf)] [Talk Video (26 minutes)] [Full Talk Lecture (29 minutes)] [Source Code for EINSim, the Error Inference Simulator] Best paper award. ### Understanding and Modeling On-Die Error Correction in Modern DRAM: An Experimental Study Using Real Devices Minesh Patel † Jeremie S. Kim ‡† Hasan Hassan † Onur Mutlu †‡ † ETH Zürich ‡ Carnegie Mellon University #### More on In-DRAM ECC [MICRO'20] Minesh Patel, Jeremie S. Kim, Taha Shahroodi, Hasan Hassan, and <u>Onur Mutlu</u>, "<u>Bit-Exact ECC Recovery (BEER): Determining DRAM On-Die ECC Functions by Exploiting DRAM Data Retention Characteristics</u>" Proceedings of the <u>53rd International Symposium on Microarchitecture</u> (**MICRO**), Virtual, October 2020. [Slides (pptx) (pdf)] [Short Talk Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)] [Lecture Slides (pptx) (pdf)] [Talk Video (15 minutes)] [Short Talk Video (5.5 minutes)] [<u>Lightning Talk Video</u> (1.5 minutes)] [<u>Lecture Video</u> (52.5 minutes)] BEER Source Code Best paper award. ## Bit-Exact ECC Recovery (BEER): Determining DRAM On-Die ECC Functions by Exploiting DRAM Data Retention Characteristics Minesh Patel † Jeremie S. Kim ‡† Taha Shahroodi † Hasan Hassan † Onur Mutlu †‡ † ETH Zürich ‡ Carnegie Mellon University #### Profiling In The Presence of ECC [MICRO'21] Minesh Patel, Geraldo F. de Oliveira Jr., and Onur Mutlu, "HARP: Practically and Effectively Identifying Uncorrectable Errors in Memory Chips That Use On-Die Error-Correcting Codes" Proceedings of the <u>54th International Symposium on Microarchitecture</u> (**MICRO**), Virtual, October 2021. [Slides (pptx) (pdf)] [Short Talk Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)] [Talk Video (20 minutes)] [<u>Lightning Talk Video</u> (1.5 minutes)] [HARP Source Code (Officially Artifact Evaluated with All Badges)] ## HARP: Practically and Effectively Identifying Uncorrectable Errors in Memory Chips That Use On-Die Error-Correcting Codes #### **Profiling a Memory Chip with On-Die ECC** **Unreliable Memory** **Goal: understand** and **address** any challenges that on-die ECC introduces for error profiling ### Challenges Introduced by On-Die ECC 1 #### **Exponentially increases** the total number of at-risk bits 2 Makes it **harder to identify** individual at-risk bits 3 **Interferes** with commonly-used data patterns for memory testing #### **Key Observation: Two Sources of Errors** Upper-bounded by the ECC algorithm #### **Key Observation: Two Sources of Errors** Due to errors in the **memory chip** ## **Key Idea**: **decouple** profiling for **direct** and **indirect** errors 2 Indirect error Artifact of the on-die ECC algorithm Upper-bounded by the ECC algorithm #### **Hybrid Active-Reactive Profiling (HARP)** 1 Active Profiling **Quickly** identifies **all direct errors** with **existing** profiling techniques using an on-die ECC **bypass path** Memory Chip Active Profiler On-Die ECC bypass Data Store 2 Reactive Profiling **Safely** identifies **indirect errors** using **secondary ECC** at least as strong as on-die ECC #### **Hybrid Active-Reactive Profiling (HARP)** # HARP reduces the problem of profiling with on-die ECC to profiling without on-die ECC Safely identifies indirect errors using secondary ECC at least as strong as on-die ECC ### **Evaluations** - 1. HARP improves **coverage** and **performance** relative to two state-of-the-art baseline profiling algorithms - E.g., **20.6-62.1% faster** to achieve 99th-percentile coverage for 2-5 raw-bit errors per on-die ECC word - HARP outperforms the best-performing baseline in a case study of mitigating data-retention errors - E.g., 3.7x faster given a per-bit error probability of 0.75 We conclude that HARP **overcomes** all three profiling challenges ### More on HARP [MICRO'21] Minesh Patel, Geraldo F. de Oliveira Jr., and Onur Mutlu, "HARP: Practically and Effectively Identifying Uncorrectable Errors in Memory Chips That Use On-Die Error-Correcting Codes" Proceedings of the <u>54th International Symposium on Microarchitecture</u> (**MICRO**), Virtual, October 2021. [Slides (pptx) (pdf)] [Short Talk Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)] [Talk Video (20 minutes)] [<u>Lightning Talk Video</u> (1.5 minutes)] [HARP Source Code (Officially Artifact Evaluated with All Badges)] ## HARP: Practically and Effectively Identifying Uncorrectable Errors in Memory Chips That Use On-Die Error-Correcting Codes #### Recall: RAIDR: Mechanism - 1. Profiling: Identify the retention time of all DRAM rows - → can be done at design time or during operation - 2. Binning: Store rows into bins by retention time - → use Bloom Filters for efficient and scalable storage - 1.25KB storage in controller for 32GB DRAM memory - 3. Refreshing: Memory controller refreshes rows in different bins at different rates - > check the bins to determine refresh rate of a row ## 2. Binning - How to efficiently and scalably store rows into retention time bins? - Use Hardware Bloom Filters [Bloom, CACM 1970] #### Bloom Filter - [Bloom, CACM 1970] - Probabilistic data structure that compactly represents set membership (presence or absence of element in a set) - Non-approximate set membership: Use 1 bit per element to indicate absence/presence of each element from an element space of N elements - Approximate set membership: use a much smaller number of bits and indicate each element's presence/absence with a subset of those bits - Some elements map to the bits other elements also map to - Operations: 1) insert, 2) test, 3) remove all elements #### Bloom Filters #### Space/Time Trade-offs in ### Hash Coding with Allowable Errors In such applications, it is envisaged that overall performance could be improved by using a smaller core resident hash area in conjunction with the new methods and, when necessary, by using some secondary and perhaps time-consuming test to "catch" the small fraction of errors associated with the new methods. An example is discussed which illustrates possible areas of application for the new methods. Burton H. Bloom Computer Usage Company, Newton Upper Falls, Mass. In this paper trade-offs among certain computational factors in hash coding are analyzed. The paradigm problem considered is that of testing a series of messages one-by-one for membership in a given set of messages. Two new hash-coding methods are examined and compared with a particular conventional hash-coding method. The computational factors considered are the size of the hash area (space), the time required to identify a message as a nonmember of the given set (reject time), and an allowable error frequency. #### Bloom Filters: Pros and Cons #### Advantages - + Enables storage-efficient representation of set membership - + Insertion and testing for set membership (presence) are fast - + No false negatives: If Bloom Filter says an element is not present in the set, the element must not have been inserted - + Enables tradeoffs between time & storage efficiency & false positive rate (via sizing and hashing) #### Disadvantages -- False positives: An element may be deemed to be present in the set by the Bloom Filter but it may never have been inserted Not the right data structure when you cannot tolerate false positives #### Benefits of Bloom Filters as Refresh Rate Bins - False positives: a row may be declared present in the Bloom filter even if it was never inserted - Not a problem: Refresh some rows more frequently than needed - No false negatives: rows are never refreshed less frequently than needed (no correctness problems) - Scalable: a Bloom filter never overflows (unlike a fixed-size table) - Efficient: No need to store info on a per-row basis; simple hardware → 1.25 KB for 2 filters for 32 GB DRAM system #### Use of Bloom Filters in Hardware - Useful when you can tolerate false positives in set membership tests - See the following recent examples for clear descriptions of how Bloom Filters are used - Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh," ISCA 2012. - Seshadri et al., "The Evicted-Address Filter: A Unified Mechanism to Address Both Cache Pollution and Thrashing," PACT 2012. - Yaglikci et al., "BlockHammer: Preventing RowHammer at Low Cost by Blacklisting Rapidly-Accessed DRAM Rows," HPCA 2021. ## 3. Refreshing (RAIDR Refresh Controller) Choose a refresh candidate row Determine which bin the row is in Determine if refreshing is needed ## 3. Refreshing (RAIDR Refresh Controller) Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh," ISCA 2012. ## RAIDR: Baseline Design Refresh control is in DRAM in today's auto-refresh systems RAIDR can be implemented in either the controller or DRAM ## RAIDR in Memory Controller: Option 1 #### Overhead of RAIDR in DRAM controller: 1.25 KB Bloom Filters, 3 counters, additional commands issued for per-row refresh (all accounted for in evaluations) ## RAIDR in DRAM Chip: Option 2 #### Overhead of RAIDR in DRAM chip: Per-chip overhead: 20B Bloom Filters, 1 counter (4 Gbit chip) Total overhead: 1.25KB Bloom Filters, 64 counters (32 GB DRAM) ### RAIDR: Results and Takeaways - System: 32GB DRAM, 8-core; SPEC, TPC-C, TPC-H workloads - RAIDR hardware cost: 1.25 kB (2 Bloom filters) - Refresh reduction: 74.6% - Dynamic DRAM energy reduction: 16% - Idle DRAM power reduction: 20% - Performance improvement: 9% - Benefits increase as DRAM scales in density ## DRAM Refresh: More Questions - What else can you do to reduce the impact of refresh? - What else can you do if you know the retention times of rows? - How can you accurately measure the retention time of DRAM rows? - Recommended reading: - Liu et al., "An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms," ISCA 2013. ## Recommended Reading Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu, "An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms" Proceedings of the 40th International Symposium on Computer Architecture (ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf) # An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms Jamie Liu* Carnegie Mellon University 5000 Forbes Ave. Pittsburgh, PA 15213 jamiel@alumni.cmu.edu Ben Jaiyen Carnegie Mellon University 5000 Forbes Ave. Pittsburgh, PA 15213 bjaiyen@alumni.cmu.edu Yoongu Kim Carnegie Mellon University 5000 Forbes Ave. Pittsburgh, PA 15213 yoonguk@ece.cmu.edu Chris Wilkerson Intel Corporation 2200 Mission College Blvd. Santa Clara, CA 95054 chris.wilkerson@intel.com Onur Mutlu Carnegie Mellon University 5000 Forbes Ave. Pittsburgh, PA 15213 onur@cmu.edu ## DRAM Refresh: Summary and Conclusions - DRAM refresh is a critical challenge - in scaling DRAM technology efficiently to higher capacities - Several promising solution directions - Eliminate unnecessary refreshes [Liu+ ISCA'12] - Reduce refresh rate w/ online profiling and detect/correct any errors [Khan+ SIGMETRICS'14, Qureshi+ DSN'15, Patel+ ISCA'17] - □ Parallelize refreshes with accesses [Chang+ HPCA'14; Yaglikci+ MICRO'22] - Examined properties of retention time behavior [Liu+ ISCA'13] - Enable realistic VRT-Aware refresh techniques [Qureshi+ DSN'15] - Many avenues for overcoming DRAM refresh challenges - Handling DPD/VRT phenomena - Enabling online retention time profiling and error mitigation - Exploiting application behavior #### Refresh-Access Parallelization Kevin Chang, Donghyuk Lee, Zeshan Chishti, Alaa Alameldeen, Chris Wilkerson, Yoongu Kim, and Onur Mutlu, "Improving DRAM Performance by Parallelizing Refreshes with Accesses" Proceedings of the <u>20th International Symposium on High-Performance</u> <u>Computer Architecture</u> (**HPCA**), Orlando, FL, February 2014. [Summary] [Slides (pptx) (pdf)] ## Reducing Performance Impact of DRAM Refresh by Parallelizing Refreshes with Accesses Kevin Kai-Wei Chang Donghyuk Lee Zeshan Chishti† Alaa R. Alameldeen† Chris Wilkerson† Yoongu Kim Onur Mutlu Carnegie Mellon University †Intel Labs #### Refresh-Access Parallelization Appears at MICRO 2022 ## HiRA: Hidden Row Activation for Reducing Refresh Latency of Off-the-Shelf DRAM Chips ``` A. Giray Yağlıkçı¹ Ataberk Olgun^{1,2} Minesh Patel¹ Haocong Luo¹ Hasan Hasan¹ Lois Orosa^{1,3} Oğuz Ergin² Onur Mutlu¹ ¹ETH Zürich ²TOBB University of Economics and Technology ³Galicia Supercomputing Center (CESGA) ``` 61 ## Industry Is Writing Papers About It, Too #### **DRAM Process Scaling Challenges** #### Refresh - Difficult to build high-aspect ratio cell capacitors decreasing cell capacitance - · Leakage current of cell access transistors increasing #### tWR - Contact resistance between the cell capacitor and access transistor increasing - · On-current of the cell access transistor decreasing - Bit-line resistance increasing #### VRT Occurring more frequently with cell capacitance decreasing ## Call for Intelligent Memory Controllers #### **DRAM Process Scaling Challenges** #### Refresh Difficult to build high-aspect ratio cell capacitors decreasing cell capacitance THE MEMORY FORUM 2014 ## Co-Architecting Controllers and DRAM to Enhance DRAM Process Scaling Uksong Kang, Hak-soo Yu, Churoo Park, *Hongzhong Zheng, **John Halbert, **Kuljit Bains, SeongJin Jang, and Joo Sun Choi Samsung Electronics, Hwasung, Korea / *Samsung Electronics, San Jose / **Intel # We Will Dig Deeper More In This Course "Good ideas are a dime a dozen" "Making them work is oftentimes the real contribution" ## Computer Architecture # Lecture 8a: Data Retention and Memory Refresh Prof. Onur Mutlu ETH Zürich Fall 2022 21 October 2022 ## Backup Slides # Data Retention in Flash Memory ## Foreshadowing: Limits of Charge Memory - Difficult charge placement and control - Flash: floating gate charge - DRAM: capacitor charge, transistor leakage - Data retention and reliable sensing become difficult as charge storage unit size reduces TRENDING - REVIEWS - FEATURES ▼ DOWNLOADS ▼ PRODUCT FINDER ▼ FORUMS - TE # An unfortunate tale about Samsung's SSD 840 read performance degradation An avalanche of reports emerged last September, when owners of the usually speedy Samsung SSD 840 and SSD 840 EVO detected the drives were no longer performing as they used to. The issue has to do with older blocks of data: reading old files nsistently slower than norma as slow as 30MB/s whereas newly-written files ones used in benchmarks, perform as fast as new – aro 500 MB/s for the well regarded SSD 840 EVO. The reason no one had noticed (we reviewed the drive back in September 2013) is that data has to be several weeks old to show the problem. Samsung promptly admitted the issue and proposed a fix. Reference: (May 5, 2015) Per Hansson, "When SSD Performance Goes Awry" http://www.techspot.com/article/997-samsung-ssd-read-performance-degradation/ SAFARI ## Why is old data slower? Retention loss! #### Retention loss Charge leakage over time One dominant source of flash memory errors [DATE '12, ICCD '12] Side effect: Longer read latency ## NAND Flash Error Types - Four types of errors [Cai+, DATE 2012] - Caused by common flash operations - Read errors - Erase errors - Program (interference) errors - Caused by flash cell losing charge over time - Retention errors - Whether an error happens depends on required retention time - Especially problematic in MLC flash because threshold voltage window to determine stored value is smaller ### Flash Experimental Testing Platform [DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014, HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017, PIEEE 2017, HPCA 2018, SIGMETRICS 2018] NAND Daughter Board Cai+, "Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives," Proc. IEEE 2017. ### Observations: Flash Error Analysis - Raw bit error rate increases exponentially with P/E cycles - Retention errors are dominant (>99% for 1-year ret. time) - Retention errors increase with retention time requirement ### More on Flash Error Analysis Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai, "Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis" Proceedings of the Design, Automation, and Test in Europe Conference (DATE), Dresden, Germany, March 2012. Slides (ppt) ## Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis Yu Cai¹, Erich F. Haratsch², Onur Mutlu¹ and Ken Mai¹ ¹Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA ²LSI Corporation, 1110 American Parkway NE, Allentown, PA ¹{yucai, onur, kenmai}@andrew.cmu.edu, ²erich.haratsch@lsi.com #### Solution to Retention Errors - Refresh periodically - Change the period based on P/E cycle wearout - Refresh more often at higher P/E cycles - Use a combination of in-place and remapping-based refresh Cai et al. "Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime", ICCD 2012. ### Flash Correct-and-Refresh [ICCD'12] Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman Unsal, and Ken Mai, "Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime" Proceedings of the 30th IEEE International Conference on Computer Design (ICCD), Montreal, Quebec, Canada, September 2012. Slides (ppt)(pdf) ## Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime Yu Cai¹, Gulay Yalcin², Onur Mutlu¹, Erich F. Haratsch³, Adrian Cristal², Osman S. Unsal² and Ken Mai¹DSSC, Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA ²Barcelona Supercomputing Center, C/Jordi Girona 29, Barcelona, Spain ³LSI Corporation, 1110 American Parkway NE, Allentown, PA ### More on Flash Error Analysis [Intel Tech J'13] Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman Unsal, and Ken Mai, "Error Analysis and Retention-Aware Error Management for NAND Flash Memory" Intel Technology Journal (ITJ) Special Issue on Memory Resiliency, Vol. 17, No. 1, May 2013. Intel® Technology Journal | Volume 17, Issue 1, 2013 ### ERROR ANALYSIS AND RETENTION-AWARE ERROR MANAGEMENT FOR NAND FLASH MEMORY ### Flash Memory Data Retention Analysis Yu Cai, Yixin Luo, Erich F. Haratsch, Ken Mai, and Onur Mutlu, "Data Retention in MLC NAND Flash Memory: Characterization, Optimization and Recovery" Proceedings of the 21st International Symposium on High-Performance Computer Architecture (HPCA), Bay Area, CA, February 2015. [Slides (pptx) (pdf)] [Poster (pdf)] Best paper session. ## Data Retention in MLC NAND Flash Memory: Characterization, Optimization, and Recovery Yu Cai, Yixin Luo, Erich F. Haratsch*, Ken Mai, Onur Mutlu Carnegie Mellon University, *LSI Corporation yucaicai@gmail.com, yixinluo@cs.cmu.edu, erich.haratsch@lsi.com, {kenmai, omutlu}@ece.cmu.edu ### 3D Flash Data Retention [SIGMETRICS'18] Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu, "Improving 3D NAND Flash Memory Lifetime by Tolerating Early Retention Loss and Process Variation" Proceedings of the ACM International Conference on Measurement and <u>Modeling of Computer Systems</u> (**SIGMETRICS**), Irvine, CA, USA, June 2018. [Abstract] [POMACS Journal Version (same content, different format)] [Slides (pptx) (pdf)] ### Improving 3D NAND Flash Memory Lifetime by Tolerating Early Retention Loss and Process Variation Yixin Luo[†] Saugata Ghose[†] Yu Cai[†] Erich F. Haratsch[‡] Onur Mutlu^{§†} [†]Carnegie Mellon University [‡]Seagate Technology [§]ETH Zürich ### Many Errors and Their Mitigation [PIEEE'17] Proceedings of the IEEE, Sept. 2017 ### Error Characterization, Mitigation, and Recovery in Flash-Memory-Based Solid-State Drives This paper reviews the most recent advances in solid-state drive (SSD) error characterization, mitigation, and data recovery techniques to improve both SSD's reliability and lifetime. By Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu https://arxiv.org/pdf/1706.08642 ### More Up-to-date Version Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu, "Errors in Flash-Memory-Based Solid-State Drives: Analysis, Mitigation, and Recovery" Invited Book Chapter in <u>Inside Solid State Drives</u>, 2018. [Preliminary arxiv.org version] ### Errors in Flash-Memory-Based Solid-State Drives: Analysis, Mitigation, and Recovery YU CAI, SAUGATA GHOSE Carnegie Mellon University ERICH F. HARATSCH Seagate Technology YIXIN LUO Carnegie Mellon University ONUR MUTLU ETH Zürich and Carnegie Mellon University ### Complete Lecture on Flash Memory & SSDs # Profiling for DRAM Data Retention Failures ### Finding DRAM Retention Failures - How can we reliably find the retention time of all DRAM cells? - Goals: so that we can - Make DRAM reliable and secure - Make techniques like RAIDR work - → improve performance and energy ### Mitigation of Retention Issues [SIGMETRICS'14] Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, Chris Wilkerson, and Onur Mutlu, "The Efficacy of Error Mitigation Techniques for DRAM Retention **Failures: A Comparative Experimental Study**" Proceedings of the <u>ACM International Conference on Measurement and</u> Modeling of Computer Systems (SIGMETRICS), Austin, TX, June 2014. [Slides (pptx) (pdf)] [Poster (pptx) (pdf)] [Full data sets] #### The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study Samira Khan⁺∗ samirakhan@cmu.edu Donghyuk Lee[†] donghyuk1@cmu.edu Yoongu Kim[†] yoongukim@cmu.edu Alaa R. Alameldeen* alaa.r.alameldeen@intel.com chris.wilkerson@intel.com Chris Wilkerson* Onur Mutlu[†] onur@cmu.edu [†]Carnegie Mellon University *Intel Labs ### **Towards an Online Profiling System** ### **Key Observations:** - Testing alone cannot detect all possible failures - Combination of ECC and other mitigation techniques is much more effective - But degrades performance - Testing can help to reduce the ECC strength - Even when starting with a higher strength ECC ### **Towards an Online Profiling System** Run tests periodically after a short interval at smaller regions of memory ### Handling Variable Retention Time [DSN'15] Moinuddin Qureshi, Dae Hyun Kim, Samira Khan, Prashant Nair, and Onur Mutlu, "AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems" Proceedings of the <u>45th Annual IEEE/IFIP International Conference on</u> <u>Dependable Systems and Networks</u> (**DSN**), Rio de Janeiro, Brazil, June 2015. [Slides (pptx) (pdf)] ## AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems Moinuddin K. Qureshi[†] Dae-Hyun Kim[†] [†]Georgia Institute of Technology {moin, dhkim, pnair6}@ece.gatech.edu Samira Khan‡ Prashant J. Nair[†] Onur Mutlu[‡] [‡]Carnegie Mellon University {samirakhan, onur}@cmu.edu 89 #### **AVATAR** Insight: Avoid retention failures → Upgrade row on ECC error Observation: Rate of VRT >> Rate of soft error (50x-2500x) **AVATAR** mitigates VRT by increasing refresh rate on error #### **RESULTS: REFRESH SAVINGS** ### Retention Testing Once a Year can increase refresh savings from 60% to 70% AVATAR reduces refresh by 60%-70%, similar to multi-rate refresh but with VRT tolerance #### **SPEEDUP** AVATAR obtains 2/3rd the performance of NoRefresh. Higher benefits at higher capacity nodes. #### **ENERGY DELAY PRODUCT** AVATAR reduces EDP. Significant reduction at higher capacity nodes. ### Handling Data-Dependent Failures [DSN'16] Samira Khan, Donghyuk Lee, and Onur Mutlu, "PARBOR: An Efficient System-Level Technique to Detect Data-Dependent Failures in DRAM" Proceedings of the <u>45th Annual IEEE/IFIP International Conference on</u> <u>Dependable Systems and Networks</u> (**DSN**), Toulouse, France, June 2016. [Slides (pptx) (pdf)] ## PARBOR: An Efficient System-Level Technique to Detect Data-Dependent Failures in DRAM Samira Khan* Donghyuk Lee^{†‡} Onur Mutlu*[†] *University of Virginia [†]Carnegie Mellon University [‡]Nvidia *ETH Zürich SAFARI ### Handling Data-Dependent Failures [MICRO'17] Samira Khan, Chris Wilkerson, Zhe Wang, Alaa R. Alameldeen, Donghyuk Lee, and Onur Mutlu, <u>"Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting Current Memory Content"</u> Proceedings of the <u>50th International Symposium on Microarchitecture</u> (**MICRO**), Boston, MA, USA, October 2017. [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)] ### Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting Current Memory Content Samira Khan* Chris Wilkerson[†] Zhe Wang[†] Alaa R. Alameldeen[†] Donghyuk Lee[‡] Onur Mutlu* *University of Virginia [†]Intel Labs [‡]Nvidia Research *ETH Zürich 95 ### Handling Both DPD and VRT [ISCA'17] - Minesh Patel, Jeremie S. Kim, and Onur Mutlu, "The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions" Proceedings of the 44th International Symposium on Computer Architecture (ISCA), Toronto, Canada, June 2017. [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] - First experimental analysis of (mobile) LPDDR4 chips - Analyzes the complex tradeoff space of retention time profiling - Idea: enable fast and robust profiling at higher refresh intervals & temperatures ## The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions Minesh Patel^{§‡} Jeremie S. Kim^{‡§} Onur Mutlu^{§‡} ETH Zürich [‡]Carnegie Mellon University 96 ### The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions #### Minesh Patel Jeremie S. Kim Onur Mutlu Carnegie Mellon ### **Leaky Cells** ### **Periodic DRAM Refresh** Performance + Energy Overhead ## Goal: find *all* retention failures for a refresh interval T > default (64ms) ### Process, voltage, temperature ### Variable retention time ### Data pattern dependence ## Characterization of 368 LPDDR4 DRAM Chips 1 Cells are more likely to fail at an increased (refresh interval | temperature) 2 Complex tradeoff space between profiling (speed & coverage & false positives) SAFARI refresh interval ### Reach Profiling A new DRAM retention failure profiling methodology + Faster and more reliable than current approaches + Enables longer refresh intervals SAFARI ### **REAPER Outline** - 1. DRAM Refresh Background - 2. Failure Profiling Challenges - 3. Current Approaches - 4. LPDDR4 Characterization - 5. Reach Profiling - 6. End-to-end Evaluation ### Experimental Infrastructure ### 368 2y-nm LPDDR4 DRAM chips - 4Gb chip size - From 3 major DRAM vendors ### Thermally controlled testing chamber - Ambient temperature range: {40°C 55°C} ± 0.25°C - DRAM temperature is held at 15°C above ambient ### LPDDR4 Studies - 1. Temperature - 2. Data Pattern Dependence - 3. Retention Time Distributions - 4. Variable Retention Time - 5. Individual Cell Characterization ## Long-term Continuous Profiling - New failing cells continue to appear over time - Attributed to variable retention time (VRT) - The set of failing cells changes over time ## Long-term Continuous Profiling Error correction codes (ECC) and online profiling are necessary to manage new failing cells - New failing cells continue to appear over time - Attributed to variable retention time (VRT) - The set of failing cells changes over time ## Single-cell Failure Probability (Cartoon) ## Single-cell Failure Probability (Cartoon) ### **REAPER Outline** - 1. DRAM Refresh Background - 2. Failure Profiling Challenges - 3. Current Approaches - 4. LPDDR4 Characterization - 5. Reach Profiling - 6. End-to-end Evaluation ## Reach Profiling **Key idea:** profile at a *longer refresh interval* and/or a *higher temperature* 24/36 ## Reach Profiling **Key idea:** profile at a *longer refresh interval* and/or a *higher temperature* ## Reach Profiling **Key idea:** profile at a longer refresh interval and/or a higher temperature #### Pros - Fast + Reliable: reach profiling searches for cells where they are most likely to fail #### Cons - False Positives: profiler may identify cells that fail under profiling conditions, but not under operating conditions ## Towards an Implementation Reach profiling is a general methodology 3 key questions for an implementation: What are desirable profiling conditions? How often should the system profile? What information does the profiler need? ## Three Key Profiling Metrics 1. Runtime: how long profiling takes **2. Coverage:** portion of all possible failures discovered by profiling 3. False positives: number of cells observed to fail during profiling but never during actual operation ## Three Key Profiling Metrics 1. Runtime: how long profiling takes **2. Coverage:** portion of all possible failures discovered by profiling We explore how these three metrics change under **many** different profiling conditions ## **Evaluation Methodology** - Simulators - **Performance**: Ramulator [Kim+, CAL'15] - Energy: DRAMPower [Chandrasekar+, DSD'11] #### Configuration - 4-core (4GHz), 8MB LLC - LPDDR4-3200, 4 channels, 1 rank/channel #### Workloads - 20 random 4-core benchmark mixes - SPEC CPU2006 benchmark suite Brute-force profiling **Ideal** profiling ## On average, REAPER enables: 16.3% system performance improvement 36.4% DRAM power reduction REAPER enables longer refresh intervals, which are unreasonable using brute-force profiling **Repronte** rarely ## Other Analyses in the Paper #### Detailed LPDDR4 characterization data - Temperature dependence effects - Retention time distributions - Data pattern dependence - Variable retention time - Individual cell failure distributions #### Profiling tradeoff space characterization - Runtime, coverage, and false positive rate - Temperature and refresh interval - Probabilistic model for tolerable failure rates - Detailed results for end-to-end evaluations ## **REAPER Summary** #### **Problem**: - DRAM refresh performance and energy overhead is high - •Current approaches to retention failure profiling are slow or unreliable #### **Goals**: - 1. Thoroughly analyze profiling tradeoffs - 2. Develop a **fast** and **reliable** profiling mechanism #### **Key Contributions**: - 1. First detailed characterization of 368 LPDDR4 DRAM chips - 2. Reach profiling: Profile at a longer refresh interval or higher temperature than target conditions, where cells are more likely to fail #### **Evaluation:** - •2.5x faster profiling with 99% coverage and 50% false positives - •REAPER enables 16.3% system performance improvement and 36.4% #### **DRAM** power reduction •Enables longer refresh intervals that were previously unreasonable #### Handling Both DPD and VRT [ISCA'17] - Minesh Patel, Jeremie S. Kim, and Onur Mutlu, "The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions" Proceedings of the 44th International Symposium on Computer Architecture (ISCA), Toronto, Canada, June 2017. [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] - First experimental analysis of (mobile) LPDDR4 chips - Analyzes the complex tradeoff space of retention time profiling - Idea: enable fast and robust profiling at higher refresh intervals & temperatures # The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions Minesh Patel^{§‡} Jeremie S. Kim^{‡§} Onur Mutlu^{§‡} ETH Zürich [‡]Carnegie Mellon University 138 ## In-DRAM ECC Complicates Things [DSN'19] Minesh Patel, Jeremie S. Kim, Hasan Hassan, and Onur Mutlu, "Understanding and Modeling On-Die Error Correction in Modern DRAM: An Experimental Study Using Real Devices" Proceedings of the 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Portland, OR, USA, June 2019. [Slides (pptx) (pdf)] [Talk Video (26 minutes)] [Full Talk Lecture (29 minutes)] [Source Code for EINSim, the Error Inference Simulator] Best paper award. ## Understanding and Modeling On-Die Error Correction in Modern DRAM: An Experimental Study Using Real Devices Minesh Patel † Jeremie S. Kim ‡† Hasan Hassan † Onur Mutlu †‡ † ETH Zürich ‡ Carnegie Mellon University #### More on In-DRAM ECC [MICRO'20] Minesh Patel, Jeremie S. Kim, Taha Shahroodi, Hasan Hassan, and <u>Onur Mutlu</u>, "<u>Bit-Exact ECC Recovery (BEER): Determining DRAM On-Die ECC Functions by Exploiting DRAM Data Retention Characteristics</u>" Proceedings of the <u>53rd International Symposium on Microarchitecture</u> (**MICRO**), Virtual, October 2020. [Slides (pptx) (pdf)] [Short Talk Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)] [Lecture Slides (pptx) (pdf)] [Talk Video (15 minutes)] [Short Talk Video (5.5 minutes)] [<u>Lightning Talk Video</u> (1.5 minutes)] [<u>Lecture Video</u> (52.5 minutes)] BEER Source Code Best paper award. # Bit-Exact ECC Recovery (BEER): Determining DRAM On-Die ECC Functions by Exploiting DRAM Data Retention Characteristics Minesh Patel † Jeremie S. Kim ‡† Taha Shahroodi † Hasan Hassan † Onur Mutlu †‡ † ETH Zürich ‡ Carnegie Mellon University ## Profiling In The Presence of ECC [MICRO'21] Minesh Patel, Geraldo F. de Oliveira Jr., and Onur Mutlu, "HARP: Practically and Effectively Identifying Uncorrectable Errors in Memory Chips That Use On-Die Error-Correcting Codes" Proceedings of the <u>54th International Symposium on Microarchitecture</u> (**MICRO**), Virtual, October 2021. [Slides (pptx) (pdf)] [Short Talk Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)] [Talk Video (20 minutes)] [<u>Lightning Talk Video</u> (1.5 minutes)] [HARP Source Code (Officially Artifact Evaluated with All Badges)] # HARP: Practically and Effectively Identifying Uncorrectable Errors in Memory Chips That Use On-Die Error-Correcting Codes 141