Computer Architecture

Lecture 18a:

Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning

Rahul Bera

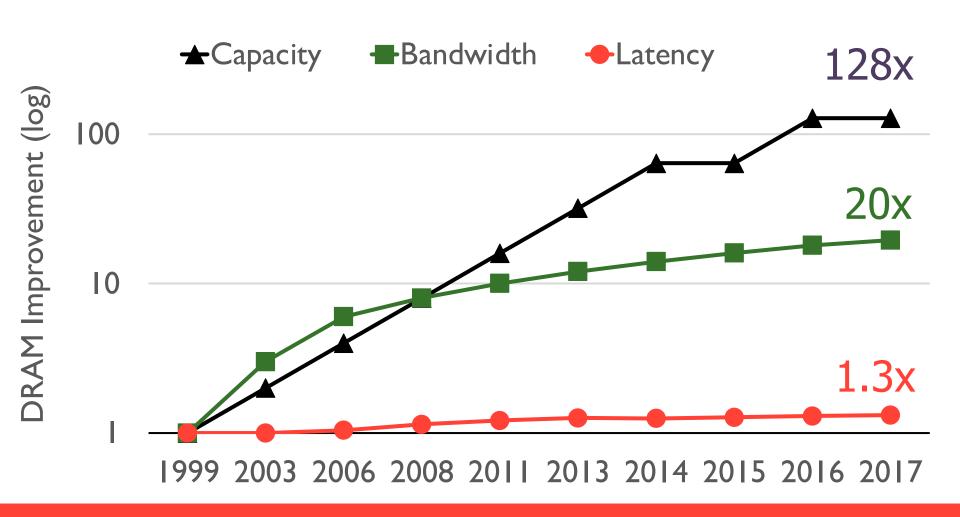
ETH Zürich

Fall 2022

25 November 2022

The (Memory) Latency Problem

Recall: Memory Latency Lags Behind



Memory latency remains almost constant

DRAM Latency Is Critical for Performance

In-memory Databases

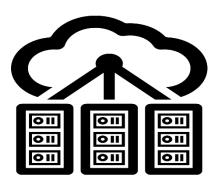
[Mao+, EuroSys'12; Clapp+ (Intel), IISWC'15]

In-Memory Data Analytics

[Clapp+ (Intel), IISWC'15; Awan+, BDCloud'15]

Graph/Tree Processing

[Xu+, IISWC'12; Umuroglu+, FPL'15]

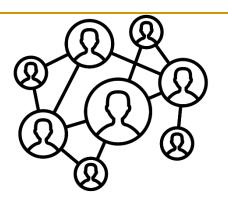


Datacenter Workloads

[Kanev+ (Google), ISCA'15]

DRAM Latency Is Critical for Performance

In-memory Databases

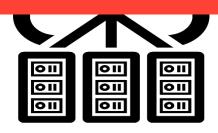


Graph/Tree Processing

Long memory latency → performance bottleneck

In-Memory Data Analytics

[Clapp+ (Intel), IISWC'15; Awan+, BDCloud'15]



Datacenter Workloads

[Kanev+ (Google), ISCA' 15]

Conventional Latency Tolerance Techniques

- Out-of-order execution [initially by Tomasulo, 1967]
 - Tolerates cache misses that cannot be prefetched
 - Requires extensive hardware resources for tolerating long latencies
- Multithreading [initially in CDC 6600, 1964]
 - Works well if there are multiple threads
 - Improving single thread performance using multithreading hardware is an ongoing research effort
- Caching [initially by Wilkes, 1965]
 - Widely used, simple, effective, but inefficient, passive
 - Not all applications/phases exhibit temporal or spatial locality
- Prefetching [initially in IBM 360/91, 1967]
 - Works well for regular memory access patterns
 - Prefetching irregular access patterns is difficult, inaccurate, and hardwareintensive

Prefetching

Prefetching

Idea: Fetch the data before it is needed (i.e. pre-fetch) by the program

Why?

- Memory latency is high. If we can prefetch accurately and early enough we can reduce/eliminate that latency
- Involves predicting which address will be needed in the future
 - Works if programs have predictable address patterns
 - Might mispredict if the program has irregular access patterns

Prefetcher Evaluation Metrics

Coverage

- Used prefetches / total demanded memory accesses from core
- The higher the better

Accuracy

- Used prefetches / sent prefetches
- The higher the better

Timeliness

- Memory access latency saved by a prefetch
- The higher the better
- Bandwidth consumption
- Cache pollution
- Energy consumption, ...

Prefetching: The Three Questions

- What
 - What addresses to prefetch
- When
 - When to initiate a prefetch request
- How
 - Software, execution-based, hardware

Prefetching: The Three Questions

- What
 - What addresses to prefetch
- When
 - When to initiate a prefetch request
- How
 - Software, execution-based, hardware

Challenges in Prefetching: How

- Software prefetching
 - Programmer or compiler inserts prefetch instructions
- Execution-based prefetchers
 - A "thread" is executed to prefetch data for the main program
- Hardware prefetching
 - Hardware monitors processor accesses
 - Memorizes or finds patterns/strides
 - Generates prefetch addresses accordingly

Challenges in Prefetching: How

- Software prefetching
 - Programmer or compiler inserts prefetch instructions
- Execution-based prefetchers
 - A "thread" is executed to prefetch data for the main program
- Hardware prefetching
 - Hardware monitors processor accesses
 - Memorizes or finds patterns/strides
 - Generates prefetch addresses accordingly

Hardware Prefetching

- An instruction with program counter (PC) X is accessing the following addresses:
 - □ A, A+D, A+2D, A+3D, ...
 - Learning: PC_x is has a strided access pattern with stride D
 - Prediction: If PC_X accesses B, prefetch (B+D)

- The last few cacheline accesses are
 - □ A, A+3, A+5, A+8, A+10, A+13, ...
 - Learning: Cacheline deltas +3 and +2 is repeating alternatively
 - Prediction: If last delta is +3 (or +2), predict next delta to be +2 (or +3)

Hardware Prefetching

- PC, Sequence of cacheline deltas, ...
 - Program features
 - Represents execution "context" of the program
- Associates access patterns from past memory requests with program features

Program feature → Access Pattern

- More program features
 - Branch PCs
 - Page number
 - Page offset
 - **-** ...
 - Or a combination of these attributes

Pythia

A Customizable Hardware Prefetching Framework **Using Online Reinforcement Learning**

Rahul Bera, Konstantinos Kanellopoulos, Anant V. Nori, Taha Shahroodi, Sreenivas Subramoney, Onur Mutlu

https://github.com/CMU-SAFARI/Pythia

Executive Summary

- Background: Prefetchers predict addresses of future memory requests by associating memory access patterns with program context (called feature)
- **Problem**: Three key shortcomings of prior prefetchers:
 - Predict mainly using a single program feature
 - Lack inherent system awareness (e.g., memory bandwidth usage)
 - Lack in-silicon customizability
- Goal: Design a prefetching framework that:
 - Learns from multiple features and inherent system-level feedback
 - Can be customized in silicon to use different features and/or prefetching objectives
- Contribution: Pythia, which formulates prefetching as reinforcement learning problem
 - Takes adaptive prefetch decisions using multiple features and system-level feedback
 - Can be customized in silicon for target workloads via simple configuration registers
 - Proposes a realistic and practical implementation of RL algorithm in hardware
- Key Results:
 - Evaluated using a wide range of workloads from SPEC CPU, PARSEC, Ligra, Cloudsuite
 - Outperforms best prefetcher (in 1-core config.) by 3.4%, 7.7% and 17% in 1/4/bw-constrained cores
 - Up to 7.8% more performance over basic Pythia across Ligra workloads via simple customization

Talk Outline

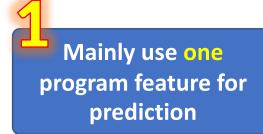
Key Shortcomings of Prior Prefetchers

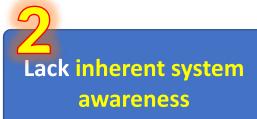
Formulating Prefetching as Reinforcement Learning

Pythia: Overview

Evaluation of Pythia and Key Results

Conclusion

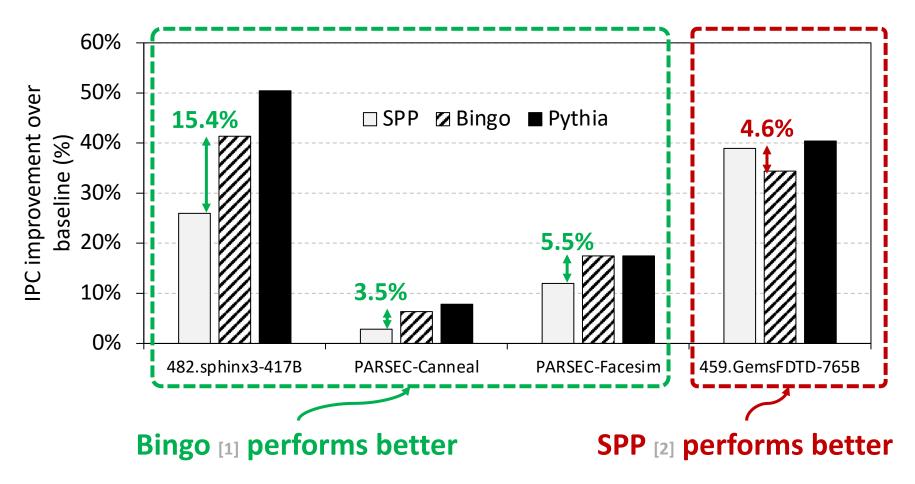




Why do prefetchers not perform well?

(1) Single-Feature Prefetch Prediction

 Provides good performance gains mainly on workloads where the feature-to-pattern correlation exists



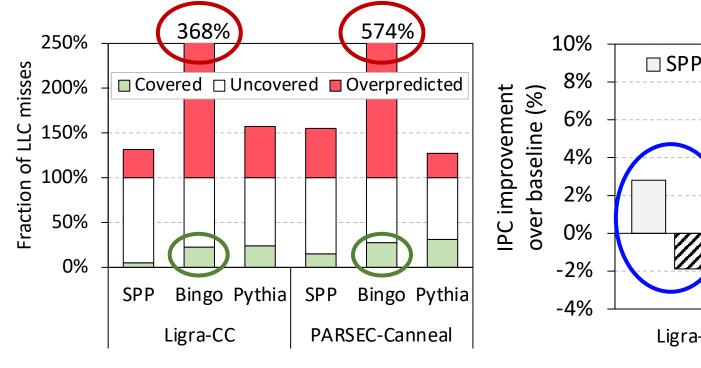
(1) Single-Feature Prefetch Prediction

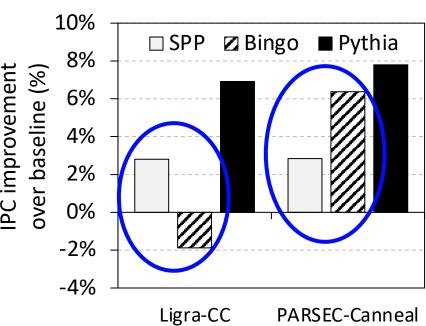
 Provides good performance gains mainly on workloads where the feature-to-pattern correlation exists

Relying on a single feature for prediction leaves significant performance improvement on table

(2) Lack of Inherent System Awareness

- Little understanding of undesirable effects (e.g., memory bandwidth usage, cache pollution, ...)
 - Performance loss in resource-constrained configurations





Similar coverage

Lower overpredictions

Yet, lower performance

(2) Lack of Inherent System Awareness

- Little understanding of undesirable effects (e.g., memory bandwidth usage, cache pollution, ...)
 - Performance loss in resource-constrained configurations

Prefetchers often lose performance due to lack of inherent system awareness

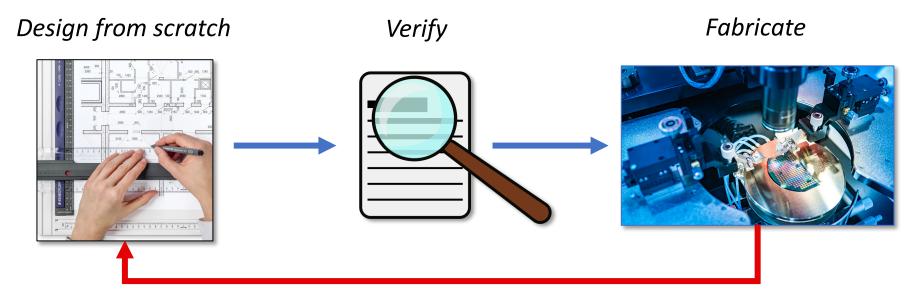
Similar coverage

Lower overpredictions

Yet, lower performance

(3) Lack of In-silicon Customizability

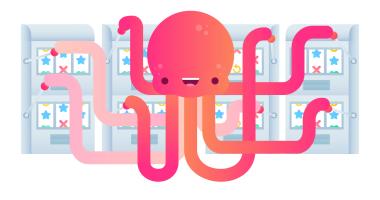
- Feature statically selected at design time
 - Rigid hardware designed specifically to exploit that feature
- No way to change program feature and/or change prefetcher's objective in silicon
 - Cannot adapt to a wide range of workload demands



Our Goal

Autonomously learns to prefetch using multiple program context information and system-level feedback

Can be customized in silicon to change program context information or



prefetching objective on the fly

Our Proposal

Pythia

Formulates prefetching as a reinforcement learning problem

Talk Outline

Key Shortcomings of Prior Prefetchers

Formulating Prefetching as Reinforcement Learning

Pythia: Overview

Evaluation of Pythia and Key Results

Conclusion

Basics of Reinforcement Learning (RL)

 Algorithmic approach to learn to take an action in a given situation to maximize a numerical reward

Agent

Environment

- Agent stores Q-values for every state-action pair
 - Expected reward for taking an action in a state
 - Given a state, selects action that provides highest Q-value

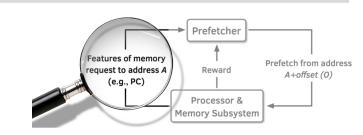
Formulating Prefetching as RL

What is State?

k-dimensional vector of features

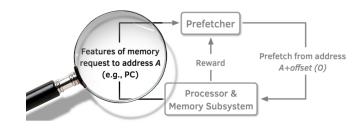
$$S \equiv \{\phi_S^1, \phi_S^2, \dots, \phi_S^k\}$$

Feature = control-flow + data-flow

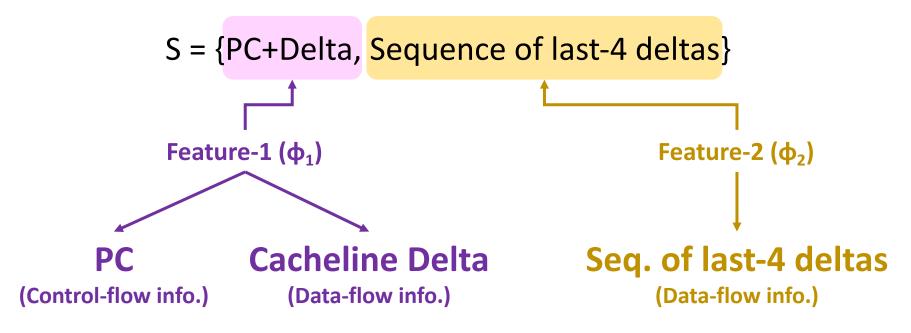


- Control-flow examples
 - PC
 - Branch PC
 - Last-3 PCs, ...
- Data-flow examples
 - Cacheline address
 - Physical page number
 - Delta between two cacheline addresses
 - Last 4 deltas, ...

What is State?

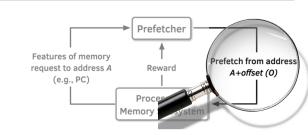


Example of a state information



What is Action?

Given a demand access to address A the action is to select prefetch offset "O"



- Issue prefetch to (A+O)
- Action-space: 127 actions in the range [-63, +63]
 - For a processor with 4KB page and 64B cacheline
- Upper and lower limits ensure prefetches do not cross physical page boundary
- A zero offset means no prefetch is generated

What is Reward?

Defines the objective of Pythia

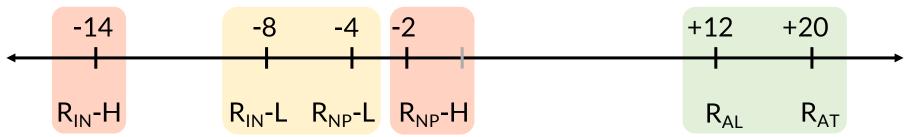
- Encapsulates two metrics:
 - Prefetch usefulness (e.g., accurate, late, out-of-page, ...)
 - System-level feedback (e.g., mem. b/w usage, cache pollution, energy, ...)
- We demonstrate Pythia with memory bandwidth usage as the system-level feedback in the paper

What is Reward?

- Seven distinct reward levels
 - Accurate and timely (R_{AT})
 - Accurate but late (R_{AI})
 - Loss of coverage (R_{CL})
 - Inaccurate
 - With low memory b/w usage (R_{IN}-L)
 - With high memory b/w usage (R_{IN}-H)
 - No-prefetch
 - With low memory b/w usage (R_{NP}-L)
 - With high memory b/w usage(R_{NP}-H)
- Values are set at design time via automatic designspace exploration
 - Can be customized further in silicon for higher performance

Steering Pythia's Objective via Reward Values

- Example reward configuration for
 - Generating accurate prefetches
 - Making bandwidth-aware prefetch decisions



AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate; H = High mem. b/w; L = Low mem. b/w

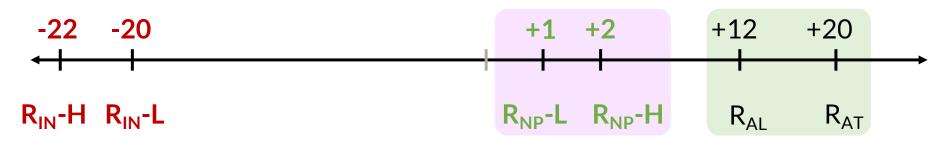
Highly prefers to generate accurate prefetches

Prefers not to prefetch if memory bandwidth usage is low

Strongly prefers not to prefetch if memory bandwidth usage is high

Steering Pythia's Objective via Reward Values

 Customizing reward values to make Pythia conservative towards prefetching



AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate; H = High mem. b/w; L = Low mem. b/w

Highly prefers to generate accurate prefetches

Otherwise prefers not to prefetch

Steering Pythia's Objective via Reward Values

 Customizing reward values to make Dythia concernative towards p Strict Pythia configuration

Server-class processors

Bandwidth-sensitive workloads

Talk Outline

Key Shortcomings of Prior Prefetchers

Formulating Prefetching as Reinforcement Learning

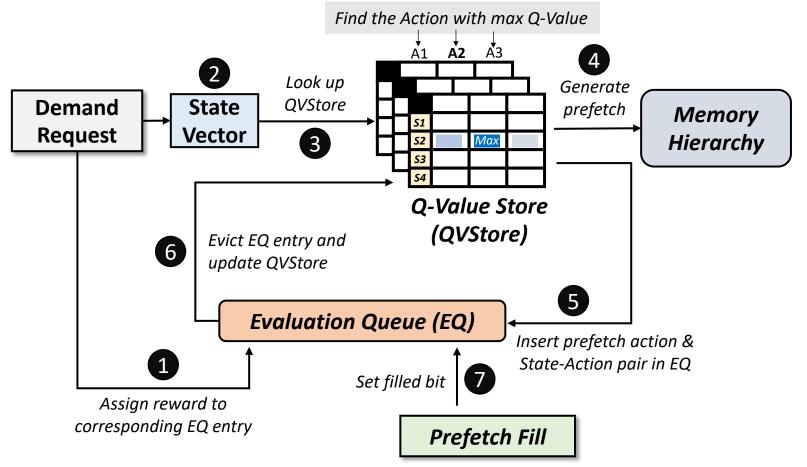
Pythia: Overview

Evaluation of Pythia and Key Results

Conclusion

Pythia Overview

- Q-Value Store: Records Q-values for all state-action pairs
- Evaluation Queue: A FIFO queue of recently-taken actions



More in the Paper

Pipelined search operation for QVStore

Reward assignment and QVStore update

- Automatic design-space exploration
 - Feature types
 - Action
 - Reward and Hyperparameter values

More in the Paper

Pipelined search operation for QVStore

Reward assignment and OVStore undate

Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning

```
Rahul Bera<sup>1</sup> Konstantinos Kanellopoulos<sup>1</sup> Anant V. Nori<sup>2</sup> Taha Shahroodi<sup>3,1</sup> Sreenivas Subramoney<sup>2</sup> Onur Mutlu<sup>1</sup>
```

¹ETH Zürich ²Processor Architecture Research Labs, Intel Labs ³TU Delft

- Reward a https://arxiv.org/pdf/2109.12021.pdf

Talk Outline

Key Shortcomings of Prior Prefetchers

Formulating Prefetching as Reinforcement Learning

Pythia: Overview

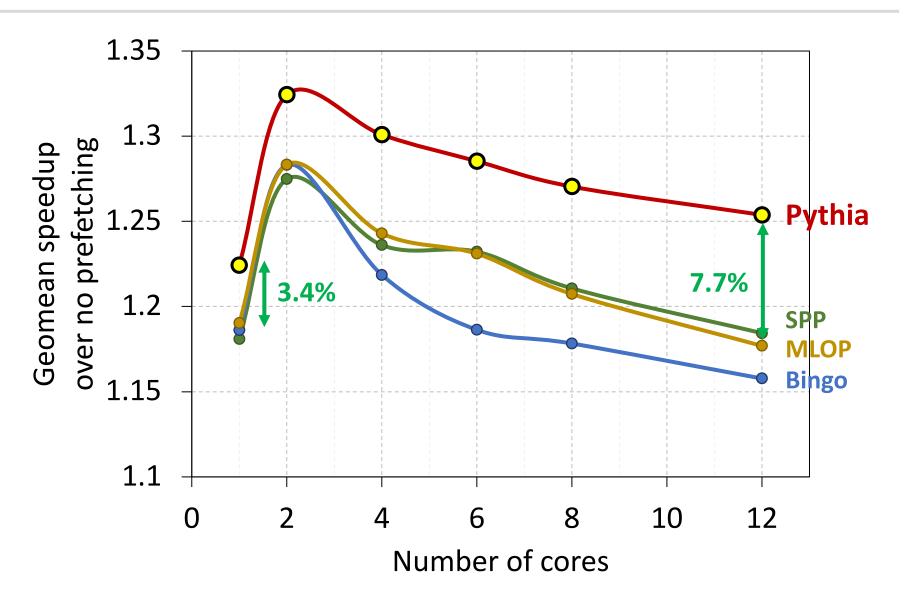
Evaluation of Pythia and Key Results

Conclusion

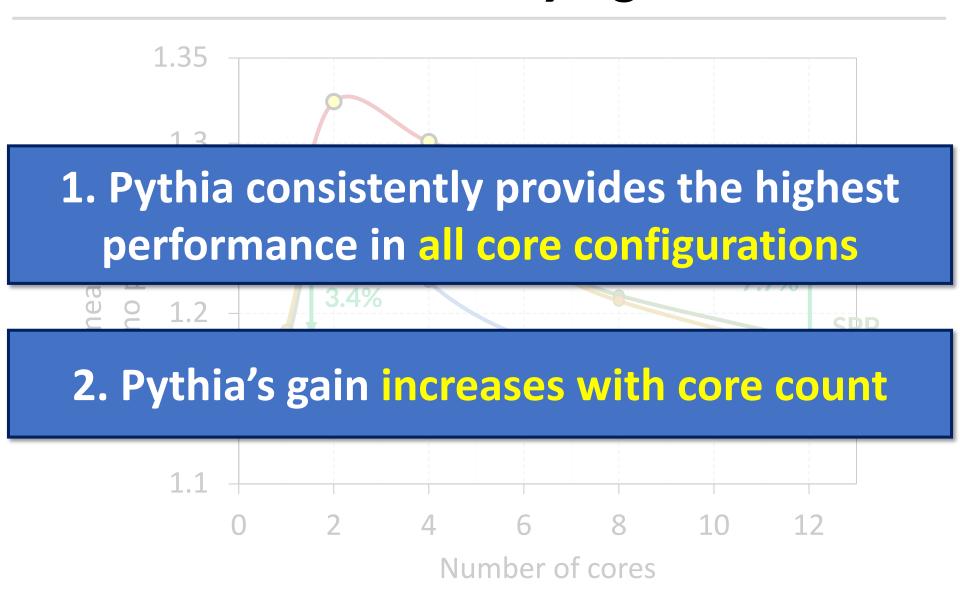
Simulation Methodology

- Champsim [3] trace-driven simulator
- 150 single-core memory-intensive workload traces
 - SPEC CPU2006 and CPU2017
 - PARSEC 2.1
 - Ligra
 - Cloudsuite
- Homogeneous and heterogeneous multi-core mixes
- Five state-of-the-art prefetchers
 - SPP [Kim+, MICRO'16]
 - Bingo [Bakhshalipour+, HPCA'19]
 - MLOP [Shakerinava+, 3rd Prefetching Championship, 2019]
 - SPP+DSPatch [Bera+, MICRO'19]
 - SPP+PPF [Bhatia+, ISCA'20]

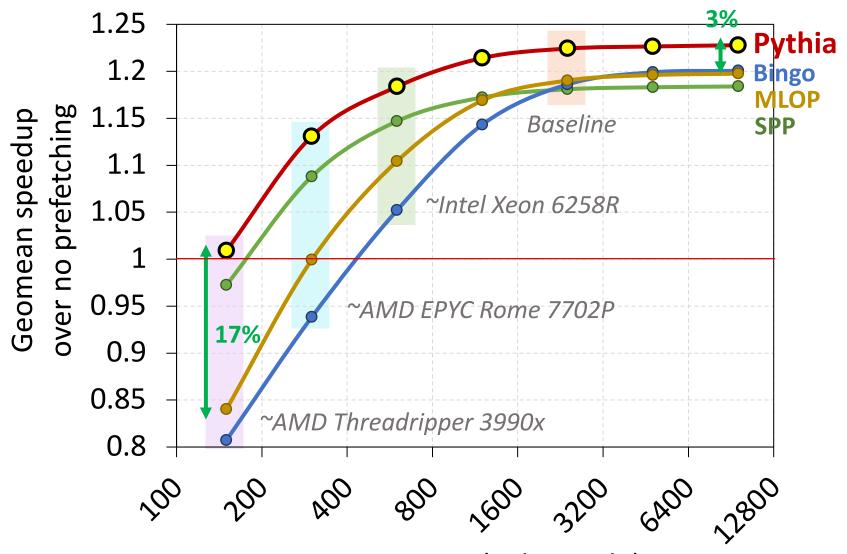
Performance with Varying Core Count



Performance with Varying Core Count



Performance with Varying DRAM Bandwidth



DRAM MTPS (in log scale)

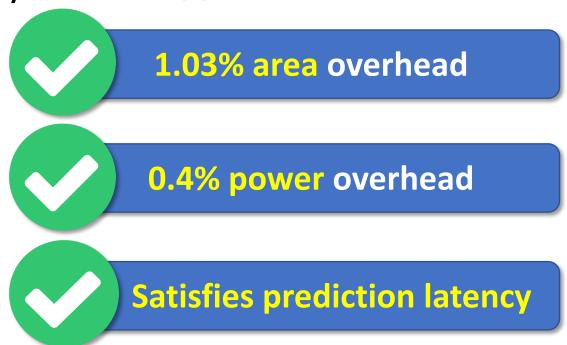
Performance with Varying DRAM Bandwidth

Pythia outperforms prior best prefetchers for a wide range of DRAM bandwidth configurations

DRAM MTPS (in log scale)

Pythia's Overhead

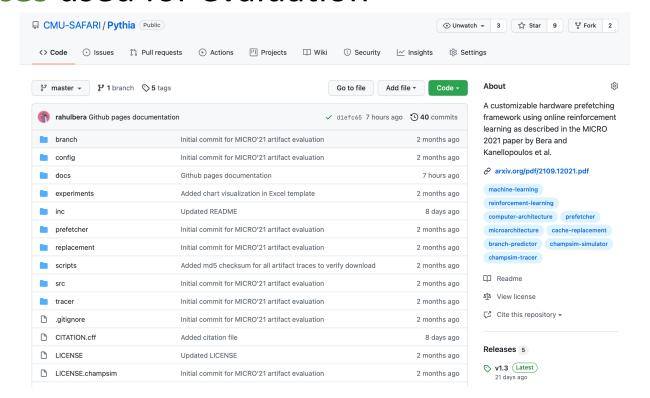
- 25.5 KB of total metadata storage per core
 - Only simple tables
- We also model functionally-accurate Pythia with full complexity in Chise [4] HDL



Pythia is Open Source

https://github.com/CMU-SAFARI/Pythia

- MICRO'21 artifact evaluated
- Champsim source code + Chisel modeling code
- All traces used for evaluation



Talk Outline

Key Shortcomings of Prior Prefetchers

Formulating Prefetching as Reinforcement Learning

Pythia: Overview

Evaluation of Pythia and Key Results

Conclusion

Conclusion

- Background: Prefetchers predict addresses of future memory requests by associating memory access patterns with program context (called feature)
- **Problem**: Three key shortcomings of prior prefetchers:
 - Predict mainly using a single program feature
 - Lack **inherent system awareness** (e.g., memory bandwidth usage)
 - Lack in-silicon customizability
- Goal: Design a prefetching framework that:
 - Learns from multiple features and inherent system-level feedback
 - Can be customized in silicon to use different features and/or prefetching objectives
- Contribution: Pythia, which formulates prefetching as reinforcement learning problem
 - Takes adaptive prefetch decisions using multiple features and system-level feedback
 - Can be customized in silicon for target workloads via simple configuration registers
 - Proposes a realistic and practical implementation of RL algorithm in hardware
- Key Results:
 - Evaluated using a wide range of workloads from SPEC CPU, PARSEC, Ligra, Cloudsuite
 - Outperforms best prefetcher (in 1-core config.) by 3.4%, 7.7% and 17% in 1/4/bw-constrained cores
 - Up to 7.8% more performance over basic Pythia across Ligra workloads via simple customization

Pythia

A Customizable Hardware Prefetching Framework **Using Online Reinforcement Learning**

Rahul Bera, Konstantinos Kanellopoulos, Anant V. Nori, Taha Shahroodi, Sreenivas Subramoney, Onur Mutlu

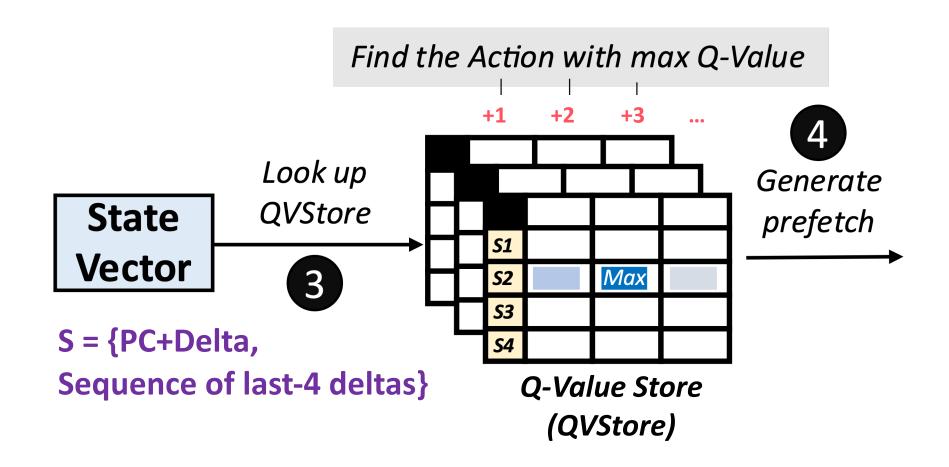
https://github.com/CMU-SAFARI/Pythia

BACKUP

Why RL? Why Not Supervised Learning?

- Determining the benefits of prefetching (i.e., whether a decision was good for performance or not) is not easy
 - Depends on a complex set of metrics
 - Coverage, accuracy, timeliness
 - Effects on system: b/w usage, pollution, cross-application interference, ...
 - Dynamically-changing environmental conditions change the benefit
 - Delayed feedback due to long latency (might not receive feedback at all for inaccurate prefetches!)
- Differs from classification tasks (e.g., branch prediction)
 - Performance strongly correlates mainly to accuracy
 - Does not depend on environment
 - Bounded feedback delay

Architecting QVStore



Architecting QVStore

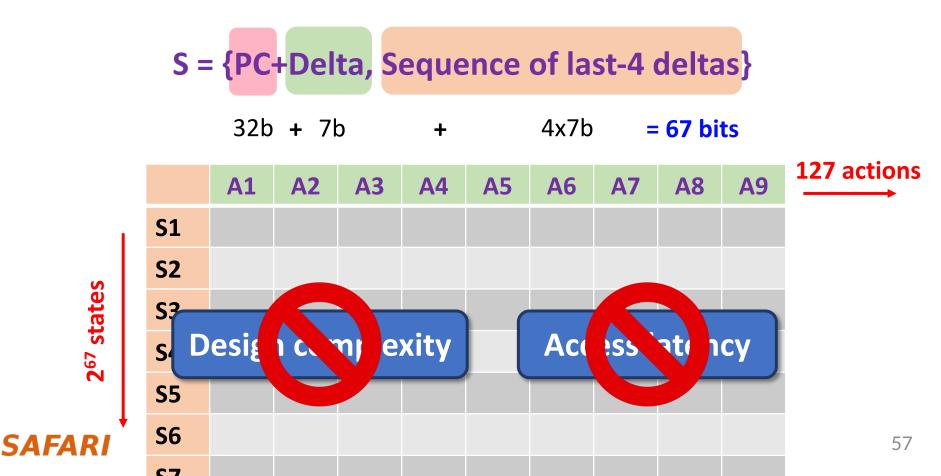
Fast retrieval of Q-values from QVStore

S = {PC+Delta,
Sequence of last-4 deltas}

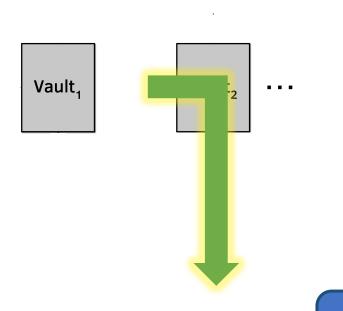
Q-Value Store

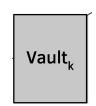
Efficient storage organization of Q-values in QVStore

- A monolithic two-dimensional table?
 - Indexed by state and action values
- State-space increases exponentially with #bits



- We partition QVStore into k vaults [k = number of features in state]
 - Each vault corresponds to one feature and stores the Q-values of feature-action pairs





To retrieve Q(S,A) for each action

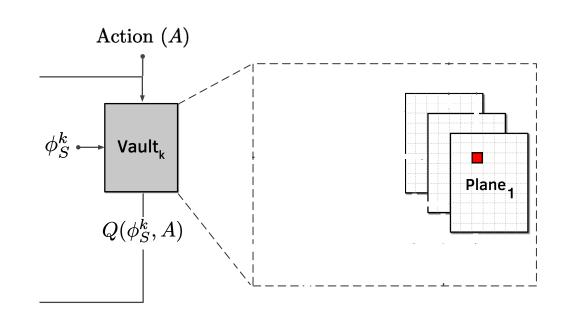
- Query each vault in parallel with feature and action
- Retrieve feature-action
 Q-value from each vault
- Compute MAX of all feature-action Q-values

MAX ensures the Q(S,A) is driven by the constituent feature that has highest Q(φ,A)

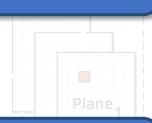
- We further partition each vault into multiple planes
 - Each plane stores a partial Q-value of a feature-action pair

To retrieve Q(φ,A) for each action

- Query each plane in parallel with hashed feature and action
- Retrieve partial featureaction Q-value from each plane
- Compute SUM of all parital feature-action Q-values



- We further partition each vault into multiple planes
 - Each plane stores a partial Q-value of a feature-action pair
 - 1. Enables sharing of partial Q-values between similar feature values, shortens prefetcher training time
 - parallel with hashed feature and action



- 2. Reduces chances of sharing partial Q-values across widely different feature values
- feature-action Q-values

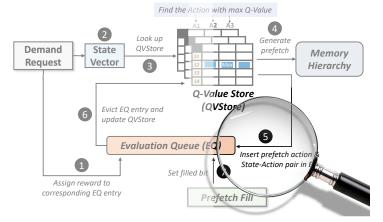
Reward Assignment to EQ Entry

Every action gets inserted into EQ

Reward is assigned to each EQ entry before or during the

eviction

- During EQ insertion: for actions
 - Not to prefetch
 - Out-of-page prefetch

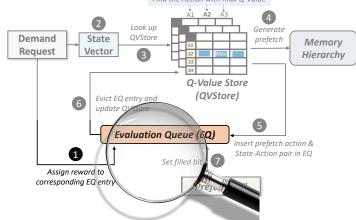


Reward Assignment to EQ Entry

Every action gets inserted into EQ

• Reward is assigned to each EQ entry before or during the eviction

- During EQ insertion: for actions
 - Not to prefetch
 - Out-of-page prefetch
- During EQ residency:
 - In case address of a demand matches with address in EQ (signifies accurate prefetch)



Reward Assignment to EQ Entry

Every action gets inserted into EQ

• Reward is assigned to each EQ entry before or during the eviction

Demand

Request

State

Assign reward to corresponding EQ entry

Evict EQ entry and update QVStore

Evalue aon Qu

- During EQ insertion: for actions
 - Not to prefetch
 - Out-of-page prefetch
- During EQ residency:
 - In case address of a demand matches with address in EQ (signifies accurate prefetch)
- During EQ eviction:
 - In case no reward is assigned till eviction (signifies inaccurate prefetch)

prefetch

Insert prefetch action &

State-Action pair in FO

Prefetch Fill

Memory

Hierarchy

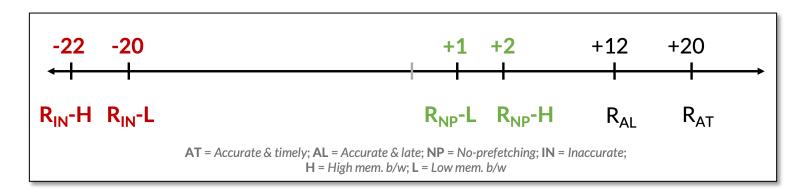
Basic Pythia Configuration

Derived from automatic design-space exploration

- State: 2 features
 - PC+Delta
 - Sequence of last-4 deltas
- Actions: 16 prefetch offsets
 - Ranging between -6 to +32. Including 0.
- Rewards:
 - $R_{AT} = +20$; $R_{AL} = +12$; R_{NP} -H=-2; R_{NP} -L=-4;
 - R_{IN} -H=-14; R_{IN} -L=-8; R_{CL} =-12

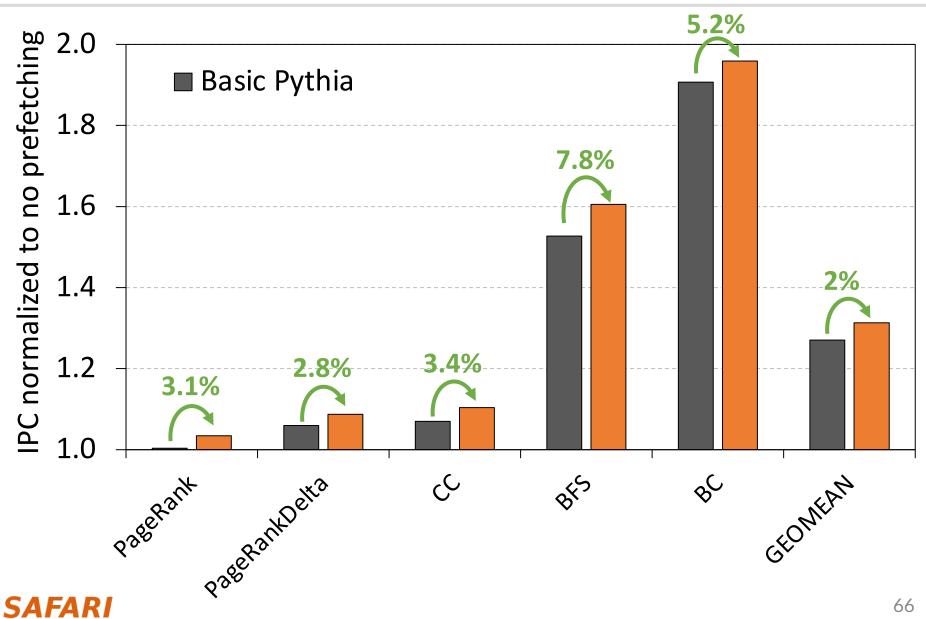
Performance Improvement via Customization

- Reward value customization
- Strict Pythia configuration
 - Increasing the rewards for no prefetching
 - Decreasing the rewards for inaccurate prefetching



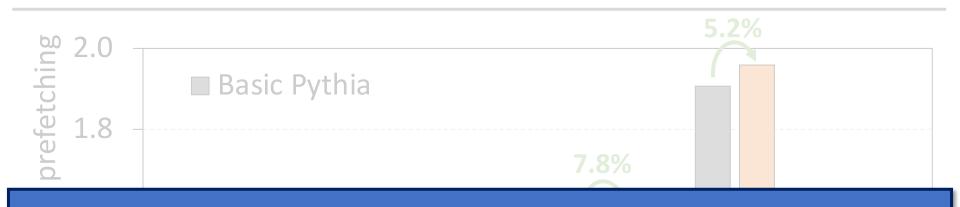
- Strict Pythia is more conservative in generating prefetch requests than the basic Pythia
- Evaluate on all Ligra graph processing workloads

Performance Improvement via Customization

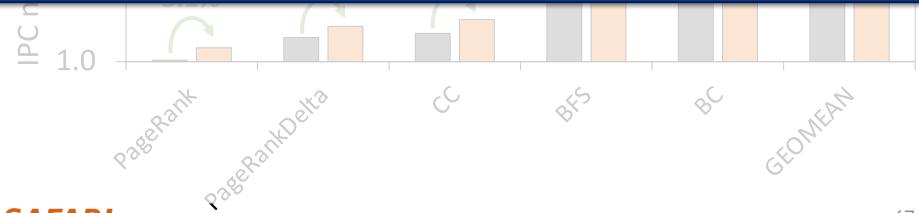


66

Performance Improvement via Customization

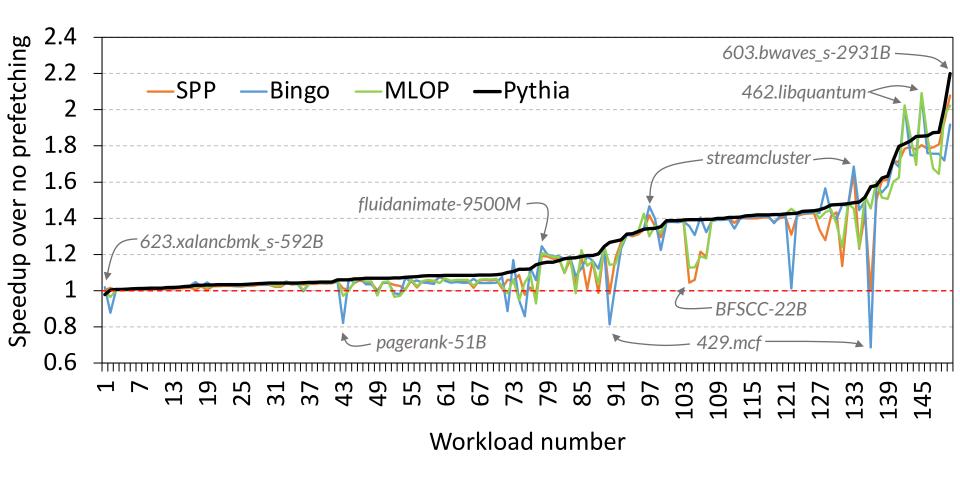


Pythia can extract even higher performance via customization without changing hardware

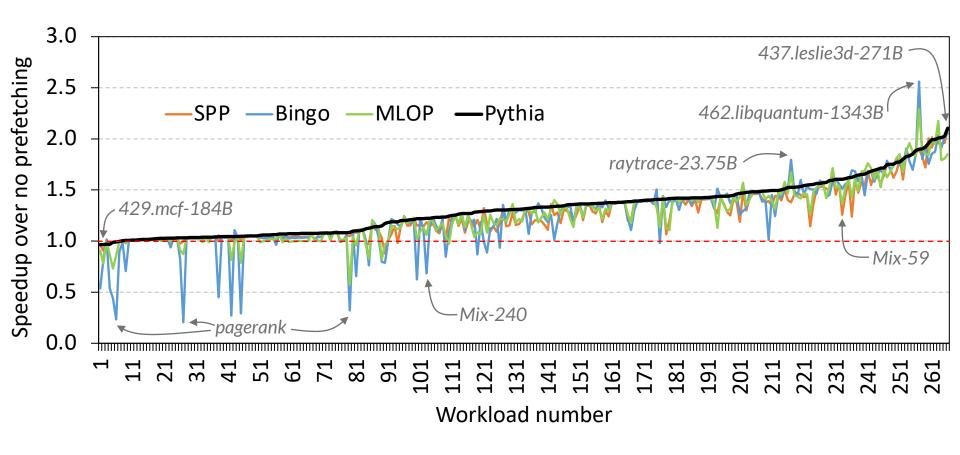


SAFARI

Performance S-curve: Single-core



Performance S-curve: Four-core



More in the Paper

- Performance comparison with unseen traces
 - Pythia provides equally high performance benefits
- Comparison against multi-level prefetchers
 - Pythia outperforms prior best multi-level prefetchers
- Understanding Pythia's learning with a case study
 - We reason towards the correctness of Pythia's decision
- Performance sensitivity towards different features and hyperparameter values
- Detailed single-core and four-core performance

More in the Paper

- Performance comparison with unseen traces
 - Pythia provides equally high performance benefits

Comparison against multi-level prefetchers

Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning

Rahul Bera¹ Konstantinos Kanellopoulos¹ Anant V. Nori² Taha Shahroodi^{3,1}

Sreenivas Subramoney² Onur Mutlu¹

¹ETH Zürich ²Processor Architecture Research Labs, Intel Labs ³TU Delft

• Performance sensitivity towards different features and hyperparameter values

Detailed single-core and four-core performance