
Computer Architecture
Lecture 18a:

Pythia: A Customizable Hardware Prefetching
Framework Using Online Reinforcement Learning

Rahul Bera
ETH Zürich
Fall 2022

25 November 2022

The (Memory) Latency Problem

1

10

100

1999 2003 2006 2008 2011 2013 2014 2015 2016 2017

D
R

A
M

 Im
pr

ov
em

en
t

(lo
g)

Capacity Bandwidth Latency

Recall: Memory Latency Lags Behind

128x

20x

1.3x

Memory latency remains almost constant

DRAM Latency Is Critical for Performance

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15;
Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]

In-memory Databases
[Mao+, EuroSys’12;
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

DRAM Latency Is Critical for Performance

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15;
Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]

In-memory Databases
[Mao+, EuroSys’12;
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

Long memory latency → performance bottleneck

6

Conventional Latency Tolerance Techniques

n Out-of-order execution [initially by Tomasulo, 1967]
q Tolerates cache misses that cannot be prefetched
q Requires extensive hardware resources for tolerating long latencies

n Multithreading [initially in CDC 6600, 1964]
q Works well if there are multiple threads
q Improving single thread performance using multithreading hardware is an

ongoing research effort

n Caching [initially by Wilkes, 1965]
q Widely used, simple, effective, but inefficient, passive
q Not all applications/phases exhibit temporal or spatial locality

n Prefetching [initially in IBM 360/91, 1967]
q Works well for regular memory access patterns
q Prefetching irregular access patterns is difficult, inaccurate, and hardware-

intensive

Prefetching

Prefetching
n Idea: Fetch the data before it is needed (i.e. pre-fetch) by

the program

n Why?
q Memory latency is high. If we can prefetch accurately and

early enough we can reduce/eliminate that latency

n Involves predicting which address will be needed in the
future
q Works if programs have predictable address patterns
q Might mispredict if the program has irregular access patterns

8

Prefetcher Evaluation Metrics
n Coverage

q Used prefetches / total demanded memory accesses from core
q The higher the better

n Accuracy
q Used prefetches / sent prefetches
q The higher the better

n Timeliness
q Memory access latency saved by a prefetch
q The higher the better

n Bandwidth consumption
n Cache pollution
n Energy consumption, …

9

Prefetching: The Three Questions
n What

q What addresses to prefetch

n When
q When to initiate a prefetch request

n How
q Software, execution-based, hardware

10

Prefetching: The Three Questions
n What

q What addresses to prefetch

n When
q When to initiate a prefetch request

n How
q Software, execution-based, hardware

11

Challenges in Prefetching: How
n Software prefetching

q Programmer or compiler inserts prefetch instructions

n Execution-based prefetchers
q A “thread” is executed to prefetch data for the main program

n Hardware prefetching
q Hardware monitors processor accesses
q Memorizes or finds patterns/strides
q Generates prefetch addresses accordingly

12

Challenges in Prefetching: How
n Software prefetching

q Programmer or compiler inserts prefetch instructions

n Execution-based prefetchers
q A “thread” is executed to prefetch data for the main program

n Hardware prefetching
q Hardware monitors processor accesses
q Memorizes or finds patterns/strides
q Generates prefetch addresses accordingly

13

Hardware Prefetching
n An instruction with program counter (PC) X is accessing the

following addresses:
q A, A+D, A+2D, A+3D, …
q Learning: PCX is has a strided access pattern with stride D
q Prediction: If PCX accesses B, prefetch (B+D)

n The last few cacheline accesses are
q A, A+3, A+5, A+8, A+10, A+13, …
q Learning: Cacheline deltas +3 and +2 is repeating alternatively
q Prediction: If last delta is +3 (or +2), predict next delta to be

+2 (or +3)

14

Hardware Prefetching
n PC, Sequence of cacheline deltas, …

q Program features
q Represents execution “context” of the program

n Associates access patterns from past memory requests with
program features

n More program features
q Branch PCs
q Page number
q Page offset
q …
q Or a combination of these attributes

Program feature à Access Pattern

Rahul Bera, Konstantinos Kanellopoulos, Anant V. Nori,
Taha Shahroodi, Sreenivas Subramoney, Onur Mutlu

Pythia
A Customizable Hardware Prefetching Framework

Using Online Reinforcement Learning

https://github.com/CMU-SAFARI/Pythia

https://github.com/CMU-SAFARI/Pythia

17

Executive Summary

https://github.com/CMU-SAFARI/Pythia

• Background: Prefetchers predict addresses of future memory requests by associating
memory access patterns with program context (called feature)

• Problem: Three key shortcomings of prior prefetchers:
- Predict mainly using a single program feature
- Lack inherent system awareness (e.g., memory bandwidth usage)
- Lack in-silicon customizability

• Goal: Design a prefetching framework that:
- Learns from multiple features and inherent system-level feedback
- Can be customized in silicon to use different features and/or prefetching objectives

• Contribution: Pythia, which formulates prefetching as reinforcement learning problem
- Takes adaptive prefetch decisions using multiple features and system-level feedback
- Can be customized in silicon for target workloads via simple configuration registers
- Proposes a realistic and practical implementation of RL algorithm in hardware

• Key Results:
- Evaluated using a wide range of workloads from SPEC CPU, PARSEC, Ligra, Cloudsuite
- Outperforms best prefetcher (in 1-core config.) by 3.4%, 7.7% and 17% in 1/4/bw-constrained cores
- Up to 7.8% more performance over basic Pythia across Ligra workloads via simple customization

https://github.com/CMU-SAFARI/Pythia

18

Talk Outline

Key Shortcomings of Prior Prefetchers

Formulating Prefetching as Reinforcement Learning

Pythia: Overview

Evaluation of Pythia and Key Results

Conclusion

19

Mainly use one
program feature for

prediction

Lack inherent system
awareness

Lack in-silicon
customizability

Why do prefetchers
not perform well?

20

(1) Single-Feature Prefetch Prediction

• Provides good performance gains mainly on workloads
where the feature-to-pattern correlation exists

[1] Bakshalipour et al., HPCA’19 [2] Kim et al., MICRO’16

0%

10%

20%

30%

40%

50%

60%

482.sphinx3-417B PARSEC-Canneal PARSEC-Facesim 459.GemsFDTD-765B

IP
C

im
pr

ov
em

en
t o

ve
r

ba
se

lin
e

(%
)

SPP Bingo Pythia15.4%

3.5%

5.5%

4.6%

Bingo [1] performs better SPP [2] performs better

21

(1) Single-Feature Prefetch Prediction

• Provides good performance gains mainly on workloads
where the feature-to-pattern correlation exists

[1] Bakshalipour et al., HPCA’19 [2] Kim et al., MICRO’16

0%

10%

20%

30%

40%

50%

60%

482.sphinx3-417B PARSEC-Canneal PARSEC-Facesim 459.GemsFDTD-765B

IP
C

im
pr

ov
em

en
t o

ve
r

ba
se

lin
e

(%
)

SPP Bingo Pythia15.4%

3.5%

5.5%

4.6%

Bingo [1] performs better SPP [2] performs better

Relying on a single feature for prediction leaves
significant performance improvement on table

22

(2) Lack of Inherent System Awareness

• Little understanding of undesirable effects (e.g.,
memory bandwidth usage, cache pollution, …)
- Performance loss in resource-constrained configurations

0%

50%

100%

150%

200%

250%

SPP Bingo Pythia SPP Bingo Pythia

Ligra-CC PARSEC-Canneal

Fr
ac

tio
n

of
 L

LC
 m

iss
es Covered Uncovered Overpredicted

-4%

-2%
0%
2%
4%

6%
8%

10%

Ligra-CC PARSEC-Canneal

IP
C

im
pr

ov
em

en
t

ov
er

 b
as

el
in

e
(%

)

SPP Bingo Pythia
368% 574%

Similar coverage Lower overpredictions Yet, lower performance

23

(2) Lack of Inherent System Awareness

• Little understanding of undesirable effects (e.g.,
memory bandwidth usage, cache pollution, …)
- Performance loss in resource-constrained configurations

0%

50%

100%

150%

200%

250%

SPP Bingo Pythia SPP Bingo Pythia

Ligra-CC PARSEC-Canneal

Fr
ac

tio
n

of
 L

LC
 m

iss
es Covered Uncovered Overpredicted

-4%

-2%
0%
2%
4%

6%
8%

10%

Ligra-CC PARSEC-Canneal

IP
C

im
pr

ov
em

en
t

ov
er

 b
as

el
in

e
(%

)

SPP Bingo Pythia
368% 574%

Similar coverage Lower overpredictions Yet, lower performance

Prefetchers often lose performance due to lack
of inherent system awareness

24

(3) Lack of In-silicon Customizability

• Feature statically selected at design time
- Rigid hardware designed specifically to exploit that feature

• No way to change program feature and/or change
prefetcher’s objective in silicon
- Cannot adapt to a wide range of workload demands

Design from scratch Verify Fabricate

25

Autonomously learns to prefetch using
multiple program context information

and system-level feedback

Can be customized in silicon to change
program context information or
prefetching objective on the fly

Our Goal

26

Our Proposal

Pythia
Formulates prefetching as a

reinforcement learning problem

Pythia is named after the oracle of Delphi, who is known for her accurate prophecies
https://en.wikipedia.org/wiki/Pythia

27

Talk Outline

Key Shortcomings of Prior Prefetchers

Formulating Prefetching as Reinforcement Learning

Pythia: Overview

Evaluation of Pythia and Key Results

Conclusion

28

Basics of Reinforcement Learning (RL)

• Algorithmic approach to learn to take an action in a
given situation to maximize a numerical reward

• Agent stores Q-values for every state-action pair
- Expected reward for taking an action in a state
- Given a state, selects action that provides highest Q-value

Agent

Environment

State (St)State (St) Action (At)Action (At)Reward (Rt+1)Reward (Rt+1)

29

Formulating Prefetching as RL

Agent

Environment

State (St)State (St) Action (At)Action (At)Reward (Rt+1)Reward (Rt+1)

Prefetcher

Processor &
Memory Subsystem

Reward
Prefetch from address

A+offset (O)

Features of memory
request to address A

(e.g., PC)

30

What is State?
• k-dimensional vector of features

• Feature = control-flow + data-flow

• Control-flow examples
- PC
- Branch PC
- Last-3 PCs, …

• Data-flow examples
- Cacheline address
- Physical page number
- Delta between two cacheline addresses
- Last 4 deltas, …

31

What is State?

S = {PC+Delta, Sequence of last-4 deltas}

Example of a state information

Feature-1 (ɸ1) Feature-2 (ɸ2)

PC
(Control-flow info.)

Cacheline Delta
(Data-flow info.)

Seq. of last-4 deltas
(Data-flow info.)

32

What is Action?
Given a demand access to address A
the action is to select prefetch offset “O”

- Issue prefetch to (A+O)

• Action-space: 127 actions in the range [-63, +63]
- For a processor with 4KB page and 64B cacheline

• Upper and lower limits ensure prefetches do not cross
physical page boundary

• A zero offset means no prefetch is generated

33

What is Reward?
• Defines the objective of Pythia

• Encapsulates two metrics:
- Prefetch usefulness (e.g., accurate, late, out-of-page, …)
- System-level feedback (e.g., mem. b/w usage, cache

pollution, energy, …)

• We demonstrate Pythia with memory bandwidth
usage as the system-level feedback in the paper

34

What is Reward?
• Seven distinct reward levels

- Accurate and timely (RAT)
- Accurate but late (RAL)
- Loss of coverage (RCL)
- Inaccurate

• With low memory b/w usage (RIN-L)
• With high memory b/w usage (RIN-H)

- No-prefetch
• With low memory b/w usage (RNP-L)
• With high memory b/w usage(RNP-H)

• Values are set at design time via automatic design-
space exploration
- Can be customized further in silicon for higher performance

35

Steering Pythia’s Objective via Reward Values

• Example reward configuration for
- Generating accurate prefetches
- Making bandwidth-aware prefetch decisions

+20+12-2-4-8-14

RATRALRNP-HRNP-LRIN-LRIN-H

AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;
H = High mem. b/w; L = Low mem. b/w

Highly prefers to generate accurate prefetches

Prefers not to prefetch if memory bandwidth usage is low

Strongly prefers not to prefetch if memory bandwidth usage is high

36

Steering Pythia’s Objective via Reward Values

• Customizing reward values to make Pythia conservative
towards prefetching

+20+12+2+1-20-22

RATRALRNP-HRNP-LRIN-LRIN-H

AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;
H = High mem. b/w; L = Low mem. b/w

Highly prefers to generate accurate prefetches

Otherwise prefers not to prefetch

37

Steering Pythia’s Objective via Reward Values

• Customizing reward values to make Pythia conservative
towards prefetching

+20+12+4+2-20-22

RATRALRNP-HRNP-LRIN-LRIN-H

AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;
H = High mem. b/w; L = Low mem. b/w

Highly prefers to generate accurate prefetches

Otherwise prefers not to prefetchServer-class processors
Bandwidth-sensitive

workloads

Strict Pythia configuration

38

Talk Outline

Key Shortcomings of Prior Prefetchers

Formulating Prefetching as Reinforcement Learning

Pythia: Overview

Evaluation of Pythia and Key Results

Conclusion

39

Pythia Overview
• Q-Value Store: Records Q-values for all state-action pairs
• Evaluation Queue: A FIFO queue of recently-taken actions

Evaluation Queue (EQ)

Demand
Request

1
Assign reward to

corresponding EQ entry

Look up
QVStoreState

Vector

Q-Value Store
(QVStore)

2

3

5
Insert prefetch action &
State-Action pair in EQ

6

Prefetch Fill

A1 A2 A3

Memory
Hierarchy

Generate
prefetch

Evict EQ entry and
update QVStore

4

Find the Action with max Q-Value

7

S1
S2
S3
S4

Set filled bit

Max

40

More in the Paper
• Pipelined search operation for QVStore

• Reward assignment and QVStore update

• Automatic design-space exploration
- Feature types
- Action
- Reward and Hyperparameter values

41

More in the Paper
• Pipelined search operation for QVStore

• Reward assignment and QVStore update

• Automatic design-space exploration
- Feature types
- Action
- Reward and Hyperparameter valueshttps://arxiv.org/pdf/2109.12021.pdf

https://arxiv.org/pdf/2109.12021.pdf

42

Talk Outline

Key Shortcomings of Prior Prefetchers

Formulating Prefetching as Reinforcement Learning

Pythia: Overview

Evaluation of Pythia and Key Results

Conclusion

43

Simulation Methodology
• Champsim [3] trace-driven simulator

• 150 single-core memory-intensive workload traces
- SPEC CPU2006 and CPU2017
- PARSEC 2.1
- Ligra
- Cloudsuite

• Homogeneous and heterogeneous multi-core mixes

• Five state-of-the-art prefetchers
- SPP [Kim+, MICRO’16]
- Bingo [Bakhshalipour+, HPCA’19]
- MLOP [Shakerinava+, 3rd Prefetching Championship, 2019]
- SPP+DSPatch [Bera+, MICRO’19]
- SPP+PPF [Bhatia+, ISCA’20]

[3] https://github.com/ChampSim/ChampSim

https://github.com/ChampSim/ChampSim

44

1.1

1.15

1.2

1.25

1.3

1.35

0 2 4 6 8 10 12

Ge
om

ea
n

sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

Number of cores

Performance with Varying Core Count

Bingo
MLOP
SPP

Pythia

3.4% 7.7%

45

1.1

1.15

1.2

1.25

1.3

1.35

0 2 4 6 8 10 12

Ge
om

ea
n

sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

Number of cores

Performance with Varying Core Count

Bingo
MLOP
SPP

Pythia

3.4%
7.7%

1. Pythia consistently provides the highest
performance in all core configurations

2. Pythia’s gain increases with core count

46

0.8
0.85

0.9
0.95

1
1.05

1.1
1.15

1.2
1.25

100
200

400
800

1600
3200

6400
12800

Ge
om

ea
n

sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

DRAM MTPS (in log scale)

Performance with Varying DRAM Bandwidth

~Intel Xeon 6258R

~AMD EPYC Rome 7702P

~AMD Threadripper 3990x

SPP

Bingo
MLOP

Pythia

Baseline

3%

17%

47

0.8
0.85

0.9
0.95

1
1.05

1.1
1.15

1.2
1.25

100
200

400
800

1600
3200

6400
12800

Ge
om

ea
n

sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

DRAM MTPS (in log scale)

Performance with Varying DRAM Bandwidth

~Intel Xeon 6258R

~AMD EPYC Rome 7702P

~AMD Threadripper 3990x

SPP

Bingo
MLOP

Pythia

Baseline

3%

17%

Pythia outperforms prior best prefetchers for
a wide range of DRAM bandwidth configurations

48

Pythia’s Overhead
• 25.5 KB of total metadata storage per core

- Only simple tables
• We also model functionally-accurate Pythia with full

complexity in Chisel [4] HDL

1.03% area overhead

Satisfies prediction latency

0.4% power overhead

of a desktop-class 4-core Skylake processor (Xeon D2132IT, 60W)
[4] https://www.chisel-lang.org

https://www.chisel-lang.org/

49

Pythia is Open Source
https://github.com/CMU-SAFARI/Pythia

• MICRO’21 artifact evaluated
• Champsim source code + Chisel modeling code
• All traces used for evaluation

https://github.com/CMU-SAFARI/Pythia

50

Talk Outline

Key Shortcomings of Prior Prefetchers

Formulating Prefetching as Reinforcement Learning

Pythia: Overview

Evaluation of Pythia and Key Results

Conclusion

51

Conclusion

https://github.com/CMU-SAFARI/Pythia

• Background: Prefetchers predict addresses of future memory requests by associating
memory access patterns with program context (called feature)

• Problem: Three key shortcomings of prior prefetchers:
- Predict mainly using a single program feature
- Lack inherent system awareness (e.g., memory bandwidth usage)
- Lack in-silicon customizability

• Goal: Design a prefetching framework that:
- Learns from multiple features and inherent system-level feedback
- Can be customized in silicon to use different features and/or prefetching objectives

• Contribution: Pythia, which formulates prefetching as reinforcement learning problem
- Takes adaptive prefetch decisions using multiple features and system-level feedback
- Can be customized in silicon for target workloads via simple configuration registers
- Proposes a realistic and practical implementation of RL algorithm in hardware

• Key Results:
- Evaluated using a wide range of workloads from SPEC CPU, PARSEC, Ligra, Cloudsuite
- Outperforms best prefetcher (in 1-core config.) by 3.4%, 7.7% and 17% in 1/4/bw-constrained cores
- Up to 7.8% more performance over basic Pythia across Ligra workloads via simple customization

https://github.com/CMU-SAFARI/Pythia

Rahul Bera, Konstantinos Kanellopoulos, Anant V. Nori,
Taha Shahroodi, Sreenivas Subramoney, Onur Mutlu

Pythia
A Customizable Hardware Prefetching Framework

Using Online Reinforcement Learning

https://github.com/CMU-SAFARI/Pythia

https://github.com/CMU-SAFARI/Pythia

BACKUP

54

Why RL? Why Not Supervised Learning?

• Determining the benefits of prefetching (i.e., whether a
decision was good for performance or not) is not easy
- Depends on a complex set of metrics

• Coverage, accuracy, timeliness
• Effects on system: b/w usage, pollution, cross-application interference, …

- Dynamically-changing environmental conditions change the
benefit

- Delayed feedback due to long latency (might not receive
feedback at all for inaccurate prefetches!)

• Differs from classification tasks (e.g., branch prediction)
- Performance strongly correlates mainly to accuracy
- Does not depend on environment
- Bounded feedback delay

55

Architecting QVStore

S = {PC+Delta,
Sequence of last-4 deltas}

+1 +2 +3

Q-Value Store
(QVStore)

…

56

Architecting QVStore

S = {PC+Delta,
Sequence of last-4 deltas}

+1 +2 +3

Q-Value Store
(QVStore)

…

Fast retrieval of Q-values from QVStore

Efficient storage organization of Q-values in QVStore

Fast prefetch prediction

57

Organization of QVStore
• A monolithic two-dimensional table?

- Indexed by state and action values
• State-space increases exponentially with #bits

S = {PC+Delta, Sequence of last-4 deltas}

32b 7b 4x7b = 67 bits+ +

A1 A2 A3 A4 A5 A6 A7 A8 A9
S1
S2
S3
S4
S5
S6
S7

Design complexity Access latency

127 actions

26
7

st
at

es

58

Organization of QVStore
• We partition QVStore into k vaults [k = number of features in state]

- Each vault corresponds to one feature and stores the Q-
values of feature-action pairs

… Vaultk

MAX

(a)

Vault1 Vault2

State-action Q-value

Plane1

Shift

+ #

+

Feature Index

φ1
Sφ
1
S φ2

Sφ
2
S φk

Sφ
k
S

Program
feature

Q(φ1
S , A)Q(φ1
S , A) Q(φ2

S , A)Q(φ2
S , A) Q(φk

S , A)Q(φk
S , A)

Feature-action Q-value

Q(S,A)Q(S,A)
φk
Sφ
k
S

Q(φk
S , A)Q(φk
S , A)

Feature-action Q-value

φk
Sφ
k
S

Index
Generation

Index
Generation

Index
Generation

Action (A)Action (A) Action (A)Action (A)
(b)

(c)

• Query each vault in
parallel with feature
and action

• Retrieve feature-action
Q-value from each vault

• Compute MAX of all
feature-action Q-values

MAX ensures the Q(S,A) is driven by the
constituent feature that has highest Q(ɸ,A)

To retrieve Q(S,A) for
each action

59

Organization of QVStore
• We further partition each vault into multiple planes

- Each plane stores a partial Q-value of a feature-action pair

… Vaultk

MAX

(a)

Vault1 Vault2

State-action Q-value

Plane1

Shift

+ #

+

Feature Index

φ1
Sφ
1
S φ2

Sφ
2
S φk

Sφ
k
S

Program
feature

Q(φ1
S , A)Q(φ1
S , A) Q(φ2

S , A)Q(φ2
S , A) Q(φk

S , A)Q(φk
S , A)

Feature-action Q-value

Q(S,A)Q(S,A)
φk
Sφ
k
S

Q(φk
S , A)Q(φk
S , A)

Feature-action Q-value

φk
Sφ
k
S

Index
Generation

Index
Generation

Index
Generation

Action (A)Action (A) Action (A)Action (A)
(b)

(c)

• Query each plane in
parallel with hashed
feature and action

• Retrieve partial feature-
action Q-value from each
plane

• Compute SUM of all parital
feature-action Q-values

To retrieve Q(ɸ,A)
for each action

60

Organization of QVStore
• We further partition each vault into multiple planes

- Each plane stores a partial Q-value of a feature-action pair

… Vaultk

MAX

(a)

Vault1 Vault2

State-action Q-value

Plane1

Shift

+ #

+

Feature Index

φ1
Sφ
1
S φ2

Sφ
2
S φk

Sφ
k
S

Program
feature

Q(φ1
S , A)Q(φ1
S , A) Q(φ2

S , A)Q(φ2
S , A) Q(φk

S , A)Q(φk
S , A)

Feature-action Q-value

Q(S,A)Q(S,A)
φk
Sφ
k
S

Q(φk
S , A)Q(φk
S , A)

Feature-action Q-value

φk
Sφ
k
S

Index
Generation

Index
Generation

Index
Generation

Action (A)Action (A) Action (A)Action (A)
(b)

(c)

• Query each plane in
parallel with hashed
feature and action

• Retrieve partial feature-
action Q-value from each
plane

• Compute SUM of all parital
feature-action Q-values

To retrieve Q(ɸ,A)
for each action

1. Enables sharing of partial Q-values between similar
feature values, shortens prefetcher training time

2. Reduces chances of sharing partial Q-values
across widely different feature values

61

Reward Assignment to EQ Entry
• Every action gets inserted into EQ
• Reward is assigned to each EQ entry before or during the

eviction

• During EQ insertion: for actions
- Not to prefetch
- Out-of-page prefetch

��
��
���������� ����

��	�
�
�������

�
�����������������

������������ �������!

���� ���
�
	���������

�����

��	
���������
��	������

�

�

�
�������������
���
�����#�
	����"�
���������������

�

���
����������

�� �� ��

�������
����
����

��������
������
�

���
���������!�����
��������
	����

�

����������
������������ ��"
����

�

���
��
��
��
��

	�������������

62

Reward Assignment to EQ Entry
• Every action gets inserted into EQ
• Reward is assigned to each EQ entry before or during the

eviction

• During EQ insertion: for actions
- Not to prefetch
- Out-of-page prefetch

• During EQ residency:
- In case address of a demand matches with address in EQ

(signifies accurate prefetch)

��
��
���������� ����

��	�
�
�������

�
�����������������

������������ �������!

���� ���
�
	���������

�����

��	
���������
��	������

�

�

�
�������������
���
�����#�
	����"�
���������������

�

���
����������

�� �� ��

�������
����
����

��������
������
�

���
���������!�����
��������
	����

�

����������
������������ ��"
����

�

���
��
��
��
��

	�������������

63

Reward Assignment to EQ Entry
• Every action gets inserted into EQ
• Reward is assigned to each EQ entry before or during the

eviction

• During EQ insertion: for actions
- Not to prefetch
- Out-of-page prefetch

• During EQ residency:
- In case address of a demand matches with address in EQ

(signifies accurate prefetch)

• During EQ eviction:
- In case no reward is assigned till eviction

(signifies inaccurate prefetch)

��
��
���������� ����

��	�
�
�������

�
�����������������

������������ �������!

���� ���
�
	���������

�����

��	
���������
��	������

�

�

�
�������������
���
�����#�
	����"�
���������������

�

���
����������

�� �� ��

�������
����
����

��������
������
�

���
���������!�����
��������
	����

�

����������
������������ ��"
����

�

���
��
��
��
��

	�������������

64

Basic Pythia Configuration
• Derived from automatic design-space exploration

• State: 2 features
- PC+Delta
- Sequence of last-4 deltas

• Actions: 16 prefetch offsets
- Ranging between -6 to +32. Including 0.

• Rewards:
- RAT = +20; RAL = +12; RNP-H=-2; RNP-L=-4;
- RIN-H=-14; RIN-L=-8; RCL=-12

65

Performance Improvement via Customization

• Reward value customization
• Strict Pythia configuration

- Increasing the rewards for no prefetching
- Decreasing the rewards for inaccurate prefetching

• Strict Pythia is more conservative in generating
prefetch requests than the basic Pythia
• Evaluate on all Ligra graph processing workloads

66

1.0

1.2

1.4

1.6

1.8

2.0

Page
Rank

Page
RankD

elta CC
BFS BC

GEO
MEA

N

IP
C

no
rm

al
ize

d
to

 n
o

pr
ef

et
ch

in
g

Basic Pythia Strict Pythia

Performance Improvement via Customization

3.1% 2.8% 3.4%

7.8%

5.2%

2%

67

1.0

1.2

1.4

1.6

1.8

2.0

Page
Rank

Page
RankD

elta CC
BFS BC

GEO
MEA

N

IP
C

no
rm

al
ize

d
to

 n
o

pr
ef

et
ch

in
g

Basic Pythia Strict Pythia

Performance Improvement via Customization

3.1% 2.8% 3.4%

7.8%

5.2%

2%Pythia can extract even higher performance
via customization without changing hardware

68

Performance S-curve: Single-core

0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

13
3

13
9

14
5

Sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

Workload number

SPP Bingo MLOP Pythia

623.xalancbmk_s-592B

603.bwaves_s-2931B

462.libquantum

streamcluster

429.mcf

BFSCC-22B

pagerank-51B

fluidanimate-9500M

69

Performance S-curve: Four-core

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

20
1

21
1

22
1

23
1

24
1

25
1

26
1

Sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

Workload number

SPP Bingo MLOP Pythia

429.mcf-184B

pagerank

462.libquantum-1343B

437.leslie3d-271B

Mix-59

raytrace-23.75B

Mix-240

70

More in the Paper
• Performance comparison with unseen traces

- Pythia provides equally high performance benefits

• Comparison against multi-level prefetchers
- Pythia outperforms prior best multi-level prefetchers

• Understanding Pythia’s learning with a case study
- We reason towards the correctness of Pythia’s decision

• Performance sensitivity towards different features and
hyperparameter values

• Detailed single-core and four-core performance

71

More in the Paper
• Performance comparison with unseen traces

- Pythia provides equally high performance benefits

• Comparison against multi-level prefetchers
- Pythia outperforms prior best multi-level prefetchers

• Understanding Pythia’s learning with a case study
- We reason towards the correctness of Pythia’s decision

• Performance sensitivity towards different features
and hyperparameter values

• Detailed single-core and four-core performance

https://arxiv.org/pdf/2109.12021.pdf

https://arxiv.org/pdf/2109.12021.pdf

