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The (Memory) Latency Problem
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DRAM Latency Is Critical for Performance

In-Memory Data Analytics 
[Clapp+ (Intel), IISWC’15;  
Awan+, BDCloud’15]

Datacenter Workloads 
[Kanev+ (Google), ISCA’15]

In-memory Databases 
[Mao+, EuroSys’12; 
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing 
[Xu+, IISWC’12; Umuroglu+, FPL’15]
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Long memory latency → performance bottleneck
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Conventional Latency Tolerance Techniques

n Out-of-order execution [initially by Tomasulo, 1967]
q Tolerates cache misses that cannot be prefetched
q Requires extensive hardware resources for tolerating long latencies

n Multithreading [initially in CDC 6600, 1964]
q Works well if there are multiple threads
q Improving single thread performance using multithreading hardware is an 

ongoing research effort

n Caching [initially by Wilkes, 1965]
q Widely used, simple, effective, but inefficient, passive
q Not all applications/phases exhibit temporal or spatial locality

n Prefetching [initially in IBM 360/91, 1967]
q Works well for regular memory access patterns
q Prefetching irregular access patterns is difficult, inaccurate, and hardware-

intensive



Prefetching



Prefetching
n Idea: Fetch the data before it is needed (i.e. pre-fetch) by 

the program

n Why? 
q Memory latency is high. If we can prefetch accurately and 

early enough we can reduce/eliminate that latency

n Involves predicting which address will be needed in the 
future
q Works if programs have predictable address patterns
q Might mispredict if the program has irregular access patterns
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Prefetcher Evaluation Metrics
n Coverage

q Used prefetches / total demanded memory accesses from core
q The higher the better

n Accuracy
q Used prefetches / sent prefetches
q The higher the better

n Timeliness
q Memory access latency saved by a prefetch
q The higher the better

n Bandwidth consumption
n Cache pollution
n Energy consumption, …
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Prefetching: The Three Questions
n What

q What addresses to prefetch

n When
q When to initiate a prefetch request

n How
q Software, execution-based, hardware
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Challenges in Prefetching: How
n Software prefetching

q Programmer or compiler inserts prefetch instructions

n Execution-based prefetchers
q A “thread” is executed to prefetch data for the main program

n Hardware prefetching
q Hardware monitors processor accesses
q Memorizes or finds patterns/strides
q Generates prefetch addresses accordingly
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Hardware Prefetching
n An instruction with program counter (PC) X is accessing the 

following addresses:
q A, A+D, A+2D, A+3D, …
q Learning: PCX is has a strided access pattern with stride D
q Prediction: If PCX accesses B, prefetch (B+D)

n The last few cacheline accesses are
q A, A+3, A+5, A+8, A+10, A+13, …
q Learning: Cacheline deltas +3 and +2 is repeating alternatively
q Prediction: If last delta is +3 (or +2), predict next delta to be 

+2 (or +3)
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Hardware Prefetching
n PC, Sequence of cacheline deltas, …

q Program features
q Represents execution “context” of the program

n Associates access patterns from past memory requests with 
program features

n More program features
q Branch PCs
q Page number
q Page offset
q …
q Or a combination of these attributes

Program feature à Access Pattern
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Executive Summary

https://github.com/CMU-SAFARI/Pythia

• Background: Prefetchers predict addresses of future memory requests by associating 
memory access patterns with program context (called feature)

• Problem: Three key shortcomings of prior prefetchers:
- Predict mainly using a single program feature
- Lack inherent system awareness (e.g., memory bandwidth usage)
- Lack in-silicon customizability

• Goal: Design a prefetching framework that:
- Learns from multiple features and inherent system-level feedback
- Can be customized in silicon to use different features and/or prefetching objectives

• Contribution: Pythia, which formulates prefetching as reinforcement learning problem
- Takes adaptive prefetch decisions using multiple features and system-level feedback
- Can be customized in silicon for target workloads via simple configuration registers
- Proposes a realistic and practical implementation of RL algorithm in hardware

• Key Results:
- Evaluated using a wide range of workloads from SPEC CPU, PARSEC, Ligra, Cloudsuite
- Outperforms best prefetcher (in 1-core config.) by 3.4%, 7.7% and 17% in 1/4/bw-constrained cores
- Up to 7.8% more performance over basic Pythia across Ligra workloads via simple customization

https://github.com/CMU-SAFARI/Pythia


18

Talk Outline

Key Shortcomings of Prior Prefetchers

Formulating Prefetching as Reinforcement Learning

Pythia: Overview

Evaluation of Pythia and Key Results

Conclusion
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Mainly use one
program feature for 

prediction

Lack inherent system 
awareness

Lack in-silicon
customizability

Why do prefetchers 
not perform well?
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(1) Single-Feature Prefetch Prediction

• Provides good performance gains mainly on workloads 
where the feature-to-pattern correlation exists

[1] Bakshalipour et al., HPCA’19 [2] Kim et al., MICRO’16

0%

10%

20%

30%

40%

50%

60%

482.sphinx3-417B PARSEC-Canneal PARSEC-Facesim 459.GemsFDTD-765B

IP
C 

im
pr

ov
em

en
t o

ve
r 

ba
se

lin
e 

(%
)

SPP Bingo Pythia15.4%

3.5%

5.5%

4.6%

Bingo [1] performs better SPP [2] performs better



21

(1) Single-Feature Prefetch Prediction

• Provides good performance gains mainly on workloads 
where the feature-to-pattern correlation exists

[1] Bakshalipour et al., HPCA’19 [2] Kim et al., MICRO’16

0%

10%

20%

30%

40%

50%

60%

482.sphinx3-417B PARSEC-Canneal PARSEC-Facesim 459.GemsFDTD-765B

IP
C 

im
pr

ov
em

en
t o

ve
r 

ba
se

lin
e 

(%
)

SPP Bingo Pythia15.4%

3.5%

5.5%

4.6%

Bingo [1] performs better SPP [2] performs better

Relying on a single feature for prediction leaves 
significant performance improvement on table
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(2) Lack of Inherent System Awareness

• Little understanding of undesirable effects (e.g., 
memory bandwidth usage, cache pollution, …)
- Performance loss in resource-constrained configurations 
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Prefetchers often lose performance due to lack 
of inherent system awareness
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(3) Lack of In-silicon Customizability

• Feature statically selected at design time
- Rigid hardware designed specifically to exploit that feature

• No way to change program feature and/or change 
prefetcher’s objective in silicon
- Cannot adapt to a wide range of workload demands

Design from scratch Verify Fabricate
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Autonomously learns to prefetch using 
multiple program context information

and system-level feedback

Can be customized in silicon to change 
program context information or 
prefetching objective on the fly

Our Goal
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Our Proposal

Pythia
Formulates prefetching as a 

reinforcement learning problem

Pythia is named after the oracle of Delphi, who is known for her accurate prophecies
https://en.wikipedia.org/wiki/Pythia
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Basics of Reinforcement Learning (RL)

• Algorithmic approach to learn to take an action in a 
given situation to maximize a numerical reward

• Agent stores Q-values for every state-action pair
- Expected reward for taking an action in a state
- Given a state, selects action that provides highest Q-value

Agent

Environment

State (St)State (St) Action (At)Action (At)Reward (Rt+1)Reward (Rt+1)
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Formulating Prefetching as RL

Agent

Environment

State (St)State (St) Action (At)Action (At)Reward (Rt+1)Reward (Rt+1)

Prefetcher

Processor & 
Memory Subsystem

Reward
Prefetch from address 

A+offset (O)

Features of memory 
request to address A 

(e.g., PC)
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What is State?
• k-dimensional vector of features

• Feature = control-flow + data-flow

• Control-flow examples
- PC
- Branch PC
- Last-3 PCs, …

• Data-flow examples
- Cacheline address
- Physical page number
- Delta between two cacheline addresses
- Last 4 deltas, …



31

What is State?

S = {PC+Delta, Sequence of last-4 deltas}

Example of a state information

Feature-1 (ɸ1) Feature-2 (ɸ2)

PC
(Control-flow info.)

Cacheline Delta
(Data-flow info.)

Seq. of last-4 deltas
(Data-flow info.)
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What is Action?
Given a demand access to address A
the action is to select prefetch offset “O”

- Issue prefetch to (A+O)

• Action-space: 127 actions in the range [-63, +63] 
- For a processor with 4KB page and 64B cacheline

• Upper and lower limits ensure prefetches do not cross 
physical page boundary

• A zero offset means no prefetch is generated
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What is Reward?
• Defines the objective of Pythia

• Encapsulates two metrics:
- Prefetch usefulness (e.g., accurate, late, out-of-page, …)
- System-level feedback (e.g., mem. b/w usage, cache 

pollution, energy, …)

• We demonstrate Pythia with memory bandwidth 
usage as the system-level feedback in the paper
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What is Reward?
• Seven distinct reward levels

- Accurate and timely (RAT)
- Accurate but late (RAL)
- Loss of coverage (RCL)
- Inaccurate

• With low memory b/w usage (RIN-L)
• With high memory b/w usage (RIN-H)

- No-prefetch
• With low memory b/w usage (RNP-L)
• With high memory b/w usage(RNP-H)

• Values are set at design time via automatic design-
space exploration
- Can be customized further in silicon for higher performance
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Steering Pythia’s Objective via Reward Values

• Example reward configuration for
- Generating accurate prefetches
- Making bandwidth-aware prefetch decisions

+20+12-2-4-8-14

RATRALRNP-HRNP-LRIN-LRIN-H

AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;
H = High mem. b/w; L = Low mem. b/w

Highly prefers to generate accurate prefetches

Prefers not to prefetch if memory bandwidth usage is low

Strongly prefers not to prefetch if memory bandwidth usage is high
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Steering Pythia’s Objective via Reward Values

• Customizing reward values to make Pythia conservative
towards prefetching

+20+12+2+1-20-22

RATRALRNP-HRNP-LRIN-LRIN-H

AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;
H = High mem. b/w; L = Low mem. b/w

Highly prefers to generate accurate prefetches

Otherwise prefers not to prefetch
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Steering Pythia’s Objective via Reward Values

• Customizing reward values to make Pythia conservative 
towards prefetching

+20+12+4+2-20-22

RATRALRNP-HRNP-LRIN-LRIN-H

AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;
H = High mem. b/w; L = Low mem. b/w

Highly prefers to generate accurate prefetches

Otherwise prefers not to prefetchServer-class processors
Bandwidth-sensitive 

workloads

Strict Pythia configuration
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Conclusion
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Pythia Overview
• Q-Value Store: Records Q-values for all state-action pairs
• Evaluation Queue: A FIFO queue of recently-taken actions

Evaluation Queue (EQ)

Demand
Request

1
Assign reward to 

corresponding EQ entry

Look up 
QVStoreState

Vector

Q-Value Store
(QVStore)

2

3

5
Insert prefetch action & 
State-Action pair in EQ

6

Prefetch Fill 

A1 A2 A3

Memory 
Hierarchy

Generate
prefetch

Evict EQ entry and 
update QVStore

4

Find the Action with max Q-Value

7

S1
S2
S3
S4

Set filled bit

Max
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More in the Paper
• Pipelined search operation for QVStore

• Reward assignment and QVStore update

• Automatic design-space exploration
- Feature types
- Action
- Reward and Hyperparameter values
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More in the Paper
• Pipelined search operation for QVStore

• Reward assignment and QVStore update

• Automatic design-space exploration
- Feature types
- Action
- Reward and Hyperparameter valueshttps://arxiv.org/pdf/2109.12021.pdf

https://arxiv.org/pdf/2109.12021.pdf
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Simulation Methodology
• Champsim [3] trace-driven simulator

• 150 single-core memory-intensive workload traces
- SPEC CPU2006 and CPU2017
- PARSEC 2.1
- Ligra
- Cloudsuite

• Homogeneous and heterogeneous multi-core mixes

• Five state-of-the-art prefetchers
- SPP [Kim+, MICRO’16]
- Bingo [Bakhshalipour+, HPCA’19]
- MLOP [Shakerinava+, 3rd Prefetching Championship, 2019 ]
- SPP+DSPatch [Bera+, MICRO’19]
- SPP+PPF [Bhatia+, ISCA’20]

[3] https://github.com/ChampSim/ChampSim

https://github.com/ChampSim/ChampSim
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Pythia’s Overhead
• 25.5 KB of total metadata storage per core

- Only simple tables
• We also model functionally-accurate Pythia with full 

complexity in Chisel [4] HDL

1.03% area overhead

Satisfies prediction latency

0.4% power overhead

of a desktop-class 4-core Skylake processor (Xeon D2132IT, 60W)
[4] https://www.chisel-lang.org

https://www.chisel-lang.org/
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Pythia is Open Source
https://github.com/CMU-SAFARI/Pythia

• MICRO’21 artifact evaluated
• Champsim source code + Chisel modeling code
• All traces used for evaluation

https://github.com/CMU-SAFARI/Pythia
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Conclusion

https://github.com/CMU-SAFARI/Pythia

• Background: Prefetchers predict addresses of future memory requests by associating 
memory access patterns with program context (called feature)

• Problem: Three key shortcomings of prior prefetchers:
- Predict mainly using a single program feature
- Lack inherent system awareness (e.g., memory bandwidth usage)
- Lack in-silicon customizability

• Goal: Design a prefetching framework that:
- Learns from multiple features and inherent system-level feedback
- Can be customized in silicon to use different features and/or prefetching objectives

• Contribution: Pythia, which formulates prefetching as reinforcement learning problem
- Takes adaptive prefetch decisions using multiple features and system-level feedback
- Can be customized in silicon for target workloads via simple configuration registers
- Proposes a realistic and practical implementation of RL algorithm in hardware

• Key Results:
- Evaluated using a wide range of workloads from SPEC CPU, PARSEC, Ligra, Cloudsuite
- Outperforms best prefetcher (in 1-core config.) by 3.4%, 7.7% and 17% in 1/4/bw-constrained cores
- Up to 7.8% more performance over basic Pythia across Ligra workloads via simple customization

https://github.com/CMU-SAFARI/Pythia
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Taha Shahroodi,  Sreenivas Subramoney,  Onur Mutlu
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https://github.com/CMU-SAFARI/Pythia

https://github.com/CMU-SAFARI/Pythia
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Why RL? Why Not Supervised Learning?

• Determining the benefits of prefetching (i.e., whether a 
decision was good for performance or not) is not easy
- Depends on a complex set of metrics

• Coverage, accuracy, timeliness
• Effects on system: b/w usage, pollution, cross-application interference, …

- Dynamically-changing environmental conditions change the 
benefit

- Delayed feedback due to long latency (might not receive 
feedback at all for inaccurate prefetches!)

• Differs from classification tasks (e.g., branch prediction)
- Performance strongly correlates mainly to accuracy
- Does not depend on environment
- Bounded feedback delay
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Architecting QVStore

S = {PC+Delta, 
Sequence of last-4 deltas}

+1 +2 +3

Q-Value Store
(QVStore)

…
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Architecting QVStore

S = {PC+Delta, 
Sequence of last-4 deltas}

+1 +2 +3

Q-Value Store
(QVStore)

…

Fast retrieval of Q-values from QVStore

Efficient storage organization of Q-values in QVStore

Fast prefetch prediction
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Organization of QVStore
• A monolithic two-dimensional table?

- Indexed by state and action values
• State-space increases exponentially with #bits

S = {PC+Delta, Sequence of last-4 deltas}

32b 7b 4x7b = 67 bits+ +

A1 A2 A3 A4 A5 A6 A7 A8 A9
S1
S2
S3
S4
S5
S6
S7

Design complexity Access latency

127 actions

26
7

st
at

es
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Organization of QVStore
• We partition QVStore into k vaults [k = number of features in state]

- Each vault corresponds to one feature and stores the Q-
values of feature-action pairs

… Vaultk

MAX

(a)

Vault1 Vault2

State-action Q-value

Plane1

Shift

+ #

+

Feature Index

φ1
Sφ
1
S φ2

Sφ
2
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Sφ
k
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Program 
feature

Q(φ1
S , A)Q(φ1
S , A) Q(φ2

S , A)Q(φ2
S , A) Q(φk

S , A)Q(φk
S , A)

Feature-action Q-value

Q(S,A)Q(S,A)
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k
S

Q(φk
S , A)Q(φk
S , A)

Feature-action Q-value

φk
Sφ
k
S

Index
Generation

Index
Generation

Index
Generation

Action (A)Action (A) Action (A)Action (A)
(b)

(c)

• Query each vault in 
parallel with feature 
and action

• Retrieve feature-action 
Q-value from each vault

• Compute MAX of all 
feature-action Q-values

MAX ensures the Q(S,A) is driven by the 
constituent feature that has highest Q(ɸ,A)

To retrieve Q(S,A) for 
each action
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Organization of QVStore
• We further partition each vault into multiple planes

- Each plane stores a partial Q-value of a feature-action pair

… Vaultk
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Feature-action Q-value
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Index
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Index
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Action (A)Action (A) Action (A)Action (A)
(b)

(c)

• Query each plane in 
parallel with hashed 
feature and action

• Retrieve partial feature-
action Q-value from each 
plane

• Compute SUM of all parital
feature-action Q-values

To retrieve Q(ɸ,A) 
for each action
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Organization of QVStore
• We further partition each vault into  multiple planes

- Each plane stores a partial Q-value of a feature-action pair

… Vaultk

MAX
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Feature-action Q-value

φk
Sφ
k
S

Index
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Index
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Action (A)Action (A) Action (A)Action (A)
(b)

(c)

• Query each plane in 
parallel with hashed 
feature and action

• Retrieve partial feature-
action Q-value from each 
plane

• Compute SUM of all parital
feature-action Q-values

To retrieve Q(ɸ,A) 
for each action

1. Enables sharing of partial Q-values between similar 
feature values, shortens prefetcher training time

2. Reduces chances of sharing partial Q-values 
across widely different feature values
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Reward Assignment to EQ Entry
• Every action gets inserted into EQ
• Reward is assigned to each EQ entry before or during the 

eviction

• During EQ insertion: for actions
- Not to prefetch
- Out-of-page prefetch
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Reward Assignment to EQ Entry
• Every action gets inserted into EQ
• Reward is assigned to each EQ entry before or during the 

eviction

• During EQ insertion: for actions
- Not to prefetch
- Out-of-page prefetch

• During EQ residency:
- In case address of a demand matches with address in EQ 

(signifies accurate prefetch)
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Reward Assignment to EQ Entry
• Every action gets inserted into EQ
• Reward is assigned to each EQ entry before or during the 

eviction

• During EQ insertion: for actions
- Not to prefetch
- Out-of-page prefetch

• During EQ residency:
- In case address of a demand matches with address in EQ 

(signifies accurate prefetch)

• During EQ eviction:
- In case no reward is assigned till eviction                             

(signifies inaccurate prefetch)
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Basic Pythia Configuration
• Derived from automatic design-space exploration

• State: 2 features
- PC+Delta
- Sequence of last-4 deltas

• Actions: 16 prefetch offsets
- Ranging between -6 to +32. Including 0.

• Rewards:
- RAT = +20; RAL = +12; RNP-H=-2; RNP-L=-4;
- RIN-H=-14; RIN-L=-8; RCL=-12
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Performance Improvement via Customization

• Reward value customization
• Strict Pythia configuration

- Increasing the rewards for no prefetching
- Decreasing the rewards for inaccurate prefetching

• Strict Pythia is more conservative in generating 
prefetch requests than the basic Pythia
• Evaluate on all Ligra graph processing workloads
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Performance S-curve: Single-core
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Performance S-curve: Four-core
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More in the Paper
• Performance comparison with unseen traces

- Pythia provides equally high performance benefits

• Comparison against multi-level prefetchers
- Pythia outperforms prior best multi-level prefetchers

• Understanding Pythia’s learning with a case study
- We reason towards the correctness of Pythia’s decision

• Performance sensitivity towards different features and 
hyperparameter values

• Detailed single-core and four-core performance
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