Sibyl:
Adaptive and Extensible Data Placement in Hybrid Storage Systems Using Online Reinforcement Learning

Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar, David Novo, Juan Gómez Luna, Sander Stuijk, Henk Corporaal, Onur Mutlu

ISCA 2022
Executive Summary

• **Background**: A hybrid storage system (HSS) uses multiple different storage devices to provide high and scalable storage capacity at high performance

• **Problem**: Two key shortcomings of prior data placement policies:
 - Lack of **adaptivity to**:
 - Workload changes
 - Changes in device types and configurations
 - Lack of **extensibility** to more devices

• **Goal**: Design a data placement technique that provides:
 - **Adaptivity**, by continuously learning and adapting to the application and underlying device characteristics
 - **Easy extensibility** to incorporate a wide range of hybrid storage configurations

• **Contribution**: Sibyl, the first reinforcement learning-based data placement technique in hybrid storage systems that:
 - Provides **adaptivity** to changing workload demands and underlying device characteristics
 - Can **easily extend** to any number of storage devices
 - Provides **ease of design and implementation** that requires only a small computation overhead

• **Key Results**: Evaluate on **real systems** using a wide range of workloads
 - Sibyl **improves performance by 21.6%** compared to the best previous data placement technique in dual-HSS configuration
 - In a tri-HSS configuration, Sibyl outperforms the state-of-the-art-policy policy by **48.2%**
 - Sibyl achieves **80% of the performance** of an oracle policy with storage overhead of only **124.4 KiB**

[Safari](https://github.com/CMU-SAFARI/Sibyl)
Talk Outline

Key Shortcomings of Prior Data Placement Techniques

Formulating Data Placement as Reinforcement Learning

Sibyl: Overview

Evaluation of Sibyl and Key Results

Conclusion
Hybrid Storage System Basics

Address Space (Application/File System View)

Logical Pages

Read

Write

Storage Management Layer

Read

Write

Promotion

Eviction

Fast Device

Slow Device

Hybrid Storage System
Hybrid Storage System Basics

Performance of a hybrid storage system **highly depends** on the ability of the **storage management layer**.
Key Shortcomings in Prior Techniques

We observe two key shortcomings that significantly limit the performance benefits of prior techniques:

1. Lack of adaptivity to:
 a) Workload changes
 b) Changes in device types and configuration

2. Lack of extensibility to more devices
Lack of Adaptivity

Workload Changes

Prior data placement techniques consider only a few workload characteristics that are statically tuned.
Lack of Adaptivity

Changes in Device Types and Configurations

Do not consider **underlying storage device characteristics** (e.g., changes in the level asymmetry in read/write latencies, garbage collection)
Lack of Extensibility

Rigid techniques that require significant effort to accommodate more than two devices

Change in storage configuration
Lack of Extensibility

Rigid techniques that require significant effort to accommodate more than two devices

Change in storage configuration Design a new policy
Our Goal

A data-placement mechanism that can provide:

1. Adaptivity, by continuously learning and adapting to the application and underlying device characteristics

2. Easy extensibility to incorporate a wide range of hybrid storage configurations
Our Proposal

Sibyl
Formulates data placement in hybrid storage systems as a reinforcement learning problem

Sibyl is an oracle that makes accurate prophecies
https://en.wikipedia.org/wiki/Sibyl
Talk Outline

Key Shortcomings of Prior Data Placement Techniques

Formulating Data Placement as Reinforcement Learning

Sibyl: Overview

Evaluation of Sibyl and Key Results

Conclusion
Agent learns to take an action in a given state to maximize a numerical reward.
Formulating Data Placement as RL

Agent

Environment

State (S_t)

Reward (R_{t+1})

Action (A_t)

Sibyl

Features of the current request and system

Request latency (of last served request)

Select storage device to place the current page

Hybrid Storage System

Features of the current request and system

Request latency (of last served request)

Select storage device to place the current page
What is State?

• Limited number of state features:
 - Reduce the implementation overhead
 - RL agent is more sensitive to reward

• 6-dimensional vector of state features
 \[O_t = (size_t, type_t, intr_t, cnt_t, cap_t, curr_t) \]

• We quantize the state representation into bins to reduce storage overhead
What is Reward?

- Defines the **objective** of Sibyl
- We formulate the reward as a function of the **request latency**
- Encapsulates three key aspects:
 - **Internal state of the device** (e.g., read/write latencies, the latency of garbage collection, queuing delays, ...)
 - **Throughput**
 - **Evictions**
- More details in the paper
What is Action?

• At every new page request, the action is to select a storage device

• Action can be easily extended to any number of storage devices

• Sibyl evicts a page from the fast device to the slow device
Talk Outline

Key Shortcomings of Prior Data Placement Techniques

Formulating Data Placement as Reinforcement Learning

Sibyl: Overview

Evaluation of Sibyl and Key Results

Conclusion

SAFARI
Sibyl Execution

- Storage Request (from OS)
- RL Decision Thread
- RL Training Thread
- Periodic Policy Weight Update
- State, Reward, and Action Information

Asynchronous Execution

Data Placement Decision
Sibyl Design: Overview

- **Observation Vector**
- **State**
- **Inference Network**
- **Max**
- **Sibyl Policy**
- **Experience Buffer (in host DRAM)**
- **HSS**
- **Collect Experiences**

Training Network

- **Periodic Policy Weight Update**
- **Training Dataset**
- **Batch**

RL Training Thread

RL Decision Thread

Safety

SAFARI
RL Decision Thread

Inference Network

Max

HSS

Collect Experiences

Experience Buffer (in host DRAM)

Batch

Periodic Policy Weight Update

Training Network

Training Dataset

Observation Vector

State

Storage Request (from OS)

Action

Reward

State
RL Decision Thread

Observation Vector

State

Storage Request (from OS)

Inference Network

Max

Sibyl Policy

Experience Buffer (in host DRAM)

HSS

Reward

Collect Experiences

Training Network

Periodic Policy Weight Update

Training Dataset

Batch

RL Training Thread

RL Decision Thread

SAFARI
RL Decision Thread

- Training Network
- Inference Network
- Max
- HSS
- State
- Action
- Observation Vector
- Storage Request (from OS)
- Periodic Policy Weight Update
- Training Dataset
- Batch
- Experience Buffer (in host DRAM)
- Collect Experiences
- Reward
- Sibyl Policy
RL Decision Thread

- **Observation Vector**: Storage Request (from OS)
- **Inference Network**
- **Max**
- **Sibyl Policy**
- **Experience Buffer (in host DRAM)**
- **HSS**
- **Collect Experiences**
- **Reward**
- **State**
- **Training Network**
- **Training Dataset**
- **Batch**
- **Periodic Policy Weight Update**

Flowchart showing the decision-making process in an RL (Reinforcement Learning) system, integrating input from an observation vector, processing through inference and policy networks, and outputting actions based on rewards collected from an experience buffer.
RL Decision Thread

Training Network

Training Dataset

Batch

Periodic Policy Weight Update

Experience Buffer (in host DRAM)

RL Training Thread

RL Decision Thread

Observation Vector

Inference Network

Max

State

Sibyl Policy

Action

State

Storage Request (from OS)

HSS

Reward

Collect Experiences
RL Training Thread

Periodic Policy Weight Update

Training Network

Training Dataset

Batch

RL Training Thread

Experience Buffer (in host DRAM)

RL Decision Thread

State

Observation Vector

State

Inference Network

Max

Sibyl Policy

Action

HSS

Reward

Collect Experiences

Storage Request (from OS)
Periodic Weight Transfer

- **Observation Vector**
- **State**
- **Inference Network**
- **Max**
- **Sibyl Policy**
- **HSS**
- **Experience Buffer (in host DRAM)**
- **Collect Experiences**
- **Reward**
- **Batch**

Periodic Policy Weight Update

Training Network

Training Dataset

Periodic Weight Update

RL Training Thread

RL Decision Thread

SAFARI
Talk Outline

Key Shortcomings of Prior Data Placement Techniques

Formulating Data Placement as Reinforcement Learning

Sibyl: Overview

Evaluation of Sibyl and Key Results

Conclusion
Evaluation Methodology (1/3)

• Real system with various HSS configurations
 - Dual-hybrid and tri-hybrid systems
Evaluation Methodology (2/3)

Cost-Oriented HSS Configuration

High-end SSD Low-end HDD

Performance-Oriented HSS Configuration

High-end SSD Middle-end SSD
Evaluation Methodology (3/3)

• **18 different workloads** from:
 - MSR Cambridge and Filebench Suites

• **Four** state-of-the-art data placement baselines:
 - HPS [Meswani+, HPCA’15]
 - Archivist [Ren+, ICCD’19] **Learning-based**
 - RNN-HSS [Doudali+, HPDC’19]
Performance Analysis

Cost-Oriented HSS Configuration

- Slow-Only
- CDE
- HPS
- Archivist
- RNN-HSS
- Sibyl
- Oracle

Normalized Average Request Latency

[Bar chart showing normalized average request latency for various applications with different storage configurations.]

SAFARI
Performance Analysis

Cost-Oriented HSS Configuration

Sibyl consistently outperforms all the baselines for all the workloads.
Performance Analysis

Performance-Oriented HSS Configuration

Normalized Average Request Latency

- Slow-Only
- CDE
- HPS
- Archivist
- RNN-HSS
- Sibyl
- Oracle

Data categories include:
- hm_1
- mds_0
- prn_1
- proj_0
- proj_2
- proj_3
- prxy_0
- prxy_1
- rsrch_0
- src1_0
- stg_1
- usr_0
- wdev_2
- web_1
- AVG

Platforms compared:
- High-end SSD
- Mid-end SSD
Sibyl provides **21.6% performance improvement** by dynamically adapting its data placement policy.
Performance Analysis

Performance-Oriented HSS Configuration

Normalized Average Request Latency

- Slow-Only
- CDE
- HPS
- Archivist
- RNN-HSS
- Sibyl
- Oracle

Device Comparison:
- High-end SSD
- Mid-end SSD
Sibyl achieves **80% of the performance of an oracle policy** that has complete knowledge of future access patterns.
Performance on Tri-HSS

Extending Sibyl for more devices:

1. Add a new action
2. Add the remaining capacity of the new device as a state feature
Performance on Tri-HSS

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a state feature

![Graph showing normalized average request latency for various projects and workloads with Heuristic_{Tri-hybrid} and Sibyl_{Tri-hybrid} compared.](image-url)
Performance on Tri-HSS

Extending Sibyl for more devices:

1. Add a new action

Sibyl outperforms the state-of-the-art data placement policy by 48.2% in a real tri-hybrid system

Sibyl reduces the system architect's burden by providing ease of extensibility
Sibyl’s Overhead

- **124.4 KiB** of total storage cost
 - Experience buffer, inference and training network
- **40-bit** metadata overhead per page for state features
- Inference latency of **~10ns**
- Training latency of **~2us**

- Small area overhead
- Small inference overhead
- Satisfies prediction latency
• **Throughput (IOPS) evaluation**
 - Sibyl provides high IOPS compared to baseline policies because it indirectly captures throughput (size/latency)

• **Evaluation on unseen workloads**
 - Sibyl can effectively adapt its policy to highly dynamic workloads

• **Evaluation on mixed workloads**
 - Sibyl provides equally-high performance benefits as in single workloads
More in the Paper (2/2)

• Evaluation on **different features**
 - Sibyl *autonomously decides* which features are important to maximize the performance

• Evaluation with **different hyperparameter values**

• Sensitivity to **fast storage capacity**
 - Sibyl *provides scalability by dynamically adapting* its policy to available storage size

• **Explainability analysis** of Sibyl's decision making
 - Explain Sibyl's actions for different workload characteristics and device configurations
More in the Paper (2/2)

<table>
<thead>
<tr>
<th>Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems Using Online Reinforcement Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gagandeep Singh(^1) Rakesh Nadig(^1) Jisung Park(^1) Rahul Bera(^1) Nastaran Hajinazar(^1)</td>
</tr>
<tr>
<td>David Novo(^3) Juan Gómez-Luna(^1) Sander Stuijk(^2) Henk Corporaal(^2) Onur Mutlu(^1)</td>
</tr>
<tr>
<td>(^1)ETH Zürich (^2)Eindhoven University of Technology (^3)LIRMM, Univ. Montpellier, CNRS</td>
</tr>
</tbody>
</table>

https://github.com/CMU-SAFARI/Sibyl
Conclusion

• **We introduce Sibyl**, the first reinforcement learning-based data placement technique in hybrid storage systems that provides
 - Adaptivity
 - Easily extensibility
 - Ease of design and implementation

• **We evaluated Sibyl** on real systems using many different workloads
 - Sibyl **improves performance by 21.6%** compared to the best prior data placement policy in a dual-HSS configuration
 - In a tri-HSS configuration, Sibyl **outperforms** the state-of-the-art data placement policy by **48.2%**
 - Sibyl achieves **80% of the performance** of an oracle policy with a storage overhead of only **124.4 KiB**

https://github.com/CMU-SAFARI/Sibyl
Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems Using Online Reinforcement Learning

Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar, David Novo, Juan Gómez Luna, Sander Stuijk, Henk Corporaal, Onur Mutlu

ISCA 2022
Performance on Unseen Workloads

H&M (H&L) HSS configuration, Sibyl outperforms RNN-HSS and Archivist by 46.1% (54.6%) and 8.5% (44.1%), respectively.
Performance Analysis

Performance-Oriented HSS Configuration

Baseline policies are ineffective for many workloads even when compared to Slow-Only.
Performance on Mixed Workloads

Performance-Oriented

Cost-Oriented

Normalized Average Request Latency

SAFARI
Performance on Mixed Workloads

Sibyl\textsubscript{Def} outperforms baseline data placement techniques by up to 27.9%
Performance on Mixed Workloads

Sibyl\textsubscript{Def} outperforms baseline data placement techniques by up to 27.9%

Sibyl\textsubscript{Opt} provides 7.2% higher average performance than Sibyl\textsubscript{Def}
Sibyl autonomously decides which features are important to maximize the performance of the running workload.
Sensitivity to Fast Storage Capacity

(a) H&M
(b) H&L

Available capacity in fast storage
Explainability Analysis

Preference for Fast Storage

- H&M
- H&L
Training and Inference Network

• Training and inference network **allow parallel execution**

• Observation vector as the input

• Produces probability distribution of Q-values
Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems Using Online Reinforcement Learning

Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar, David Novo, Juan Gómez Luna, Sander Stuijk, Henk Corporaal, Onur Mutlu

49th ISCA 2022, New York, USA