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Executive Summary
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● PROBLEM: Critical sections limit both 
performance and scalability

 

● RESULTS: 
○ ACS improves performance on average

by 34% compared to a Symmetric CMP
and  by 24% compared to a Asymmetric CMP

○ ACS improves scalability of 7 out of 12 Workloads.

● Accelerating Critical Sections (ACS): 
○ improves performance by moving the computation of 

the Critical Section to a larger and faster core.
○  First approach to accelerate critical sections in 

Hardware.



Introduction and 
Background
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Background
● Large single core processors are complex and have high power 

consumption
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● Chip-multiprocessors (CMP) are less complex and have less power 
consumption

large core
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● To be able to extract high performance, programs must be split into threads



Background - Threads and Critical Sections

6

● Threads operate on different portions of the same problem 

 Limits both performance and scalability

Amdahl’s Law

● Threads are not allowed to update shared data at the same time → 
MUTUAL EXCLUSION 

● A critical section is a portion of a program that only one thread can 
execute at a given time



Problem overview and Goal
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Contention increases when number of cores increases

The goal is to accelerate the execution of critical sections



Key Insight

● Accelerating critical sections can provide significant 
performance improvement
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● Asymmetric CMP can accelerate serial part using the 
large core

● Moving the computation of critical sections to the larger 
Core(s) could improve the performance



ACS
Accelerating Critical Sections 



Overview
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A = Compute();
Lock X
result = CS(A);
Unlock X 
return result;

● Homogeneous ISA
● Asymmetric CMP with cache coherence 



Implementation
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ACS reduces the 
number of L2 
caches misses 

inside the critical 
sections by 20% 

[++ informazioni]

P0 P1

A = Compute();
Lock X
r = CS(A);
Unlock X 
return r;

CSCALLLOCK_ADDR, TARGET_PC, STACK_PTR, CORE_ID

CSRB  (Critical Section Request Buffer)

POP A
r = CS(A)
PUSH r

CSDONE

PUSH APOP r

● Lock and Shared Data do not need to be moved 

● ACS reduces the number of L2 caches misses inside the critical 
sections by 20% 



Implementation
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25 bytes 

● ISA Support
○ CSCALL and CSRET

● Compiler Support:
○ insert CSCALL and CSRET and removes any register dependencies 

→ function outlining

● Modification to small Core
○ support for executing instructions remotely

● Modification to larger Core
○ CSRB  (Critical Section Request Buffer)

● Interconnect Extension
○ CSCALL and CSDONE

● OS support
○ allocates the large core to a single application
○  sets the same program context  for all cores 



False Serialization
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SEL
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HOW TO SOLVE FALSE SERIALIZATION?
SEL (SELective Acceleration of Critical Sections)

estimates the occurrence of false serialization by 
adaptively deciding whether or not to execute the 

CS on the large core

To implement SEL we need:

● a bit vector at each small core that contains the ACS_DISABLE bits (0 - 
low false serialization)

● logic to estimate false serialization
● a table of saturating counters, for each CS added to the CSRB

To implement SEL we need:

ACS_DISABLE_N

.

.

.

ACS_DISABLE_1

ACS_DISABLE_0

On each small core:

When ACS_DISABLED_i = 
0 for a critical section i 
then the core sends a 
CSCALL to the larger core 

On the large core:CS_N

.

.

.

CS_1

CS_0

Saturating counter for each 
critical section:

● if there are at least 2 
CS in the CSRB + #CS

● if there is 1 CS in the 
CSRB -1

Counter is saturated

Storage Overhead of 36 bytes  (16 counters of 6-bits and 16  ACS_DISABLE for 
each of the 12 small cores)

ACS_DISABLE bits a reset and the values of the saturating counter are  halved every 10 million 
cycles



Performance Trade-offs
● Faster critical sections vs. fewer threads

- Reduced parallel throughput

+ When the number of cores increases, loss of throughput decreases and 
increased contention benefits more from ACS

● CSCALL/CSDONE signals vs. lock acquire/release
-  The communication over the on-chip interconnect is an overhead
+  ACS keeps the lock at the large core and reduces cache misses

● Cache misses due to private data vs. cache misses 
due to shared data
- worse private data locality

+ ACS eliminates the transfer of shared data by keeping it at the large core
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Results
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Methodology
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● Simulating CMPs using a 
cycle-accurate x86 simulator.

● The large core occupies the same 
area as 4 smaller cores and they are 
modeled after the Intel 
Pentium-M.

● The smaller cores are modeled 
after the intel Pentium Processor.



Workloads

The workloads are evaluated on:

● Symmetric CMP
● Asymmetric CMP with one large 

core with 2-way SMT
● Asymmetric CMP with ACS. 
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The following performances were 
evaluated

1. Coarse Grain with optimal 
number of Threads

2. Fine Grained with optimal 
number of Threads

3. Coarse and Fine Grained with 
number of threads are equal to 
the Number of Available Threads 
Contexts

4. Impact of ACS on application 
scalability

5. Non-Intensive Benchmarks

6. ACS with SEL

7. ACS on a SCMP



Results

● ACS reduces the average execution time by 34% compared to an 

equal-area baseline with 32-Core SCMP.
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● ACS reduced the average execution time time by 23%  

compared to an equal-area ACMP.

● ACS improves scalability of 7 workloads.



Coarse Grained vs. Fine Grained Results
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SEL
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On average, across all 12 workloads, ACS with 
SEL outperforms ACS without SEL by 15%.



Summary



Summary
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● PROBLEM: Critical sections limit both 
performance and scalability

 

● RESULTS: 
○ ACS improves performance on average

by 34% compared to a Symmetric CMP
and  by 24% compared to a Asymmetric CMP

○ ACS improves scalability of 7 out of 12 Workloads.

● Accelerating Critical Sections (ACS): 
○ improves performance by moving the computation of 

the Critical Section to a larger and faster core.
○  First approach to accelerate critical sections in 

Hardware.



Strengths



Strengths
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● Novel, intuitive idea. First approach to accelerate 
critical sections directly in hardware

● The results are going to become more and more 
interesting

● Low hardware overhead

● The paper analyzes very well all possible trade offs 

● The figures complement very well the explanations



Weaknesses



Weaknesses
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● ACS only accelerate critical sections

● SEL might overcomplicating the problem. There 
might be some easier ideas that don’t need 
additional hardware

● The area budget to outperform both SCMP and 
ACMP make it less attractive for an everyday use

● Costly to implement : ISA, Compiler, interconnect...



Thoughts and Ideas
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Thoughts and Ideas
● How would it work with more than one large core?

Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt, "Bottleneck Identification and 
Scheduling in Multithreaded Applications" (ASPLOS ‘12)

● How could we also accelerate other bottlenecks as barriers and slow 
pipeline stages?

Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt, "Bottleneck Identification and 
Scheduling in Multithreaded Applications" (ASPLOS ‘12)

● Improving locality in staged execution

M. Aater Suleman, Onur Mutlu, Jose A. Joao, Khubaib, and Yale N. Patt, "Data Marshaling for 
Multi-core Architectures", (ISCA ‘10) 

● Accelerating more (BIS with Lagging Threads):

Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt, "Utility-Based Acceleration of 
Multithreaded Applications on Asymmetric CMPs" (ISCA ‘13)
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https://people.inf.ethz.ch/omutlu/pub/bottleneck-identification-and-scheduling_asplos12.pdf
https://people.inf.ethz.ch/omutlu/pub/bottleneck-identification-and-scheduling_asplos12.pdf
https://people.inf.ethz.ch/omutlu/pub/bottleneck-identification-and-scheduling_asplos12.pdf
https://people.inf.ethz.ch/omutlu/pub/bottleneck-identification-and-scheduling_asplos12.pdf
https://people.inf.ethz.ch/omutlu/pub/dm_isca10.pdf
https://people.inf.ethz.ch/omutlu/pub/dm_isca10.pdf
https://people.inf.ethz.ch/omutlu/pub/utility-based-acceleration-acmp_isca13.pdf
https://people.inf.ethz.ch/omutlu/pub/utility-based-acceleration-acmp_isca13.pdf


Takeaways
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Key Takeaways

● The idea of moving specialized sections of computation 
to a different “core” ( = accelerator, GPU...) has a lot of 
potential 

● ACS is a novel way to accelerate critical section in 
hardware

● The key idea is very intuitive and easy to understand

● Software is not the only solution
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Questions ?
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Discussion Starters
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1. Do you think the trend of specializing hardware is 
going to increase even more in future? What other 
things could be done? 

2. Do you think this could create new security 
threats?  Can you imagine a way modularity could 
increase security?

3. Could ACS be combined with MorphCore?
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What more results?

"An Asymmetric Multi-core Architecture for Accelerating Critical Sections"

HPS Technical Report, TR-HPS-2008-003, September 2008. 
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https://people.inf.ethz.ch/omutlu/pub/acs-TR-HPS-2008-003.pdf


Backup Slides

36



Hardware specialization?
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Adi Fuchs, David Wentzlaff,  “Scaling Datacenter Accelerators With Compute-Reuse Architectures”  (ISCA ‘18)

http://www.parallel.princeton.edu/papers/corex-isca18.pdf


Coarse-Grained Workloads
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1. For an area budget of 8:

ACS improves performance by 
22%compared to SCMP and
11% compared to ACMP

2. For an area budget of 16:

ACS improves performance by 
32%compared to SCMP and
22% compared to ACMP

3. For an are budget of 32:

ACS improves performance by
42% compared to SCMP and
31% compared to ACMP



Fined Grained Workloads
● The area budget required to outperform SCMP or 

ACMP for all workloads is less than or equal to 24 
cores.

● For an area budget of 8:

ACS increases execution time for all workloads except 
for iploockup compared to SCMP
and increases execution time for all workloads 
compared to ACMP

● For an area budget of 16:

ACS improves performance by 2% compared to SCMP 
and 6% compared to ACMP

● For an are budget of 32:

ACS improves performance by 17% compared to SCMP 
and 6% compared to ACMP
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Scalability
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● For 7 out of 12 applications ACS 
improves Scalability 


