
ASPLOS 2009
Presented by Lara Lazier

1

Outline

2

● Introduction and Background
● Proposed Solution - ACS
● Methodology and Results
● Strengths
● Weaknesses
● Takeaways
● Questions and Discussion

Executive Summary

3

● PROBLEM: Critical sections limit both
performance and scalability

● RESULTS:
○ ACS improves performance on average

by 34% compared to a Symmetric CMP
and by 24% compared to a Asymmetric CMP

○ ACS improves scalability of 7 out of 12 Workloads.

● Accelerating Critical Sections (ACS):
○ improves performance by moving the computation of

the Critical Section to a larger and faster core.
○ First approach to accelerate critical sections in

Hardware.

Introduction and
Background

4

Background
● Large single core processors are complex and have high power

consumption

5

SymmetricChipMultiProcessor AsymmetricChipMultiProcessor

c c c c

c c c c

c c c c

c c c c

● Chip-multiprocessors (CMP) are less complex and have less power
consumption

large core
c c

c c

c c c c

c c c c

● To be able to extract high performance, programs must be split into threads

Background - Threads and Critical Sections

6

● Threads operate on different portions of the same problem

 Limits both performance and scalability

Amdahl’s Law

● Threads are not allowed to update shared data at the same time →
MUTUAL EXCLUSION

● A critical section is a portion of a program that only one thread can
execute at a given time

Problem overview and Goal

7

Core1

Core2

Core3

Core4

Core1Core2
Contention increases when number of cores increases

The goal is to accelerate the execution of critical sections

Key Insight

● Accelerating critical sections can provide significant
performance improvement

8

● Asymmetric CMP can accelerate serial part using the
large core

● Moving the computation of critical sections to the larger
Core(s) could improve the performance

ACS
Accelerating Critical Sections

Overview

10

P0
P1 P2

P3 P4

P5 P6 P7 P8

P9 P10 P11 P12

A = Compute();
Lock X
result = CS(A);
Unlock X
return result;

● Homogeneous ISA
● Asymmetric CMP with cache coherence

Implementation

11

ACS reduces the
number of L2
caches misses

inside the critical
sections by 20%

[++ informazioni]

P0 P1

A = Compute();
Lock X
r = CS(A);
Unlock X
return r;

CSCALLLOCK_ADDR, TARGET_PC, STACK_PTR, CORE_ID

CSRB (Critical Section Request Buffer)

POP A
r = CS(A)
PUSH r

CSDONE

PUSH APOP r

● Lock and Shared Data do not need to be moved

● ACS reduces the number of L2 caches misses inside the critical
sections by 20%

Implementation

12

25 bytes

● ISA Support
○ CSCALL and CSRET

● Compiler Support:
○ insert CSCALL and CSRET and removes any register dependencies

→ function outlining

● Modification to small Core
○ support for executing instructions remotely

● Modification to larger Core
○ CSRB (Critical Section Request Buffer)

● Interconnect Extension
○ CSCALL and CSDONE

● OS support
○ allocates the large core to a single application
○ sets the same program context for all cores

False Serialization

13

P0

P1

P2

P3

P4

CSCALL X

CSCALL Y

CSCALL ZCSCALL X

W
ith

ou
t

A
C

S
W

ith
 A

C
S

P1

Time

Time

P2 P3 P4

P1 P4

P2

P3

SEL

14

HOW TO SOLVE FALSE SERIALIZATION?
SEL (SELective Acceleration of Critical Sections)

estimates the occurrence of false serialization by
adaptively deciding whether or not to execute the

CS on the large core

To implement SEL we need:

● a bit vector at each small core that contains the ACS_DISABLE bits (0 -
low false serialization)

● logic to estimate false serialization
● a table of saturating counters, for each CS added to the CSRB

To implement SEL we need:

ACS_DISABLE_N

.

.

.

ACS_DISABLE_1

ACS_DISABLE_0

On each small core:

When ACS_DISABLED_i =
0 for a critical section i
then the core sends a
CSCALL to the larger core

On the large core:CS_N

.

.

.

CS_1

CS_0

Saturating counter for each
critical section:

● if there are at least 2
CS in the CSRB + #CS

● if there is 1 CS in the
CSRB -1

Counter is saturated

Storage Overhead of 36 bytes (16 counters of 6-bits and 16 ACS_DISABLE for
each of the 12 small cores)

ACS_DISABLE bits a reset and the values of the saturating counter are halved every 10 million
cycles

Performance Trade-offs
● Faster critical sections vs. fewer threads

- Reduced parallel throughput

+ When the number of cores increases, loss of throughput decreases and
increased contention benefits more from ACS

● CSCALL/CSDONE signals vs. lock acquire/release
- The communication over the on-chip interconnect is an overhead
+ ACS keeps the lock at the large core and reduces cache misses

● Cache misses due to private data vs. cache misses
due to shared data
- worse private data locality

+ ACS eliminates the transfer of shared data by keeping it at the large core

15

Results

16

Methodology

17

● Simulating CMPs using a
cycle-accurate x86 simulator.

● The large core occupies the same
area as 4 smaller cores and they are
modeled after the Intel
Pentium-M.

● The smaller cores are modeled
after the intel Pentium Processor.

Workloads

The workloads are evaluated on:

● Symmetric CMP
● Asymmetric CMP with one large

core with 2-way SMT
● Asymmetric CMP with ACS.

18

The following performances were
evaluated

1. Coarse Grain with optimal
number of Threads

2. Fine Grained with optimal
number of Threads

3. Coarse and Fine Grained with
number of threads are equal to
the Number of Available Threads
Contexts

4. Impact of ACS on application
scalability

5. Non-Intensive Benchmarks

6. ACS with SEL

7. ACS on a SCMP

Results

● ACS reduces the average execution time by 34% compared to an

equal-area baseline with 32-Core SCMP.

19

● ACS reduced the average execution time time by 23%

compared to an equal-area ACMP.

● ACS improves scalability of 7 workloads.

Coarse Grained vs. Fine Grained Results

20

SEL

21

On average, across all 12 workloads, ACS with
SEL outperforms ACS without SEL by 15%.

Summary

Summary

23

● PROBLEM: Critical sections limit both
performance and scalability

● RESULTS:
○ ACS improves performance on average

by 34% compared to a Symmetric CMP
and by 24% compared to a Asymmetric CMP

○ ACS improves scalability of 7 out of 12 Workloads.

● Accelerating Critical Sections (ACS):
○ improves performance by moving the computation of

the Critical Section to a larger and faster core.
○ First approach to accelerate critical sections in

Hardware.

Strengths

Strengths

25

● Novel, intuitive idea. First approach to accelerate
critical sections directly in hardware

● The results are going to become more and more
interesting

● Low hardware overhead

● The paper analyzes very well all possible trade offs

● The figures complement very well the explanations

Weaknesses

Weaknesses

27

● ACS only accelerate critical sections

● SEL might overcomplicating the problem. There
might be some easier ideas that don’t need
additional hardware

● The area budget to outperform both SCMP and
ACMP make it less attractive for an everyday use

● Costly to implement : ISA, Compiler, interconnect...

Thoughts and Ideas

28

Thoughts and Ideas
● How would it work with more than one large core?

Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt, "Bottleneck Identification and
Scheduling in Multithreaded Applications" (ASPLOS ‘12)

● How could we also accelerate other bottlenecks as barriers and slow
pipeline stages?

Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt, "Bottleneck Identification and
Scheduling in Multithreaded Applications" (ASPLOS ‘12)

● Improving locality in staged execution

M. Aater Suleman, Onur Mutlu, Jose A. Joao, Khubaib, and Yale N. Patt, "Data Marshaling for
Multi-core Architectures", (ISCA ‘10)

● Accelerating more (BIS with Lagging Threads):

Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt, "Utility-Based Acceleration of
Multithreaded Applications on Asymmetric CMPs" (ISCA ‘13)

29

https://people.inf.ethz.ch/omutlu/pub/bottleneck-identification-and-scheduling_asplos12.pdf
https://people.inf.ethz.ch/omutlu/pub/bottleneck-identification-and-scheduling_asplos12.pdf
https://people.inf.ethz.ch/omutlu/pub/bottleneck-identification-and-scheduling_asplos12.pdf
https://people.inf.ethz.ch/omutlu/pub/bottleneck-identification-and-scheduling_asplos12.pdf
https://people.inf.ethz.ch/omutlu/pub/dm_isca10.pdf
https://people.inf.ethz.ch/omutlu/pub/dm_isca10.pdf
https://people.inf.ethz.ch/omutlu/pub/utility-based-acceleration-acmp_isca13.pdf
https://people.inf.ethz.ch/omutlu/pub/utility-based-acceleration-acmp_isca13.pdf

Takeaways

30

Key Takeaways

● The idea of moving specialized sections of computation
to a different “core” (= accelerator, GPU...) has a lot of
potential

● ACS is a novel way to accelerate critical section in
hardware

● The key idea is very intuitive and easy to understand

● Software is not the only solution

31

Questions ?

32

Discussion Starters

33

1. Do you think the trend of specializing hardware is
going to increase even more in future? What other
things could be done?

2. Do you think this could create new security
threats? Can you imagine a way modularity could
increase security?

3. Could ACS be combined with MorphCore?

ASPLOS 2009
Presented by Lara Lazier

34

What more results?

"An Asymmetric Multi-core Architecture for Accelerating Critical Sections"

HPS Technical Report, TR-HPS-2008-003, September 2008.

35

https://people.inf.ethz.ch/omutlu/pub/acs-TR-HPS-2008-003.pdf

Backup Slides

36

Hardware specialization?

37

Adi Fuchs, David Wentzlaff, “Scaling Datacenter Accelerators With Compute-Reuse Architectures” (ISCA ‘18)

http://www.parallel.princeton.edu/papers/corex-isca18.pdf

Coarse-Grained Workloads

38

1. For an area budget of 8:

ACS improves performance by
22%compared to SCMP and
11% compared to ACMP

2. For an area budget of 16:

ACS improves performance by
32%compared to SCMP and
22% compared to ACMP

3. For an are budget of 32:

ACS improves performance by
42% compared to SCMP and
31% compared to ACMP

Fined Grained Workloads
● The area budget required to outperform SCMP or

ACMP for all workloads is less than or equal to 24
cores.

● For an area budget of 8:

ACS increases execution time for all workloads except
for iploockup compared to SCMP
and increases execution time for all workloads
compared to ACMP

● For an area budget of 16:

ACS improves performance by 2% compared to SCMP
and 6% compared to ACMP

● For an are budget of 32:

ACS improves performance by 17% compared to SCMP
and 6% compared to ACMP

39

Scalability

40

● For 7 out of 12 applications ACS
improves Scalability

