DARK SILICON...

AND THE END

OF MULTICORE SCALING
Dark Silicon and the End of Multicore Scaling

Hadi Esmaeilzadeh† Emily Blem‡ Renée St. Amant§ Karthikeyan Sankaralingam¶ Doug Burger©

†University of Washington ‡University of Wisconsin-Madison
§The University of Texas at Austin ¶Microsoft Research
hadianeh@cs.washington.edu blem@cs.wisc.edu stamant@cs.utexas.edu karu@cs.wisc.edu dburger@microsoft.com
EXECUTIVE SUMMARY

Problem:	Dennard- and multicore-scaling don’t work anymore
	Transistor underutilisation is underrated
Goal:	Predict how technology-scaling will affect transistor-underutilisation
Method:	Model future chip-development
	Calculate future transistor underutilisation
Result:	Power- & multicore-scaling won’t sustain Moore’s Law due to transistor underutilisation

31.10.2018
Dark Silicon and the End of Multicore Scaling
THE PROBLEM / THE NOVELTY

- **Dennard scaling:**
 - Broke down ~2006

- **Solution: Multicore-scaling**
 - Exploit parallelism by adding more cores
 - Keeping Moore’s Law alive

Source: Benchmarking Adiabatic Quantum Optimization for Complex Network Analysis

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

31.10.2018

Dark Silicon and the End of Multicore Scaling
We aren’t getting the performance-gains, we’d expect – but why?

THE INVISIBLE ENEMY: DARK SILICON
Dark Silicon – [...] the amount of circuitry of an integrated circuit that cannot be powered-on at the nominal operating voltage for a given thermal design power (TDP) constraint.

- Wikipedia

Dark Silicon – Transistors which suffer from under-utilization
AN ANALOGY

• Weather-forecast for performance-scaling

• Based on models

• Explain why the weather is getting rough
OUTLINE

I. THE PROBLEM / NOVELTY
 THE MODEL
 THE RESULTS

II. THE GOOD / THE IMPROVABLE
 TAKE-AWAYS / THE FUTURE

III. QUESTIONS / DISCUSSION
This model represents a best-case scenario!
Dark Silicon and the End of Multicore Scaling

ITRS-Scaling

- **Normalized Scaling Factor**
- **Frequency Scaling Factor (/45nm)**
- **Power Scaling Factor (/45nm)**

Conservative-Scaling

- **Year / Estimated Transistor-Size**
- **Frequency Scaling Factor (/45nm)**
- **Power Scaling Factor (/45nm)**
Power vs. Performance

Why take this one…

…if I could use less power AND have more Performance?

Area vs. Performance

Why take this one…

…if I could use the same Area AND have more Performance?

SPEC = Standard Performance Evaluation Corporation
ITRS scaling

Conservative scaling

- Multi-core Device
- Core

Optimal # of Cores
Multicore Speed-Up
% of Dark Silicone

31.10.2018
Dark Silicon and the End of Multicore Scaling
• Chip Organisations: CPU vs. GPU
• 4 microarchitectural features:

Symmetric Multicore

Dynamic Multicore

Asymmetric Multicore

Composed Multicore

31.10.2018

Dark Silicon and the End of Multicore Scaling
1. All points along the area/performance Pareto-frontier are considered
2. Adding cores
3. Speed-up is computed
4. As the area or power-limit is hit, we obtain the optimal Number of cores and its speed-up
5. Dark Silicon = ChipArea – UsedArea
OUTLINE

I. THE PROBLEM/NOVELTY

THE MODEL

THE RESULTS

II. THE GOOD/ THE IMPROVABLE

TAKE-AWAYS/ THE FUTURE

III. QUESTIONS/ DISCUSSION

31.10.2018

Dark Silicon and the End of Multicore Scaling
THE MODEL

Scaling-Models

Predictions

- Optimal # of Cores
- Multicore Speed-Up
- % of Dark Silicon

31.10.2018

Dark Silicon and the End of Multicore Scaling
• Using Optimistic ITRS – scaling
• Tested with PARSEC
• No explosive growth in core-count

• The GPU-core-count low due to PARSEC
• For raytracing-application:
 • Transistor-size: 8 nm
 • Core count: 4864
RESULTS: SPEED-UP

• Normalized speed-up, to
 • quadcore
 • Nehalem
 • 45 nm

• Speed-up in geomean saturates

(a) Speedup: geomean and best case
RESULTS: % OF DARK SILICON

• At 8nm:
 • CPU > 50%
 • GPU > 90% !!!

• GPU Raytracing
 • 8 nm
 • Dark silicon: 8 %
THE SOURCE OF DARK SILICON

SpeedUp vs. Power

SpeedUp vs. Parallelism
MOORE VS. REALITY

ITRS scaling

Conservative scaling

Dark Silicon

Dark Silicon

31.10.2018

Dark Silicon and the End of Multicore Scaling
CONCLUSION

Problem: Dennard- and multicore-scaling don’t work anymore
 Dark Silicon is taking over

Goal: Find the source of dark silicon
 Predict the development of core-numbers, performance and dark silicon

Method: Model future chip-designs
 Calculate future dark silicon from model

Result: Predictions toward’s % of dark silicon, # of cores and speedUp
 Power and multicore-scaling is limited by dark silicon
 Limited parallelism is the primary source of dark silicon
OUTLINE

I. THE PROBLEM/NOVELTY
 THE MODEL
 THE RESULTS

II. THE GOOD/THE IMPROVABLE
 TAKE-AWAYS/THE FUTURE

III. QUESTIONS/DISCUSSION

31.10.2018

Dark Silicon and the End of Multicore Scaling
THE GOOD

• Big impact on the industry
• Shows where the problems are and how they will develop
• Covers various architectures and applications
• Well structured paper
• Number-of-cores for GPU is a somehow sparse prediction
• ARM was not considered in this model
• Calculation of Dark Silicon percentage is explained in only one sentence
• Is Dark Silicon the sole enemy of Moore’s Law?
• More information to replicate test-environment
• How would it behave in an multi-application-environment?
OUTLINE

I. THE PROBLEM / NOVELTY
 THE MODEL
 THE RESULTS

II. THE GOOD / THE IMPROVABLE
 TAKE-AWAY / THE FUTURE

III. QUESTIONS / DISCUSSION

31.10.2018

Dark Silicon and the End of Multicore Scaling
TAKE-AWAY’S

- Moore’s and Dennard’s Law will no longer apply
- Multicore-scaling might not be the answer for everything
- Limited parallelism is at least as problematic as power-constraints
BEYOND THE PAPER: 4 HORSESMEN

THE SHRINKING
«Simply remove» Dark Silicon physically

THE DIMMED
Underclock or only use in bursts

THE SPECIALICED
Build specialized cores, and only turn on the ones we need

THE EX-MACHINA
Beyond Silicon

Graphics & content: http://darksilicon.org/
DISCUSSION

• What new technologies come to mind, that might prevent the end of performance-scaling?

• Philosophical: What if we hit the end? What might be the consequences?

• What could Neuro-Science tell us?
Thank you and
Happy Halloween!

...and Thank you Giray and
Geraldo :D
Beyond MOSFET’s

<table>
<thead>
<tr>
<th>Silicon-in-insulator</th>
<th>Vertical replacement gate FET</th>
<th>GaN MOSFET</th>
<th>Neuro-Informatics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon-on-“nothing”</td>
<td>Ballistic FET</td>
<td>Superconductive FET</td>
<td>And many more!</td>
</tr>
<tr>
<td>Double-gate FETs</td>
<td>Tunneling FET</td>
<td>Quantum</td>
<td></td>
</tr>
<tr>
<td>FinFETs</td>
<td>CN-FET</td>
<td>Graphene</td>
<td></td>
</tr>
<tr>
<td>Vertical FETs</td>
<td>MESFET</td>
<td>Nano-Tubes</td>
<td></td>
</tr>
</tbody>
</table>

Source: http://darksilicon.org/horsemen/horsemen_slides.pdf
PARALLEL TO THE HUMAN BRAIN

- 100 trillion synapses
- Embody an existence proof of highly parallel, mostly dark operation

Source: http://darksilicon.org
AMDAHL’S LAW

100 % Parallell
50 % Parallel
0 % Parallell

Conservative Scaling

Source Graphics and Data: Presented Paper

Dark Silicon and the End of Multicore Scaling
• Pollacks Rule:

\[\Delta Performance \cong \sqrt{\Delta Area} \]

• Power is no longer only constrained by area

• Empirical Data from 152 Processors

• Deriving Pareto-Frontiers
WORK-AROUNDS

(a) L2 size (CPU)
(b) Memory bandwidth (GPU)

Figure 7: Sensitivity studies of L2 size and memory bandwidth using symmetric topology at 45 nm