Data Retention in MLC NAND Flash Memory: Characterization, Optimization, and Recovery

Yu Cai, Yixin Luo, Erich F. Haratsch, Ken Mai, Onur Mutlu
Carnegie Mellon University, LSI Corporation
Why flash memory?
Devices using Flash Memory

- USB flash stick
- Solid State Drive
- Smartphone
- Computer
NAND Flash Memory

- We erase in blocks consisting of multiple pages.
- We program and read in pages.
NAND Flash Memory

- We erase in blocks consisting of multiple pages.
- We program and read in pages.
NAND Flash Memory

- We erase in blocks consisting of multiple pages.
- We program and read in pages.
NAND Flash Memory

- We erase in blocks consisting of multiple pages.
- We program and read in pages.
- After programming we erase old copied pages.
- Flash controller manages operations.
- ECC controller corrects data.
A cell stores charge as electrons in the floating gate.

We **program** cells by applying a high **positive** voltage to our control gate.

The positive charge **attracts** electrons through the tunnel oxide from the substrate.
We erase cells by applying a high negative voltage.
Trap Assisted Tunnelling

- Repeated **program/erase** cycles trap electrons in the tunnel oxide.
- An **electric field** is created by the trapped charge.
- Charge from the floating gate leaks to the substrate.
Charge De-Trapping

- Trapped charge leaves tunnel oxide.
- Increases floating gate charge.
Charge De-Trapping

- Trapped charge **leaves** tunnel oxide.
- Increases floating gate charge.
- Or **decreases** if de-trapping towards the **substrate**.
Charge De-Trapping

- Trapped charge **leaves** tunnel oxide.
- Increases floating gate charge.
- Or **decreases** if de-trapping towards the substrate.
- Leaves a **positive** charge that attracts charge from the floating gate.
Charge De-Trapping

- Trapped charge leaves tunnel oxide.
- Increases floating gate charge.
- Or decreases if de-trapping towards the substrate.
- Leaves a positive charge that attracts charge from the floating gate.
Retention Loss

- Use charge as **indicator** for **bit** values.
- Assign 0 to a **high** charge and 1 to a **low** charge.
- **Read reference voltage** separates differently charge cells.
- Charge leaks over time caused by **trap assisted tunnelling** or **charge de-trapping**.
- Changed values introduce **retention errors**.
Threshold Voltage Distribution

Probability Density Function vs. Threshold Voltage

- Two distributions: 1 and 0
- Threshold voltage marked as V_{ref}
Threshold Voltage Distribution in Multi Level Cell Flash Memory
Read-Retry

1. Read page from flash memory
2. ECC
3. Data corrected?
 - Yes: Forward Data
 - No: Adjust read reference voltage
4. Yes: Forward Data
5. No: Adjust read reference voltage
Executive Summary

- **Problem**
 - Density of flash memory rises and diminishes lifetime.
 - Correcting errors increases read latency.

- **Goal**
 - Deepen understanding of voltage threshold distributions of flash memory.
 - Improve both lifetime and system performance.
 - Recover non-correctable data.

- **Method**
 - Retention Optimized Reading
 - Improved Read-Retry
 - Retention Failure Recovery

- **Result**
 - Lifetime improvement by 64%.
 - Read latency reduction by 70.4%.
 - Raw bit error rate drop by 50%.
Problem

- Multi level cell
 - **Higher error rate** due to smaller threshold windows.
- Lifetime
 - Retention errors:
 - **Limit** the time flash memory can be read from.
 - May lead to loosing data.
- Read Latency
 - Retention errors:
 - Introduce **overhead** by error correction codes.
 - Increase number of **read-retries**.
Goal

- Building a strong understanding, characterization, and analysis of threshold voltage distribution over retention age.
- Introduce a dynamic technique improving lifetime and read latency.
- Devise a new mechanism to recover non-correctable data.
Different amounts of program/erase cycles for multiple groups of flash memory.

Data of retention ages ranging from 0 to 40 days.

All experiments were conducted under room temperature (20°C).

Source: Y. Cai et al., "FPGA-Based Solid-State Drive Prototyping Platform", FCCM 2011
Retention Optimized Reading
Threshold Voltage Distribution over Time

Source: Slides adapted from Data Retention in MLC NAND Flash Memory… Yixin Luo
Erased state distribution can be neglected.

Threshold Voltage Distribution over Time

Source: Slides adapted from Data Retention in MLC NAND Flash Memory… Yixin Luo
Threshold Voltage Distribution over Time

Distribution shifts cause **raw bit errors**.

Threshold Voltage Distribution over Time

Source: Slides adapted from Data Retention in MLC NAND Flash Memory… Yixin Luo
Optimized read reference voltages minimize raw bit errors.

Threshold Voltage Distribution over Time

Source: Slides adapted from Data Retention in MLC NAND Flash Memory… Yixin Luo
Retention Optimized Reading

Read last page; use V_{default}.

ECC; if #errors < record

Record = voltage, errors

V_{default} --

Use V_{default}; V_{default}++

ECC; if #errors < record

Record = voltage, errors

V_{default}++

Errors > record

New $V_{\text{default}} = V_{\text{record}}$
Improved Read-Retry

- Read page with OPT
- Data corrected?
- No
- Decrease threshold voltage
- Yes
- Forward Data

OPT is from last page of a block and cells have lowest retention age. → smallest charge leakage
Raw Bit Error Rate to Program/Erase Cycles

ECC threshold

OPT = optimized read reference voltage
Evaluation

Lifetime
- Both provide **64% lifetime increase over baseline.**

Read Latency
- **2.4% latency reduction** compared to baseline
- **70.4% latency reduction** compared to naïve read-retry

![Bar Chart for Lifetime](chart1.png)
![Bar Chart for Read Latency](chart2.png)
Evaluation

- We have a storage overhead of 768 KB out of 512 GB. → 0.00015% overhead

- Execution overhead depends on program/erase cycles, retention age and amount of data written.

<table>
<thead>
<tr>
<th>Retention Age</th>
<th>P/E Cycles</th>
<th>Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 day</td>
<td>8000</td>
<td>3 seconds</td>
</tr>
<tr>
<td>7 days</td>
<td>8000</td>
<td>15 seconds</td>
</tr>
<tr>
<td>30 days</td>
<td>8000</td>
<td>23 seconds</td>
</tr>
</tbody>
</table>

Assuming flash capacity is full (512 GB).
Retention Failure Recovery
Fast and Slow Leaking Cells

- Separate cells into fast and slow leaking cells.
- Over the same time t fast leaking cells leak more charge than slow leaking cells.
- Threshold separating cells is the average threshold voltage shift.
RetentionPolicy Failure Recovery

1. Cells correctly in P2
2. Fast leaking cells from P3 wrongly in P2
3. Slow leaking cells from P2 wrongly in P3
4. Cells correctly in P3

Find Risky Cells

Find Fast & Slow Leaking Cells

Flip type 2 and 3 cells

Failed Data

Backup Data
Raw bit error rate is expected to drop by 50%.

Evaluation

Problem

- Density of flash memory rises and diminishes lifetime.
- Correcting errors increases read latency.

Goal

- Deepen understanding of voltage threshold distributions of flash memory.
- Improve both lifetime and system performance.
- Recover non-correctable data.

Method

- Retention Optimized Reading
 - Improved Read-Retry
- Retention Failure Recovery

Result

- Lifetime improvement by 64%.
- Read latency reduction by 70.4%.
- Raw bit error rate drop by 50%.
Strengths

- **Retention optimized reading** enhances memory lifetime under low overhead.
- **Retention failure recovery** decreases raw bit error rate.
- Mechanisms **complement** each other, but can be implemented **individually**.
- We may adjust **ECC** capabilities to increase power efficiency.

Paper

- Presents a **simple** and intuitive algorithm.
- Conducts research with **high potential impact**.
How does temperature affect threshold voltage shifts?

How many flash memory devices were used?

How does retention failure recovery affect storage overhead?

The paper is hard to understand in detail and covers a lot of topics.

Why was retention optimized reading not compared to adaptive voltage threshold?¹

The paper has many similarities with previously published papers.

Figure explanations are quite sparsely provided.

Key Takeaways

- Retention errors limit flash memory lifetime.
- Read-retry increases read latency.
- We gained a clear understanding of threshold voltage distributions.
- Retention optimized reading improves lifetime and read latency.
- Retention failure recovery reduces errors.
In what **order** should we assign our **2 bit values** to our **4 states**?

- They are often assigned this way: **Erased** - 11, **P1** - 10, **P2** - 00, **P3** - 01.
- Because if the **threshold voltage** were to shift to the left we only get one bit error.
Open Discussion

- How should we assign our 2 bit values to pages?

<table>
<thead>
<tr>
<th>Row Index</th>
<th>LSB of the 2^{17} cells</th>
<th>MSB of the 2^{17} cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Page 0</td>
<td>Page 2</td>
</tr>
<tr>
<td>1</td>
<td>Page 1</td>
<td>Page 4</td>
</tr>
<tr>
<td>2</td>
<td>Page 3</td>
<td>Page 6</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>127</td>
<td>Page 253</td>
<td>Page 255</td>
</tr>
</tbody>
</table>

Source: Table adapted from Wang, Wei, et al. "Reducing MLC flash memory retention errors through programming initial step only.", MSST 31st Symposium on. IEEE, 2015
Open Discussion

- We have seen that reducing the number of **read-retries** has a great impact on **read latency**.
- Can you think of yet another method to **reduce** the number of **read-retries**?
 - My idea would be to use **binary search** implemented into our current read-retry mechanism.
Improved Read-Retry

1. Read page with OPT
2. Data corrected?
 - Yes: Forward Data
 - No: Decrease/increase threshold voltage by half
3. ECC

 Nicolas Wicki
 ETH Zurich

07.11.2018
Additional Papers

- Bez et al., “Introduction to Flash Memory”, 2003
- Cai et al., “Error Analysis and Retention-Aware Error Management For NAND Flash Memory”, 2013
- Papandreou et al., “Using Adaptive Read Voltage Thresholds to Enhance the Reliability of MLC NAND Flash Memory Systems”, 2014
- Aslam et al., “Read and Write Voltage Signal Optimization for Multi-Level-Cell (MLC) NAND Flash Memory”, 2016
- Coutet et al., “Influence of temperature of storage, write and read operations on multiple level cells NAND flash memories”, 2018
Big Thanks to Giray & Mohammed for their support.

No, really, thanks.
Flash Correct-and-Refresh

- Read page with **fixed read reference voltage**.
- **Error correction** informs about range of actual **voltage threshold**.
- Identify cells in a **wrong state**.
- Identify **right shift errors** and **left shift errors**.
- **Left shift errors** are caused by **retention loss**.
- **Right shift errors** are caused by **cell-to-cell interference** when **programming** other cells.

Source: Figure adapted from Y. Cai et al., “Flash Correct-and-Refresh:...“, 2012.
Fast and Slow Leaking Cells