
||Seminar of Computer Architecture

Independently discovered and reported by three teams:
Jann Horn (Google Project Zero)
Werner Haas, Thomas Prescher (Cyberus Technology),
Daniel Gruss, Moritz Lipp, Stefan Mangard, Michael Schwarz(Graz University of Technology)

2018/12/12DU Yinwei 1

Meltdown: Reading Kernel Memory from
User Space

||Seminar of Computer Architecture 2018/12/12DU Yinwei 2

You may have already known…

||Seminar of Computer Architecture

§ Observation: Out-of-order execution allows access of
invalid memory address before checking the validation.

§ Attack description (briefly):
§ Raise exception before accessing an invalid address.
§ Out-of-order execution causes microarchitectural change.
§ Use side-channel attack to recover the secret.

§ Mitigation: KAISER -- kernel address isolation to have
side-channels efficiently removed

2018/12/12DU Yinwei 3

Executive Summary of Meltdown

||Seminar of Computer Architecture

§ Introduction
§ Background

§ Out-of-order execution
§ Address spaces

§ Meltdown attack
§ Countermeasure
§ Evaluation
§ Strengths and weaknesses
§ Discussion

2018/12/12DU Yinwei 4

Outline

||Seminar of Computer Architecture

§ What is Meltdown?

Meltdown breaks the most fundamental isolation between
user applications and the operating system. This attack
allows a program to access the memory, and thus also the
secrets, of other programs and the operating system.

2018/12/12DU Yinwei 5

Introduction

||Seminar of Computer Architecture

§ How is it different from other attacks?
No software vulnerability
Exploit side-channel information

§ Which systems are affected by Meltdown?
Every Intel processor which implements out-of-order

execution since 1995.

2018/12/12DU Yinwei 6

Introduction

||Seminar of Computer Architecture

§ Introduction
§ Background

§ Out-of-order execution
§ Address spaces

§ Meltdown attack
§ Countermeasure
§ Evaluation
§ Strengths and weaknesses
§ Discussion

2018/12/12DU Yinwei 7

Outline

||Seminar of Computer Architecture

§ Out-of-order execution:
§ Optimization technique
§ CPU executes instructions as soon as all required resources are

available.

§ In practice, running operations speculatively before the
CPU is certain whether the instruction will be needed and
committed.

2018/12/12DU Yinwei 8

Background – Out-of-order execution

||Seminar of Computer Architecture

§ Intel Architecture

§ Reorder buffer: register allocation,
register renaming, and retiring.

§ Unified reservation station: queues
the operations on exit ports that are
connected to Execution Units

§ Tomasulo Algorithm

2018/12/12DU Yinwei 9

Background – Out-of-order execution

||Seminar of Computer Architecture

§ Virtual address space: virtual addresses are translated to
physical addresses to isolate processes from each other

§ Virtual space is spilt into a user and a kernel space
§ The entire physical memory is typically mapped in the

kernel space
Direct map: Linux and OS X
Paged pool, non-paged pool and system cache: Windows

2018/12/12DU Yinwei 10

Background – Address space

||Seminar of Computer Architecture

§ In order to protect the kernel from memory corruption
bugs, address space layout randomization (ASLR) has
been introduced

§ KASLR randomizes the offsets where drivers are located
on every boot.
§ Still not sufficient to prevent all attacks

§ Solution to KASLR attacks (KAISER) solves the Meltdown
Attack as well!

2018/12/12DU Yinwei 11

Background – Address space

||Seminar of Computer Architecture

§ Introduction
§ Background

§ Out-of-order execution
§ Address spaces

§ Meltdown attack
§ Countermeasure
§ Evaluation
§ Strengths and weaknesses
§ Discussion

2018/12/12DU Yinwei 12

Outline

||Seminar of Computer Architecture

§ Let’s first look at a code snippet

§ In theory: cannot access the array
§ In reality: may have already executed instructions

2018/12/12DU Yinwei 13

Meltdown – A toy example

||Seminar of Computer Architecture 2018/12/12DU Yinwei 14

Meltdown – A toy example

data

probe_array[data*4096]

probe_array[data*4096]

||Seminar of Computer Architecture 2018/12/12DU Yinwei 15

Meltdown – A toy example

data

probe_array[data*4096]

probe_array[data*4096]

Register is
cleared

But cache state remains!

||Seminar of Computer Architecture 2018/12/12DU Yinwei 16

Meltdown – A toy example

long
long
short
long
long
long

long

||Seminar of Computer Architecture

transient instruction:
executed out of order and
leaving measurable side
effects

2018/12/12DU Yinwei 17

Meltdown – Building Block

||Seminar of Computer Architecture

§ Reason: prevent the process from being killed

§ Exception handling:
§ Fork the attacking application before accessing the invalid memory

location
§ Install a signal handler that is executed when a certain exception

occurs

Reducing performance overhead

2018/12/12DU Yinwei 18

Issue in Executing Transient Instructions

||Seminar of Computer Architecture

§ Exception suppression:
§ Transactional memory

§ Put the invalid memory access after a never-taken branch:
§ Setup phase: Mistrain CPU into speculatively executing these

instructions.
§ Second phase: speculatively execute an instruction that

leak information
§ Final phase: Recover data by retrieving over covert.

channel

2018/12/12DU Yinwei 19

Issue in Executing Transient Instructions

||Seminar of Computer Architecture

§ Sending end: the transient instruction sequence
§ Receiving end: can be a different thread or even a

different process

§ The covert channel is not limited to rely on cache:
§ ALU contention

§ But here we use Flush+Reload cache attack

2018/12/12DU Yinwei 20

Issue in Building a Covert Channel

||Seminar of Computer Architecture

§ Meltdown consists of 3 steps:

§ The content of an attacker-chosen memory location, which is
inaccessible to the attacker, is loaded into a register.

§ A transient instruction accesses a cache line based on the secret
content of the register.

§ The attacker uses Flush+Reload to determine the accessed cache
line and hence the secret stored at the chosen memory location.

2018/12/12DU Yinwei 21

Meltdown – Attack description

||Seminar of Computer Architecture

§ Introduction
§ Background

§ Out-of-order execution
§ Address spaces

§ Meltdown attack
§ Countermeasure
§ Evaluation
§ Strengths and weaknesses
§ Discussion

2018/12/12DU Yinwei 22

Outline

||Seminar of Computer Architecture

§ Trivial solution: completely disable out-of-order execution
§ The performance impacts would be devastating

§ Serializing the permission check and the register fetch can
prevent Meltdown attack.
§ This involves a significant overhead to every memory fetch

§ Introduce a hard split of user space and kernel space
§ Expect minimal performance impacts

§ Note: the above methods only solve Meltdown, not Spectre
2018/12/12DU Yinwei 23

Countermeasures – Hardware

||Seminar of Computer Architecture

§ A kernel modification that does not have the kernel
mapped in the user space

§ Reason: no valid mapping to kernel space or physical
memory available in user space

§ However, there exists a residual attack surface for
Meltdown.

§ Still, the best short-time solution currently available.

2018/12/12DU Yinwei 24

Countermeasures – Software (KAISER)

||Seminar of Computer Architecture

§ Introduction
§ Background

§ Out-of-order execution
§ Address spaces

§ Meltdown attack
§ Countermeasure
§ Evaluation
§ Strengths and weaknesses
§ Discussion

2018/12/12DU Yinwei 25

Outline

||Seminar of Computer Architecture

§ Assembly code given by the paper:

Look not so nice…

2018/12/12DU Yinwei 26

Evaluation– Sample Code

||Seminar of Computer Architecture

§ A more readable one:

2018/12/12DU Yinwei 27

Evaluation – Sample Code

||Seminar of Computer Architecture

§ Tested platform :
§ Linux without KAISER
§ Windows 10 without KAISER
§ Linux with KAISER
§ Containers such as Docker
§ Android (ARM)

2018/12/12DU Yinwei 28

Evaluation – Environment

||Seminar of Computer Architecture 2018/12/12DU Yinwei 29

Evaluation – Performance

§ With exception handling:
§ More universal implementation
§ Achieve an average reading speed of 123 KB/s when leaking 12

MB of kernel memory
§ Error rate of 0.03 %
§ Channel capacity is 122 KB/s

||Seminar of Computer Architecture 2018/12/12DU Yinwei 30

Evaluation – Performance

§ With exception suppression:
§ Conditional branches or Intel TSX
§ Achieve an average reading speed of 503 KB/s when leaking 12

MB of kernel memory
§ Error rate of 0.02 %
§ Channel capacity is 502KB/s

||Seminar of Computer Architecture

§ Memory dump showing HTTP Headers on Ubuntu 16.10
on a Intel Core i7-6700K

§ The XX cases represent
bytes where the side channel did not yield any results

2018/12/12DU Yinwei 31

Evaluation – In Practice

||Seminar of Computer Architecture

§ Memory dump of Firefox 56 on Ubuntu 16.10 on a Intel
Core i7-6700K disclosing
saved passwords

2018/12/12DU Yinwei 32

Evaluation – In Practice

||Seminar of Computer Architecture

§ They did not manage to successfully leak kernel memory
with the meltdown attack neither on ARM nor on AMD.

§ Reasons:
§ The implementation might simply be too slow
§ Processor lacks certain features

§ However, the toy example works reliably.

2018/12/12DU Yinwei 33

Evaluation – Limitation

||Seminar of Computer Architecture

§ Observation: Out-of-order execution allows access of
invalid memory address before checking the validation.

§ Attack description (briefly):
§ Raise exception before accessing an invalid address.
§ Out-of-order execution causes microarchitectural change.
§ Use side-channel attack to recover the secret.

§ Mitigation: KAISER -- kernel address isolation to have
side-channels efficiently removed

2018/12/12DU Yinwei 34

Executive Summary of Meltdown

||Seminar of Computer Architecture

§ Introduction
§ Background

§ Out-of-order execution
§ Address spaces

§ Meltdown attack
§ Countermeasure
§ Evaluation
§ Strengths and weaknesses
§ Discussion

2018/12/12DU Yinwei 35

Outline

||Seminar of Computer Architecture

§ The paper presented a potential attack on a wide range of
modern processors which could cause catastrophic
problems

§ This attack didn’t exploit any software vulnerability and
therefore can be launched in all operating systems

§ The paper gave both short-term software solution and
long-term hardware solution and verified the former’s
effectiveness

2018/12/12DU Yinwei 36

Strengths

||Seminar of Computer Architecture

§ They included too much background information and
made the paper not easy to read

§ They didn’t give a practical attack on platforms other than
Intel and didn’t know the exact reason

§ They didn’t propose a better software solution

§ They didn’t evaluate the performance impacts by the
KAISER patch

2018/12/12DU Yinwei 37

Weaknesses

||Seminar of Computer Architecture 2018/12/12DU Yinwei 38

Takeaway

§ From a computer security perspective:

§ Attacks can happen at any level – previously
we’ve seen memory performance attack and
Row-hammer attack

§ Knowledge in computer architecture can aid
security professions to find out new “bugs”

§ Covert channel (side channel) is a
fascinating topic Onur Mutlu, Computer Architecture

Lecture 1, Fall 2018

||Seminar of Computer Architecture 2018/12/12DU Yinwei 39

Takeaway

§ From a computer architecture perspective:

§ Design new architecture with a high-security guarantee at the very
beginning

§ Balance cost, performance, and security when designing

§ Look back at the architecture from time to time in order to look for
new faults

Meltdown: Reading Kernel Memory from User Space

Questions?

||Seminar of Computer Architecture

§ Are there other side-channel attacks that you are familiar
with?
§ Power analysis attack
§ Timing attack
§ Acoustic cryptanalysis
§ More…

2018/12/12DU Yinwei 41

Open discussion question

||Seminar of Computer Architecture

§ Apart from out-of-order execution, are there any other
features in modern CPUs that we can exploit to launch
attacks?

§ TLBleed (Hyperthreading)

2018/12/12DU Yinwei 42

Open discussion question

||Seminar of Computer Architecture

§ Website

§ Hands-on experience
and very detailed
instruction

2018/12/12DU Yinwei 43

Meltdown Attack Lab

http://www.cis.syr.edu/~wedu/seed/Labs_16.04/System/Meltdown_Attack/

||Seminar of Computer Architecture

§ YouTube video of attack demos:
§ https://youtu.be/L1N1P2zxaZE
§ https://youtu.be/bReA1dvGJ6Y
§ https://youtu.be/RbHbFkh6eeE
§ https://youtu.be/kwnh7q356Jk

§ Recommended papers:
§ FLUSH+RELOAD: a High Resolution, Low Noise, L3 Cache Side-

Channel Attack
§ KASLR is Dead: Long Live KASLR
§ Breaking Kernel Address Space Layout Randomization with Intel

TSX

2018/12/12DU Yinwei 44

Useful Resources

https://youtu.be/L1N1P2zxaZE
https://youtu.be/bReA1dvGJ6Y
https://youtu.be/RbHbFkh6eeE
https://youtu.be/kwnh7q356Jk
https://eprint.iacr.org/2013/448.pdf
https://gruss.cc/files/kaiser.pdf
http://delivery.acm.org/10.1145/2980000/2978321/p380-jang.pdf?ip=195.176.111.17&id=2978321&acc=CHORUS&key=FC66C24E42F07228.A04051DB0C098788.4D4702B0C3E38B35.6D218144511F3437&__acm__=1542724814_4fd2d3bf366462cce6108d4beb270d24

||Seminar of Computer Architecture

Thanks for your listening!

Meltdown: Reading Kernel Memory from User Space

1.12.2014First name Surname (edit via “Insert” > “Header & Footer”) 45

Meltdown: Reading Kernel Memory from User Space

Supplementary Slides

||Seminar of Computer Architecture

§ Case of 0:
§ If the exception is triggered while trying to read from an

inaccessible kernel address, the register where the data should be
stored, appears to be zeroed out.

§ If the zeroing out of the register is faster than the execution of the
subsequent instruction, the attacker may read a false value in the
third step.

§ Meltdown retries reading the address until it encounters a value
different from ‘0’.

§ Meltdown assumes that the secret value is indeed ‘0’ if there is no
cache hit at all

2018/12/12DU Yinwei 47

Meltdown – Optimization

||Seminar of Computer Architecture

§ Single-bit transmission:
§ The performance bottleneck in the generic attack is Flush+Reload
§ By transmitting only one bit, we only have to perform one

Flush+Reload at one time.

§ Drawback: our side channel has a bias towards a secret value of ‘0’.
The number of bits read and transmitted at once is a tradeoff

between some implicit error-reduction and the overall transmission
rate of the covert channel.

2018/12/12DU Yinwei 48

Meltdown – Optimization

||Seminar of Computer Architecture

§ Dealing with KASLR:
§ With KASLR, the direct-physical map is randomized and not fixed

at a certain address.
§ Need to obtain the randomized offset before mounting the

Meltdown attack.
§ However, the randomization is limited to 40 bit – we can find out

the randomized address quickly.

2018/12/12DU Yinwei 49

Meltdown – Optimization

||Seminar of Computer Architecture

§ Tomasulo Algorithm
§ Enable dynamic scheduling of instructions to allow out-of-order

execution
§ Introduce a unified reservation station that allows a CPU to use a

data value as it has been computed instead of storing it to a
register and re-reading it

§ Solve RAW, WAR, WAW hazards
§ All execution units are connected via a common data bus.

Reservation unit listen on the data bus.

2018/12/12DU Yinwei 50

Background – Out-of-order execution

||Seminar of Computer Architecture

§ Exploit timing differences that are introduced by the
caches.

§ Evict+Time, Prim+Probe, and Flush+Reload
§ We use Flush+Reload: exploits the shared, inclusive last-

level cache
§ Frequently flush a targeted memory location (clflush)
§ Measure the time it takes to reload the data
§ Determine whether data was loaded into the cache by another

process
§ Building a covert channel to leak information from one

security domain to another.
2018/12/12DU Yinwei 51

Background – Cache Attack

