
Flipping Bits in Memory Without

Accessing Them:
An Experimental Study of DRAM Disturbance Errors

*Work done while at Carnegie Mellon University

ISCA 2014

Presented by Allan Benelli

ETH Zürich

07 November 2018

1

Problem

2

Problem

◼ The continued scaling of DRAM process technology has
enabled smaller cells to be placed closer to each other

◼ This gives us:

❑ Increase of cells per unit area

❑ Decrease of cost per bit memory

◼ But also:

❑ Reduced noise margin, more vulnerable to data loss

❑ Electromagnetic coupling effects between cells

❑ Higher variation in process technology increases number of
outlier cells

3

Problem

◼ As a result, high-density DRAM is more likely to suffer from
disturbance, a phenomenon in which different cells
interfere with each other’s operation.

◼ If a cell is disturbed beyond its noise margin, it
malfunctions and experiences a disturbance error.

4

Background

5

DRAM Cell

6

DRAM Access & Refresh

7

◼ Open Row: raise wordline, transfer data into row-buffer

◼ Read/Write: access row-buffer's data

◼ Close Row: lower wordline, clear row-buffer

◼ Refresh: restore the charge in cells (DDR3 ~ 64ms, can
also be achieved by opening a row)

Goal

8

Goal

◼ Expose the existence and the widespread nature of
disturbance errors in commodity DRAM chips sold and used
"today" (2014).

9

Novelty, Key Approach, and

Ideas

10

Novelty

◼ Demonstrates the existence of DRAM disturbance errors on
real systems using DRAM devices

❑ Known as „RowHammer“

◼ Extensively characterizes these errors using FPGA-based
testing platform

◼ Proposes and explores various solutions to prevent DRAM
disturbance errors and shows a novel, low-cost system-
level approach

11

Key-Ideas & Approach

◼ Causes of Disturbance Errors

❑ Electromagnetic coupling

◼ Toggling the wordline voltage briefly increases the voltage of
adjacent wordlines, this slightly opens adjacent rows -> Leakage
of charge

❑ Conductive bridges

❑ Hot-carrier injection

12

Toggling the wordline

◼ Repeated toggling of
the wordline causes
the nearby cells to
leak charge

13

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

Victim rows1 1 1 1

Aggressor row

1 0 1 1

1 1 0 0

Mechanisms

14

How to Induce Errors

◼ Is it that simple?

❑ No!

◼ 1. Avoid cache hits

❑ Flush X from cache

◼ 2. Avoid row hits to X

❑ Read Y in another row

15

How to Induce Errors

DDR3

DRAM Modulex86 CPU

Y

X

111111111

111111111

111111111

111111111

111111111

111111111
loop:

mov (X), %eax

mov (Y), %ebx

clflush (X)

clflush (Y)

mfence

jmp loop

1111

1111

011011110

110001011

101111101

001110111

Y. Kim’s Talk on: “Flipping Bits in Memory Without Accessing Them
16

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_kim_talk_isca14.pptx

Key Results:

Methodology and Evaluation

17

Methodology

◼ 8 FPGA boards with DDR3 DRAM memory controller

◼ Tested 129 DRAM modules from manufactures A, B and C,
with capacities from 512MB-2GB and production year ’08-14

18

Access Interval (AI)

- Time between two accesses

Refresh Interval (RI)

- Time between two refreshes

Data Pattern (DP)

- Data stored in DRAM

- e.g. RowStripe (~RowStripe)

alternate rows 1s and 0s

Disturbance Errors are Widespread

◼ Most modules are at risk

❑ In 110 / 129 tested modules they were able to induce errors

◼ The modules without errors were built before 2012 (except
one)

19

Error = Charge Loss

◼ Two types of errors

❑ - '1' -> '0' and '0' -> '1’

◼ A given cell suffers only one type

◼ Two types of cells (chosen by manufacturer)

❑ True-cell: Charged = 1 -> only '1' -> '0' errors

❑ Anti-cell: Charged = 0 -> only '0' -> '1' errors

◼ Errors are a loss of charge

◼ Example module from A:

20

Address Correlation

◼ Peaks at +/- 1

◼ But why this distribution?

❑ Physical address may differ from logical address

❑ Fault rows are often re-mapped to spare rows

❑ Aggressor row can affect more than two rows

21

Sensitivity

◼ Shorter RI -> fewer errors

◼ To eliminate all disturbance errors the refresh interval must
be shortened by 7x for the worst module

22

Sensitivity

◼ Longer AI -> fewer errors

23

Sensitivity

◼ Errors also dependent on data stored in other cells

◼ RowStripe causes ~10x more errors than Solid

24

111111

111111

111111

111111

000000

111111

000000

111111

101010

101010

101010

101010

010101

101010

010101

101010

Solid RowStripe ColStripe Checkered

Error Correction Code - ECC

◼ Couldn’t we just use simple Error Correction Codes as
SECDED?

❑ SECDED (:= Single Error Correction, Double Error-Detection)
detects up to two errors and can correct one error

◼ How many errors per row?

◼ SECDED is not safe!

25

Other results

◼ Victim Cells != Weak Cells

❑ Weak cells := Cells with the shortest retention times

◼ Errors are repeatable, but needs a lot of testing time

◼ Errors are almost independent of temperature change

◼ Some cells have two aggressors

26

Possible Solutions

◼ Make better chips

❑ … depends on process technology

◼ Correct errors

❑ … multibit errors and overhead

◼ Refresh all rows frequently

❑ … shorten RI -> overhead and performance

◼ Retire cells (manufacturer)

❑ … exhaustive search, many spare cells required

◼ Retire cells (end-user)

❑ … end-user pays for identifying and remapping

◼ Identify hot rows, refresh neighbours

❑ … counters needed, complex, costs

27

Proposed Solution

◼ PARA (Probabilistic Adjacent Row Activation)

❑ Idea:

◼ When a row is open/closed, an adjacent row is opened with small
probability

❑ Mechanism:

◼ When a row is closed, flip a biased coin (p<<1)

◼ If head, refresh one of the two adjacent row

❑ Problem:

◼ Needs to know how logical mapping is done by manufacturer

❑ Advantages:

◼ Refreshes row infrequently (low power & performance-overhead)

◼ Stateless (low cost & low complexity)

28

Summary

29

Summary

◼ Problem:

❑ High-density DRAM is more likely to suffer from disturbance

◼ Goal:

❑ Expose the existence and the widespread nature of
disturbance errors in commodity DRAM chips

◼ Key results:

❑ 110 out of 129 modules were vulnerable

❑ Root cause: repeated toggling of a wordline

◼ Conclusion:

❑ Disturbance errors are an emerging problem

❑ Many deployed systems could be at risk

30

Strengths

31

Strengths

◼ The first paper to expose the widespread existence of
disturbance errors in DRAM chips

❑ Is the basis for a lot of further work (321 citations)

◼ Identifies a new reliability problem and a security
vulnerability, RowHammer, that affects an entire generation
of computing systems being used today

❑ RowHammer is still relevant today!

◼ Real-system approach, not only theoretical

◼ With PARA a neat solution is provided

◼ Clear structured paper, worth reading, if you want to
understand further papers on RowHammer

32

Weaknesses

33

Weaknesses
◼ Assumes the existence of security exploits, but just touches

the topic and doesn't provide a working example.

◼ Paper is limited to x86-architecture.

◼ Paper relies on the memory controller flipping a coin. If the
outcome of these coinflips could be predicted, an attacker
may circumvent PARA. It's not explained how the coin
could be implemented and how such problems would be
avoided.

◼ Difference between # of bitflips with AMD and Intel pro-
cessors is just explained in a footnote and limited to speed

34

Thoughts and Ideas

35

Thoughts and Ideas

◼ What about RowHammer today?

❑ Google Project Zero exploited the DRAM RowHammer bug to
gain kernel privileges

❑ Recent studies and reports also suggest vulnerability of DDR4
Ram, mobilephones (ARM), GPU of mobilephones and
RowHammer Attacks over the Network.

❑ “Solutions”: Shorten RI to 32ms, ECC, TRR and restrict clflush

◼ What about ARM / Mobile platform? What about SRAM,
flash and harddisk?

❑ ARM --> Drammer: Deterministic Rowhammer Attacks on
Mobile Platforms [V. van der Veen et al., 2016]

❑ NAND Flash --> Read Disturb Errors in MLC NAND Flash
Memory: … [Y. Cai, O.Mutlu, et al. 2015]

36

https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://www.thirdio.com/rowhammer.pdf
https://vvdveen.com/publications/drammer.pdf
https://www.vusec.net/wp-content/uploads/2018/05/glitch.pdf
https://www.cs.vu.nl/~herbertb/download/papers/throwhammer_atc18.pdf
https://safari.ethz.ch/architecture_seminar/fall2018/lib/exe/fetch.php?media=drammer.pdf
http://users.ece.cmu.edu/~omutlu/pub/flash-read-disturb-errors_dsn15.pdf

Takeaways

37

Key Takeaways

◼ "It's like breaking into an apartment by repeatedly
slamming a neighbor's door until the vibrations open the
door you were after“ (Slides of O.Mutlu)

◼ RowHammer is a real issue - Disturbance errors are
widespread!

◼ The fact that computer parts are getting smaller and
smaller and the associated problems including RowHammer
should receive much more attention than it currently
enjoys.

◼ Technological progress in manufacturing technology and
the scale down to smaller dimensions can produce
unexpected errors that one wouldn't think of.

38

Questions/Open Discussion

39

Discussion

◼ Is shortening the refresh interval (and or lengthen the
activation interval) a practical approach?

◼ Is it very likely for a normal application to hammer a row
accidentally?

◼ Is PARA enough? Do you have other solutions in mind?

◼ How would you implement such a coin flip used in PARA?

◼ Was this paper a roadmap for hackers?

40

Additional Slides

41

Additional papers and webpages

◼ Rowhammer.js: A Remote Software-Induced Fault Attack in
JavaScript [D. Gruss et al. 2015]

◼ Throwhammer: Rowhammer Attacks over the Network and
Defenses [A. Tatar et al. 2018]

◼ DDR4: http://www.thirdio.com/rowhammer.pdf
◼ Exploiting the DRAM rowhammer bug to gain kernel privileges

[Mark Seaborn, et al.2015]
◼ Read Disturb Errors in MLC NAND Flash Mermory: … [Y. Cai,

O.Mutlu, et al. 2015]
◼ ANVIL: Software-Based Protection Agains Next-Generation

Rowhammer Attacks [Z. Aweke et al., 2016]
◼ Grand Pwning Unit: Accelerating Microarchitectural Attacks with

the GPU [P. Frigo et al. 2018]
◼ Drammer: Deterministic Rowhammer Attacks on Mobile

Platforms [V. van der Veen et al., 2016]
◼ A New Approach for Rowhammer Attacks [R. Qiao, M.Seaborn]

42

https://arxiv.org/pdf/1507.06955v1.pdf
https://www.cs.vu.nl/~herbertb/download/papers/throwhammer_atc18.pdf
http://www.thirdio.com/rowhammer.pdf
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://users.ece.cmu.edu/~omutlu/pub/flash-read-disturb-errors_dsn15.pdf
https://iss.oy.ne.ro/ANVIL.pdf
https://www.vusec.net/wp-content/uploads/2018/05/glitch.pdf
https://safari.ethz.ch/architecture_seminar/fall2018/lib/exe/fetch.php?media=drammer.pdf
http://seclab.cs.sunysb.edu/seclab/pubs/host16.pdf

Additional slides

43

Additional slides

44

Additional slides

45

Additional slides

46

◼ Nth = open and close during a refresh interval

◼ Independent coin flips –> p_coinflip = (1-p/2)^Nth

Additional slides

47

