
Memory Performance Attacks:
Denial of Memory Service in

Multi-Core Systems

Thomas Moscibroda Onur Mutlu
Microsoft Research

Presented by Florian Ettinger

ETH Zürich
17 October 2018

Problem

2

Problem

n The shared DRAM memory system can be used to attack
the performance of other programs on a multi-core system

n No efficient way to solve in software
q OS or other applications have no direct control over the way

DRAM requests are scheduled

3

Background

4

DRAM controller

5

Memory Access Scheduling Algorithm

n First-Ready First-Come-First-Serve (FR-FCFS)
q Bank scheduler

1. Row-hit-first
2. Oldest-within-bank-first

q Across-bank scheduler
1. Oldest-across-banks-first

n Problems:
q Row-hit-first scheduling prioritises high row-buffer locality
q Oldest-first scheduling prioritises threads that generate

memory requests at a faster rate

6

Memory Performance Hog (MPH)

n A program that exploits unfairness in FR-FCFS
q DoS in a multi-core memory system

n No efficient solution in software to defend against MPH
q The software has no direct control over memory requests

scheduling

n Regular application can unintentionally behave like an MPH
q A memory-intensive application can cause severe performance

degradations for other threads

7

Example of MPH
n STREAM(MPH):

q High L2 miss rate
q High row buffer locality

8

n RDARRAY:
q High L2 miss rate
q How row buffer locality

Example of MPH I
n Running STREAM and RDARRAY together causes

q Slowdown of RDARRAY by 2.9x
q Only a slowdown of STREAM by 1.2x

n A result of the row hit first scheduler the bank uses

9

2.9x
1.2x

Goal

10

Goal

n A new algorithm to schedule memory requests on a multi-
core shared DRAM memory system
q Every thread should have “fair” access to the memory
q Overall system throughput should not be reduced

11

Novelty, Key Approach, and
Ideas

12

Approach

n In a multi-core system with N threads, no thread should
suffer more relative performance slowdown — compared to
the performance it gets if it used the same memory system
by itself — than any other thread

13

Fairness

n Slowdown index
q Captures the price a thread pays because of other threads

using the shared memory
q Cumulated latency across all banks
q Ideal single core cumulated latency across all banks

n System fairness

q Captures the overall fairness of the system

Thread !, #

14

Mechanisms

15

Fair Memory Scheduling Algorithm

n Important considerations
q How much unfairness is allowed to optimize for throughput?

n FairMem Scheduling Algorithm
q Bank scheduler

1. Two candidate requests from each bank
q Highest FR-FCFS priority
q Request by threat with highest slowdown index

2. Fairness-oriented selection
q If overall system unfairness is greater than the limit use request by

threat with highest slowdown index
q Across-bank scheduler

1. Highest-DRAM-slowdown-index-first across banks

16

DRAM changes to
enable FairMem

17

Implementation

n Calculating
q For each active thread, a counter maintains the number of

memory cycles during which one request is buffered for each
bank

n Calculating
q Simulating an FR-FCFS priority scheme to get ideal latency

n High hardware overhead
q Reusing dividers and approximating can reduce overhead

18

Key Results:
Methodology and Evaluation

19

Methodology
n Simulated dual-core processor and memory system

q DRAM: 8 banks 2K-byte row-buffer
q DRAM latency:

n Row-buffer hit 50ns (200 cycles)
n Closed 75ns (300 cycles)
n Conflict 100ns (400 cycles)

n Evaluated applications

n Metrics
q Execution time
q Throughput (executed instructions per 1000 cycles) 20

Results
n Baseline(FR-FCFS):

q stream slowdown of 1.22x
q rdarray slowdown of 2.45x

21

n FairMem:
q stream and rdarray

slowdown of 1.8x

Results

22

stream/health
n With FR-FCFS

q health slowdown of 8.5x
q stream slowdown of 1.05x

n Inequality due to
q 7 times higher L2 miss rate
q High row-buffer hit rate

n FairMem splits slowdown to
2.28x(health) and 1.8x(stream)

23

Throughput
n Improvement up to 4.4x!

n But throughput reduced up to 9% when two extremely
memory-intensive applications run together

24

Summary

25

Summary
n Due to unfairness in the memory system of multi-core

architectures, applications can destroy the memory-related
performance of other applications

n FairMem
q Uses a novel definition of fairness in shared memory DRAM to

track the level of unfairness and counters it
q Needs hardware implementation

n Switching to FairMem greatly improves the fairness of shared
memory DRAM with only small losses in overall system
throughput

26

Strengths

27

Strengths

n Early examination of a problem that is still relevant today
with the rise of multi-core processors in the last years

n Novel definition of fairness that is easy to understand and
can serve as a great basis to further work on

n Sparked a lot of papers further examining the problem
q E.g. STFM

n Well-written, easy to understand paper

28

Weaknesses

29

Weaknesses

n Requires change in hardware by the manufacturer
q Introduces more overhead

n Slight system throughput decreases for certain workloads

n No direct measure of DRAM possible
q Only hypothesis of what algorithm is used in DRAM today

n Problem is approached on a high level that leaves low level
consideration open
q No consideration about the scaling of energy consumption

when the core count increases
30

Thoughts and Ideas

31

Thoughts and Ideas

n Could we incorporate other ideas to help with his problem?
q E.g. splitting memory intensive threads from low memory

intensive thread

n Should we allow a thread to be prioritized in the DRAM
memory system to make sure it experiences no delay?
q Is it possible to combine it with the FairMem algorithm?

n Are there other metrics we could track to reduce the
overhead?

32

Takeaways

33

Key Takeaways

n Memory performance hogs can exploit the scheduling of
DRAM requests to destroy the memory-related performance
of other applications

n A security risk that will become more significant with the
increased use of multi-core processors

n FairMem can reduce the unfairness of the system and stop
this attacks by tracking the slowdown a thread suffers

n Easy to read and understand paper

34

Questions/Open Discussion

35

Discussion

n Where can the proposed attack do the most harm?
q How dangerous is this attack in a real-world scenario?

n Why is this new definition of fairness necessary?
q Is it possible to share the DRAM memory system in a different

way?

n Could we use private DRAM memory for each core?

36

Additional Slides

37

Additional papers

n STFM [Onur Mutlu ; Thomas Moscibroda, MICRO 2007]

n ATLAS [Yoongu Kim ; Dongsu Han ; Onur Mutlu ; Mor
Harchol-Balter, HPCA 2010]

n TCM [Yoongu Kim ; Michael Papamichael ; Onur
Mutlu ; Mor Harchol-Balter, MICRO 2010]

38

