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Problem & Goal
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Large Cache Improves Performance

Â Larger capacity ᵼ fewer misses ᵼ better performance

Â Larger capacity ᵼ fewer off -chip cache misses 

Ç Avoids memory bandwidth bottleneck

Ç Especially important for multi -core with shared memory

But increasing capacity by scaling the conventional design:

Â Slower caches

Â More power consumption

Â More area required 
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Idea : Compress the data in 
caches to save on hardware costs  



Goals of Cache Compression

Â Compression/decompression need to be very fast

Ç Decompression is on the critical path

Â Simple compression logic avoids large power and area 
costs

Â Must compress the data effectively

Ç Otherwise there isnôt much gain in capacity
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Background
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Data Patterns in Applications: Zeroes
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0x00000000 0x00000000 0x00000000 0x00000000

16-byte cache line



Data Pattern: Repeated Values
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0xCAFE4A11 0xCAFE4A11 0xCAFE4A11 0xCAFE4A11



Data Pattern: Narrow Values
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0x000000CA 0x000000FE 0x0000004A 0x00000011

Values have more storage allocated than necessary



Data Patterns are Frequent
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Narrow Values are included in Other Patterns

43% of application cache lines can be compressed on average



Data Patterns: Low Dynamic Range

11

0x4100004 0x41000108 0x4100004C 0x41000130

0x000000CA 0x000000FE 0x0000004A 0x00000011

0xCAFE4A11 0xCAFE4A11 0xCAFE4A11 0xCAFE4A11

0x00000000 0x00000000 0x00000000 0x00000000

The values are larger than the difference between them



Base+Delta Encoding
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0x4100004 0x41000108 0x4100004C 0x41000130

0x000000CA 0x000000FE 0x000004A 0x00000011

0xCAFE4A11 0xCAFE4A11 0xCAFE4A11 0xCAFE4A11

0x00000000 0x00000000 0x00000000 0x00000000

0x4100004 +0x0 +0x104 +0x48 +0x12C

0x00000011 +0xB9 +0xED +0x39 +0x0

0x00000000 +0x0 +0x0 +0x0 +0x0

0xCAFE4A11 +0x0 +0x0 +0x0 +0x0



Novelty
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Novelty

Â Compress on cache line granularity

Ç Previous approaches work on individual words

Â View data patterns as Low Dynamic Range

Â Apply Base+Delta compression to caches

Ç Instead of general purpose compression

Ç Instead of special case handling for some patterns
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Key Approach and Ideas
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Base+Delta Compression
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Â Fast decompression(vector addition)

Â Simple hardware (addition/subtraction and comparison)

Â Effectively compresses observed patterns

0xC04039C0 + 0x38 = 0xC04039F8



Room for Improvement

Â Multiple bases allow compression of more cache lines

Â Need to encode multiple bases in compressed line
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Finding Bases?

0x0000 0xA478 0x000B 0x0001 0xA438 0x000A 0x000B 0xA438
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0x0000 0x000B 0xA478 0x0001 0xA438 0x000A 0x000B 0xA438

0x0000 0x000B 0x000B 0x0001 0x000A 0xA438 0xA478 0xA438

Â Gets more difficult with more bases



Base Delta Immediate (BǃI)

Â 2 bases

Ç 1 is always 0x00000000 ᵼ no need to save

Ç 1 is arbitrary

Ç Values with respect to the zero base are the ñimmediatesò

Â Slightly better than Base+Delta with 2 arbitrary bases

Ç Which in turn compresses better than Base+Delta with other 
number of bases
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Mechanism
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Finding base for BǃI
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0xA438

0x0000 0x000B 0xA438 0x0001 0xA470 0x000A 0x000B 0xA478

+0x00 +0x0B 0xA438 +0x01 0xA470 +0x0A +0x0B 0xA478

+0x00 +0x0B +0x00 +0x01 +0x32 +0x0A +0x0B +0x40

+0x00 +0x0B +0x00 +0x01 +0x32 +0x0A +0x0B +0x40

Try compression with base 0

Choose first non-compressible Compress the rest

Add nontrivial base



Attribute Deltas to Bases
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0xA438 +0x00 +0x0B +0x00 +0x01 +0x32 +0x0A +0x0B +0x40

0 0 1 0 1 0 0 1

Generate and save a bitmap

Note: Decompression becomes masked vector addition



Determining Base and Delta Sizes
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2 bytes 1 byte

09A40178 0000 0000 000B 0001 A6C0 000A 000B C178

4 bytes 2 byte

A438 00 0B 00 01 32 0A 0B 40 FC 5A 03 7A 44 AB 0C 82



Determining Base and Delta Sizes
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0

R E P E A T E D

U N C O M P R E S S E D

Â Zero line and repeated values are special cases

Â Everything is attempted in parallel and shortest is chosen

Base / Delta Free Special

C
a

s
e

s

Byte Usage 8 16 24 32



Changes in Cache Organization

Â Double the amount of cache tags

Â Add encoding bits for cases and bitmask for base 
determination

Â Segment the cache lines and add segment pointers to the 
tags 
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Key Results: 

Methodology and Evaluation
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Methodology

Â x86-based Simulation

Â 1-4 cores

Â SPEC2006, TPC-H and Apache web server workloads

Â L1/L2/L3 cache latencies from CACTI [Thoziyoor+, ISCAô08]
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BǃI vs Baseline ᵼCapacity Nearly Doubled
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Instructions per Cycle Misses per Kilo Instruction



BǃI vs Other Approaches ᵼBest Comp. Ratio
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Â ZCA (Zero-Content Augmented cache): exploits only zeroes

Â FVC (Frequent Value Compression): zeroes and common words

Â FPC (Frequent Pattern Compression): patterns including 
repeated values and narrow values



Multi-Core Profits Even More
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LC/HC: low/high compressibility, LS/HS low/high cache size sensitivity

(uses 2 cores, 2MB L2 cache)

Missing: LCHS due to absence in sample workloads



Summary
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Summary

Â Goal: Increase cache capacity using data compression at 
lower cost

Â Key Insight: A significant fraction (43%) of real-world 
cache lines can be compressed

Â Key Mechanism: Base+Delta encoding fits well to exploit 
low dynamic range patterns

Â Key Results: BǧI yields nearly the performance gain of a 
cache with double capacity without the same costs in area 
and power

Ç 5.1% avg. performance increase on single-core over baseline

Ç 9.5% avg. performance increase on dual-core over baseline
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Strengths
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Strengths of the Paper

Â Novel approach leading to significant improvement

Â Thorough analysis and evaluation of patterns, previous 
approaches and variants

Â Elegant solution and principled design

Â Easy-to-understand and well-structured paper

Â Transparent to the OS and applications

Â Compression mechanism is predictable for the user
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Weaknesses
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Weaknesses/Limitations of the Paper

Â Requires double amount of cache tags

Ç Potential bottleneck  

Â Adds the possibility of eviction when writing with cache -hit

Â Because real capacity is unknown, it is harder to optimize 
applications

Â Missing category for multi-core workload

Â Analysis of cache size only for Base+Delta (no bitmap)

Â Compressed data patterns donôt capture floating point 
values

Â Too much latency for L1 cache

36



Thoughts and Ideas
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Extensions

Â Special case with only the 0 base

Â Base Finding approach generalizes to 2 arbitrary bases

Ç Analyze the benefit of switching between BǧI and 
Base+Delta with 1 or 2 bases

Â To save on cache tags you could load 2 contiguous cache 
lines

Â Include base bitmap in the deltas

Â For repeated values of size up to 4 bytes, you could save 
them using the bitmask for base attribution
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Takeaways
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Key Takeaways

Â Paper is a prime example of principled design

Ç Carefully examines the potential

Ç Thoroughly analyzes the tradeoffs

Ç Picks the best variant

Â Data compression is viable for on-chip caches

40



Questions
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Discussion

Â Cache Replacement Policy

Ç Paper uses slightly modified LRU and leaves detailed study for 
future work

Ç For uncompressed caches: theoretical optimal cache 
replacement policy (adapted from Computer Systems 2018):

Ç Is the shown CRP also optimal for caches with compression? 
Why or why not?

Ç What aspects need to be considered to adapt it?

Ç Ideas about what an actual cache replacement policy should 
do?
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For eviction: Choose entry that will not be referenced again 
for the longest period of time.



Discussion

Â Patterns in floating point values? Exploitable with BǧI? 
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1 8 bits 23 bits


