
Base-Delta-Immediate

Compression: Practical Data

Compression for On-Chip Caches

Gennady Pekhimenko§ Vivek Seshadri§

Onur Mutlu § Michael A. KozuchÀ

Phillip B. GibbonsÀ Todd C. Mowry§

§Carnegie Mellon University À Intel Labs Pittsburgh

Published at PACT 2012

Presented by Marc-Philippe Bartholomä

Problem & Goal

2

Large Cache Improves Performance

Â Larger capacity ᵼ fewer misses ᵼ better performance

Â Larger capacity ᵼ fewer off -chip cache misses

Ç Avoids memory bandwidth bottleneck

Ç Especially important for multi -core with shared memory

But increasing capacity by scaling the conventional design:

Â Slower caches

Â More power consumption

Â More area required

3

Large Cache Improves Performance

Â Larger capacity ᵼ fewer misses ᵼ better performance

Â Larger capacity ᵼ fewer off -chip cache misses

Ç Avoids memory bandwidth bottleneck

Ç Especially important for multi -core with shared memory

But increasing capacity by scaling the conventional design:

Â Slower caches

Â More power consumption

Â More area required

4

Idea : Compress the data in
caches to save on hardware costs

Goals of Cache Compression

Â Compression/decompression need to be very fast

Ç Decompression is on the critical path

Â Simple compression logic avoids large power and area
costs

Â Must compress the data effectively

Ç Otherwise there isnôt much gain in capacity

5

Background

6

Data Patterns in Applications: Zeroes

7

0x00000000 0x00000000 0x00000000 0x00000000

16-byte cache line

Data Pattern: Repeated Values

8

0xCAFE4A11 0xCAFE4A11 0xCAFE4A11 0xCAFE4A11

Data Pattern: Narrow Values

9

0x000000CA 0x000000FE 0x0000004A 0x00000011

Values have more storage allocated than necessary

Data Patterns are Frequent

10

Narrow Values are included in Other Patterns

43% of application cache lines can be compressed on average

Data Patterns: Low Dynamic Range

11

0x4100004 0x41000108 0x4100004C 0x41000130

0x000000CA 0x000000FE 0x0000004A 0x00000011

0xCAFE4A11 0xCAFE4A11 0xCAFE4A11 0xCAFE4A11

0x00000000 0x00000000 0x00000000 0x00000000

The values are larger than the difference between them

Base+Delta Encoding

12

0x4100004 0x41000108 0x4100004C 0x41000130

0x000000CA 0x000000FE 0x000004A 0x00000011

0xCAFE4A11 0xCAFE4A11 0xCAFE4A11 0xCAFE4A11

0x00000000 0x00000000 0x00000000 0x00000000

0x4100004 +0x0 +0x104 +0x48 +0x12C

0x00000011 +0xB9 +0xED +0x39 +0x0

0x00000000 +0x0 +0x0 +0x0 +0x0

0xCAFE4A11 +0x0 +0x0 +0x0 +0x0

Novelty

13

Novelty

Â Compress on cache line granularity

Ç Previous approaches work on individual words

Â View data patterns as Low Dynamic Range

Â Apply Base+Delta compression to caches

Ç Instead of general purpose compression

Ç Instead of special case handling for some patterns

14

Key Approach and Ideas

15

Base+Delta Compression

16

Â Fast decompression(vector addition)

Â Simple hardware (addition/subtraction and comparison)

Â Effectively compresses observed patterns

0xC04039C0 + 0x38 = 0xC04039F8

Room for Improvement

Â Multiple bases allow compression of more cache lines

Â Need to encode multiple bases in compressed line

17

Finding Bases?

0x0000 0xA478 0x000B 0x0001 0xA438 0x000A 0x000B 0xA438

18

0x0000 0x000B 0xA478 0x0001 0xA438 0x000A 0x000B 0xA438

0x0000 0x000B 0x000B 0x0001 0x000A 0xA438 0xA478 0xA438

Â Gets more difficult with more bases

Base Delta Immediate (BǃI)

Â 2 bases

Ç 1 is always 0x00000000 ᵼ no need to save

Ç 1 is arbitrary

Ç Values with respect to the zero base are the ñimmediatesò

Â Slightly better than Base+Delta with 2 arbitrary bases

Ç Which in turn compresses better than Base+Delta with other
number of bases

19

Mechanism

20

Finding base for BǃI

21

0xA438

0x0000 0x000B 0xA438 0x0001 0xA470 0x000A 0x000B 0xA478

+0x00 +0x0B 0xA438 +0x01 0xA470 +0x0A +0x0B 0xA478

+0x00 +0x0B +0x00 +0x01 +0x32 +0x0A +0x0B +0x40

+0x00 +0x0B +0x00 +0x01 +0x32 +0x0A +0x0B +0x40

Try compression with base 0

Choose first non-compressible Compress the rest

Add nontrivial base

Attribute Deltas to Bases

22

0xA438 +0x00 +0x0B +0x00 +0x01 +0x32 +0x0A +0x0B +0x40

0 0 1 0 1 0 0 1

Generate and save a bitmap

Note: Decompression becomes masked vector addition

Determining Base and Delta Sizes

23

2 bytes 1 byte

09A40178 0000 0000 000B 0001 A6C0 000A 000B C178

4 bytes 2 byte

A438 00 0B 00 01 32 0A 0B 40 FC 5A 03 7A 44 AB 0C 82

Determining Base and Delta Sizes

24

0

R E P E A T E D

U N C O M P R E S S E D

Â Zero line and repeated values are special cases

Â Everything is attempted in parallel and shortest is chosen

Base / Delta Free Special

C
a

s
e

s

Byte Usage 8 16 24 32

Changes in Cache Organization

Â Double the amount of cache tags

Â Add encoding bits for cases and bitmask for base
determination

Â Segment the cache lines and add segment pointers to the
tags

25

Key Results:

Methodology and Evaluation

26

Methodology

Â x86-based Simulation

Â 1-4 cores

Â SPEC2006, TPC-H and Apache web server workloads

Â L1/L2/L3 cache latencies from CACTI [Thoziyoor+, ISCAô08]

27

BǃI vs Baseline ᵼCapacity Nearly Doubled

28

Instructions per Cycle Misses per Kilo Instruction

BǃI vs Other Approaches ᵼBest Comp. Ratio

29

Â ZCA (Zero-Content Augmented cache): exploits only zeroes

Â FVC (Frequent Value Compression): zeroes and common words

Â FPC (Frequent Pattern Compression): patterns including
repeated values and narrow values

Multi-Core Profits Even More

30

LC/HC: low/high compressibility, LS/HS low/high cache size sensitivity

(uses 2 cores, 2MB L2 cache)

Missing: LCHS due to absence in sample workloads

Summary

31

Summary

Â Goal: Increase cache capacity using data compression at
lower cost

Â Key Insight: A significant fraction (43%) of real-world
cache lines can be compressed

Â Key Mechanism: Base+Delta encoding fits well to exploit
low dynamic range patterns

Â Key Results: BǧI yields nearly the performance gain of a
cache with double capacity without the same costs in area
and power

Ç 5.1% avg. performance increase on single-core over baseline

Ç 9.5% avg. performance increase on dual-core over baseline

32

Strengths

33

Strengths of the Paper

Â Novel approach leading to significant improvement

Â Thorough analysis and evaluation of patterns, previous
approaches and variants

Â Elegant solution and principled design

Â Easy-to-understand and well-structured paper

Â Transparent to the OS and applications

Â Compression mechanism is predictable for the user

34

Weaknesses

35

Weaknesses/Limitations of the Paper

Â Requires double amount of cache tags

Ç Potential bottleneck

Â Adds the possibility of eviction when writing with cache -hit

Â Because real capacity is unknown, it is harder to optimize
applications

Â Missing category for multi-core workload

Â Analysis of cache size only for Base+Delta (no bitmap)

Â Compressed data patterns donôt capture floating point
values

Â Too much latency for L1 cache

36

Thoughts and Ideas

37

Extensions

Â Special case with only the 0 base

Â Base Finding approach generalizes to 2 arbitrary bases

Ç Analyze the benefit of switching between BǧI and
Base+Delta with 1 or 2 bases

Â To save on cache tags you could load 2 contiguous cache
lines

Â Include base bitmap in the deltas

Â For repeated values of size up to 4 bytes, you could save
them using the bitmask for base attribution

38

Takeaways

39

Key Takeaways

Â Paper is a prime example of principled design

Ç Carefully examines the potential

Ç Thoroughly analyzes the tradeoffs

Ç Picks the best variant

Â Data compression is viable for on-chip caches

40

Questions

41

Discussion

Â Cache Replacement Policy

Ç Paper uses slightly modified LRU and leaves detailed study for
future work

Ç For uncompressed caches: theoretical optimal cache
replacement policy (adapted from Computer Systems 2018):

Ç Is the shown CRP also optimal for caches with compression?
Why or why not?

Ç What aspects need to be considered to adapt it?

Ç Ideas about what an actual cache replacement policy should
do?

42

For eviction: Choose entry that will not be referenced again
for the longest period of time.

Discussion

Â Patterns in floating point values? Exploitable with BǧI?

43

Systems Programming and Computer Architecture 2017

1 8 bits 23 bits

