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■ Spectre exploit gives the attacker the ability to read out the 
memory of a bug-free victim process

■ Works on Intel, AMD and ARM

■ How? 
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Background: Covert channel

■ When two processes cooperate to 
communicate, not by architecturally defined 
means but by changing the 
microarchitectural state in a suitable way

■ Example of state that can be used:

■ Cache timing

■ Instruction timing

■ ALU contention

■ Memory contention
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Background: Covert channel

■ Example: cache timing as covert channel

■ Sender process has a value it wants to 
transmit to the receiver process

■ Sender changes the cache (loading, 
evicting) in a value-dependent way

■ Receiver can’t see the value in the cache 
directly but can time the cache and thus 
infer the value
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Background: Speculative Execution

■ Predicting/Speculating for example:
■ Prefetcher (what will be needed in the 

future)
■ Branch Predictor (Speculate if direct 

branch taken or not)
■ Branch Target Buffer/BTB (Speculate what 

a value will be)
■ Leads to improved Instruction Level 

Parallelism
■ Otherwise CPU would have to sit idle while 

waiting for results
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Background: Speculative Execution

■ Up to 200 instruction ahead

■ Revert the result of incorrect execution 

■ => No correctness issues?

■ But speculative execution has measurable 
side effects
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Spectre Attacks

■ Second phase: speculatively execute 
instruction that leak information

■ Via syscall/socket/file

■ Misexecute own code (e.g. sandbox, 
interpreter, JIT)
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Spectre Attacks

■ Final phase: Recover data by retrieving over 
covert channel

■ Cache 

■ Execution time

■ ALU contention

■ Memory contention

■ Other microarchitectural state
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Variant 1: Exploiting Conditional Branch 

Misprediction

■ We want to find out what a certain byte in 
the virtual address of the victim is

■ Let’s call this secret byte k
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Variant 1: Exploiting Conditional Branch 

Misprediction

■ Locate a conditional which matches this 
pattern in the software you want to attack

■ Setup phase:
■ call many times with some x < array1_size

to mistrain branch predictor
■ Evict array1_size and array2, but leave 

secret byte k in cache
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Variant 1: Exploiting Conditional Branch 

Misprediction

■ Second phase: Choose x out-of-bounds such 
that array1[x] resolves to secret byte
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Variant 1: Exploiting Conditional Branch 

Misprediction

■ Final phase:
■ If array2 is readable by attacker, load 

array2[n] for all n, will be fast for n==k

■ Otherwise detect eviction

■ Prime & Probe [1]

■ Call method again with in bounds value of 
x, if array1[x’] == k, will be fast
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Variant 1: Implementations

■ In C:
■ Wrote a victim function which has the 

pattern
■ Attacker function
■ Were able to read out address space at 10 

kB/second
■ In JS:

■ JS gets JITed and bounds checks inserted
■ Works even though no high res. timer 

available
■ Able to read out browser’s address space
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Variant 2: Poisoning Indirect Branches

■ Locate gadgets whose execution will leak the 
chosen memory in the process you want to 
attack (either source code or in shared 
library)

■ Example gadget:

■ add R2, [R1]

■ mov R3, [R2]
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Variant 2: Poisoning Indirect Branches

■ Setup phase:

■ Train branch target buffer in attacker 
thread to jump to the chosen gadget’s 
virtual address

■ This works because the BTB is 
unaware/doesn’t care about process ids

■ Example of indirect branch:

■ jmp eax
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Variant 2: Poisoning Indirect Branches

■ Second phase:

■ Victim speculatively jumps to gadget, 
which then leaks information

■ Final phase: Recover over covert channel
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Variant 2: Implementation in Windows
■ Creates random key, calls sleep, reads 

from file, calls crypto

■ When compiled with optimization,Sleep() 

gets made with file data in registers ebx 

and edi

■ Found in ntdll.dll

■ adc  edi,dword ptr 

[ebx+edx+13BE13BDh]

■ adc  dl,byte ptr [edi]
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Variant 2: Implementation in Windows
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Variant 2: Implementation in Windows

■ Branch to mistrain found in Sleep()

■ “jmp dword ptr ds:[76AE0078h]”
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Variant 2: Implementation in Windows

■ Branch to mistrain found in Sleep()

■ “jmp dword ptr ds:[76AE0078h]”

■ Speed: 41 B/s
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Other Methods of  achieving speculative 

execution

■ Mistraining return instructions [1]
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Other Methods of  achieving speculative 

execution

■ Mistraining return instructions [1]

■ Return from interrupts
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Method of  leaking information

■ Evict+Time

■ Instruction Timing

■ Contention on the Register File
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Mitigation Options

■ Turn off speculation
■ =>very large performance impact
■ Itanium, Mill architectures not vulnerable

■ Retpoline [1]

■ swaps indirect branches for returns, to 

avoid using predictions which come from 

the BTB

■ Masking, etc.

■ Addressing Spectre Variant 1 (CVE-2017-

5753) in Software [2]
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Mitigation Options

■ Halt speculative execution on potentially 
sensitive execution paths 

■ Not enough only on security-critical code 
because non-security-critical code in same 
process. 

■ Compiler can’t find automatically [1]

■ Need to recompile (what about legacy 
software?)

■ Flush branch prediction state on context 
switch
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Mitigation Options

■ Countermeasures limited to cache likely 
insufficient 
■ => different microarchitectural state can 

be used to leak information
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Novelty

■ First to exploit speculative execution
■ Developers now need to know about 

microarchitecture to code non-vulnerable 
software!
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Strengths of  the Paper

■ Hits at fundamentals of modern CPU

■ No good mitigations

■ Non-buggy software affected

■ Can be used by JS

■ And even remotely:

■ NetSpectre: Read Arbitrary Memory over Network by 
Michael Schwarz, Martin Schwarzl, Moritz Lipp, 
Daniel Gruss 

■ Very well written paper

■ Gives a refresher on virtual memory, caches, CPU 
architecture 
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Weaknesses/Limitations of  the Paper

■ Have to target specific application and find gadgets in those 
■ => But one can search in shared libraries

■ Doesn’t tell us the speed of the Javascript implementation
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Discussion Starters

■ Is there a fundamental tradeoff between security and 
speed? 

■ Can Spectre be fixed in hardware? 
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