
 1 / 26

Transactional Memory:
Architectural Support for Lock-
Free Data Structures (1993)

Maurice Herlihy J. Eliot B. Moss

Presented by Silvan Mosberger

 2 / 26

Background: Transactional Memory

● Concurrency is hard! Locking is error-prone,
transactional memory is easy

● Allows multiple operations, a transaction, to be
executed atomically

● Can include loads/stores to arbitrary memory
locations

● Transactions are isolated, all its changes are only
visible once it commits

● When something went wrong, abort it and retry

 3 / 26

● Problems with
conventional locking
techniques in highly
concurrent systems

– Priority Inversion
– Lock convoy
– Deadlock

● Software transactional
memory is nice but slow

Problem

● Specify implementation
for hardware
transactional memory

● Make it fast in highly
concurrent systems

● Consequently,
committing/aborting
transactions should be
processor-local

Goal

 4 / 26

Key Approach and Idea

Idea

– Snoopy cache coherency protocol can also detect
conflicting transactions

– Abort a transaction upon conflict
Key Approach

– Additional smaller transactional cache for memory
locations participating in the transaction

– Use two cache entries, one in case of abort, one in
case of commit

– Extend snoopy protocol for transactions

 5 / 26

Mechanisms: Programmer Interface

● LT: Load-transactional, read a memory location
● LTX: Load-transactional-exclusive, read a memory

location “hinting” it will be updated
● ST: Store-transactional, write a memory location
● COMMIT: attempt to commit the changes
● ABORT: discard all changes
● VALIDATE: Test for already aborted, guarantees

consistency of previously read values

 6 / 26

Mechanisms: Cache structure

Normal
cache

Trans.
cache

1

Main Memory

Normal
cache

Trans.
cache

2
Normal
cache

Trans.
cache

3

Bus

 7 / 26

Mechanisms: Transactional cache

XCOMMIT XABORT

EMPTY NORMAL

NORMAL EMPTY

abort

commit

 8 / 26

Standard bus cycles
● WRITE: Write back to main

memory

● READ: Read for shared access

● RFO: Read for exclusive
access

Mechanisms: Bus cycles

New transactional cycles
● T_READ: Same as READ but for

transactional cache

● T_RFO: Same as RFO but for
transactional cache

● BUSY: Used for refusing cache
requests

 9 / 26

Mechanisms: Processor Actions

 10 / 26

Mechanisms: Processor Action: LT

XABORT <data>
LT

<data>

NORMAL <data>
LT

<data>

XABORT <data>

XCOMMIT <data>

Turns into

Cache lookup result

(no entry)

LT
T_READ

Success <data>

Create
entries

Abort transaction

BUSY

Main Memory

 11 / 26

Mechanisms: Processor Action: LTX

XABORT <data>
LTX

<data>

NORMAL <data>
LTX

<data>

XABORT <data>

XCOMMIT <data>

Turns into

(no entry)

LTX
T_RFO

Success <data>

Create
entries with
RESERVED

Abort transaction

BUSY

Main Memory

Cache lookup result

 12 / 26

Mechanisms: Processor Action: ST

XABORT <data>

ST <new data>

NORMAL <data>

XABORT <new data>

XCOMMIT <data>

Turns into

(no entry)
T_RFO

Create
entries with
RESERVED

Abort transaction
BUSY

ST <new data>

ST <new data>

XABORT <new data>
Turns into

Success
<data>

Main Memory

Cache lookup result

 13 / 26

Key Results: Methodology and
Evaluation

Architectures

– Bus: Snoopy cache coherence for bus-based
architecture

– Network: Chaiken directory protocol for network-
based machine, discussed in technical report

Benchmarks:

– Counting: Increment shared counter. short critical
sections contention high→ contention high

– Producer/Consumer: Shared bounded FIFO buffer,
half of the processors producers, half consumers

– Doubly-Linked List: Shared linked list, every process
dequeues from tail, enqueues back to head. No easy
concurrency for locks

 14 / 26

Other techniques for comparison:

– TTS (test-and-test-and-set) Lock: Read cached
value until evicted, then do test-and-set in memory
directly

– LL/SC (load-linked/store-cond): LL copies value to
local variable, SC tries to change its value and
succeeds if no other process has modified it

– MCS Lock (software queueing): Placed on queue
if unable to acquire lock, eliminating lock polls

– QOSB (hardware queueing): Queue incorporated
into cache coherence protocol via unused cache
lines

Key Results: Methodology and
Evaluation

 15 / 26

TTS Lock

MCS Lock

QOSB

Trans. Mem.

LL/SC Direct

TTS Lock

MCS Lock

QOSB

Trans. Mem.

LL/SC Direct

Benchmark: Counting

Bus Network

 16 / 26

TTS Lock

MCS Lock

QOSB

Trans. Mem.

LL/SC Lock

Bus

Trans. Mem.

QOSB

MCS Lock

LL/SC Lock

TTS Lock

Network

Benchmark: Producer/Consumer

 17 / 26

Benchmark: Doubly-Linked List

TTS Lock

MCS Lock

QOSB

Trans. Mem.

LL/SC Lock

Bus

Trans. Mem.

QOSB

TTS Lock
LL/SC Lock

MCS Lock

Network

 18 / 26

Summary

● Problem: Locks are fast but hard to use, software
transactional memory is easy to use but slow

● Goal: Implement fast hardware-based transactional
memory

● Idea: Use separate transactional cache for storing
two entries for every memory location, one in case
of commit, one in case of abort. Use cache
coherency protocol to detect conflicting
transactions.

● Results: Hardware transactional memory
outperforms other techniques especially in highly
concurrent systems.

 19 / 26

Strengths

● Explains the limits of this approach and how to
work around it

– Starvation exponential backoff→ contention high
– Too few cache lines emulate in software→ contention high

● First paper to fully explore hardware transactional
memory

● No need to write back to memory on commit,
happens over time when cache lines get replaced

● Extra technical paper explains everything in much
more detail

 20 / 26

Weaknesses

● No explanation as to why the mentioned protocol is
correct or how it came to be

● No diagrams to visualize the protocol, not easy to
follow with just text

● XABORT means “Discard on abort”, but it becomes
valid on commit which is more understandable.
Same with XCOMMIT. Naming is hard!

● LTX and XCOMMIT only there to make it faster, but
no benchmarks for determining the difference they
make and in which cases

● Doesn’t explain well how transactional and non-
transactional memory locations interact

 21 / 26

Takeaways

● Consider using transactional memory for your
concurrency needs

● Ideas sometimes have applications you haven’t
thought of initially

● Consider tradeoffs, it might be desirable to have
more complexity for more performance

 22 / 26

Questions and Open Discussion

 23 / 26

Extra Questions

● Has anybody used transactional memory before?
● How could software transactional memory be implemented?

– Write to shared memory
– Log all read and writes
– On commit, ensure all reads haven’t changed
– Abort and roll back changes if not

● What problem is there with not writing immediately back to
main memory?

– Values might not get written back for a while more → contention high
chance of losing updates on power loss

– Polutes cache, creating new entries can require
writeback to main memory

 24 / 26

Related Papers

● First paper to suggest hardware transactional memory:
Knight, T. An architecture for mostly functional languages.
Proceedings of the 1986 ACM Conference on LISP and
Functional Programming, LFP ’86 doi:10.1145/319838.319854

● Associated technical report with implementation details:
M.P. Herlihy, J. Eliot B. Moss. Transactional memory: Architectual
support for lock-free data structures. Technical Report CRL-92-7,
Digital Cambridge Research Lab, One Kendall Square,
Cambridge MA 02139, December 1992.

● Paper introducing software transactional memory to Haskell:
Tim Harris, Simon Marlow, Simon Peyton Jones. Composable
Memory Transactions. PPoPP '05: Proceedings of the tenth ACM
SIGPLAN symposium on Principles and practice of parallel
programming, January 2005. doi:10.1145/1065944.1065952

https://doi.acm.org/10.1145/319838.319854
https://doi.org/10.1145/1065944.1065952

 25 / 26

Extra: Usage example

 26 / 26

Extra: Snoopy actions
● Both caches snoop on the bus
● A cache ignores any cycles for lines not in that cache
● The regular cache

– On READ/T_READ, if state is VALID, return value
– If RESERVED or DIRTY, return value and reset to VALID
– On RFO/T_RFO, return data and invalidate line

● The transactional cache
– If TSTATUS is false, or if READ/RFO, behave just like normal

cache, except it ignores entries with transactional tag !=
NORMAL

– On T_READ and state VALID, return value
– Otherwise return BUSY

● Either cache can do WRITE when line needs to be replaced
● Memory only responds to READ, T_READ, RFO and T_RFO that

no cache responds to, and all WRITE requests

	Title
	Background
	Problem and Goal
	Key Approach and Ideas
	Mechanisms: Programmer Interface
	Mechanisms: Cache structure
	Mechanisms: Transactional Cache
	Mechanisms: Bus cycles
	Slide 9
	Mechanisms: Processor Action: LT
	Mechanisms: Processor Action: LTX
	Mechanisms: Processor Action: ST
	Key Results: Methodology and Evaluation
	Key Results: Methodology and Evaluation (2)
	Benchmark: Counting
	Benchmark: Producer/Consumer
	Benchmark: Doubly-Linked List
	Summary
	Strengths
	Weaknesses
	Takeaways
	Open Discussion
	Extra Questions
	Related Papers
	Slide 25
	Slide 26

