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Background: Transactional Memory

● Concurrency is hard! Locking is error-prone, 
transactional memory is easy

● Allows multiple operations, a transaction, to be 
executed atomically

● Can include loads/stores to arbitrary memory 
locations

● Transactions are isolated, all its changes are only 
visible once it commits

● When something went wrong, abort it and retry
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● Problems with 
conventional locking 
techniques in highly 
concurrent systems

– Priority Inversion
– Lock convoy
– Deadlock

● Software transactional 
memory is nice but slow

Problem

● Specify implementation 
for hardware 
transactional memory

● Make it fast in highly 
concurrent systems

● Consequently, 
committing/aborting 
transactions should be 
processor-local

Goal
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Key Approach and Idea

Idea

– Snoopy cache coherency protocol can also detect 
conflicting transactions

– Abort a transaction upon conflict
Key Approach

– Additional smaller transactional cache for memory 
locations participating in the transaction

– Use two cache entries, one in case of abort, one in 
case of commit

– Extend snoopy protocol for transactions
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Mechanisms: Programmer Interface

● LT: Load-transactional, read a memory location
● LTX: Load-transactional-exclusive, read a memory 

location “hinting” it will be updated
● ST: Store-transactional, write a memory location
● COMMIT: attempt to commit the changes
● ABORT: discard all changes
● VALIDATE: Test for already aborted, guarantees 

consistency of previously read values
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Mechanisms: Cache structure
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Mechanisms: Transactional cache
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Standard bus cycles
● WRITE: Write back to main 

memory

● READ: Read for shared access

● RFO: Read for exclusive 
access

Mechanisms: Bus cycles

New transactional cycles
● T_READ: Same as READ but for 

transactional cache

● T_RFO: Same as RFO but for 
transactional cache

● BUSY: Used for refusing cache 
requests



  9 / 26

Mechanisms: Processor Actions
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Mechanisms: Processor Action: LT

XABORT <data>
LT

<data>

NORMAL <data>
LT

<data>

XABORT <data>

XCOMMIT <data>

Turns into

Cache lookup result

(no entry)

LT
T_READ

Success <data>

Create
entries

Abort transaction

BUSY

Main Memory



  11 / 26

Mechanisms: Processor Action: LTX
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Mechanisms: Processor Action: ST
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Key Results: Methodology and 
Evaluation

Architectures

– Bus: Snoopy cache coherence for bus-based 
architecture

– Network: Chaiken directory protocol for network-
based machine, discussed in technical report

Benchmarks:

– Counting: Increment shared counter. short critical 
sections  contention high→ contention high

– Producer/Consumer: Shared bounded FIFO buffer, 
half of the processors producers, half consumers 

– Doubly-Linked List: Shared linked list, every process 
dequeues from tail, enqueues back to head. No easy 
concurrency for locks
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Other techniques for comparison:

– TTS (test-and-test-and-set) Lock: Read cached 
value until evicted, then do test-and-set in memory 
directly

– LL/SC (load-linked/store-cond): LL copies value to 
local variable, SC tries to change its value and 
succeeds if no other process has modified it

– MCS Lock (software queueing): Placed on queue 
if unable to acquire lock, eliminating lock polls

– QOSB (hardware queueing): Queue incorporated 
into cache coherence protocol via unused cache 
lines

Key Results: Methodology and 
Evaluation
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Benchmark: Doubly-Linked List
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Summary

● Problem: Locks are fast but hard to use, software 
transactional memory is easy to use but slow

● Goal: Implement fast hardware-based transactional 
memory

● Idea: Use separate transactional cache for storing 
two entries for every memory location, one in case 
of commit, one in case of abort. Use cache 
coherency protocol to detect conflicting 
transactions.

● Results: Hardware transactional memory 
outperforms other techniques especially in highly 
concurrent systems. 
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Strengths

● Explains the limits of this approach and how to 
work around it

– Starvation  exponential backoff→ contention high
– Too few cache lines  emulate in software→ contention high

● First paper to fully explore hardware transactional 
memory

● No need to write back to memory on commit, 
happens over time when cache lines get replaced

● Extra technical paper explains everything in much 
more detail
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Weaknesses

● No explanation as to why the mentioned protocol is 
correct or how it came to be

● No diagrams to visualize the protocol, not easy to 
follow with just text

● XABORT means “Discard on abort”, but it becomes 
valid on commit which is more understandable. 
Same with XCOMMIT. Naming is hard!

● LTX and XCOMMIT only there to make it faster, but 
no benchmarks for determining the difference they 
make and in which cases

● Doesn’t explain well how transactional and non-
transactional memory locations interact
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Takeaways

● Consider using transactional memory for your 
concurrency needs

● Ideas sometimes have applications you haven’t 
thought of initially

● Consider tradeoffs, it might be desirable to have 
more complexity for more performance
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Questions and Open Discussion
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Extra Questions

● Has anybody used transactional memory before?
● How could software transactional memory be implemented?

– Write to shared memory
– Log all read and writes
– On commit, ensure all reads haven’t changed
– Abort and roll back changes if not

● What problem is there with not writing immediately back to 
main memory?

– Values might not get written back for a while  more → contention high
chance of losing updates on power loss

– Polutes cache, creating new entries can require 
writeback to main memory
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Related Papers

● First paper to suggest hardware transactional memory: 
Knight, T. An architecture for mostly functional languages. 
Proceedings of the 1986 ACM Conference on LISP and 
Functional Programming, LFP ’86 doi:10.1145/319838.319854 

● Associated technical report with implementation details: 
M.P. Herlihy, J. Eliot B. Moss. Transactional memory: Architectual 
support for lock-free data structures. Technical Report CRL-92-7, 
Digital Cambridge Research Lab, One Kendall Square, 
Cambridge MA 02139, December 1992.

● Paper introducing software transactional memory to Haskell: 
Tim Harris, Simon Marlow, Simon Peyton Jones. Composable 
Memory Transactions. PPoPP '05: Proceedings of the tenth ACM 
SIGPLAN symposium on Principles and practice of parallel 
programming, January 2005. doi:10.1145/1065944.1065952

https://doi.acm.org/10.1145/319838.319854
https://doi.org/10.1145/1065944.1065952
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Extra: Usage example
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Extra: Snoopy actions
● Both caches snoop on the bus
● A cache ignores any cycles for lines not in that cache
● The regular cache

– On READ/T_READ, if state is VALID, return value
– If RESERVED or DIRTY, return value and reset to VALID
– On RFO/T_RFO, return data and invalidate line

● The transactional cache
– If TSTATUS is false, or if READ/RFO, behave just like normal 

cache, except it ignores entries with transactional tag != 
NORMAL

– On T_READ and state VALID, return value
– Otherwise return BUSY

● Either cache can do WRITE when line needs to be replaced
● Memory only responds to READ, T_READ, RFO and T_RFO that 

no cache responds to, and all WRITE requests
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