Transactional Memory:
Architectural Support for Lock-
Free Data Structures (1993)

Maurice Herlihy J. Eliot B. Moss

Presented by Silvan Mosberger

1/26

I Background: Transactional Memory

Concurrency is hard! Locking is error-prone,
transactional memory is easy

Allows multiple operations, a transaction, to be
executed atomically

Can include loads/stores to arbitrary memory
locations

Transactions are isolated, all its changes are only
visible once it commits

When something went wrong, abort it and retry

2/26

I Problem Goal

« Problems with « Specify implementation
conventional locking for hardware
techniques in highly transactional memory
concurrent systems _ o

S . - Make it fast in highly
— Priority Inversion concurrent systems
- Lock convoy . Consequently,
- Deadlock committing/aborting
. Software transactional transactions should be

memory is nice but slow processor-local

3/26

I Key Approach and Idea

|dea

—- Snoopy cache coherency protocol can also detect
conflicting transactions

- Abort a transaction upon conflict
Key Approach

- Additional smaller transactional cache for memory
locations participating in the transaction

- Use two cache entries, one in case of abort, one in
case of commit

- Extend snoopy protocol for transactions

4/26

I Mechanisms: Programmer Interface

« LI: Load-transactional, read a memory location

« LTX: Load-transactional-exclusive, read a memory
ocation “hinting” it will be updated

ST. Store-transactional, write a memory location
COMMIT: attempt to commit the changes
ABORT: discard all changes

VALIDATE: Test for already aborted, guarantees
consistency of previously read values

5/26

I Mechanisms: Cache structure

Bus

6/26

I Mechanisms: Transactional cache

Name Access | Shared? | Modified?

INVALID | none | — —

VALID R Yes No

DIRTY R,W No Yes

RESERVED | R,W | No No abort

Table 1: Cache line states

Name Meaning
EMPTY contains no data commit
NORMAL | contains committed data
XCOMMIT | discard on commit
XABORT | discard on abort

06
00

Table 2: Transactional tags
7126

I Mechanisms: Bus cycles

« WRITE: Write back to main

Name | Kind Meaning New access
READ regular | read value shared

RFO regular | read value exclusive
WRITE | both write back exclusive
T_READ | trans read value shared
T-RFO | trans read value exclusive
BUSY trans refuse access | unchanged

Standard bus cycles

memory

RFO: Read for exclusive

dCCEeSS

New transactional cycles
« T_READ: Same as READ but for

transactional cache

READ: Read for shared access « T RFO: Same as RFO but for
transactional cache

« BUSY: Used for refusing cache
requests

8/26

Mechanisms: Processor Actions

hbool commit() {
us

bool oldStat = TSTATUS;

TACTIVE false;
TSTATUS true;

set all(XCOMMIT, EMPTY),
set all(XABORT, NORMAL),

void abort(bool internal) {

(internal) { oldStatus;
TSTATUS = false;
¥ {
LElE = e bool validate() {
Lol UL bool oldStatus = TSTATUS;
} (ITSTATUS) {

TACTIVE = false;

set all(XCOMMIT, NORMAL); TSTATUS = true:

set all(XABORT, EMPTY); }
! oldStatus;

Mechanisms: Processor Action: LT

Cache lookup result
> weorrame
A//?&i;:/
G
Turns into

% \ Create

entries
-

Success <data>
LT
- _

BUSY

Abort transaction =

10/26

Mechanisms: Processor Action: LTX

Cache lookup result
A//?&i;:/
LTX
/ entries with
<data> - RESERVED
-
Success <data>
LTX
. _

BUSY

Abort transaction =

11/26

Mechanisms: Processor Action: ST

Cache lookup result -
Turns into
ST <new data>
- ot

ST <new data> /.
\ .
Turns into Create
\ - entries with

RESERVED

Success
<data>

ST <new data>

(no entry)

Abort transaction

12/26

Key Results: Methodology and
Evaluation

Architectures

- Bus: Snoopy cache coherence for bus-based
architecture

- Network: Chaiken directory protocol for network-
based machine, discussed in technical report

Benchmarks:

- Counting: Increment shared counter. short critical
sections — contention high

- Producer/Consumer: Shared bounded FIFO buffer,
half of the processors producers, half consumers

- Doubly-Linked List: Shared linked list, every process
dequeues from tail, enqueues back to head. No easy

concurrency for locks 13726

Key Results: Methodology and
Evaluation

Other techniques for comparison:

TTS (test-and-test-and-set) Lock: Read cached
value until evicted, then do test-and-set in memory
directly

LL/SC (load-linked/store-cond): LL copies value to
local variable, SC tries to change its value and
succeeds if no other process has modified it

MCS Lock (software queueing): Placed on queue
If unable to acquire lock, eliminating lock polls

QOSB (hardware queueing): Queue incorporated
iInto cache coherence protocol via unused cache
lines

14 /26

Benchmark: Counting

:
:

é TTS Lock %
5600 - 8000
& p
_‘5 =
g g
E 4900 g 7000
o 4200 “ 6000
3500 M_CS Lock 5000
2800 3~ 4000
QOSB
2100 i _ 3000
Trans. Mem.
1400 |- PP P = T 2000
LL/SC Direct
700 |- ieiieie bl 1000
| 1 1
00 10 20 a0 0
Concurrency
Bus

MCS Lock

LL/SC Direct

Trans. Mem.

0 10 20 ao

Concurrency

Network 15/ 26

Benchmark: Producer/Consumer

Elapsed Time (in cycles x 1000)

:

]

:

TTS Lock
LL/SC Lock

MCS Lock
§ QOSB
Trans. Mem.
T > %
Concurren
Bus i

: 3

:

Elapsed Time (in cycles x 1000)

18000

15000

12000

6000

MCS Lock

LL/SC Lock

QOSB

]] |

0 10 20 30

Concurrency

Network 16/ 26

Benchmark: Doubly-Linked List

Elapsed Time (in cycies x 1000)

:

12000

:

2000

TTS Lock

L/SC Lock

MCS Lock

QOSB

Trans. Mem.

0 10

Bus

Elapsed Time (in cycles x 1000)

:

:

16000

4000

-

TTS Lock

"DOSB

| a7
A_

1 | |

0 10 20 30

Concurrency

Network 17 /96

I Summary

Problem: Locks are fast but hard to use, software
transactional memory is easy to use but slow

Goal: Implement fast hardware-based transactional
memory

Idea: Use separate transactional cache for storing
two entries for every memory location, one in case
of commit, one in case of abort. Use cache
coherency protocol to detect conflicting
transactions.

Results: Hardware transactional memory
outperforms other techniques especially in highly
concurrent systems.

18 /26

I Strengths

« Explains the limits of this approach and how to
work around it

- Starvation — exponential backoff
- Too few cache lines — emulate in software

« First paper to fully explore hardware transactional
memory

« No need to write back to memory on commit,
happens over time when cache lines get replaced

« Extra technical paper explains everything in much
more detall

19/26

I Weaknesses

No explanation as to why the mentioned protocol is
correct or how it came to be

No diagrams to visualize the protocol, not easy to
follow with just text

XABORT means “Discard on abort”, but it becomes
valid on commit which is more understandable.
Same with XCOMMIT. Naming is hard!

LTX and XCOMMIT only there to make it faster, but
no benchmarks for determining the difference they
make and in which cases

Doesn’t explain well how transactional and non-

transactional memory locations interact
20/ 26

I Takeaways

« Consider using transactional memory for your
concurrency needs

« |ldeas sometimes have applications you haven’t
thought of initially

« Consider tradeoffs, it might be desirable to have
more complexity for more performance

21/26

I Questions and Open Discussion

22 /26

I Extra Questions

« Has anybody used transactional memory before?
« How could software transactional memory be implemented?
— Write to shared memory
- Log all read and writes
- On commit, ensure all reads haven’t changed
— Abort and roll back changes if not

« What problem is there with not writing immediately back to
main memory?

- Values might not get written back for a while — more
chance of losing updates on power loss

- Polutes cache, creating new entries can require

writeback to main memory
23 /26

I Related Papers

« First paper to suggest hardware transactional memory:
Knight, T. An architecture for mostly functional languages.
Proceedings of the 1986 ACM Conference on LISP and
Functional Programming, LFP '86 doi:10.1145/319838.319854

« Associated technical report with implementation details:
M.P. Herlihy, J. Eliot B. Moss. Transactional memory: Architectual
support for lock-free data structures. Technical Report CRL-92-7,
Digital Cambridge Research Lab, One Kendall Square,
Cambridge MA 02139, December 1992.

« Paper introducing software transactional memory to Haskell:
Tim Harris, Simon Marlow, Simon Peyton Jones. Composable
Memory Transactions. PPoPP '05: Proceedings of the tenth ACM
SIGPLAN symposium on Principles and practice of parallel
programming, January 2005. doi:10.1145/1065944.1065952

24 /26

https://doi.acm.org/10.1145/319838.319854
https://doi.org/10.1145/1065944.1065952

Extra: Usage example

shared long[] accounts = ...;

int transfer (int from, int to, long amount) {
float frombalance = LTX(&accounts[from]);
(amount >= frombalance)
ABORT () ;

float tobalance = LTX(&accounts[to]);
ST(&accounts[from], frombalance - amount);

ST(&accounts[to], tobalance + amount);
COMMIT () ;

25/26

Extra: Snoopy actions

Both caches snoop on the bus

A cache ignores any cycles for lines not in that cache

The regular cache

- On READ/T_READ, if state is VALID, return value

- If RESERVED or DIRTY, return value and reset to VALID
- On RFO/T_RFO, return data and invalidate line

The transactional cache

- If TSTATUS is false, or if READ/RFO, behave just like normal
cache, except it ignores entries with transactional tag !=
NORMAL

—~ On T_READ and state VALID, return value
— Otherwise return BUSY
Either cache can do WRITE when line needs to be replaced

Memory only responds to READ, T_READ, RFO and T_RFO that
no cache responds to, and all WRITE requests

26 /26

	Title
	Background
	Problem and Goal
	Key Approach and Ideas
	Mechanisms: Programmer Interface
	Mechanisms: Cache structure
	Mechanisms: Transactional Cache
	Mechanisms: Bus cycles
	Slide 9
	Mechanisms: Processor Action: LT
	Mechanisms: Processor Action: LTX
	Mechanisms: Processor Action: ST
	Key Results: Methodology and Evaluation
	Key Results: Methodology and Evaluation (2)
	Benchmark: Counting
	Benchmark: Producer/Consumer
	Benchmark: Doubly-Linked List
	Summary
	Strengths
	Weaknesses
	Takeaways
	Open Discussion
	Extra Questions
	Related Papers
	Slide 25
	Slide 26

