
Why systolic architectures?

Hsiang-Tsung Kung
Carnegie Mellon University

IEEE computer, 1982

Sven Gregorio

Seminar on Computer Architecture

Background, Problem & Goal

2

Special-purpose systems and their cost

◼ Many high-performance special-purpose systems are
produced

❑ General-purpose systems aren't always able to meet
performance constraints

◼ Their cost is composed of design and parts cost

◼ Design cost tends to dominate the parts cost

❑ Special-purpose systems usually produced in small quantities

◼ Special-purpose system are often design ad hoc

❑ The designs solve one task only and aren’t generalizable

◼ The same errors are often repeated

❑ Most notably: I/O imbalance

3

Why special-purpose systems?

◼ There is an interested in speeding up compute-bound
computations

❑ Compute-bound: #operations > #inputs + #outputs

◼ E.g. matrix multiplication

❑ Non compute-bound computations are I/O bound

◼ E.g. matrix addition

◼ These computations tend to be too taxing for CPUs

❑ Von Neumann bottleneck: for each operation at least an
operand has to be fetched

◼ Compute-bound computation become I/O bound

❑ Memory bandwidth often isn't enough to keep the CPU
pipeline filled

❑ Memory accesses are costly in term of energy

4

Memory access energy cost

5

Dally, HiPEAC 2015

A memory access consumes ~1000X
the energy of a complex addition

Adapted from Prof. Onur Mutlu’s slides (Computer Architecture FS2018)

The key architectural requirements

1. Simple and regular

❑ Decrease the design cost

❑ Modular

❑ Adjustable to performance goal

2. High concurrency

❑ The main way to build faster computer systems

3. Simple communication

❑ Tends to get more complex as concurrency increases

4. Balance of computation with I/O

❑ The system shouldn’t spend its time waiting for I/O
operations

6

The goal

1. Accumulate the ideas of the author’s previous work

❑ Kung had already published multiple papers on systolic
architectures

2. Correct the ad hoc approach by providing a general
guideline

❑ How to map high-level computations to hardware

❑ The designs should respect the given requirements

❑ Easy to use guideline

7

Novelty

8

The conventional approach

9

◼ I/O bandwidth: 10 MB/s

◼ Each operation uses 2 bytes

◼ At most 5 million operations per second

The systolic approach

10

◼ Same conditions as before

❑ Up to 6x improvements

◼ Systolic:

❑ The memory “pumps” data to the processing elements

❑ Like the heart pumps blood to the body cells

Both approaches visualized

11

Key Approach and Ideas

12

The structure of a systolic architecture

◼ A systolic architecture is composed of multiple processing
elements (cells)

◼ Only cells at the boundary can be I/O ports of the system

◼ Partial results and inputs flow inside the system

◼ Cells are interconnected to form simple and regular
structures:

❑ Trees

❑ Arrays

❑ Grids

13Image source: Sano K., Nakahara H. (2018) Hardware Algorithms.

In: Amano H. (eds) Principles and Structures of FPGAs. Springer, Singapore

Mechanisms

14

Problems solvable by systolic architectures

◼ A sample of problems with known systolic solution:

❑ Signal and image processing:

◼ Convolution

◼ Discrete Fourier transform

◼ Interpolation

❑ Matrix arithmetic:

◼ Matrix multiplication

◼ QR decomposition of matrixes

◼ Linear systems of equation

❑ Non-numeric applications:

◼ Regular expressions

◼ Dynamic programming

◼ Encoders (polynomial division)

15

An exemplar compute-bound problem

◼ The convolution problem

◼ Given:

❑ The sequence of weights {w1, w2, …, wk}

❑ The sequence of inputs {x1, x2, …, xn}

◼ Compute:

❑ The sequence {y1, y2, …, yn+1-k}

❑ Defined by

yi = w1 xi + w2 xi+1 + … wk xi+k-1

◼ This problem is regular and compute-bound

◼ There are many related problems, e.g. pattern matching

16

Example convolution problem instance

◼ Given:

❑ The sequence of weights: {2, 1, 4}

❑ The sequence of inputs: {5, 0, -7, 3, 1}

◼ The output sequence {y1, y2, y3} is computed as follows

❑ y1 = 2*5 + 1*0 + 4*(-7) = -18

❑ y2 = 2*0 + 1*(-7) + 4*3 = 5

❑ y3 = 2*(-7) + 1*3 + 4*1 = -7

17

The proposed designs

◼ Three different systolic systems will be presented:

1. Broadcast: A semi-systolic solution where the input
sequence is broadcast to the cells

2. Low-latency: A pure systolic solution with low output
latency

3. High-throughput: A pure systolic solution where no cell is
idle during usage

18

1. Broadcast

19

2. Low-latency

20

3. High-throughput

21

Comparison of the designs

22

Nr Design Advantages Disadvantages

1 Broadcast • Simplest design
• Cells use only 3 I/O ports

• Does NOT scale well

2 Low-latency • Simplest pure systolic
design

• Only half of the cells are
used at any given time

3 High-
throughput

• Works with unbounded
amount of weights

• The partial results stay in
the cells*

• Requires a bus to collect
results

• More complex than 1 and 2
• Response time depends on

the number of weights
• Requires more I/O

*Partial results often carry more bits because of numerical accuracy

Key Results:

Methodology and Evaluation

23

Key properties of systolic architectures

◼ Criteria of systolic designs and their effects:

❑ They have simple and regular control flow

➢ Simplicity, modularity, expandability, and high performance

❑ They only use a few type of simple cells

➢ Simplicity

❑ They use each input data item multiple times

➢ High performance

❑ They are highly concurrent by design

➢ High performance

◼ Highly scalable

❑ Performance increases proportionally with number of cells

24

Summary

25

Summary

◼ Special-purpose system often

❑ Have high design cost

❑ Are designed ad hoc

❑ Repeat known errors

◼ Systolic systems

❑ Are simple and easy to design

❑ Avoid the pitfalls of special-purpose systems designs

❑ Modular, expandable, and high performance

❑ Are applicable to many (if not all) problems where it makes
sense to build special-purpose systems

◼ Systolic systems geared to different applications can be
obtained with little effort

26

Strengths

27

Strengths of the paper

◼ Intuitive idea

◼ Well structured paper, with good flow

◼ Many different examples of systolic systems are presented

❑ The tradeoffs between different designs are discussed

◼ General approach to common problems

❑ Many compute-bound problems have a systolic solution

◼ Scalable and adaptive designs

❑ Adaptable to different I/O bandwidth and problem size

◼ The paper is still relevant today! (36 years after)

❑ More than 3000 citations, ~40 citations/year since 2000

❑ Google’s TPU is a systolic system at its heart

28

The heart of Google’s first TPU

29Source: Google product news (17.5.2017)

https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu

Performance of Google’s first TPU

30Source: Google product news (17.5.2017)

https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu

Performance of Google’s first TPU

31Source: Google product news (17.5.2017)

https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu

Weaknesses

32

Weaknesses of the paper

◼ No data to support the claim that systolic architectures are
a viable alternative to ad hoc architectures

❑ Design time

❑ Energy efficiency

❑ Performance

◼ Approach still limited by I/O bottleneck

❑ In-memory accelerators don’t share the same bottleneck

◼ It’s difficult to design systolic systems for compute-bound
problems which aren’t inherently regular

❑ Sparse matrix multiplication

◼ Difficult to debug

❑ Partial result aren’t exposed to the programmer

33

https://ieeexplore.ieee.org/abstract/document/197034

Thoughts and Ideas

34

Thoughts and ideas

◼ Can the design of systolic architectures be automated?

❑ Still an open problem, but some can be designed automatically

◼ How can systolic architectures be specified and verified
without building prototypes?

❑ Are there simulation frameworks for systolic architectures?

◼ Systolic architectures map well to FPGAs

35

Simplified FPGA schematic

36Source: David Norwood’s master thesis

https://www.researchgate.net/publication/236013064_Hardware_Thread_Management_Modeling_for_Precision_Timed_Processors

Thoughts and ideas

◼ Are there compute-bound problems with no systolic
solution?

◼ Are there alternatives to systolic systems?

❑ GPU, in-memory accelerators, …

◼ Can there be general-purpose systolic structures?

❑ Yes, iWarp [1990, CMU & Intel]

37

http://www.eecs.harvard.edu/~htk/publication/1988-supercomputing-borkar-etc.pdf

A view of the iWarp

38

“The initial demonstration
iWarp system in 1990 is

an 8x8 torus”

Prof. Thomas Gross (ETHZ)
participated in the design of the
iWarp

Takeaways

39

Key takeaways

◼ General guideline to simple, efficient, and scalable designs

◼ Principled approach to the design of special-purpose
systems

◼ Avoid designing ad hoc systems when possible

❑ Avoid known pitfalls

◼ Less successful ideas may have an impact in the future

❑ See Google’s TPU

40

Open Discussion

41

