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Background, Problem & Goal
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Special-purpose systems and their cost

◼ Many high-performance special-purpose systems are 
produced

❑ General-purpose systems aren't always able to meet 
performance constraints

◼ Their cost is composed of design and parts cost

◼ Design cost tends to dominate the parts cost

❑ Special-purpose systems usually produced in small quantities

◼ Special-purpose system are often design ad hoc

❑ The designs solve one task only and aren’t generalizable

◼ The same errors are often repeated

❑ Most notably: I/O imbalance
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Why special-purpose systems?

◼ There is an interested in speeding up compute-bound 
computations

❑ Compute-bound: #operations > #inputs + #outputs

◼ E.g. matrix multiplication

❑ Non compute-bound computations are I/O bound

◼ E.g. matrix addition

◼ These computations tend to be too taxing for CPUs

❑ Von Neumann bottleneck: for each operation at least an 
operand has to be fetched

◼ Compute-bound computation become I/O bound

❑ Memory bandwidth often isn't enough to keep the CPU 
pipeline filled

❑ Memory accesses are costly in term of energy
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Memory access energy cost
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Dally, HiPEAC 2015

A memory access consumes ~1000X 
the energy of a complex addition 

Adapted from Prof. Onur Mutlu’s slides (Computer Architecture FS2018)



The key architectural requirements

1. Simple and regular

❑ Decrease the design cost

❑ Modular

❑ Adjustable to performance goal

2. High concurrency

❑ The main way to build faster computer systems

3. Simple communication

❑ Tends to get more complex as concurrency increases

4. Balance of computation with I/O

❑ The system shouldn’t spend its time waiting for I/O 
operations
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The goal

1. Accumulate the ideas of the author’s previous work

❑ Kung had already published multiple papers on systolic 
architectures

2. Correct the ad hoc approach by providing a general 
guideline

❑ How to map high-level computations to hardware

❑ The designs should respect the given requirements

❑ Easy to use guideline
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Novelty
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The conventional approach
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◼ I/O bandwidth: 10 MB/s

◼ Each operation uses 2 bytes

◼ At most 5 million operations per second 



The systolic approach
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◼ Same conditions as before

❑ Up to 6x improvements

◼ Systolic:

❑ The memory “pumps” data to the processing elements

❑ Like the heart pumps blood to the body cells



Both approaches visualized
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Key Approach and Ideas
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The structure of a systolic architecture

◼ A systolic architecture is composed of multiple processing 
elements (cells)

◼ Only cells at the boundary can be I/O ports of the system

◼ Partial results and inputs flow inside the system

◼ Cells are interconnected to form simple and regular 
structures:

❑ Trees

❑ Arrays

❑ Grids

13Image source: Sano K., Nakahara H. (2018) Hardware Algorithms.

In: Amano H. (eds) Principles and Structures of FPGAs. Springer, Singapore



Mechanisms
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Problems solvable by systolic architectures

◼ A sample of problems with known systolic solution:

❑ Signal and image processing:

◼ Convolution

◼ Discrete Fourier transform

◼ Interpolation

❑ Matrix arithmetic:

◼ Matrix multiplication

◼ QR decomposition of matrixes

◼ Linear systems of equation

❑ Non-numeric applications:

◼ Regular expressions

◼ Dynamic programming

◼ Encoders (polynomial division)
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An exemplar compute-bound problem

◼ The convolution problem

◼ Given:

❑ The sequence of weights {w1, w2, …, wk}

❑ The sequence of inputs {x1, x2, …, xn}

◼ Compute:

❑ The sequence {y1, y2, …, yn+1-k}

❑ Defined by

yi = w1 xi + w2 xi+1 + … wk xi+k-1

◼ This problem is regular and compute-bound

◼ There are many related problems, e.g. pattern matching
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Example convolution problem instance

◼ Given:

❑ The sequence of weights: {2, 1, 4}

❑ The sequence of inputs: {5, 0, -7, 3, 1}

◼ The output sequence {y1, y2, y3} is computed as follows

❑ y1 = 2*5 + 1*0 + 4*(-7) = -18

❑ y2 =           2*0 + 1*(-7) + 4*3 = 5

❑ y3 =                     2*(-7) + 1*3 + 4*1 = -7
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The proposed designs

◼ Three different systolic systems will be presented:

1. Broadcast: A semi-systolic solution where the input 
sequence is broadcast to the cells

2. Low-latency: A pure systolic solution with low output 
latency

3. High-throughput: A pure systolic solution where no cell is 
idle during usage
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1. Broadcast
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2. Low-latency
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3. High-throughput
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Comparison of the designs
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Nr Design Advantages Disadvantages

1 Broadcast • Simplest design
• Cells use only 3 I/O ports

• Does NOT scale well

2 Low-latency • Simplest pure systolic
design

• Only half of the cells are 
used at any given time

3 High-
throughput

• Works with unbounded
amount of weights

• The partial results stay in 
the cells*

• Requires a bus to collect 
results

• More complex than 1 and 2
• Response time depends on 

the number of weights
• Requires more I/O

*Partial results often carry more bits because of numerical accuracy



Key Results: 

Methodology and Evaluation
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Key properties of systolic architectures

◼ Criteria of systolic designs and their effects:

❑ They have simple and regular control flow

➢ Simplicity, modularity, expandability, and high performance

❑ They only use a few type of simple cells

➢ Simplicity

❑ They use each input data item multiple times

➢ High performance

❑ They are highly concurrent by design

➢ High performance

◼ Highly scalable

❑ Performance increases proportionally with number of cells
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Summary
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Summary

◼ Special-purpose system often

❑ Have high design cost

❑ Are designed ad hoc

❑ Repeat known errors

◼ Systolic systems

❑ Are simple and easy to design

❑ Avoid the pitfalls of special-purpose systems designs

❑ Modular, expandable, and high performance

❑ Are applicable to many (if not all) problems where it makes 
sense to build special-purpose systems

◼ Systolic systems geared to different applications can be 
obtained with little effort
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Strengths
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Strengths of the paper

◼ Intuitive idea

◼ Well structured paper, with good flow

◼ Many different examples of systolic systems are presented

❑ The tradeoffs between different designs are discussed

◼ General approach to common problems

❑ Many compute-bound problems have a systolic solution

◼ Scalable and adaptive designs

❑ Adaptable to different I/O bandwidth and problem size

◼ The paper is still relevant today! (36 years after)

❑ More than 3000 citations, ~40 citations/year since 2000

❑ Google’s TPU is a systolic system at its heart
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The heart of Google’s first TPU

29Source: Google product news (17.5.2017)

https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu


Performance of Google’s first TPU

30Source: Google product news (17.5.2017)

https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu


Performance of Google’s first TPU

31Source: Google product news (17.5.2017)

https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu


Weaknesses
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Weaknesses of the paper

◼ No data to support the claim that systolic architectures are 
a viable alternative to ad hoc architectures

❑ Design time

❑ Energy efficiency

❑ Performance

◼ Approach still limited by I/O bottleneck

❑ In-memory accelerators don’t share the same bottleneck

◼ It’s difficult to design systolic systems for compute-bound 
problems which aren’t inherently regular

❑ Sparse matrix multiplication

◼ Difficult to debug

❑ Partial result aren’t exposed to the programmer
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https://ieeexplore.ieee.org/abstract/document/197034


Thoughts and Ideas
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Thoughts and ideas

◼ Can the design of systolic architectures be automated?

❑ Still an open problem, but some can be designed automatically

◼ How can systolic architectures be specified and verified 
without building prototypes?

❑ Are there simulation frameworks for systolic architectures?

◼ Systolic architectures map well to FPGAs
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Simplified FPGA schematic

36Source: David Norwood’s master thesis

https://www.researchgate.net/publication/236013064_Hardware_Thread_Management_Modeling_for_Precision_Timed_Processors


Thoughts and ideas

◼ Are there compute-bound problems with no systolic 
solution?

◼ Are there alternatives to systolic systems?

❑ GPU, in-memory accelerators, …

◼ Can there be general-purpose systolic structures?

❑ Yes, iWarp [1990, CMU & Intel]
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http://www.eecs.harvard.edu/~htk/publication/1988-supercomputing-borkar-etc.pdf


A view of the iWarp
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“The initial demonstration 
iWarp system in 1990 is 

an 8x8 torus”

Prof. Thomas Gross (ETHZ) 
participated in the design of the 
iWarp



Takeaways
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Key takeaways

◼ General guideline to simple, efficient, and scalable designs

◼ Principled approach to the design of special-purpose 
systems

◼ Avoid designing ad hoc systems when possible

❑ Avoid known pitfalls

◼ Less successful ideas may have an impact in the future

❑ See Google’s TPU

40



Open Discussion
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