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Where to Put a Hardware Attack

20-30% of chip area is unused

Mostly caused by routing constraints

Opens up possibility for attackers to 
embed malicious hardware

Example GDSII layout with free space

Background
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Is there a better hardware attack that does not suffer 
from these issues?
How can it work?

Problem
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 Attack implemented at time of fabrication

 The attacker has only access to a correctly implemented GDSII file

 The attacker cannot change dimensions or move stuff around

 The attacker has no knowledge over tests conducted on the chip

Goal



17.10.2019Bastian Schildknecht  47| |

Novelty



17.10.2019Bastian Schildknecht  48| |

Previous Approaches of Hardware Attacks

Digital Domain Hardware Attacks
Rely on triggers based on tens to 
hundreds of logic gates
Not very small and not stealthy

Process Reliability Trojans
Modify the fabrication process to 
cause the entire chip to fail early
Not controllable

Dopant-Level Trojans
Change behaviour of existing circuits 
by tying logic gates to logic 0 or 1
Not controllable and not stealthy

Parametric Trojans for Fault 
Injection
Same as dopant-level trojans but 
rely on voltage fluctuations as a 
trigger
Not remotely controllable

Novelty



17.10.2019Bastian Schildknecht  49| |

Enter The A2 Attack Novelty



17.10.2019Bastian Schildknecht  50| |

Enter The A2 Attack Novelty

The A2 attack uses analog behaviour to mitigate 
these issues!



17.10.2019Bastian Schildknecht  51| |

Enter The A2 Attack Novelty

The A2 attack uses analog behaviour to mitigate 
these issues!



17.10.2019Bastian Schildknecht  52| |

Enter The A2 Attack Novelty

The A2 attack uses analog behaviour to mitigate 
these issues!



17.10.2019Bastian Schildknecht  53| |

Enter The A2 Attack Novelty

The A2 attack uses analog behaviour to mitigate 
these issues!

Capacitor



17.10.2019Bastian Schildknecht  54| |

Enter The A2 Attack Novelty

The A2 attack uses analog behaviour to mitigate 
these issues!

Capacitor

How does this work?



17.10.2019Bastian Schildknecht  55| |

Key Approach & Ideas



17.10.2019Bastian Schildknecht  56| |

How does A2 work? Key Approach & Ideas

Threshold DetectorPayload

Victim Wire



17.10.2019Bastian Schildknecht  57| |

How does A2 work? Key Approach & Ideas

Threshold DetectorPayload

Victim Wire



17.10.2019Bastian Schildknecht  58| |

How does A2 work? Key Approach & Ideas

Threshold DetectorPayload

Victim Wire



17.10.2019Bastian Schildknecht  59| |

How does A2 work? Key Approach & Ideas

Threshold DetectorPayload

Victim Wire



17.10.2019Bastian Schildknecht  60| |

Mechanism in Detail



17.10.2019Bastian Schildknecht  61| |

The Analog Trigger Circuit Mechanism in Detail



17.10.2019Bastian Schildknecht  62| |

The Analog Trigger Circuit Mechanism in Detail



17.10.2019Bastian Schildknecht  63| |

The Analog Trigger Circuit Mechanism in Detail



17.10.2019Bastian Schildknecht  64| |

The Analog Trigger Circuit Mechanism in Detail



17.10.2019Bastian Schildknecht  65| |

Design Challenge: Single Capacitor Mechanism in Detail



17.10.2019Bastian Schildknecht  66| |

Design Challenge: Single Capacitor

Small capacitors charge up to 
quickly

Mechanism in Detail



17.10.2019Bastian Schildknecht  67| |

Design Challenge: Single Capacitor

Small capacitors charge up to 
quickly

Mechanism in Detail



17.10.2019Bastian Schildknecht  68| |

Design Challenge: Single Capacitor

Small capacitors charge up to 
quickly
➔ This results in the attack being too 

easy to trigger

Mechanism in Detail



17.10.2019Bastian Schildknecht  69| |

Design Challenge: Single Capacitor

Small capacitors charge up to 
quickly
➔ This results in the attack being too 

easy to trigger

Mechanism in Detail

Large capacitors induce current 
spikes



17.10.2019Bastian Schildknecht  70| |

Design Challenge: Single Capacitor

Small capacitors charge up to 
quickly
➔ This results in the attack being too 

easy to trigger

Mechanism in Detail

Large capacitors induce current 
spikes



17.10.2019Bastian Schildknecht  71| |

Design Challenge: Single Capacitor

Small capacitors charge up to 
quickly
➔ This results in the attack being too 

easy to trigger

Mechanism in Detail

Large capacitors induce current 
spikes
➔ This makes it also easier to detect
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1. What can this trigger be used for?
2. What do we connect it to?
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Privilege escalation by flipping 
the supervisor mode bit

Active-low 
reset variant

Active-high 
reset variant
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2. How to Find a Victim Wire

Observation:

Need to find a software controllable wire with usually very low toggle rate

Idea:

Simulate different programs to find wires with low toggle rates

Mechanism in Detail
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Choose wire with low 
toggle rate

e.g. divide by zero flag

Choose threshold 
rate for this wire

Number of wires with a given toggle rate
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2. How to Find a Victim Wire Mechanism in Detail

Threshold

Attacker toggles the 
wire frequently

Attack gets triggered

Number of wires with a given toggle rate when 
the attack is running
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Controlling the Attack From Software

Attack Code Example

/* Victim wire is divide by zero 
flag */
while attack_success == 0 do

i ← 0
while i < 500 do

z ← 1/0
i ← i + 1

end while
if test_privileges() == 1 then

attack_success ← 1
end if

end while

Analog domain and digital domain 
of A2

Mechanism in Detail
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Methodology

How the attack was evaluated:

1. Verification of design in simulation on 65nm CMOS in SPICE

2. Implementation and verification of design in a real processor

3. Comparison of the results from 1. and 2.

4. Assessing detectability

Key Results
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OpenRISC 1200 Processor

Includes 
stand-
alone 

trigger 
testing 

structure

Uses only 0.08% of the total area!
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Verification in the OR1200 Processor

Circuits tested under temperature, 
clock frequency and voltage 
variations

Tested on multiple chips

Trigger and retention times 
measured using the separate testing 
structure

Testing setup

Key Results
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Test Results of Real Chip Implementation

Attacks in the chips are:

Robust against manufacturing variations

Robust against supply voltage fluctuations

Robust against temperature changes

Key Results
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Comparison to Simulation

Trigger times in cycles

Key Results

Comparison shows that simulation has good enough accuracy to fabricate
precise and controllable attacks!
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Can the attack be detected by side channels?

Measuring of chip power consumption

Simulating theoretical power usage of trigger circuit

Answer:

The power requirements of the attack are well below normal fluctuations

Key Results
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Can the attack be detected by measuring propagation delays?

High accuracy simulation of trigger wire delays

Reset wires are typically asynchronous

Answer:

For a 4ns clock period the delay change is only 0.33% and well below process 
variation and noise

Key Results
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Can the attack be found by looking at the chip?

A2 is as small as one gate and is almost identical to the other gates in a design

Difficult to distinguish one gate in a sea of hundreds of thousands of gates (or 
even more)

Requires delayering to very low layers

Answer:

A2 is unlikely to be found by visual inspection

Key Results
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Is the attack triggered during normal execution?

Testing with five selected benchmark programs

Testing over 6 different temperatures from -25°C to 100°C

Answer:

The attack was not activated across all programs and temperatures 
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Key Results

A2 is not easily detectable!
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One possible defense against A2 could come in the form of split 
manufacturing:

Subset of the chip design is fabricated in a trusted manufacturing facility

Very expensive

Difficult to do, as wires can be reverse engineered and flip-flops are typically 
fabricated by the third party

Key Results

Needs a new type of defense!
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Problem: Current hardware attacks have some inherent flaws, i.e., they are 1) big, 2) 
uncontrollable or 3) not stealthy enough

Goal: create a hardware attack that is small (i.e., requires as little as one gate) and stealthy 
(i.e.,requires an unlikely trigger sequence before effecting a chip’s functionality) and controllable.

Key Idea:
-Construct a circuit that only uses 2 capacitors to siphon charge from nearby 

wires as they transition between digital values. 
-When the capacitors are fully charged, deploy an attack that forces a victim

flip-flop to the desired value.

Key Results: 1) Implemented this attack in an OR1200 processor and fabricated a chip; 2) 
Experimental results show that the attack works efficiently; 3) The attack eludes activation by a 
diverse set of benchmarks; 4) the attack evades known defenses

Summary
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+ Shows a new type of hardware attack not seen before

+ Real hardware implementation

+ Shows thorough testing of the attack

+ Uses a strong and realistic threat model

+ Assesses the possibility of an implementation in different architectures

+ Well written and relatively easy to understand

+ Gives a history on previous work done in the field

Strengths
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- Does not give a concrete defense mechanism

- Cannot test hypothesis on other architectures due to cost and secrecy

- Contains a few typos

Weaknesses & Limitations



17.10.2019Bastian Schildknecht
 

20
9

| |

Thoughts & Ideas



17.10.2019Bastian Schildknecht
 

21
0

| |

Thought and Ideas Thoughts & Ideas



17.10.2019Bastian Schildknecht
 

21
1

| |

Thought and Ideas

 Can this charge-pump mechanism be used for good purposes?
 i.e. avoiding complicated state machines where precision is not as important
 As was mentioned last week, maybe to prevent Rowhammer attacks?

Thoughts & Ideas



17.10.2019Bastian Schildknecht
 

21
2

| |

Thought and Ideas

 Can this charge-pump mechanism be used for good purposes?
 i.e. avoiding complicated state machines where precision is not as important
 As was mentioned last week, maybe to prevent Rowhammer attacks?

 Is this attack already used?
 I have not found any evidence that this attack is being used yet (please prove me wrong)
 I have found cases for other hardware trojans though, e.g. [1]

 Can you think of other cases of hardware attacks being used?

[1] S. Skorobogatov, C. Woods, "Breakthrough silicon scanning discovers backdoor in military chip", Proc. 14th Int. Conf. Cryptograph. Hardw. 
Embedded Syst., pp. 23-40, 2012.
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 Can this charge-pump mechanism be used for good purposes?
 i.e. avoiding complicated state machines where precision is not as important
 As was mentioned last week, maybe to prevent Rowhammer attacks?

 Is this attack already used?
 I have not found any evidence that this attack is being used yet (please prove me wrong)
 I have found cases for other hardware trojans though, e.g. [1]

 Can you think of other cases of hardware attacks being used?

 What has to be considered when applying this attack to other (smaller) 
technology nodes?

[1] S. Skorobogatov, C. Woods, "Breakthrough silicon scanning discovers backdoor in military chip", Proc. 14th Int. Conf. Cryptograph. Hardw. 
Embedded Syst., pp. 23-40, 2012.
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 How bad do you think is this type of attack?

 Can you think of a better attack?

 Do you think the shown follow-up papers solve the problem?

 Can the proposed mechanism be used for good?

 What are your thoughts on this paper?

 What do you think are the most important takeaways here?

Open Discussion

Moodle Discussion
https://moodle-app2.let.ethz.ch/

mod/forum/discuss.php?
d=38995
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Threshold Detector

Two possibilities for threshold 
detectors

 Skewed inverter with fixed switching 
voltage

 Schmitt trigger with hysteresis, i.e. 
high threshold on rising edge and 
low threshold on falling edge
Paper chooses Schmitt trigger as it 
extends trigger and retention time 
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 Triggers can be combined to form more complex trigger mechanisms

 Can be used to construct well hidden multi-stage triggers
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 Simulated power consumption of the 
trigger is 5.3 nW with I/O devices 
and 0.5 µW without I/O devices at 
maximum switching activity

 Well below normal power 
fluctuations

 Temperature and propagation delays 
are nearly unaffected by A2 as it is 
as small as one gate
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 The authors expect A2 to be easier to implement in X86 as in OR1200

 X86 has likely more possible target registers

 X86 has also likely more viable victim wires

 Due to the complexity of X86, A2 should also be more difficult to detect

 The only expected challenge is maintaining controllability over the many 
redundant functional units in X86
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