
Active Messages: a Mechanism
for Integrated Communication
and Computation - ISCA 1992
Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, Klaus Erik Schauser

University of California, Berkeley
Computer Science Division – EECS

Presented by Roberto Starc

114/11/2018

Executive Summary
● Problem – Communication between processors is slow, and speeding it up

sacrifices cost/performance of the system

● Goal - Reduce communication overhead and allow overlapping of communication
with computation

● Active Messages - Integrate communication and computation

○ Messages consist of the address of a user-level handler at the head, and the
arguments to be passed as the body

○ The handler gets the message out of the network and into ongoing
computation as fast as possible

○ A simple mechanism close to hardware that can be used to implement existing
parallel programming paradigms

● Result – Near order-of-magnitude reduction in per-byte and start-up cost of
messages!

214/11/2018

Outline

314/11/2018

● Problem & Goal

● Background

● Active Messages: Novelty & Mechanism

● Example

● Methodology and Evaluation

● Strengths & Weaknesses

● Takeaways/Beyond the Paper

● Questions & Discussion

Outline

414/11/2018

● Problem & Goal

● Background

● Active Messages: Novelty & Mechanism

● Example

● Methodology and Evaluation

● Strengths & Weaknesses

● Takeaways/Beyond the Paper

● Questions & Discussion

Problem

514/11/2018

Communication between processors is slow, and
speeding it up sacrifices cost / performance!

Processing
Node B

Processing
Node ANetwork

Message
sendreceive

Problem

Goal

614/11/2018

Reduce communication overhead!

Processing
Node B

Processing
Node ANetwork

Message
sendreceive

Goal

Outline

714/11/2018

● Problem & Goal

● Background

● Active Messages: Novelty & Mechanism

● Example

● Methodology and Evaluation

● Strengths & Weaknesses

● Takeaways/Beyond the Paper

● Questions & Discussion

Algorithmic Communication Model

814/11/2018

Background

Program

Computation

Computation

Computation

Communication

Communication

T = Tcompute + Tcommunicate

Tcommunicate = NC(TS+LCTb)

TS * NC
Tb Tb Tb Tb Tb Tb Tb Tb Tb Tb

LC

90% of peak performance : Tcompute≈9Tcommunicate

Algorithmic Communication Model

914/11/2018

Background

Program

Computation

Computation

Communication

Communication

Computation

Either the start-up-costs
dominate or the time to
send/receive the message
(for large messages)

T=max{

Tcompute+NCTS

NCLCTb

T = Tcompute + Tcommunicate≤
To achieve high efficiency : Tcompute ≫ NCTS

→ T ≈ Tcompute

Shortcomings of Existing Solutions - send/receive

● The simple approach:

blocking 3-way

send/receive

● Problem: Nodes cannot

continue computation while

waiting for messages!

1014/11/2018

Node sits
idle!

Node sits
idle!

Background

● This can be improved by adding

buffering at the message layer

● send appears instantaneous to

the user

● The message is buffered until it

can be sent

● It is then transmitted to the

recipient, where it is again

buffered until a matching

receive can be executed

1114/11/2018

receive buffer

send buffer

Buffer space for
the entire
volume of

communication
must be

allocated!

Background

Shortcomings of Existing Solutions - send/receive

Shortcomings of Existing Solutions
● This allows for the overlap of

communication and computation –

but it’s still slow. Why?

● Buffer Management - Have to make

sure that enough space for the whole

communication phase is available!

This incurs a huge start-up cost

1214/11/2018

0.01

0.1

1

10

100

1000

10000

iPSC nCUBE/10 iPSC/2 nCUBE/2 iPSC/860 CM-5

Start-up cost [µs/msg] Per-byte cost [µs/byte] Cost of a FP operation [µs/flop]

Background

[µs]

Outline

1314/11/2018

● Problem & Goal

● Background

● Active Messages: Novelty & Mechanism

● Example

● Methodology and Evaluation

● Strengths & Weaknesses

● Takeaways/Beyond the Paper

● Questions & Discussion

Novelty
● It aims to integrate communication into ongoing computation instead of separating the two,

thereby reducing overhead.

● Active Messages is a primitive, asynchronous communication mechanism

○ Not just a new parallel programming paradigm

○ Can be used to implement a wide variety of models simply and efficiently

● It is close to hardware functionality: Active Messages work like interrupts, which are already

supported!

1414/11/2018

Active Messages

Key Approach and Ideas

1514/11/2018

Address of a user-level handler Arguments Active Message

Handler Message

Processing Node B
Network

Computation

Processing
Node A

Memory

Active
Message

Active Messages

Interrupt

Mechanism (in more detail)

● Active Messages are not buffered (except as required for network transport)

○ The handler executes immediately upon arrival of the message (like an interrupt!)

● The network is viewed as a pipeline

○ The sender launches the message into the network and continues computation

○ The receiver gets notified or interrupted upon message arrival

● The handler is specified by a user-level address, so traditional protection models apply

● The handler does not block – Otherwise deadlocks and network congestion can occur

1614/11/2018

Active Messages

Outline

1714/11/2018

● Problem & Goal

● Background

● Active Messages: Novelty & Mechanism

● Example

● Methodology and Evaluation

● Strengths & Weaknesses

● Takeaways/Beyond the Paper

● Questions & Discussion

Split-C

● Split-C : provides split phase remote

memory operations in C

○ PUT copies a local memory block into a

remote memory at an address specified

by the sender

○ GET retrieves a block of remote

memory and makes a local copy

1814/11/2018

Example

Matrix Multiplication with Split-C

1914/11/2018

1 2 3 4

B

1 2 3 4

A

N

R

R

M

1 2 3 4

C

N

M

Example

Matrix Multiplication with Split-C: Processor 1

2014/11/2018

1

1

1

A B C

N

R

R

M

N

M

GET

PUT

1

Example

Matrix Multiplication with Split-C: Processor 1

2114/11/2018

2

1

1

A B C

N

R

R

M

N

M

GET

PUT

21

Example

Matrix Multiplication with Split-C: Processor 1

2214/11/2018

3

1

1

A B C

N

R

R

M

N

M

GET

PUT

31 2

Example

Matrix Multiplication with Split-C: Processor 1

2314/11/2018

1

B

1 2 3 4

A

N

R

R

M

1

C

N

M

PUT

Example

Matrix Multiplication with Split-C : Master

2414/11/2018

1 2 3 4

B

1 2 3 4

A

N

R

R

M

C

N

M

1

PUT

2

PUT

3

PUT

4

PUT

Example

Matrix Multiplication with Split-C

● Result: Performance predicted and measured

by the model on a 128 node nCUBE/2 as the

number of columns of A per processor is

varied from 1 to 32

2514/11/2018

Example

#columns of A per processor

% utilization

90% processor utilization

Outline

2614/11/2018

● Problem & Goal

● Background

● Active Messages: Novelty & Mechanism

● Example

● Methodology and Evaluation

● Strengths & Weaknesses

● Takeaways/Beyond the Paper

● Questions & Discussion

Methodology

● nCUBE/2 & CM-5

○ Message passing architectures

○ Each node consists of a simple CPU, DRAM, and

a Network Interface

○ Highly Interconnected Network

2714/11/2018

Methodology

Active Messages on the nCUBE/2

2814/11/2018

● Sending one word of data: 21 instructions , 11µs

● Receiving such a message: 34 instructions, 15µs

● Reduces buffer management to the minimum

required for actual data transport

● Very close to the absolute minimal message

layer

Evaluation

Active Messages on the nCUBE/2

● Sending one word of data: 21 instructions , 11µs

● Receiving such a message: 34 instructions, 15µs

● Near order of magnitude reduction in start-up

cost

○ TC = 30µs/msg , Tb = 0.45µs/byte

2914/11/2018

0

20

40

60

80

100

120

140

160

180

Send/Receive Active Messages

Evaluation

µs/msg

x6,15

Active Messages on the CM-5

● Sending a single-packet Active Message: 1.6µs

● Blocking send/receive on top of Active

Messages: TC = 26µs , Tb = 0 .12µs

3014/11/2018

Evaluation

0

10

20

30

40

50

60

70

80

90

100

Send/Receive
Send/Receive with
Active Messages

Single-packet
Active Message

µs/msg

x53,75
x3,3

Executive Summary
● Problem – Communication between processors is slow, and speeding it up

sacrifices cost/performance of the system

● Goal - Reduce communication overhead and allow overlapping of communication
with computation

● Active Messages - Integrate communication and computation

○ Messages consist of the address of a user-level handler at the head, and the
arguments to be passed as the body

○ The handler gets the message out of the network and into ongoing
computation as fast as possible

○ A simple mechanism close to hardware that can be used to implement existing
parallel programming paradigms

● Result – Near order-of-magnitude reduction in per-byte and start-up cost of
messages!

3114/11/2018

Outline

3214/11/2018

● Problem & Goal

● Background

● Active Messages: Novelty & Mechanism

● Example

● Methodology and Evaluation

● Strengths & Weaknesses

● Takeaways/Beyond the Paper

● Questions & Discussion

Strengths

● Simple, novel Mechanism that solves a very important problem

● Flexible: Can be implemented on existing systems and can be used to implement existing

models

● Close to hardware, which results in low overhead and makes it cheap to implement

● Greatly improves performance

● Well written paper

● Paper highlights several applications of Active Messages

3314/11/2018

Strengths

Weaknesses

● Restricted to SPMD (Single Program Multiple Data) Model

● Handler code is restricted

○ Can’t block and has to get the message out of the network as fast as possible

● Performance evaluation is not presented well in the paper

● Possible Hardware Support in the paper is very speculative

3414/11/2018

Weaknesses

Outline

3514/11/2018

● Problem & Goal

● Background

● Active Messages: Novelty & Mechanism

● Example

● Methodology and Evaluation

● Strengths & Weaknesses

● Takeaways/Beyond the Paper

● Questions & Discussion

Takeaways

● Simple, flexible and effective

● Still very relevant today

● Wide range of possible improvements at software and hardware level

○ A lot of work has already been done

○ But there is a lot more potential here!

● Easy to read paper

3614/11/2018

Takeaways

Beyond the Paper

● Used in many MPI implementations at the low-level transport layer (e.g. GASNet)

● If you want more detail: Read Thorsten von Eicken’s dissertation!

○ “Active Messages: an Efficient Communication for Multiprocessors”, Thorsten von

Eicken, Cornell 1993 (https://www.cs.cornell.edu/tve/thesis/)

● “Active Message Applications Programming Interface and Communication Subsystem

Organization” , David E. Culler, Alan M. Mainwaring, GASNet1996 and

● “AM++: A Generalized Active Message Framework” , T.Hoefler, J.J. Willcock, N.G.

Edmonds, A. Lumsdaine, PACT 2010

3714/11/2018

Beyond the Paper

https://www.cs.cornell.edu/tve/thesis/

Thoughts and Ideas

● Could be expanded to support other Models like MPMD & many Applications more

○ “Active Message Applications Programming Interface and Communication Subsystem

Organization” ,D. E. Culler, A. M. Mainwaring, GASNet 1996

○ “AM++: A Generalized Active Message Framework” , T.Hoefler, J.J. Willcock, N.G.

Edmonds, A .Lumsdaine, PACT 2010

● This could be even faster in combination with hardware support!

○ “Accelerating Irregular Computations with Hardware Transactional Memory and

Active Messages”, M. Besta, T.Hoefler, HPDC 2015

3814/11/2018

Discussion

Outline

3914/11/2018

● Problem & Goal

● Background

● Active Messages: Novelty & Mechanism

● Example

● Methodology and Evaluation

● Strengths & Weaknesses

● Takeaways/Beyond the Paper

● Questions & Discussion

Questions?

4014/11/2018

Discussion

● Could we somehow make the handler run arbitrary code?

○ “Optimistic Active Messages: A Mechanism for Scheduling Communication with Computation” , D. A. Wallach,

W.C. Hsieh, K.L. Johnson, M.F. Kaashoek, W.E. Weihl , EW SIGOPS 1994

● How could we support Active Messages in hardware?

● Is this it? What happens once we get to the minimal required message layer?

4114/11/2018

Discussion

Open Discussion

4214/11/2018

Thanks for watching!

And special thanks
to Giray & Geraldo!

4314/11/2018

Backup Slides

4414/11/2018

Algorithmic Communication Model
● Assumption:

○ The program alternates between computation and communication

○ Communication requires time linear in the size of the message, plus a start-up cost

● Time to run a program: T = Tcompute + Tcommunicate and Tcommunicate = NC(TS+LCTb)

○ TS : start-up-cost , Tb : time per byte, LC : message length, NC : number of communications

● To achieve high efficiency, the programmer must tailor the algorithm to achieve a high ratio

of computation to communication (i.e. to achieve 90% of peak performance :

Tcompute≤9Tcommunicate)

● If communication is overlapped with communication: T=max(Tcompute+NCTS, NCLCTb)

To achieve high efficiency : Tcompute ≫ NCTS

4514/11/2018

Backup

PERFORMANCE CHART

4614/11/2018

0.01

0.1

1

10

100

1000

10000

iPSC nCUBE/10 iPSC/2 nCUBE/2 iPSC/860 CM-5

Start-up cost [µs/msg] Per-byte cost [µs/byte] Cost of a FP operation [µs/flop]

Backup

Methodology – CM-5

● CM-5

○ Up to a few thousand nodes interconnected in a “hypertree”

○ CPU: 33 Mhz Sparc RISC processor, local DRAM, network

interface

4714/11/2018

Backup

Methodology – nCUBE/2

● nCUBE/2

○ Has up to a few thousand nodes interconnected in a

binary hypercube network

○ CPU: 64-bit Integer Unit, IEEE floating-point unit,

DRAM interface, network interface with 28

channels

■ Runs at 20 Mhz

○ Routers to support routing across a 13 dimensional

hypercube

4814/11/2018

Backup

GET cost model

4914/11/2018

Backup

