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Dally, HiPEAC 2015

Executive Summary

§ Problem: Data Movement Bottleneck
§ Throughput limits performance
§ Data movement is very expensive energy-wise (~1000x compared to arithmetic)
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62.7% of the total system energy 
is spent on data movement

Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks, ASPLOS ’18
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Executive Summary

§ Problem: Data Movement Bottleneck
§ Throughput limits performance
§ Data movement is very expensive energy-wise (~1000x compared to arithmetic)

§ Goal
§ Reduce data movement
§ Instead, compute in memory
§ In this paper, performing bulk bitwise operations completely inside DRAM

§ Throughput limited by memory bandwidth
§ Utilized by many applications, e.g., databases, sets, encryption
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Executive Summary

§ Key Ideas
§ Use existing analog structures to perform bulk bitwise AND-OR
§ Utilize already present inverters to perform bulk bitwise NOT
§ Together, this set of operations is logically complete

§ Key Mechanisms
§ Triple Row Activation to get a majority function
§ Dual Contact Cells to store negated data

§ Results
§ Up to 32x performance improvement & 35x energy reduction across 7 bulk 

bitwise operations 
§ 3x-7x performance increase for selected data-intensive workloads
§ ≤ 1% area overhead over existing DRAM chips

14.11.2019Marc Widmer 4



||Seminar in Computer Architecture
Prof. Onur Mutlu

Outline

§ Executive Summary
§ Prerequisites
§ Ambit AND-OR
§ Ambit NOT
§ Putting It All Together
§ Evaluation & Testing
§ Conclusion

§ Strengths/Weaknesses
§ Related Work
§ Discussion

14.11.2019Marc Widmer 5



||Seminar in Computer Architecture
Prof. Onur Mutlu

Prerequisites - DRAM
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Ambit AND-OR

§ Ambit AND-OR relies on analog charge sharing

§ Triple Row Activation: Activating three rows together will average 
their voltage deviations

§ Results in a bitwise majority function

§ Enables selectively bulk bitwise AND or OR operation of two rows
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VDD½ VDD

Ambit AND-OR – Triple Row Activation (TRA)
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Ambit AND-OR – Triple Row Activation (TRA)
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Ambit AND-OR
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Ambit AND-OR - Challenges

§ Source data in all cells gets destroyed

§ Solution:
Don’t operate on the source directly, copy data into other rows first.
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Ambit AND-OR - Challenges

§ Naïve implementation would require memory controller to send three 
addresses

§ Solution:
Dedicated rows for Triple Row Activation.
One address maps to TRA on the dedicated rows.
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Ambit AND-OR - Challenges

§ We assume that cells are fully charged or discharged

§ Solution:
“RowCloning” the data refreshes the cells.
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Ambit AND-OR - Challenges

§ Source data in all cells gets destroyed
§ Naïve implementation would require memory controller to send three 

addresses
§ We assume that cells are fully charged or discharged

-> Solved by the implementation

§ Cells and wires are not equal (process variation)
§ Bitline deviation may not be sufficient to trigger amplifier

-> Will be discussed in the testing section
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Ambit NOT

§ Use the inverters in the amplifiers to negate rows
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§ Use the inverters in the amplifiers to negate rows
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Ambit NOT

§ Use the inverters in the amplifiers to negate rows
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Putting It All Together

§ Let’s start with a normal DRAM subarray and add Ambit
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Putting It All Together

§ Let’s start with a normal DRAM subarray and add Ambit
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Putting It All Together

§ Let’s start with a normal DRAM subarray and add Ambit
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Putting It All Together

§ Let’s start with a normal DRAM subarray and add Ambit
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Putting It All Together

§ Let’s start with a normal DRAM subarray and add Ambit
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Putting It All Together

§ Ambit AND-OR
§ At least three rows for triple row activation
§ 1 and 0 pre-initialized rows for operation selection

§ Ambit NOT
§ At least one row of dual-contact cells

§ Row Decoder aware of Ambit organization
§ Continuous view of normal data rows to software
§ Split to reduce complexity
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Putting It All Together

§ How can we integrate Ambit into a system?

§ I/O Device (PCIe)
+ Simple
-- Overhead (must prepare device and retrieve data after computation)

§ Memory Bus
+ Applications can directly trigger Ambit operations
+ Data stays in the same memory
+ Existing cache coherence protocols can keep Ambit memory and

on-chip cache coherent
-- Additions to the rest of the system stack

§ ISA support
§ Ambit API/Driver
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Putting It All Together
§ ISA Support

§ Machine instruction to perform a bulk bitwise operation
bbop dst src1 [src2] size

§ Size must be a multiple of the row size
§ Source(es) and destination must be row-aligned
§ If these constraints are violated, the operation is performed in the CPU

§ Ambit API/Driver
§ Rows must be in the same subarray to use RowClone Fast Parallel Mode
§ Applications need to specify which parts of the memory are likely to be 

involved in bulk bitwise operations

§ Cache Coherence
§ Ambit and CPU both change memory directly
§ Existing DMA techniques can be used
§ Or,  bbop instruction could manage caches
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Putting It All Together

§ Combination with other accelerators
§ E.g. Hybrid Memory Cube, 3D stacked memory with a logic layer
§ We will some results of Ambit + 3D stacked memory in the next section
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Evaluation & Testing

§ Throughput of bulk bitwise operations

§ Energy consumed by DRAM and memory channel:
Estimated for DDR3-1333
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6. Circuit-level SPICE Simulations

We use SPICE simulations to con�rm that Ambit works re-
liably. Of the two components of Ambit, our SPICE results
show that Ambit-NOT always works as expected and is not
a�ected by process variation. This is because, Ambit-NOT op-
eration is very similar to existing DRAM operation (Section 4).
On the other hand, Ambit-AND-OR requires triple-row acti-
vation, which involves charge sharing between three cells on
a bitline. As a result, it can be a�ected by process variation in
various circuit components.

To study the e�ect of process variation on TRA, our SPICE
simulations model variation in all the components in the
subarray (cell capacitance, transistor length/width/resistance,
bitline/wordline capacitance and resistance, and voltage lev-
els). We implement the sense ampli�er using 55nm DDR3
model parameters [14], and PTM low-power transistor mod-
els [9, 117]. We use cell/transistor parameters from the Ram-
bus power model [14] (cell capacitance = 22fF; transistor
width/height = 55nm/85nm).5

We �rst identify the worst case for TRA, wherein every
component has process variation that works toward making
TRA fail. Our results show that even in this extremely adver-
sarial scenario, TRA works reliably for up to±6% variation in
each component.

In practice, variations across components are not so highly
correlated. Therefore, we use Monte-Carlo simulations to un-
derstand the practical impact of process variation on TRA. We
increase the amount of process variation from ±5% to ±25%
and run 100,000 simulations for each level of process varia-
tion. Table 2 shows the percentage of iterations in which TRA
operates incorrectly for each level of variation.

Variation ±0% ±5% ±10% ±15% ±20% ±25%

% Failures 0.00% 0.00% 0.29% 6.01% 16.36% 26.19%

Table 2: Effect of process variation on TRA

Two conclusions are in order. First, as expected, up to ±5%
variation, there are zero errors in TRA. Second, even with
±10% and ±15% variation, the percentage of erroneous TRAs
across 100,000 iterations each is just 0.29% and 6.01%. These
results show that Ambit is reliable even in the presence of sig-
ni�cant process variation.

The e�ect of process variation is expected to get worse with
smaller technology nodes [55]. However, as Ambit largely
uses the existing DRAM structure and operation, many tech-
niques used to combat process variation in existing chips can
be used for Ambit as well (e.g., spare rows or columns). In ad-
dition, as described in Section 5.5.3, Ambit chips that fail test-
ing only for TRA can potentially be shipped as regular DRAM
chips, thereby alleviating the impact of TRA failures on over-
all DRAM yield, and thus cost.

5In DRAM, temperature a�ects mainly cell leakage [30, 46, 67, 78, 79, 87, 92,
114]. As TRA is performed on cells that are almost fully-refreshed, we do not
expect temperature to a�ect TRA.

7. Analysis of Throughput & Energy

We compare the raw throughput of bulk bitwise opera-
tions using Ambit to a multi-core Intel Skylake CPU [7], an
NVIDIA GeForce GTX 745 GPU [4], and processing in the
logic layer of an HMC 2.0 [6] device. The Intel CPU has
4 cores with Advanced Vector eXtensions [49], and two 64-
bit DDR3-2133 channels. The GTX 745 contains 3 streaming
multi-processors, each with 128 CUDA cores [77], and one
128-bit DDR3-1800 channel. The HMC 2.0 device consists of
32 vaults each with 10 GB/s bandwidth. We use two Ambit
con�gurations: Ambit that integrates our mechanism into a
regular DRAM module with 8 banks, and Ambit-3D that ex-
tends a 3D-stacked DRAM similar to HMC with support for
Ambit. For each bitwise operation, we run a microbenchmark
that performs the operation repeatedly for many iterations on
large input vectors (32 MB), and measure the throughput of
the operation. Figure 9 plots the results of this experiment for
the �ve systems (the y-axis is in log scale).
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Figure 9: Throughput of bulk bitwise operations.

We draw three conclusions. First, the throughput of Sky-
lake, GTX 745, and HMC 2.0 are limited by the memory band-
width available to the respective processors. With an order
of magnitude higher available memory bandwidth, HMC 2.0
achieves 18.5X and 13.1X better throughput for bulk bitwise
operations compared to Skylake and GTX 745, respectively.
Second, Ambit, with its ability to exploit the maximum inter-
nal DRAM bandwidth and memory-level parallelism, outper-
forms all three systems. On average, Ambit (with 8 DRAM
banks) outperforms Skylake by 44.9X, GTX 745 by 32.0X, and
HMC 2.0 by 2.4X. Third, 3D-stacked DRAM architectures like
HMC contain a large number of banks (256 banks in 4GB
HMC 2.0). By extending 3D-stacked DRAM with support for
Ambit, Ambit-3D improves the throughput of bulk bitwise op-
erations by 9.7X compared to HMC 2.0.

We estimate energy for DDR3-1333 using the Rambus
power model [14]. Our energy numbers include only the
DRAM and channel energy, and not the energy consumed by
the processor. For Ambit, some activations have to raise mul-
tiple wordlines and hence, consume higher energy. Based on
our analysis, the activation energy increases by 22% for each
additional wordline raised. Table 3 shows the energy con-
sumed per kilo-byte for di�erent bitwise operations. Across
all bitwise operations, Ambit reduces energy consumption by
25.1X—59.5X compared to copying data with the memory con-
troller using the DDR3 interface.
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Design not and/or nand/nor xor/xnor

DRAM & DDR3 93.7 137.9 137.9 137.9
Channel Energy Ambit 1.6 3.2 4.0 5.5

(nJ/KB) (#) 59.5X 43.9X 35.1X 25.1X

Table 3: Energy of bitwise operations. (#) indicates energy

reduction of Ambit over the traditional DDR3-based design.

8. Effect on Real-World Applications

We evaluate the bene�ts of Ambit on real-world applica-
tions using the Gem5 full-system simulator [22]. Table 4 lists
the main simulation parameters. Our simulations take into ac-
count the cost of maintaining coherence, and the overhead of
RowClone to perform copy operations. We assume that appli-
cation data is mapped such that all bitwise operations happen
across rows within a subarray. We quantitatively evaluate
three applications: 1) a database bitmap index [3, 8, 10, 11],
2) BitWeaving [75], a mechanism to accelerate database col-
umn scan operations, and 3) a bitvector-based implementation
of the widely-used set data structure. In Section 8.4, we dis-
cuss four other applications that can bene�t from Ambit.

Processor
x86, 8-wide, out-of-order, 4 Ghz
64-entry instruction queue

L1 cache 32 KB D-cache, 32 KB I-cache, LRU policy
L2 cache 2 MB, LRU policy, 64 B cache line size
Memory Controller 8 KB row size, FR-FCFS [94, 118] scheduling
Main memory DDR4-2400, 1-channel, 1-rank, 16 banks

Table 4: Major simulation parameters

8.1. Bitmap Indices
Bitmap indices [26] are an alternative to traditional B-

tree indices for databases. Compared to B-trees, bitmap in-
dices 1) consume less space, and 2) can perform better for
many queries (e.g., joins, scans). Several major databases sup-
port bitmap indices (e.g., Oracle [8], Redis [10], Fastbit [3],
rlite [11]). Several real applications (e.g., [1, 2, 12, 32]) use
bitmap indices for fast analytics. As bitmap indices heavily
rely on bulk bitwise operations, Ambit can accelerate bitmap
indices, thereby improving overall application performance.

To demonstrate this bene�t, we use the following work-
load from a real application [32]. The application uses bitmap
indices to track users’ characteristics (e.g., gender) and activ-
ities (e.g., did the user log in to the website on day ’X’?) for
u users. Our workload runs the following query: “How many
unique users were active every week for the past w weeks?
and How many male users were active each of the past w
weeks?” Executing this query requires 6w bulk bitwise or,
2w-1 bulk bitwise and, and w+1 bulk bitcount operations. In
our mechanism, the bitcount operations are performed by the
CPU. Figure 10 shows the end-to-end query execution time of
the baseline and Ambit for the above experiment for various
values of u and w.

We draw two conclusions. First, as each query has O(w)
bulk bitwise operations and each bulk bitwise operation takes
O(u) time, the query execution time increases with increas-

5.4X 6.1X 6.3X 5.7X 6.2X 6.6X
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Figure 10: Bitmap index performance. The value above each

bar indicates the reduction in execution time due to Ambit.

ing value uw. Second, Ambit signi�cantly reduces the query
execution time compared to the baseline, by 6X on average.

While we demonstrate the bene�ts of Ambit using one
query, as all bitmap index queries involve several bulk bitwise
operations, we expect Ambit to provide similar performance
bene�ts for any application using bitmap indices.

8.2. BitWeaving: Fast Scans using Bitwise Operations
Column scan operations are a common part of many

database queries. They are typically performed as part of
evaluating a predicate. For a column with integer values, a
predicate is typically of the form, c1 <= val <= c2, for two
integer constants c1 and c2. Recent works [75, 110] observe
that existing data representations for storing columnar data
are ine�cient for such predicate evaluation especially when
the number of bits used to store each value of the column is
less than the processor word size (typically 32 or 64). This
is because 1) the values do not align well with word bound-
aries, and 2) the processor typically does not have comparison
instructions at granularities smaller than the word size. To
address this problem, BitWeaving [75] proposes two column
representations, called BitWeaving-H and BitWeaving-V. As
BitWeaving-V is faster than BitWeaving-H, we focus our at-
tention on BitWeaving-V, and refer to it as just BitWeaving.

BitWeaving stores the values of a column such that the �rst
bit of all the values of the column are stored contiguously, the
second bit of all the values of the column are stored contigu-
ously, and so on. Using this representation, the predicate c1
<= val <= c2, can be represented as a series of bitwise op-
erations starting from the most signi�cant bit all the way to
the least signi�cant bit (we refer the reader to the BitWeaving
paper [75] for the detailed algorithm). As these bitwise oper-
ations can be performed in parallel across multiple values of
the column, BitWeaving uses the hardware SIMD support to
accelerate these operations. With support for Ambit, these op-
erations can be performed in parallel across a larger set of val-
ues compared to 128/256-bit SIMD available in existing CPUs,
thereby enabling higher performance.

We show this bene�t by comparing the performance of
BitWeaving using a baseline CPU with support for 128-bit
SIMD to the performance of BitWeaving accelerated by Am-
bit for the following commonly-used query on a table T:

‘select count(*) from T where c1 <= val <= c2’
Evaluating the predicate involves a series of bulk bitwise

operations and the count(*) requires a bitcount operation.
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Processor: x86, 8-wide, out-of-order, 4 Ghz

64-entry instruction queue

L1 Cache: 32 KB D-cache, 32 KB I-cache, LRU policy

L2 Cache: 2 MB, LRU policy, 64 B cache line size

Memory Controller: 8 KB row size, FR-FCFS scheduling 

Main Memory: DDR4-2400, 1-channel, 1-rank, 16 banks 
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Evaluation & Testing

§ All testing performed in simulation

§ Potential Issues with Triple Row Activation
§ Cells and wires are not equal (process variation)
§ Bitline deviation may not be sufficient to trigger amplifier

§ Ambit is reliable even in the presence of high process variation
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6. Circuit-level SPICE Simulations

We use SPICE simulations to con�rm that Ambit works re-
liably. Of the two components of Ambit, our SPICE results
show that Ambit-NOT always works as expected and is not
a�ected by process variation. This is because, Ambit-NOT op-
eration is very similar to existing DRAM operation (Section 4).
On the other hand, Ambit-AND-OR requires triple-row acti-
vation, which involves charge sharing between three cells on
a bitline. As a result, it can be a�ected by process variation in
various circuit components.

To study the e�ect of process variation on TRA, our SPICE
simulations model variation in all the components in the
subarray (cell capacitance, transistor length/width/resistance,
bitline/wordline capacitance and resistance, and voltage lev-
els). We implement the sense ampli�er using 55nm DDR3
model parameters [14], and PTM low-power transistor mod-
els [9, 117]. We use cell/transistor parameters from the Ram-
bus power model [14] (cell capacitance = 22fF; transistor
width/height = 55nm/85nm).5

We �rst identify the worst case for TRA, wherein every
component has process variation that works toward making
TRA fail. Our results show that even in this extremely adver-
sarial scenario, TRA works reliably for up to±6% variation in
each component.

In practice, variations across components are not so highly
correlated. Therefore, we use Monte-Carlo simulations to un-
derstand the practical impact of process variation on TRA. We
increase the amount of process variation from ±5% to ±25%
and run 100,000 simulations for each level of process varia-
tion. Table 2 shows the percentage of iterations in which TRA
operates incorrectly for each level of variation.

Variation ±0% ±5% ±10% ±15% ±20% ±25%

% Failures 0.00% 0.00% 0.29% 6.01% 16.36% 26.19%

Table 2: Effect of process variation on TRA

Two conclusions are in order. First, as expected, up to ±5%
variation, there are zero errors in TRA. Second, even with
±10% and ±15% variation, the percentage of erroneous TRAs
across 100,000 iterations each is just 0.29% and 6.01%. These
results show that Ambit is reliable even in the presence of sig-
ni�cant process variation.

The e�ect of process variation is expected to get worse with
smaller technology nodes [55]. However, as Ambit largely
uses the existing DRAM structure and operation, many tech-
niques used to combat process variation in existing chips can
be used for Ambit as well (e.g., spare rows or columns). In ad-
dition, as described in Section 5.5.3, Ambit chips that fail test-
ing only for TRA can potentially be shipped as regular DRAM
chips, thereby alleviating the impact of TRA failures on over-
all DRAM yield, and thus cost.

5In DRAM, temperature a�ects mainly cell leakage [30, 46, 67, 78, 79, 87, 92,
114]. As TRA is performed on cells that are almost fully-refreshed, we do not
expect temperature to a�ect TRA.

7. Analysis of Throughput & Energy

We compare the raw throughput of bulk bitwise opera-
tions using Ambit to a multi-core Intel Skylake CPU [7], an
NVIDIA GeForce GTX 745 GPU [4], and processing in the
logic layer of an HMC 2.0 [6] device. The Intel CPU has
4 cores with Advanced Vector eXtensions [49], and two 64-
bit DDR3-2133 channels. The GTX 745 contains 3 streaming
multi-processors, each with 128 CUDA cores [77], and one
128-bit DDR3-1800 channel. The HMC 2.0 device consists of
32 vaults each with 10 GB/s bandwidth. We use two Ambit
con�gurations: Ambit that integrates our mechanism into a
regular DRAM module with 8 banks, and Ambit-3D that ex-
tends a 3D-stacked DRAM similar to HMC with support for
Ambit. For each bitwise operation, we run a microbenchmark
that performs the operation repeatedly for many iterations on
large input vectors (32 MB), and measure the throughput of
the operation. Figure 9 plots the results of this experiment for
the �ve systems (the y-axis is in log scale).
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Figure 9: Throughput of bulk bitwise operations.

We draw three conclusions. First, the throughput of Sky-
lake, GTX 745, and HMC 2.0 are limited by the memory band-
width available to the respective processors. With an order
of magnitude higher available memory bandwidth, HMC 2.0
achieves 18.5X and 13.1X better throughput for bulk bitwise
operations compared to Skylake and GTX 745, respectively.
Second, Ambit, with its ability to exploit the maximum inter-
nal DRAM bandwidth and memory-level parallelism, outper-
forms all three systems. On average, Ambit (with 8 DRAM
banks) outperforms Skylake by 44.9X, GTX 745 by 32.0X, and
HMC 2.0 by 2.4X. Third, 3D-stacked DRAM architectures like
HMC contain a large number of banks (256 banks in 4GB
HMC 2.0). By extending 3D-stacked DRAM with support for
Ambit, Ambit-3D improves the throughput of bulk bitwise op-
erations by 9.7X compared to HMC 2.0.

We estimate energy for DDR3-1333 using the Rambus
power model [14]. Our energy numbers include only the
DRAM and channel energy, and not the energy consumed by
the processor. For Ambit, some activations have to raise mul-
tiple wordlines and hence, consume higher energy. Based on
our analysis, the activation energy increases by 22% for each
additional wordline raised. Table 3 shows the energy con-
sumed per kilo-byte for di�erent bitwise operations. Across
all bitwise operations, Ambit reduces energy consumption by
25.1X—59.5X compared to copying data with the memory con-
troller using the DDR3 interface.

10

Effect of Process Variation on TRA (n=100’000)
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Figure 10: Heatmap of successfully performed operations for each DRAM group with di�erent timing intervals. The integer
timing intervals represent the amount of idle cycles between memory commands. Each idle cycle takes 2.5ns.

as the ratio of columns with successful computation over the total
number of columns in a row. We ran the test on all 32 modules.

Figure 10 presents the results of our exploratory scan for the 13
di�erent DRAM groups. Due to similarity of results across modules
of the same group, we opted to demonstrate the result of a single
module from each group. Two of the groups, SKhynix_2G_1333
and SKhynix_4G_1333B, have exactly the same results, so we use a
single heatmap for them.

Each colored box in the heatmap provides the row-wise success
ratio for a given pair of timing intervals in command cycles. Thus, a
timing interval T1 = 2 will introduce two idle cycles (5ns) between
the �rst ACTIVATE and the PRECHARGE commands in Figure 3. As
we are more interested in capturing the feasibility of an operation,
we plot each heatmap using the results from the bank that provided
the highest row success ratio for each module.

Blue(hatched) boxes identify timing interval pairs that resulted in
a row copy operation, whereas green boxes identify timing interval
pairs that resulted in AND/OR operations. Gray boxes indicate
that a third row was modi�ed, but the result did not match any
interesting operation. White boxes indicate that all the data in other
rows remained the same, and there was no meaningful result in the
opened two rows. The shade of each color indicates the row-wise
success ratio in an operation. Darker shades signi�es higher success
ratios. Thus, the darkest blue and green colors indicate timing
interval pairs that lead to fully functional in-memory operations.
That is, using the selected timing interval pair, we were able to
produce, across all bits of a row, correct results in at least one sub-
array. The existence of at least one heatmap with both dark blue and
dark green boxes acts as a proof of concept that we can perform
row copy and logical AND/OR using o�-the-shelf, unmodi�ed,
commercial, DRAM.

In more detail, from Figure 10, we observe that nearly all con�g-
uration groups present the capability of performing row copy in
at least a portion of the columns in a sub-array. Furthermore, we

observe that successful timing interval con�gurations for row copy
follow two patterns: the vertical line pattern and the diagonal line
pattern, with most groups exhibiting a vertical line pattern. The tim-
ing interval pairs in the vertical line pattern support the explanation
in Section 3, where we argue that row copy can be implemented
using a small T2 timing interval. In contrast, DRAMs from Micron,
Elpida, and Nanya exhibit a diagonal pattern. We speculate that in
these cases, it is the sum of T1 and T2 that determines whether the
row copy operation is performed. Thus, the success of the operation
depends on the timing interval between the two ACTIVATE com-
mands, with the timing of the intermediate PRECHARGE command
not a�ecting the operation. More speci�cally, we speculate that
DRAM modules in those groups perform a check on the timing
interval between the �rst ACTIVATE and the PRECHARGE command,
and if the subsequent PRECHARGE command is scheduled too close
to the previous ACTIVATE, it will not be issued immediately. That is,
the PRECHARGE command is bu�ered inside the chip and is sched-
uled with a delay, meaning that the e�ective T2 timing interval
is smaller than the one externally de�ned in our test benchmark.
Thus, the operational rationale for row copy operation in those
groups can still be explained by Section 3.

In regard to logical AND/OR operations, we observe that only
DRAMs in groups SKhynix_2G_1333 and SKhynix_4G_1333B are
able to perform the operations across all columns of the sub-array.
Modules in group SKhynix_4G_1600 can also perform both oper-
ations but not across all columns of the sub-array. Although only
limited groups exhibit the capability of performing AND/OR op-
erations, half of the groups are able to open a third row (shown
using gray boxes in the heatmaps). To realize the logical operations,
charge sharing among three di�erent rows is required, therefore
opening a third row is the key prerequisite for logical operations.
Since these groups have met this key prerequisite, we speculate
that they have the potential to perform AND/OR operations at
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Conclusion

§ New accelerator that can perform any bulk bitwise operation in 
memory

§ Performs AND/OR operations with Triple Row Activation

§ Uses Dual-Contact Cells for NOT

§ 32x throughput improvement and 35x energy reduction
§ Translates into significant improvement for real-world data-intensive applications

§ Minimal changes to hardware (<1% area cost)

§ Moves computation closer to memory instead of memory closer to 
computation
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§ Simple, novel, and effective solution

§ Minimal changes to existing DRAM chips

§ Can easily be integrated into systems and combined with other 
accelerators

§ Inspired a lot of promising follow up work

§ Well structured paper, Prerequisites explained
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§ Very limited applications

§ Doesn’t work with ECC memory or data scrambling mechanisms

§ Up to 0.29-6.01% failures for 10-15% percent process variation

§ Requires proper subarray mapping to be utilized

§ Only tested in simulation
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ABSTRACT
In-memory computing has long been promised as a solution to the
“Memory Wall” problem. Recent work has proposed using charge-
sharing on the bit-lines of a memory in order to compute in-place
and with massive parallelism, all without having to move data
across the memory bus. Unfortunately, prior work has required
modi�cation to RAM designs (e.g. adding multiple row decoders)
in order to open multiple rows simultaneously. So far, the com-
petitive and low-margin nature of the DRAM industry has made
commercial DRAM manufacturers resist adding any additional
logic into DRAM. This paper addresses the need for in-memory
computation with little to no change to DRAM designs. It is the
�rst work to demonstrate in-memory computation with o�-the-
shelf, unmodi�ed, commercial, DRAM. This is accomplished by
violating the nominal timing speci�cation and activating multiple
rows in rapid succession, which happens to leave multiple rows
open simultaneously, thereby enabling bit-line charge sharing. We
use a constraint-violating command sequence to implement and
demonstrate row copy, logical OR, and logical AND in unmodi�ed,
commodity, DRAM. Subsequently, we employ these primitives to
develop an architecture for arbitrary, massively-parallel, compu-
tation. Utilizing a customized DRAM controller in an FPGA and
commodity DRAM modules, we characterize this opportunity in
hardware for all major DRAM vendors. This work stands as a proof
of concept that in-memory computation is possible with unmodi-
�ed DRAM modules and that there exists a �nancially feasible way
for DRAM manufacturers to support in-memory compute.

CCS CONCEPTS
• Computer systems organization → Parallel architectures;
• Hardware → Dynamic memory.
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1 INTRODUCTION
In modern computing systems, moving data between compute re-
sources and main memory utilizes a large portion of the overall
system energy and signi�cantly contributes to program execution
time. As increasing numbers of processor cores have been inte-
grated onto a single chip, the amount of memory bandwidth has
not kept up, thereby leading to a “Memory Wall” [48, 62]. Making
matters worse, the communication latency between compute re-
sources and o�-chip DRAM has not improved as fast as the amount
of computing resources have increased.

To address these challenges, near-memory compute [3, 11, 29, 35,
55], Processors-in-Memory [19, 23, 27, 39, 52, 59], and in-memory
compute [28, 33, 46] have all been proposed. This paper focuses
on the most aggressive solution, performing computations with
the memory. Unfortunately, performing computations with mem-
ory resources has relied on either emerging memory technolo-
gies [14, 16, 60] or has required additional circuits be added to
RAM arrays. While some solutions have been demonstrated in sili-
con [1, 2, 45, 57], none of these solutions have gained widespread
industry adoption largely due to requiring additional circuits to be
added to already cost optimized and low-margin RAM implementa-
tions.

In this paper,wedemonstrate a novelmethod that performs
computation with o�-the-shelf, unmodi�ed, commercial
DRAM. Utilizing a customized memory controller, we are able to
change the timing of standard DRAM memory transactions, oper-
ating outside of speci�cation, to perform massively parallel logical
AND, logical OR, and row copy operations. Using these base op-
erations and by storing and computing each value and its logical
negation, we can compute arbitrary functions in a massively paral-
lel bit-serial manner. Our novel operations function at the circuit
level by forcing the commodity DRAM chip to open multiple rows
simultaneously by activating them in rapid succession. Previous
works [56, 57] have shown that with multiple rows opened, row
copy and logical operations can be completed using bit-line charge
sharing. However, to achieve this, all previous techniques relied on
hardware modi�cations. To our knowledge, this is the �rst work to
perform row copy, logical AND, and logical OR using o�-the-shelf,
unmodi�ed, commercial DRAM.

With a slight modi�cation to the DRAM controller, in-memory
compute is able to save the considerable energy needed tomove data
across memory buses and cache hierarchies. We regard this work
as an important proof of concept and indication that in-memory
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ABSTRACT
With Von-Neumann computing architectures struggling to address
computationally- and memory-intensive big data analytic task to-
day, Processing-in-Memory (PIM) platforms are gaining growing in-
terests. In this way, processing-in-DRAM architecture has achieved
remarkable success by dramatically reducing data transfer energy
and latency. However, the performance of such system unavoidably
diminishes when dealing with more complex applications seeking
bulk bit-wise X(N)OR- or addition operations, despite utilizing max-
imum internal DRAM bandwidth and in-memory parallelism. In
this paper, we develop DRIM platform that harnesses DRAM as
computational memory and transforms it into a fundamental pro-
cessing unit. DRIM uses the analog operation of DRAM sub-arrays
and elevates it to implement bit-wise X(N)OR operations between
operands stored in the same bit-line, based on a new dual-row acti-
vation mechanism with a modest change to peripheral circuits such
sense ampli�ers. �e simulation results show that DRIM achieves
on average 71⇥ and 8.4⇥ higher throughput for performing bulk
bit-wise X(N)OR-based operations comparedwith CPU and GPU, re-
spectively. Besides, DRIM outperforms recent processing-in-DRAM
platforms with up to 3.7⇥ be�er performance.

1 INTRODUCTION
In the last two decades, Processing-in-Memory (PIM) architecture,
as a potentially viable way to solve the memory wall challenge, has
been well explored for di�erent applications [1–7]. �e key concept
behind PIM is to realize logic computation within memory to pro-
cess data by leveraging the inherent parallel computing mechanism
and exploiting large internal memory bandwidth. �e proposals for
exploiting SRAM-based [8, 9] PIM architectures can be found in re-
cent literature. However, PIM in context of main memory (DRAM-
[2, 3, 10]) has drawn much more a�ention in recent years mainly
due to larger memory capacities and o�-chip data transfer reduc-
tion as opposed to SRAM-based PIM. Such processing-in-DRAM
platforms show signi�cantly higher throughputs leveraging multi-
row activation methods to perform bulk bit-wise operations by
either modifying the DRAM cell and/or sense ampli�er. For ex-
ample, Ambit [2] uses triple-row activation method to implement
majority-based AND/OR logic, outperforming Intel Skylake-CPU,
NVIDIA GeForce GPU, and even HMC [11] by 44.9⇥, 32.0⇥, and
2.4⇥, respectively. DRISA [12] employs 3T1C- and 1T1C-based
computing mechanisms and achieves 7.7⇥ speedup and 15⇥ be�er
energy-e�ciency over GPUs to accelerate convolutional neural net-
works. However, there are di�erent challenges in such platforms
that make them ine�cient acceleration solutions for X(N)OR- and
addition-based applications such as DNA alignment and data en-
cryption. Due to the intrinsic complexity of X(N)OR logic, current
PIM designs are not able to o�er a high-throughput X(N)OR-based

operation despite utilizing the maximum internal bandwidth and
memory level parallelism. �is is because majority/AND/OR-based
multi-cycle operations and required row initialization in the previ-
ous designs.

To overcome the memory bandwidth bo�leneck and address
the existing challenges, we propose a high-throughput and energy-
e�cient PIM accelerator based on DRAM, called DRIM. DRIM ex-
ploits a new in-memory computing mechanism called Dual-Row
Activation (DRA) to perform bulk bit-wise operations between
operands stored in di�erent word-lines. �e DRA is developed
based on analog operation of DRAM sub-arrays with a modest
change in the sense ampli�er circuit such that X(N)OR operation
can be e�ciently realized on every memory bit-line. In addition,
such design addresses the reliability concerns regarding the voltage
deviation on the bit-line andmulti-cycle operations of the triple-row
activation method. We evaluate and compare DRIM’s raw perfor-
mance with conventional and PIM accelerators including a Core-i7
Intel CPU [13], an NVIDIA GTX 1080Ti Pascal GPU [14], Ambit
[2], DRISA-1T1C [3], and HMC 2.0 [11], to handle bulk bit-wise
operations. We observe that DRIM achieves remarkable through-
put compared to Von-Neumann computing systems (CPU/GPU)
through unblocking the data movement bo�leneck by on average
71⇥/8.4⇥ be�er throughput. DRIM outperforms other PIMs in per-
forming X(N)OR-based operations by up to 3.7⇥ higher throughput.
We further show that a 3D-stacked DRAM built on top of DRIM
can boost the throughput of the HMC by ⇠13.5⇥. From the energy
consumption perspective, DRIM reduces the DRAM chip energy
by 2.4⇥ compared with Ambit [2] and 69⇥ compared with copying
data through the DDR4 interface.

To the best of our knowledge, this work is the �rst that designs
a high-throughput and energy-e�cient X(N)OR-friendly PIM ar-
chitecture exploiting DRAM arrays. We develop DRIM based on a
set of novel microarchitectural and circuit-level schemes to realize
a data-parallel computational unit for di�erent applications.

2 BACKGROUND AND MOTIVATION
2.1 Processing-in-DRAM Platforms
A DRAM hierarchy at the top level is composed of channels, mod-
ules, and ranks. Eachmemory rank, with a data bus typically 64-bits
wide, includes a set of memory chips that are manufactured with a
variety of con�gurations and operate in unison [2, 15]. Each chip
is further divided into multiple memory banks that contains 2D
sub-arrays of memory cells virtually-organized in memory matri-
ces (mats). Banks within same chips share I/O, bu�er and banks
in di�erent chips working in a lock-step manner. Each memory
sub-array, as shown in Fig. 1a, has 1) a large number of rows (typi-
cally 29 or 210) holding DRAM cells, 2) a row of Sense Ampli�ers
(SA), and 3) a Row Decoder (RD) connected to the cells. A DRAM
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ABSTRACT
In this paper, we proposeGraphiDe, a novel DRAM-based processing-
in-memory (PIM) accelerator for graph processing. It transforms
current DRAM architecture to massively parallel computational
units exploiting the high internal bandwidth of the modern memory
chips to accelerate various graph processing applications. GraphiDe
can be leveraged to greatly reduce energy consumption and la-
tency dealing with underlying adjacency matrix computations by
eliminating unnecessary o�-chip accesses. The extensive circuit-
architecture simulations over three social network data-sets in-
dicate that GraphiDe achieves on average 3.1⇥ energy-e�ciency
improvement and 4.2⇥ speed-up over the recent DRAM based PIM
platform. It achieves ⇠59⇥ higher energy-e�ciency and 83⇥ speed-
up over GPU-based acceleration methods.
ACM Reference format:
Shaahin Angizi and Deliang Fan. 2019. GraphiDe: A Graph Processing
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1 INTRODUCTION
Nowadays, reaching high bandwidth of graph processing on top
of Von-Neumann architectures su�ers from various challenges
[6], such as long memory access latency, intensi�ed congestion
at I/Os, humongous data communication energy, and large leakage
power consumption for storing graph parameters that result in
over 90% bandwidth degradation on CPU-DRAM hierarchy [18].
In order to tackle these challenges, Processing-in-Memory (PIM),
as a potentially viable way to solve the memory wall challenge,
has been put forward [4, 11, 16]. The key idea of PIM is to realize
computation units inside memory to process data by leveraging
the inherent parallel computing mechanisms and exploiting large
internal memory bandwidth. Therefore, total memory bandwidth
for computation units scales well by increase memory capacity
leading to a signi�cant reduction in latency and energy overheads
of data communication [3]. PIM architectures ideally should be
capable of performing bulk bit-wise operations which is needed in
many graph processing applications [12]. However, this has been
limited to basic logic operations such as AND, OR and XOR so far
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[12, 16], which are not necessarily applicable to a wide variety of
tasks except by imposing multi-cycle operations [5, 16] or large
in-memory computational units [11] to realize speci�c functions
such as addition.

The proposals for exploiting SRAM-based [2, 9] PIM architec-
tures can be found in recent literature. However, PIM in context
of main memory (DRAM- [3, 11, 15–17]) has drawn much more
attention mainly due to larger memory capacities and o�-chip data
transfer reduction as opposed to SRAM-based PIM. Ambit [16]
shows DRAM-based graph processing acceleration by realizing
a majority function between every three rows and so can imple-
ment 2-input logic after saving operand data in reserved rows to
avoid data-overwritten. GraphH [6] and Graphpim [14] present
new designs based on Hybrid Memory Cube (HMC) to accelerate
large-scale graph processing tasks at architectural level.

From graph processing algorithm perspective, network topology
analysis can help us better understand the intricate connectivity of
complex networks in practical problems. For instance, degree cen-
trality is often used to measure the importance of a vertex. In social
networks, people with more connections tend to have more signi�-
cant in�uence in the community. The matching index is another
basic topology parameter characterizing the similarity between two
vertices in a network. It measures the ratio of common neighbors
for pairs of vertices. Evaluation of these network properties plays
an essential part in potential applications, such as social network
analysis and tra�c �ow control. The main goal of this paper is
to develop a parallel and energy-e�cient PIM architecture that
could simultaneously work as main memory and realize a high
performance accelerator for such data-intensive graph processing
applications. The main contributions of this paper are summarized
as follows: (1) We propose a novel DRAM-based in-memory ac-
celerator, GraphiDe, based on set of novel microarchitectural and
circuit-level schemes. GraphiDe can perform any bulk bitwise op-
eration inside DRAM exploiting DRAM structure, and therefore
requiring low cost on top of commodity DRAM chip area. (2) We
provide case studies of how important graph processing workloads
can be partitioned and mapped to our architecture and how they
can bene�t from it. (3) We evaluate our proposed scheme using
a variety of real-world social network graph data compared with
other state-of-the-art accelerators i.e. DRAM, HMC, and GPU.

2 PROCESSING-IN-DRAM BACKGROUND
A DRAM cell basically consists of two elements, a capacitor (stor-
age) and an Access Transistor (AT) (Fig. 1b B ). The drain and gate
of the AT is connected to the Bit-line (BL) and Word-line (WL), re-
spectively. DRAM cell encodes the binary data by the charge of the
capacitor. It represents logic ‘1’ when the capacitor is full-charged,
and logic ‘0’ when there is no charge. Technically, accessing data
from a DRAM’s sub-array (write/read) has three consecutive steps
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ABSTRACT
Data movement between the processing units and the memory
in traditional von Neumann architecture is creating the “memory
wall” problem. To bridge the gap, two approaches, the memory-rich
processor (more on-chip memory) and the compute-capable mem-
ory (processing-in-memory) have been studied. However, the !rst
one has strong computing capability but limited memory capac-
ity/bandwidth, whereas the second one is the exact the opposite.

To address the challenge, we propose DRISA, a DRAM-based
Recon!gurable In-Situ Accelerator architecture, to provide both
powerful computing capability and largememory capacity/bandwidth.
DRISA is primarily composed of DRAM memory arrays, in which
every memory bitline can perform bitwise Boolean logic opera-
tions (such as NOR). DRISA can be recon!gured to compute vari-
ous functions with the combination of the functionally complete
Boolean logic operations and the proposed hierarchical internal
data movement designs. We further optimize DRISA to achieve high
performance by simultaneously activating multiple rows and sub-
arrays to provide massive parallelism, unblocking the internal data
movement bottlenecks, and optimizing activation latency and en-
ergy. We explore four design options and present a comprehensive
case study to demonstrate signi!cant acceleration of convolutional
neural networks. The experimental results show that DRISA can
achieve 8.8× speedup and 1.2× better energy e"ciency compared
with ASICs, and 7.7× speedup and 15× better energy e"ciency over
GPUs with integer operations.

CCS CONCEPTS
•Hardware→ Dynamic memory; • Computer systems orga-
nization→ Recon!gurable computing; Neural networks;

KEYWORDS
DRAM, Accelerator, Neural Network
ACM Reference format:
Shuangchen Li, Dimin Niu, Krishna T. Malladi, Hongzhong Zheng, Bob
Brennan, Yuan Xie. 2017. DRISA: A DRAM-based Recon!gurable In-Situ
Accelerator. In Proceedings of MICRO-50, Cambridge, MA, USA, October
14–18, 2017, 14 pages.
https://doi.org/10.1145/3123939.3123977

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro!t or commercial advantage and that copies bear this notice and the full citation
on the !rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci!c permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO-50, October 14–18, 2017, Cambridge, MA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4952-9/17/10. . . $15.00
https://doi.org/10.1145/3123939.3123977

1 INTRODUCTION
The increasing gap between the computational performance of
the processors and the memory has created the “memory wall”
problem [90], in which the data movement between the processing
units and the memory is becoming the bottleneck of the entire
computing system, ranging from cloud servers to end-user devices.
For example, the data transfer between CPUs and o$-chip memory
consumes two orders of magnitude more energy than a %oating
point operation [26], and while technology scaling helps reduce
the total energy, data movement still dominates the total energy
consumption [47].

To bridge this gap between the computing and the memory, ex-
tensive work has been done to explore possible solutions, which
can be classi!ed into two categories: The !rst approach, referred to
as the memory-rich processor, sticks with the computing-centric ar-
chitecture while bringing more memory on-chip. For example, mod-
ern processors integrate up to 128MB embedded DRAM (eDRAM)
based caches [37]. This on-chip memory not only reduces energy-
consuming o$-chip memory accesses, but also provides higher
memory bandwidth, improving system performance. The second
approach, referred to as the compute-capable memory, switches
to the memory-centric processing-in-memory (PIM) architecture.
Lightweight processing units are designed in the logic die of 3D
stackingmemories [67] or in the sameDRAMdie in 2D cases [46, 71]
for near/in-memory computing. This approach signi!cantly reduces
the tra"c between the host and memories, and embraces the large
internal memory bandwidth.
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Figure 1: The on-chip memory capacity and computing ca-
pability of various approaches [3, 22, 46, 53].

However, both approaches have limitations. As shown in Figure 1,
bringing large on-chip memory to the powerful memory-rich pro-
cessor architectures (the lower right corner) boosts the performance,
but the memory capacity is still not enough for data intensive ap-
plications. On the other hand, the PIM approaches (the upper left
corner) e$ectively bond more memory to the computing resources,
but the performance is not as competitive as GPU/ASICs. For exam-
ple, Neurocube achieves 132GOPs [53], while the latest GPU can
reach 44TOPs [3]. Emerging applications, such as deep learning
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ABSTRACT
Modern Convolutional Neural Networks (CNNs) are computation
and memory intensive. Thus it is crucial to develop hardware ac-
celerators to achieve high performance as well as power/energy-
e!ciency on resource limited embedded systems. DRAM-based
CNN accelerators exhibit great potentials but face inference accu-
racy and area overhead challenges.

In this paper, we proposeDrAcc, a novel DRAM-based processing-
in-memory CNN accelerator. DrAcc achieves high inference accu-
racy by implementing a ternary weight network using in-DRAM
bit operation with simple enhancements. The data partition and
mapping strategies can be "exibly con#gured for the best trade-o$
among performance, power and energy consumption, and DRAM
data reuse factors. Our experimental results show that DrAcc achieves
84.8 FPS (frame per second) at 2W and 2.9× power e!ciency im-
provement over the process-near-memory design.

1 INTRODUCTION
Convolutional Neural Networks (CNNs) have made great progress
in recent years. The error rate of CNN based visual recognition
decreased from 28% in 2010 to 3% in 2016, surpassing human-level
performance at 5% [8]. CNNs are being integrated in modern embed-
ded systems to address image classi#cation and pattern recognition
problems, e.g. automated driving systems. However, large CNNs
could have millions of parameters and require up to tens of billions
of operations for processing one image frame [5], exhibiting the
need for designing hardware CNN accelerator designs to improve
performance and power/energy consumption.

It is challenging to design CNN accelerators for resource lim-
ited embedded systems. FPGA-based accelerators [15] achieve good
power/energy e!ciency but often have low throughput due to
limited memory bandwidth. ASIC based accelerators achieve high
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performance with energy e!ciency through highly optimized com-
putation engines, but need to use large on-chip bu$ers to store the
intermediate results [1, 3, 11]. They consume not only large dynamic
power/energy on moving data into and out of the computation en-
gines but also large static power/energy for the large bu$ers [4].
ReRAM based accelerators adopt a processing-in-memory (PIM)
strategy such that most computation operations are performed
inside the memory arrays, which eliminates expensive data move-
ments [19]. However, they demand large peripheral circuits such as
ADC, DAC and router. ReRAM based accelerators not only face the
endurance problem but also demand a special fabrication process
that introduces extra cost.

Recently, several DRAM-based CNN accelerators were proposed
to exploit bit operation capability inside DRAM cell arrays. They
exhibit great potential for high performance and low power/energy
consumption on embedded systems. These designs choose binary
weight neural networks (BWN) [2, 6, 16] that shrink 16-bit or 32-bit
values to two values ( ‘-1’ or ‘+1’). There are two choices: one is
to convert all values, i.e. weights, inputs, and intermediate results;
the other is to convert only the weights [2]. Most DRAM-based
CNN accelerators [9] adopt the #rst choice so that they eliminate
multiplication operations and use only XNOR operations in CNN
inference. This choice su$ers from accuracy loss, e.g. about 11%
accuracy loss on ImageNet (top-5) [13]. In this paper, we follow
the second choice and adopt a ternary weight network [20] to
ensure inference accuracy. We further optimize it to achieve energy
e!ciency on embedded systems.

The work most related to our design is DRISA[14]. While both
DRISA andDrAcc adopt DRAM-based processing-in-memory frame-
work, DRISA is a heavyweight design. Its 1T1C-NOR variant adds
one NOR gate and one latch to each bitline and a full-"edged shifter
to each subarray. DRISA demands high power and has large area
overhead — the area of a 4Gb 1T1C-NOR engine is close to that of
8Gb DRAM while its power consumption is more than 50W [14].
In contrast, DrAcc is a lightweight design. DrAcc relies mostly on
cell operations; it places the indispensable yet less frequently used
shifter outside of the cell subarrays. DrAcc adds less than 2% area
overhead and consumes less than 2.5W power.

Our contributions are summarized as follows:

• We propose DrAcc, a DRAM-based CNN accelerator for embed-
ded systems. DrAcc implements ternary weight neural networks
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Abstract—This paper presents the Compute Cache archi-
tecture that enables in-place computation in caches. Compute
Caches uses emerging bit-line SRAM circuit technology to re-
purpose existing cache elements and transforms them into ac-
tive very large vector computational units. Also, it significantly
reduces the overheads in moving data between different levels
in the cache hierarchy.

Solutions to satisfy new constraints imposed by Compute
Caches such as operand locality are discussed. Also discussed
are simple solutions to problems in integrating them into a
conventional cache hierarchy while preserving properties such
as coherence, consistency, and reliability.

Compute Caches increase performance by 1.9× and reduce
energy by 2.4× for a suite of data-centric applications, includ-
ing text and database query processing, cryptographic kernels,
and in-memory checkpointing. Applications with larger frac-
tion of Compute Cache operations could benefit even more, as
our micro-benchmarks indicate (54× throughput, 9× dynamic
energy savings).

I. INTRODUCTION

As computing today is dominated by data-centric appli-
cations, there is a strong impetus for specialization for this
important domain. Conventional processors’ narrow vector
units fail to exploit the high degree of data-parallelism
in these applications. Also, they expend disproportionately
large fraction of time and energy in moving data over cache
hierarchy, and in instruction processing, as compared to the
actual computation [1].

We present the Compute Cache architecture for dramati-
cally reducing these inefficiencies through in-place (in-situ)
processing in caches. A modern processor devotes a large
fraction (40-60%) of die area to caches which are used for
storing and retrieving data. Our key idea is to re-purpose
and transform the elements used in caches into active com-
putational units. This enables computation in-place within
a cache sub-array, without transferring data in or out of it.
Such a transformation can unlock massive data-parallel com-
pute capabilities, dramatically reduce energy spent in data
movement over the cache hierarchy, and thereby directly
address the needs of data-centric applications.

Our proposed architecture uses an emerging SRAM circuit
technology, which we refer to as bit-line computing [2],
[3]. By simultaneously activating multiple word-lines, and
sensing the resulting voltage over the shared bit-lines, several
important operations over the data stored in the activated
bit-cells can be accomplished without data corruption. A

recently fabricated chip [2] demonstrates feasibility of bit-
line computing. They also show a stability of more than
six sigma robustness for Monte Carlo simulations, which is
considered industry standard for robustness against process
variations.

Past processing-in-memory (PIM) solutions proposed to
move processing logic near the cache [4], [5] or main
memory [6], [7]. 3D stacking can make this possible [8].
Compute Caches significantly push the envelope by enabling
in-place processing using existing cache elements. It is an
effective optimization for data-centric applications, where at
least one of the operands (e.g., dictionary in WordCount)
used in computation has cache locality.

Efficiency of Compute Caches arises from two main
sources: massive parallelism and reduced data movement. A
cache is typically organized as a set of sub-arrays; as many
as hundreds of sub-arrays, depending on the cache level.
These sub-arrays can potentially compute concurrently on
data stored in them (KBs of data) with little extensions to
the existing cache structures (8% of cache area overhead).
Thus, caches can effectively function as large vector compu-
tational units, whose operand sizes are orders of magnitude
larger than conventional SIMD units (KBs vs bytes). To
achieve similar capability, the logic close to memory in a
conventional PIM solution would need to provision more
than hundred additional vector functional units. The second
benefit of Compute Caches is that they avoid the energy
and performance cost incurred not only for transferring data
between the cores and different levels of cache hierarchy
(through network-on-chip), but even between a cache’s sub-
array to its controller (through in-cache interconnect).

This paper addresses several problems in realizing the
Compute Cache architecture, discusses ISA and system
software extensions, and re-designs several data-centric ap-
plications to take advantage of the new processing capability.

An important problem in using Compute Caches is sat-
isfying the operand locality constraint. Bit-line computing
requires that the data operands are stored in rows that share
the same set of bit-lines. We architect a cache geometry,
where ways in a set are judiciously mapped to a sub-array,
so that software can easily satisfy operand locality. Our
design allows a compiler to ensure operand locality simply
by placing operands at addresses that are page aligned (same
page offset). It avoids exposing the internals of a cache, such
as its size or geometry, to software.
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Abstract—This paper presents the Neural Cache architecture,
which re-purposes cache structures to transform them into
massively parallel compute units capable of running inferences
for Deep Neural Networks. Techniques to do in-situ arithmetic
in SRAM arrays, create efficient data mapping and reducing
data movement are proposed. The Neural Cache architecture
is capable of fully executing convolutional, fully connected,
and pooling layers in-cache. The proposed architecture also
supports quantization in-cache.

Our experimental results show that the proposed architec-
ture can improve inference latency by 18.3× over state-of-art
multi-core CPU (Xeon E5), 7.7× over server class GPU (Titan
Xp), for Inception v3 model. Neural Cache improves inference
throughput by 12.4× over CPU (2.2× over GPU), while reduc-
ing power consumption by 50% over CPU (53% over GPU).

Keywords-Cache, In-memory architecture, Convolution
Neural Network, Bit-serial architecture

I. INTRODUCTION

In the last two decades, the number of processor cores
per chip has steadily increased while memory latency has
remained relatively constant. This has lead to the so-called
memory wall [1] where memory bandwidth and memory
energy have come to dominate computation bandwidth
and energy. With the advent of data-intensive system, this
problem is further exacerbated and as a result, today a large
fraction of energy is spent in moving data back-and-forth
between memory and compute units. At the same time, neural
computing and other data intensive computing applications
have emerged as increasingly popular applications domains,
exposing much higher levels of data parallelism. In this paper,
we exploit both these synergistic trends by opportunistically
leveraging the huge caches present in modern processors to
perform massively parallel processing for neural computing.

Traditionally, researchers have attempted to address
the memory wall by building a deep memory hierarchy.
Another solution is to move compute closer to memory,
which is often referred to as processing-in-memory (PIM).
Past PIM [2]–[4] solutions tried to move computing logic
near DRAM by integrating DRAM with a logic die
using 3D stacking [5]–[7]. This helps reduce latency and
increase bandwidth, however, the functionality and design of
DRAM itself remains unchanged. Also, this approach adds
substantial cost to the overall system as each DRAM die
needs to be augmented with a separate logic die. Integrating
computation on the DRAM die itself is difficult since the
DRAM process is not optimized for logic computation.

In this paper, we instead completely eliminate the line
that distinguishes memory from compute units. Similar
to the human brain, which does not separate these two
functionalities distinctly, we perform computation directly
on the bit lines of the memory itself, keeping data in-place.
This eliminates data movement and hence significantly
improves energy efficiency and performance. Furthermore,
we take advantage of the fact that over 70% of silicon
in today’s processor dies simply stores and provides data
retrieval; harnessing this area by re-purposing it to perform
computation can lead to massively parallel processing.

The proposed approach builds on an earlier silicon test
chip implementation [8] and architectural prototype [9] that
shows how simple logic operations (AND/NOR) can be
performed directly on the bit lines in a standard SRAM array.
This is performed by enabling SRAM rows simultaneously
while leaving the operands in-place in memory. This paper
presents the Neural Cache architecture which leverages these
simple logic operations to perform arithmetic computation
(add, multiply, and reduction) directly in the SRAM array by
storing the data in transposed form and performing bit-serial
computation while incurring only an estimated 7.5% area
overhead (translates to less than 2% area overhead for the
processor die). Each column in an array performs a separate
calculation and the thousands of memory arrays in the cache
can operate concurrently.

The end result is that cache arrays morph into massive
vector compute units (up to 1,146,880 bit-serial ALU slots
in a Xeon E5 cache) that are one to two orders of magnitude
larger than modern graphics processor’s (GPU’s) aggregate
vector width. By avoiding data movement in and out of
memory arrays, we naturally save vast amounts of energy
that is typically spent in shuffling data between compute
units and on-chip memory units in modern processors.

Neural Cache leverages opportunistic in-cache computing
resources for accelerating Deep Neural Networks (DNNs).
There are two key challenges to harness a cache’s computing
resources. First, all the operands participating in an in-situ
operation must share bit-lines and be mapped to the same
memory array. Second, intrinsic data parallel operations
in DNNs have to be exposed to the underlying parallel
hardware and cache geometry. We propose a data layout
and execution model that solves these challenges, and
harnesses the full potential of in-cache compute capabilities.
Further, we find that thousands of in-cache compute units
can be utilized by replicating data and improving data reuse.
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Abstract

Duality Cache is an in-cache computation architecture that
enables general purpose data parallel applications to run on
caches. This paper presents a holistic approach of building
Duality Cache system stackwith techniques of performing in-
cache !oating point arithmetic and transcendental functions,
enabling a data-parallel execution model, designing a com-
piler that accepts existing CUDA programs, and providing
!exibility in adopting for various workload characteristics.

Exposure to massive parallelism that exists in the Duality
Cache architecture improves performance of GPU bench-
marks by 3.6× and OpenACC benchmarks by 4.0× over a
server class GPU. Re-purposing existing caches provides
72.6× better performance for CPUs with only 3.5% of area
cost. Duality Cache reduces energy by 5.8× over GPUs and
21× over CPUs.

ACM Reference Format:
Daichi Fujiki, Scott Mahlke, and Reetuparna Das. 2019. Duality
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national Symposium on Computer Architecture, June 22–26, 2019,
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10.1145/3307650.3322257

1 Introduction

Modern general purpose processors and accelerators are in-
tegrated with large on-chip caches to fully exploit locality.
They are utilized as a low-latency temporary storage and
occupy a large fraction (over 70%) of the die area. For ex-
ample, the latest Intel’s server class Xeon processors devote
more than 30MB SRAM just for the last level cache (LLC).
Furthermore, data-movement over the cache hierarchy is
costly, both in terms of time and energy.

To tackle these ine"ciencies, recent works re-purpose the
elements in cache structures and transform them into large
data-parallel compute units. Compute Caches [2] introduces
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an in-SRAM computing technique referred to as bit-line com-
puting, which activates multiple word lines and performs
logical operations. Neural Cache [10] further augments com-
pute capability to e"ciently support !xed point arithmetic
operations. Neural Cache transforms a 35 MB Xeon Cache
into 1,146,880 bit-line ALUs with a die area overhead of 2%.
The proposed bit-line ALU operates on transposed or ver-
tically aligned data in a bit-serial manner. These additional
compute resources improve the e"ciency of Convolutional
Neural Networks (CNNs) by 679× (speedup 18.3×, energy
savings 37.1×) over a CPU (Xeon E5) and 128× over a GPU
(Titan Xp). The source of the e"ciency is the combined e$ect
of reduced data movement and massive parallelism.
While compute-capable caches o$er signi#cant bene#ts,

previous works have just provided low-level interface for
in-cache operation [2] or relied on a manual mapping of
convolution kernels to the cache arrays [10]. This paper pro-
poses the Duality Cache system stack that makes in-cache
computing accessible to general purpose data-parallel pro-
grams.
Our proposed system solves several challenges to make

caches capable of general purpose data processing. First, to
address a wide set of data-intensive applications, having a
rich set of computation primitives is essential. Prior work
is limited to logical and #xed-point arithmetic operations.
Most data-parallel workloads require !oating point opera-
tions. Manipulation of mantissa based on exponents in an
in-cache vector architecture is a non-trivial challenge. We
devise techniques that support bit-serial !oating point oper-
ations for applications with high precision or large dynamic
range demands. We present techniques that reduce the la-
tency of bit-serial operations based on the dynamic range of
operands. The proposed techniques can support 1,146,880
parallel !oating-point operations at 3.5% processor die area
overhead for a Xeon E5-2697 with 35MB cache. CORDIC
algorithms [37, 38] are leveraged to support in-cache tran-
scendental functions.
Second, a critical challenge for in-cache computing is the

design of the interface between the CPU cores and compute
caches, execution model, and cache addressing structure.
Operands of in-cache operations need to be aligned on a bit-
line ALU (constraining them to speci#c locations in cache).
We address these problems by developing a single instruction
multiple thread (SIMT) architecture, where each thread is
mapped to bit-line ALUs. The data bit-cells on a bit-line ALU
become thread-local bit-serial registers which are directly ad-
dressable in the instruction set architecture (ISA). Compute
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