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Problem, Goal and Novelty



Energy Management

- Commodity devices, such as phones, capable of extremely

power intensive computations

* Need to preserve energy when not using maximal

performance

— Energy Management is essential

source picture: https://www.ccp.com.au/b-lithiumbatterychargingadvice/ 4



Energy Management and Security

- Today's energy management:
* Is essential and everywhere
* usually security is not a big consideration in it's designs

— might impose risk on most devices



Goal

« Show importance of security in energy management

* Do so by example attack on ARM Trustzone of Nexus 6 device
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Novelty

* First security review of energy management technique:

Dynamic Voltage and Frequency Scaling (DVFES)
- Fault attack purely from software

* New class of exploitations: induce fault by scaling frequency

— CLKscrew



Background



Dynamic Voltage & Frequency Scaling (DVFS)

Energy = Power * Time

ﬁEnergy



Dynamic Voltage & Frequency Scaling (DVFS)

Energy = Power * Time Power o Voltage * Frequency

ﬂEnergy = ﬂPower
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Dynamic Voltage & Frequency Scaling (DVFS)

Frequency

Energy = Power * Time Power o Voltage * Frequency

ﬂEnergy = ﬂPower

ﬂ Voltlage
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Dynamic Voltage & Frequency Scaling

* DVFS allows software control of voltage and frequency
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DVFS and Trustzone

Trustzone
Trusted code

CPU Core

Normal
Untrusted code
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other cores

—
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Overclocking and Undervolting
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Overclocking and Undervolting
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Overclocking and Undervolting
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Overclocking and Undervolting
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Key Challenges and Solutions



Challenges

* Voltage and Frequency operating limits?

» Self-containment: how to cause fault for victim without an

error in the attacker?
* Can attack run without other things interfering?

* How to time attack correctly?

29



Solutions
Voltage and Frequency Operating Limits?
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Solutions
Voltage and Frequency Operating Limits?

Nexus 6
3.5; .

No Voltage and Frequency operating Limits.

Found points where device becomes unstable.
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Solutions

Self-Containment
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Solutions

Self-Containment
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Solutions

Run Attack without Interferences
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Solutions

Run Attack without Interferences
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Q . . thread
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Interrupt Interrupt
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Solutions
Timing

* Need a way to do precise timing

~1,100,000,000 clock cycles
A

victim /_
thread

§§~65,000 clock cycles



Solutions

Timing
+ Use hardware cycle counter to do timing profiling
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Solutions
Timing

 Use hardware cycle counter to do timing profiling

 Insert no-opf e =ieiilllale . et thread
Use Anchor Time and no-ops

* Insert anchor Times wnen necessary g
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Challenges

* Voltage and Frequency operating limits?

» Self-containment: how to cause fault for victim without an

error in the attacker?
* Can attack run without other things interfering?

* How to time attack correctly?
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Mechanisms
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CLKscrew fault injection setup
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CLKscrew fault injection setup
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CLKscrew fault injection setup
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CLKscrew fault injection setup
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CLKscrew fault injection setup
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Example Attacks

« TZ Attack #1: Inferring AES

Keys
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#

secret AES
key decryption

source graphics: CLKSCREW presentation USENIX, Adrian Tang, 2017

« TZ Attack #2: Loading Self-
Signed Apps
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Example Attacks

« TZ Attack #1: Inferring AES

Keys
| Trustzone Normal
'1
D /—’ plaintext
%@ ——ip
secret AES % |
key decryption ciphertext

source graphics: CLKSCREW presentation, Adrian Tang, 2017
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Key Inference Attack: Threat Model

* Victim app: AES decryption app executes in Trustzone
* Attacker's goal: Get secret AES key from outside Trustzone

- Attackers capabilities:
1. Can repeatedly invoke decryption app

2. Has software access to hardware regulators
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Key Inference Attack: Threat Model
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source graphics: CLKSCREW presentation, Adrian Tang, 2017
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Key Inference Attack: Overview
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Key Inference Attack: Timing Profiling
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Key Inference Attack: Timing Profiling

* Induce fault of one byte at 7t" AES round

680 no-op Ioopsw
High frequency

Low frequency /-\

—

7th Round

N S
\/

10 AES Rounds

source graphics: CLKSCREW presen tation USENIX, Adrian Tang, 2017 53



Key Inference Attack: Precision

* Over 60% of generated faults

corrupt exactly one AES round

Normalized frequency
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Key Inference Attack: Precision

 Over 60% of generated faults 0.0
corrupt exactly one AES round o
S 0.4}
» Of those over 50% corrupt % 0.3
exactly one byte E 0.2
£
= 0.1
Z
0.0 EEE

1 3 5 7 9 11 13 15
# of faulted bytes within one round
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Summary
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Summary

* First security review of DVFS

* DVFS leaves Trustzone vulnerable

» CLKscrew attacks can be timed very precisely
« Can get AES key from outside Trustzone

 Can load untrusted app into Trustzone
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Strengths and Weaknesses



Strengths

* First security review of a DVFS
- Managed to do fault attacks purely from software

» Tested two example attacks
- managed to get the AES key

 only used publicly available knowledge
* Give ideas for possible solutions

» Well written
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Weaknesses

» Tested with self written AES decryption app

» Used self written kernel driver to have victim and attacker on

different cores.
« Assumed access to hardware regulators

» Tested attacks only on one Nexus 6 device
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Takeaways



Takeaways

* New attack surface: Energy management software interface
* Not because of bug but because of fundamental design flaw
» Example attacks on ARM Trustzone

* Energy management designs must take security into

consideration
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Discussion
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Discussion

* [deas on possible solutions?
» Hardware?

» Software?

* What else could be done by exploiting DVFS

» can you think of specific attacks?
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Discussion

Blacklist Core: Machine-Learning Based Dynamic Operating-
Performance-Point Blacklisting for Mitigating Power-

Management Security Attacks

Sheng Zhang, Adrian Tang, Zhewei Jiang, Simha Sethumadhavan, Mingoo Seok,
Columbia University, 2018
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Discussion

* [deas on possible solutions?
» Hardware?

» Software?

* What else could be done by exploiting DVFS?

» can you think of specific attacks?
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Discussion

* How widely spread is this energy management issue?

« How important will this be for the future?

* will it be considered enough? does it have to?

 General thoughts on the paper?

» Additional strength, weaknesses, ideas?
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