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Background, Problems & Goal
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Rowhammer
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◼ Flip bits in adjacent memory rows by “hammering” [1]

[1] Y. Kim et al. Flipping Bits in Memory Without Accessing Them, ISCA ‘14
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Current Rowhammer Exploits

◼ Current exploits are either 

❑ Probabilistic [2]

❑ Rely on special memory management features [3,4]

◼ Probabilistic attacks are especially problematic

◼ Only target x86

◼ There was doubt whether Rowhammer is even possible on 
ARM

[2] D. Gruss, et al. Rowhammer.js: A Remote Software-Induced Fault Attack in Javascript, DIMVA ’16

[3] K. Razavi, et al. Flip Feng Shui: Hammering a Needle in the Software Stack, USENIX ’16

[4] Y. Xiao, et al. One Bit Flips, One Cloud Flops: Cross-VM Row Hammer Attacks, USENIX ‘16
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Rowhammer Exploits in General

◼ Triggering the Rowhammer bug is different than using it

◼ We need three things:

1. Physical Memory Addressing

❑ To attack a specific row we have to know which rows are 
next to it

2. Fast Uncached Memory Access

❑ Hammering fast enough to trigger the Rowhammer bug

3. Physical Memory Massaging

❑ Some way to get the sensitive data into the attacked row

5



Goal

◼ Show that Rowhammer is possible on ARM/Android

◼ Implement the first deterministic Rowhammer-
based Android root exploit

❑ Without requiring special memory management features

❑ Without requiring any permissions
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Novelty, Key Ideas and Attack 

Overview

7



Novelty

The paper makes two important contributions:

1. Phys Feng Shui: A generic technique for 
deterministic Rowhammer exploitation 

❑ Using commodity features offered by the OS

❑ Abusing the predictable behavior of the memory
allocator

2. Using this technique to implement an Android 
root exploit: Drammer
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RowhARMer
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◼ Rowhammer on mobile devices is possible!

Device: LG Nexus 5 (Android 6.0.1)



How To Exploit Rowhammer

1. Physical memory addressing

2. Fast uncached memory access

3. Physical memory massaging
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1. Physical Memory Addressing

◼ Physical memory layout is unknown to userspace

◼ Problem: We need to know the mapping from virtual to 
physical memory pages to exploit Rowhammer

◼ Current methods in x86:

❑ Pagemap interface

❑ Huge pages
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2. Fast Uncached Memory Access

◼ Prerequisite to trigger the Rowhammer bug

◼ Problems:

❑ Memory controller might not be fast enough

❑ CPU cache masks out all memory reads after the first

◼ We need to bypass the cache somehow

◼ Current methods in x86:

❑ Explicit cache flush using clflush

❑ Cache eviction sets

❑ Non-temporal access instructions (e.g. MOVNTI, MOVNTDQA)
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DMA Buffer Management

◼ Modern (mobile) devices have many different hardware 
components:

❑ e.g. GPU, Display Controller, Camera, Sensors, ...

◼ OS needs to provide direct memory access (DMA) to 
support efficient memory sharing between components

◼ Most devices perform DMA operations on contiguous 
physical memory pages

◼ Without DMA the CPU would have to stall for all memory 
accesses from all hardware components
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DMA provides all we need

◼ DMA bypasses the cache ✓

◼ DMA gives us physically contiguous memory ✓

❑ This provides us with at least relative physical memory 
addressing

◼ On Android: ION memory allocator
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How To Exploit Rowhammer

1. Physical memory addressing

2. Fast uncached memory access

3. Physical memory massaging
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3. Physical Memory Massaging

◼ Trick the victim into using a memory cell that is vulnerable 
to Rowhammer

◼ Victim should store security-sensitive data (e.g. page table) 
into vulnerable cell

◼ Current methods in x86:

❑ Page-table spraying

❑ Memory deduplication

❑ MMU paravirtualization
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Phys Feng Shui
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1. Allocate “everything”

2. Free a page which is vulnerable

3. The victim has to use the vulnerable page for its data



x86 vs. ARM
x86 Platforms ARMv7/ARMv8

Physical Memory Addressing

Pagemap interface ⬤ ⭘

Huge pages ⬤ -

Fast Uncached Memory Access

Explicit cache flush ⬤ ⭘ / ◐

Cache eviction sets ⬤ - /  -

Non-temporal access instructions ⬤ - / ◐

Physical Memory Massaging

Page-table spraying ⬤ ◐

Memory deduplication ⬤ -

MMU paravirtualization ⬤ -
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●: Available in unprivileged mode ◐: Not practical enough

○: Available in privileged mode



Attack Overview

1. Memory Templating
Scan memory for useful bit flips

2. Land sensitive data
Store a page table on a vulnerable location

3. Reproduce the bit flip
Modify the page table to get root access
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Mechanisms

21



Attack Procedure in Detail

1. Probe DRAM row size

2. Phys Feng Shui

3. Hammering the page-table

4. Exploiting
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Probing DRAM Row Size

◼ We have to know the DRAM row size to apply Rowhammer

◼ Two page reads from the same bank are slower than from 
different banks

24

Bank 1 Bank 2 Bank 3

Row Size



Probing DRAM Row Size in Practice
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Device: LG Nexus 5



Attack Procedure in Detail

1. Probe DRAM row size

2. Phys Feng Shui

3. Hammering the page-table

4. Exploiting
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Phys Feng Shui – Buddy Allocator

◼ Exploit predictable behavior of the Linux Buddy Allocator

❑ Split smallest chunk until it fits the requested allocation

❑ On free: Merge chunks back into bigger chunks
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◼ Exploit predictable behavior of the Linux Buddy Allocator

❑ Split smallest chunk until it fits the requested allocation

❑ On free: Merge chunks back into bigger chunks
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Phys Feng Shui – Buddy Allocator
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❑ Split smallest chunk until it fits the requested allocation
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Phys Feng Shui – Buddy Allocator

◼ Exploit predictable behavior of the Linux Buddy Allocator

❑ Split smallest chunk until it fits the requested allocation

❑ On free: Merge chunks back into bigger chunks
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Phys Feng Shui – Buddy Allocator

◼ Exploit predictable behavior of the Linux Buddy Allocator

❑ Split smallest chunk until it fits the requested allocation

❑ On free: Merge chunks back into bigger chunks
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Phys Feng Shui – Buddy Allocator

◼ Exploit predictable behavior of the Linux Buddy Allocator

❑ Split smallest chunk until it fits the requested allocation

❑ On free: Merge chunks back into bigger chunks
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Phys Feng Shui – Buddy Allocator

◼ Exploit predictable behavior of the Linux Buddy Allocator

❑ Split smallest chunk until it fits the requested allocation

❑ On free: Merge chunks back into bigger chunks
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Phys Feng Shui – Buddy Allocator

◼ Exploit predictable behavior of the Linux Buddy Allocator
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36

256

64

16 16 32

16 * 4 KB pages = 64 KB rows

Physical Memory: Free: 8 KB



Phys Feng Shui – Buddy Allocator

◼ Exploit predictable behavior of the Linux Buddy Allocator

❑ Split smallest chunk until it fits the requested allocation

❑ On free: Merge chunks back into bigger chunks
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Phys Feng Shui - Memory Templating

◼ Scan memory for vulnerable rows and keep track of which 
bits flipped in which row
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Phys Feng Shui - Memory Templating

◼ Scan memory for vulnerable rows and keep track of which 
bits flipped in which row
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Phys Feng Shui - Memory Templating

◼ Scan memory for vulnerable rows and keep track of which 
bits flipped in which row
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Phys Feng Shui - Memory Templating

◼ Scan memory for vulnerable rows and keep track of which 
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Phys Feng Shui - Memory Templating

◼ Scan memory for vulnerable rows and keep track of which 
bits flipped in which row
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Phys Feng Shui - Memory Templating

◼ Scan memory for vulnerable rows and keep track of which 
bits flipped in which row
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Phys Feng Shui
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◼ L-Chunks: Largest possible contiguous chunk = 64 KB

◼ M-Chunks: Row Size = 16 KB

◼ S-Chunks: Page Size = 4 KB

L

S

M



Phys Feng Shui
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◼ Assume we have an exploitable bit-flip in the red location

◼ Trick the OS to place a page table in that location



Phys Feng Shui
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◼ Trick the OS to place a page table in the red location

PT

PTE

0001 1011 0001 0111 1111 xxxx xxxx xxxx

P
a
g
e
 T

a
b
le

A 1-to-0 flip in the n-th offset bit causes the PTE 
to point to a location 2𝑛 pages before

Page Table Entry



Phys Feng Shui - Steps
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1. Exhaust(L) + Template(L)

2. Exhaust(M)

3. Free(L*)

4. Exhaust(M)

5. Free(M*) + FreeAll(L)

6. Land(S)

7. Padding(S)

8. Map(M)



Phys Feng Shui – Exhaust(L) + Template(L)
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◼ Allocate as many L-Chunks as possible

L

L

L

L



Phys Feng Shui – Exhaust(L) + Template(L)
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◼ Allocate as many L-Chunks as possible

◼ Scan rows in L-Chunks for vulnerable rows (Templating)

L*

L

L

L



Phys Feng Shui – Exhaust(M)
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◼ Allocate as many M-Chunks as possible

L*

M

L

M M

L

M M M

L

M M M



Phys Feng Shui – Free(L*)
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◼ Free the L-Chunk with the vulnerable row

M

L

M M

L

M M M

L

M M M



Phys Feng Shui – Free(L*) + Exhaust(M)
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◼ Free the L-Chunk with the vulnerable row

◼ Allocate as many M-Chunks as possible

M M* M M

M

L

M M

L

M M M

L

M M M



Phys Feng Shui – Free(M*) + FreeAll(L)
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◼ Free the M-Chunk with the vulnerable row

M M M

M

L

M M

L

M M M
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Phys Feng Shui – Free(M*) + FreeAll(L)
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◼ Free the M-Chunk with the vulnerable row

◼ Free all remaining L-Chunks

M M M

M

M M

M M M

M M M



Phys Feng Shui – Land(S)
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◼ Allocate S-Chunks until they land in the vulnerable region

❑ We can use /proc/zone-info and /proc/pagetypeinfo to 

determine when we reach the vulnerable region

M S M M

S

M S

M M

S

M M M

M M M



Phys Feng Shui – Padding(S)
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◼ Insert some padding so that the next allocated page-table 
will be placed in the vulnerable page

M S S S M M

S

M S

M M

S

M M M

M M M



Phys Feng Shui – Map(M)
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◼ Force another page-table allocation

◼ Map the PTE with a bit flip at offset bit 𝑛 to a location 2𝑛

pages away from the PT

M S S S P M M

S

M S

M M

S

M M M

M M M



Phys Feng Shui – Map(M)
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◼ Force another page-table allocation

◼ Map the PTE with a bit flip at offset bit 𝑛 to a location 2𝑛

pages away from the PT

◼ Map the vulnerable PTE to M’ which is 2 = 21 pages away

◼ A 1-to-0 flip in the 2nd offset bit of the PTE would result in 
the PTE mapping to the PT itself

M S S S P S’ M

M S S S P S’ M



Attack Procedure in Detail

1. Probe DRAM row size

2. Phys Feng Shui

3. Hammering the page-table

4. Exploiting
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Hammering

◼ Hammer until we reproduce the bit-flip from the templating 
stage

◼ Our PTE now points to the PT itself and we can effectively 
access the whole memory including kernel pages.
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Attack Procedure in Detail

1. Probe DRAM row size

2. Phys Feng Shui

3. Hammering the page-table

4. Exploiting
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Exploitation

1. Fill PT with PTE’s to kernel memory

2. Search for the security context of our own process 
stored in a struct cred

3. Overwrite our uid and gid to get root privileges
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Methodology and Evaluation
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Methodology

◼ Only Android devices were tested

◼ Architectures:

❑ ARMv7

❑ ARMv8

◼ DRAM types:

❑ LPDDR2/3/4

◼ Metrics:

❑ Time until first bit-flip

❑ Number of bit-flips

❑ Number of exploitable bit-flips
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Analysis
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Analysis Summary

◼ 80% of ARMv7 devices vulnerable

◼ 16% of ARMv8 devices vulnerable

❑ Seems more robust

◼ The same device can sometimes be vulnerable and 
sometimes not

❑ 20% of Nexus 5 devices were not vulnerable

◼ Time until first bit flip can vary greatly

◼ Percentage of exploitable bit-flips always around 7% 

◼ LPDDR2/3 is vulnerable

◼ LPDDR4 maybe vulnerable (only 1 device tested)
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Mitigation
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Software Mitigation

◼ Disallowing clflush and non-temporal access instructions

◼ Disallowing pagemap interface

◼ ANVIL [5]

❑ Detect Rowhammer attack by observing cache misses

[5] Z.B. Aweke, et al. ANVIL: Software-Based Protection Against Next-Generation Rowhammer Attacks ACM ‘16
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Hardware Mitigation

◼ Increase refresh rate

❑ Needs 8x refresh rate for complete mitigation

◼ ECC Memory

◼ Target Row Refresh

❑ LPDDR4 supports this

◼ PARA[1] & ARMOR[7]

[1] Y. Kim, et al. Flipping Bits in Memory Without Accessing Them, ISCA ‘14

[7] M. Ghasempour, et al. ARMOR: A Run-Time Memory Hot-Row Detector, 2015
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Drammer Mitigation

◼ Restricting the DMA interface

◼ Isolate DMA-able memory from other regions

❑ We can currently allocate memory in low memory regions 
used for kernel and page tables

◼ Introduce per-process memory limits

◼ All mitigations that prevent bit-flips are effective
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Summary
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Summary

◼ First effort to show that Rowhammer is possible on a 
platform other than x86

◼ Implemented a deterministic Rowhammer attack that 
grants root privileges using DMA and Phys Feng Shui

❑ Even without using special OS features

❑ Shown by implementing it on ARM/Android

◼ Many devices are vulnerable

❑ If there are bit-flips, the device is vulnerable

74



Strengths
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Strengths

◼ Novel and elegant solution to exploiting Rowhammer

◼ Does not rely on special OS features

◼ It is hard to mitigate if Rowhammer is possible on the 
device

◼ Well structured paper

◼ Most of it is well explained
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Weaknesses
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Weaknesses

◼ Assumes that bit-flips are always reproducible

◼ Not well tested on ARMv8

◼ Not tested outside of Android

◼ Some parts are not good explained

◼ Paper proposed some mitigation options which are not 
useful (Flikker[8], RAPID[9])

[8] S. Liu, et al. Flikker: Saving DRAM Refresh-power through Critical Data Partitioning, ASPLOS ‘11

[9] R. K. Venkatesan, et al. Retention-aware placement in DRAM (RAPID), HPCA ‘06
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Related Work
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Related Work

◼ ARMageddon [10]

❑ Demonstrated cache eviction on ARM

◼ DRAMA [11]

❑ Demonstrated that reverse engineering can reduce search time 
for Rowhammer bit flips

◼ Android ION Hazard: the Curse of Customizable Memory 
Management [12]

❑ Shows security flaws of Android ION memory allocator

[10] M. Lipp, et al. ARMageddon: Cache Attacks on Mobile Devices, USENIX ‘16

[11] P. Pessl, et al. DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks, USENIX ‘16

[12] H. Zhang, et al. Android ION Hazard: the Curse of Customizable Memory Management System, CCS ‘16
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Takeaways
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Takeaways

◼ Prior x86 Rowhammer exploitation methods cannot be used on 
ARM/Android

◼ ARM Memory controllers are fast enough to do Rowhammer

◼ Drammer is a novel deterministic method to exploit the 
Rowhammer bug

◼ Bypasses defenses like ANVIL using DMA

◼ No easy software fix

◼ Simple and effective
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Open Discussion
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Open Discussion

◼ Thoughts on the previous ideas to exploit Rowhammer?

◼ Will the problem stay relevant even with recent efforts of 
mitigation?

◼ Can you think of any additional mitigation for this attack?

◼ Could you think of other applications for this attack?
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Additional Thoughts

◼ Can this be applied to iOS?

❑ If we can use DMA from userspace, probably

◼ It could be used to root your Android Phone with a simple 
app for your own use

❑ No bootloader unlocking needed
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More Questions or Suggestions?
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https://moodle-app2.let.ethz.ch/mod/forum/discuss.php?d=38986

https://moodle-app2.let.ethz.ch/mod/forum/discuss.php?d=38986

