
Presented at CCS’16 Vienna, Austria

Drammer

Deterministic Rowhammer

Attacks on Mobile Platforms

V. v. d. Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C.
Maurice, G. Vigna, H. Bos, K. Razavi, C. Giuffrida

Vrije Universiteit Amsterdam UC Santa Barbara

Graz University of Technology

Presented by David Enderlin

ETH Zürich, 17 October 2019

Background, Problems & Goal

2

Rowhammer

3

◼ Flip bits in adjacent memory rows by “hammering” [1]

[1] Y. Kim et al. Flipping Bits in Memory Without Accessing Them, ISCA ‘14

Victim rows

Double-sided

Single-sided

Hammered

rows

Single-sided

Current Rowhammer Exploits

◼ Current exploits are either

❑ Probabilistic [2]

❑ Rely on special memory management features [3,4]

◼ Probabilistic attacks are especially problematic

◼ Only target x86

◼ There was doubt whether Rowhammer is even possible on
ARM

[2] D. Gruss, et al. Rowhammer.js: A Remote Software-Induced Fault Attack in Javascript, DIMVA ’16

[3] K. Razavi, et al. Flip Feng Shui: Hammering a Needle in the Software Stack, USENIX ’16

[4] Y. Xiao, et al. One Bit Flips, One Cloud Flops: Cross-VM Row Hammer Attacks, USENIX ‘16

4

Rowhammer Exploits in General

◼ Triggering the Rowhammer bug is different than using it

◼ We need three things:

1. Physical Memory Addressing

❑ To attack a specific row we have to know which rows are
next to it

2. Fast Uncached Memory Access

❑ Hammering fast enough to trigger the Rowhammer bug

3. Physical Memory Massaging

❑ Some way to get the sensitive data into the attacked row

5

Goal

◼ Show that Rowhammer is possible on ARM/Android

◼ Implement the first deterministic Rowhammer-
based Android root exploit

❑ Without requiring special memory management features

❑ Without requiring any permissions

6

Novelty, Key Ideas and Attack

Overview

7

Novelty

The paper makes two important contributions:

1. Phys Feng Shui: A generic technique for
deterministic Rowhammer exploitation

❑ Using commodity features offered by the OS

❑ Abusing the predictable behavior of the memory
allocator

2. Using this technique to implement an Android
root exploit: Drammer

8

RowhARMer

9

◼ Rowhammer on mobile devices is possible!

Device: LG Nexus 5 (Android 6.0.1)

How To Exploit Rowhammer

1. Physical memory addressing

2. Fast uncached memory access

3. Physical memory massaging

10

How To Exploit Rowhammer

1. Physical memory addressing

2. Fast uncached memory access

3. Physical memory massaging

11

1. Physical Memory Addressing

◼ Physical memory layout is unknown to userspace

◼ Problem: We need to know the mapping from virtual to
physical memory pages to exploit Rowhammer

◼ Current methods in x86:

❑ Pagemap interface

❑ Huge pages

12

2. Fast Uncached Memory Access

◼ Prerequisite to trigger the Rowhammer bug

◼ Problems:

❑ Memory controller might not be fast enough

❑ CPU cache masks out all memory reads after the first

◼ We need to bypass the cache somehow

◼ Current methods in x86:

❑ Explicit cache flush using clflush

❑ Cache eviction sets

❑ Non-temporal access instructions (e.g. MOVNTI, MOVNTDQA)

13

DMA Buffer Management

◼ Modern (mobile) devices have many different hardware
components:

❑ e.g. GPU, Display Controller, Camera, Sensors, ...

◼ OS needs to provide direct memory access (DMA) to
support efficient memory sharing between components

◼ Most devices perform DMA operations on contiguous
physical memory pages

◼ Without DMA the CPU would have to stall for all memory
accesses from all hardware components

14

DMA provides all we need

◼ DMA bypasses the cache ✓

◼ DMA gives us physically contiguous memory ✓

❑ This provides us with at least relative physical memory
addressing

◼ On Android: ION memory allocator

15

How To Exploit Rowhammer

1. Physical memory addressing

2. Fast uncached memory access

3. Physical memory massaging

16

3. Physical Memory Massaging

◼ Trick the victim into using a memory cell that is vulnerable
to Rowhammer

◼ Victim should store security-sensitive data (e.g. page table)
into vulnerable cell

◼ Current methods in x86:

❑ Page-table spraying

❑ Memory deduplication

❑ MMU paravirtualization

17

Phys Feng Shui

18

1. Allocate “everything”

2. Free a page which is vulnerable

3. The victim has to use the vulnerable page for its data

x86 vs. ARM
x86 Platforms ARMv7/ARMv8

Physical Memory Addressing

Pagemap interface ⬤ ⭘

Huge pages ⬤ -

Fast Uncached Memory Access

Explicit cache flush ⬤ ⭘ / ◐

Cache eviction sets ⬤ - / -

Non-temporal access instructions ⬤ - / ◐

Physical Memory Massaging

Page-table spraying ⬤ ◐

Memory deduplication ⬤ -

MMU paravirtualization ⬤ -

19

●: Available in unprivileged mode ◐: Not practical enough

○: Available in privileged mode

Attack Overview

1. Memory Templating
Scan memory for useful bit flips

2. Land sensitive data
Store a page table on a vulnerable location

3. Reproduce the bit flip
Modify the page table to get root access

20

Mechanisms

21

Attack Procedure in Detail

1. Probe DRAM row size

2. Phys Feng Shui

3. Hammering the page-table

4. Exploiting

22

Attack Procedure in Detail

1. Probe DRAM row size

2. Phys Feng Shui

3. Hammering the page-table

4. Exploiting

23

Probing DRAM Row Size

◼ We have to know the DRAM row size to apply Rowhammer

◼ Two page reads from the same bank are slower than from
different banks

24

Bank 1 Bank 2 Bank 3

Row Size

Probing DRAM Row Size in Practice

25

Device: LG Nexus 5

Attack Procedure in Detail

1. Probe DRAM row size

2. Phys Feng Shui

3. Hammering the page-table

4. Exploiting

26

Phys Feng Shui – Buddy Allocator

◼ Exploit predictable behavior of the Linux Buddy Allocator

❑ Split smallest chunk until it fits the requested allocation

❑ On free: Merge chunks back into bigger chunks

27

16 * 4 KB pages = 64 KB rows

Physical Memory:

Phys Feng Shui – Buddy Allocator

◼ Exploit predictable behavior of the Linux Buddy Allocator

❑ Split smallest chunk until it fits the requested allocation

❑ On free: Merge chunks back into bigger chunks

28

256

128

16 * 4 KB pages = 64 KB rows

Physical Memory: Allocate: 64 KB

Phys Feng Shui – Buddy Allocator

◼ Exploit predictable behavior of the Linux Buddy Allocator

❑ Split smallest chunk until it fits the requested allocation

❑ On free: Merge chunks back into bigger chunks

29

256

64

64

16 * 4 KB pages = 64 KB rows

Physical Memory: Allocate: 64 KB

Phys Feng Shui – Buddy Allocator

◼ Exploit predictable behavior of the Linux Buddy Allocator

❑ Split smallest chunk until it fits the requested allocation

❑ On free: Merge chunks back into bigger chunks

30

256

64

64

16 * 4 KB pages = 64 KB rows

Physical Memory: Allocate: 8 KB

Phys Feng Shui – Buddy Allocator

◼ Exploit predictable behavior of the Linux Buddy Allocator

❑ Split smallest chunk until it fits the requested allocation

❑ On free: Merge chunks back into bigger chunks

31

256

64

32 32

16 * 4 KB pages = 64 KB rows

Physical Memory: Allocate: 8 KB

Phys Feng Shui – Buddy Allocator

◼ Exploit predictable behavior of the Linux Buddy Allocator

❑ Split smallest chunk until it fits the requested allocation

❑ On free: Merge chunks back into bigger chunks

32

256

64

16 16 32

16 * 4 KB pages = 64 KB rows

Physical Memory: Allocate: 8 KB

Phys Feng Shui – Buddy Allocator

◼ Exploit predictable behavior of the Linux Buddy Allocator

❑ Split smallest chunk until it fits the requested allocation

❑ On free: Merge chunks back into bigger chunks

33

256

64

8 8 16 32

16 * 4 KB pages = 64 KB rows

Physical Memory: Allocate: 8 KB

Phys Feng Shui – Buddy Allocator

◼ Exploit predictable behavior of the Linux Buddy Allocator

❑ Split smallest chunk until it fits the requested allocation

❑ On free: Merge chunks back into bigger chunks

34

256

64

8 8 16 32

16 * 4 KB pages = 64 KB rows

Physical Memory: Allocate: 32 KB

Phys Feng Shui – Buddy Allocator

◼ Exploit predictable behavior of the Linux Buddy Allocator

❑ Split smallest chunk until it fits the requested allocation

❑ On free: Merge chunks back into bigger chunks

35

256

64

8 8 16 32

16 * 4 KB pages = 64 KB rows

Physical Memory: Free: 8 KB

Phys Feng Shui – Buddy Allocator

◼ Exploit predictable behavior of the Linux Buddy Allocator

❑ Split smallest chunk until it fits the requested allocation

❑ On free: Merge chunks back into bigger chunks

36

256

64

16 16 32

16 * 4 KB pages = 64 KB rows

Physical Memory: Free: 8 KB

Phys Feng Shui – Buddy Allocator

◼ Exploit predictable behavior of the Linux Buddy Allocator

❑ Split smallest chunk until it fits the requested allocation

❑ On free: Merge chunks back into bigger chunks

37

256

64

32 32

16 * 4 KB pages = 64 KB rows

Physical Memory: Free: 8 KB

Phys Feng Shui - Memory Templating

◼ Scan memory for vulnerable rows and keep track of which
bits flipped in which row

38

000

111

000

Phys Feng Shui - Memory Templating

◼ Scan memory for vulnerable rows and keep track of which
bits flipped in which row

39

000

111

000

Phys Feng Shui - Memory Templating

◼ Scan memory for vulnerable rows and keep track of which
bits flipped in which row

40

000

111

000

Phys Feng Shui - Memory Templating

◼ Scan memory for vulnerable rows and keep track of which
bits flipped in which row

41

000

11111111111111110111111111111111111111111111111

000

Phys Feng Shui - Memory Templating

◼ Scan memory for vulnerable rows and keep track of which
bits flipped in which row

42

111

000

111

Phys Feng Shui - Memory Templating

◼ Scan memory for vulnerable rows and keep track of which
bits flipped in which row

43

111

000

111

Phys Feng Shui - Memory Templating

◼ Scan memory for vulnerable rows and keep track of which
bits flipped in which row

44

111

000

111

Phys Feng Shui - Memory Templating

◼ Scan memory for vulnerable rows and keep track of which
bits flipped in which row

45

111

00000000000000000000000000000000001000000000000

111

Phys Feng Shui

46

◼ L-Chunks: Largest possible contiguous chunk = 64 KB

◼ M-Chunks: Row Size = 16 KB

◼ S-Chunks: Page Size = 4 KB

L

S

M

Phys Feng Shui

47

◼ Assume we have an exploitable bit-flip in the red location

◼ Trick the OS to place a page table in that location

Phys Feng Shui

48

◼ Trick the OS to place a page table in the red location

PT

PTE

0001 1011 0001 0111 1111 xxxx xxxx xxxx

P
a
g
e
 T

a
b
le

A 1-to-0 flip in the n-th offset bit causes the PTE
to point to a location 2𝑛 pages before

Page Table Entry

Phys Feng Shui - Steps

49

1. Exhaust(L) + Template(L)

2. Exhaust(M)

3. Free(L*)

4. Exhaust(M)

5. Free(M*) + FreeAll(L)

6. Land(S)

7. Padding(S)

8. Map(M)

Phys Feng Shui – Exhaust(L) + Template(L)

50

◼ Allocate as many L-Chunks as possible

L

L

L

L

Phys Feng Shui – Exhaust(L) + Template(L)

51

◼ Allocate as many L-Chunks as possible

◼ Scan rows in L-Chunks for vulnerable rows (Templating)

L*

L

L

L

Phys Feng Shui – Exhaust(M)

52

◼ Allocate as many M-Chunks as possible

L*

M

L

M M

L

M M M

L

M M M

Phys Feng Shui – Free(L*)

53

◼ Free the L-Chunk with the vulnerable row

M

L

M M

L

M M M

L

M M M

Phys Feng Shui – Free(L*) + Exhaust(M)

54

◼ Free the L-Chunk with the vulnerable row

◼ Allocate as many M-Chunks as possible

M M* M M

M

L

M M

L

M M M

L

M M M

Phys Feng Shui – Free(M*) + FreeAll(L)

55

◼ Free the M-Chunk with the vulnerable row

M M M

M

L

M M

L

M M M

L

M M M

Phys Feng Shui – Free(M*) + FreeAll(L)

56

◼ Free the M-Chunk with the vulnerable row

◼ Free all remaining L-Chunks

M M M

M

M M

M M M

M M M

Phys Feng Shui – Land(S)

57

◼ Allocate S-Chunks until they land in the vulnerable region

❑ We can use /proc/zone-info and /proc/pagetypeinfo to

determine when we reach the vulnerable region

M S M M

S

M S

M M

S

M M M

M M M

Phys Feng Shui – Padding(S)

58

◼ Insert some padding so that the next allocated page-table
will be placed in the vulnerable page

M S S S M M

S

M S

M M

S

M M M

M M M

Phys Feng Shui – Map(M)

59

◼ Force another page-table allocation

◼ Map the PTE with a bit flip at offset bit 𝑛 to a location 2𝑛

pages away from the PT

M S S S P M M

S

M S

M M

S

M M M

M M M

Phys Feng Shui – Map(M)

60

◼ Force another page-table allocation

◼ Map the PTE with a bit flip at offset bit 𝑛 to a location 2𝑛

pages away from the PT

◼ Map the vulnerable PTE to M’ which is 2 = 21 pages away

◼ A 1-to-0 flip in the 2nd offset bit of the PTE would result in
the PTE mapping to the PT itself

M S S S P S’ M

M S S S P S’ M

Attack Procedure in Detail

1. Probe DRAM row size

2. Phys Feng Shui

3. Hammering the page-table

4. Exploiting

61

Hammering

◼ Hammer until we reproduce the bit-flip from the templating
stage

◼ Our PTE now points to the PT itself and we can effectively
access the whole memory including kernel pages.

62

M S S S P M M’

Attack Procedure in Detail

1. Probe DRAM row size

2. Phys Feng Shui

3. Hammering the page-table

4. Exploiting

63

Exploitation

1. Fill PT with PTE’s to kernel memory

2. Search for the security context of our own process
stored in a struct cred

3. Overwrite our uid and gid to get root privileges

64

Methodology and Evaluation

65

Methodology

◼ Only Android devices were tested

◼ Architectures:

❑ ARMv7

❑ ARMv8

◼ DRAM types:

❑ LPDDR2/3/4

◼ Metrics:

❑ Time until first bit-flip

❑ Number of bit-flips

❑ Number of exploitable bit-flips

66

Analysis

67

Analysis Summary

◼ 80% of ARMv7 devices vulnerable

◼ 16% of ARMv8 devices vulnerable

❑ Seems more robust

◼ The same device can sometimes be vulnerable and
sometimes not

❑ 20% of Nexus 5 devices were not vulnerable

◼ Time until first bit flip can vary greatly

◼ Percentage of exploitable bit-flips always around 7%

◼ LPDDR2/3 is vulnerable

◼ LPDDR4 maybe vulnerable (only 1 device tested)

68

Mitigation

69

Software Mitigation

◼ Disallowing clflush and non-temporal access instructions

◼ Disallowing pagemap interface

◼ ANVIL [5]

❑ Detect Rowhammer attack by observing cache misses

[5] Z.B. Aweke, et al. ANVIL: Software-Based Protection Against Next-Generation Rowhammer Attacks ACM ‘16

70

Hardware Mitigation

◼ Increase refresh rate

❑ Needs 8x refresh rate for complete mitigation

◼ ECC Memory

◼ Target Row Refresh

❑ LPDDR4 supports this

◼ PARA[1] & ARMOR[7]

[1] Y. Kim, et al. Flipping Bits in Memory Without Accessing Them, ISCA ‘14

[7] M. Ghasempour, et al. ARMOR: A Run-Time Memory Hot-Row Detector, 2015

71

Drammer Mitigation

◼ Restricting the DMA interface

◼ Isolate DMA-able memory from other regions

❑ We can currently allocate memory in low memory regions
used for kernel and page tables

◼ Introduce per-process memory limits

◼ All mitigations that prevent bit-flips are effective

72

Summary

73

Summary

◼ First effort to show that Rowhammer is possible on a
platform other than x86

◼ Implemented a deterministic Rowhammer attack that
grants root privileges using DMA and Phys Feng Shui

❑ Even without using special OS features

❑ Shown by implementing it on ARM/Android

◼ Many devices are vulnerable

❑ If there are bit-flips, the device is vulnerable

74

Strengths

75

Strengths

◼ Novel and elegant solution to exploiting Rowhammer

◼ Does not rely on special OS features

◼ It is hard to mitigate if Rowhammer is possible on the
device

◼ Well structured paper

◼ Most of it is well explained

76

Weaknesses

77

Weaknesses

◼ Assumes that bit-flips are always reproducible

◼ Not well tested on ARMv8

◼ Not tested outside of Android

◼ Some parts are not good explained

◼ Paper proposed some mitigation options which are not
useful (Flikker[8], RAPID[9])

[8] S. Liu, et al. Flikker: Saving DRAM Refresh-power through Critical Data Partitioning, ASPLOS ‘11

[9] R. K. Venkatesan, et al. Retention-aware placement in DRAM (RAPID), HPCA ‘06

78

Related Work

79

Related Work

◼ ARMageddon [10]

❑ Demonstrated cache eviction on ARM

◼ DRAMA [11]

❑ Demonstrated that reverse engineering can reduce search time
for Rowhammer bit flips

◼ Android ION Hazard: the Curse of Customizable Memory
Management [12]

❑ Shows security flaws of Android ION memory allocator

[10] M. Lipp, et al. ARMageddon: Cache Attacks on Mobile Devices, USENIX ‘16

[11] P. Pessl, et al. DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks, USENIX ‘16

[12] H. Zhang, et al. Android ION Hazard: the Curse of Customizable Memory Management System, CCS ‘16

80

Takeaways

81

Takeaways

◼ Prior x86 Rowhammer exploitation methods cannot be used on
ARM/Android

◼ ARM Memory controllers are fast enough to do Rowhammer

◼ Drammer is a novel deterministic method to exploit the
Rowhammer bug

◼ Bypasses defenses like ANVIL using DMA

◼ No easy software fix

◼ Simple and effective

82

Open Discussion

83

Open Discussion

◼ Thoughts on the previous ideas to exploit Rowhammer?

◼ Will the problem stay relevant even with recent efforts of
mitigation?

◼ Can you think of any additional mitigation for this attack?

◼ Could you think of other applications for this attack?

84

Additional Thoughts

◼ Can this be applied to iOS?

❑ If we can use DMA from userspace, probably

◼ It could be used to root your Android Phone with a simple
app for your own use

❑ No bootloader unlocking needed

85

More Questions or Suggestions?

86

https://moodle-app2.let.ethz.ch/mod/forum/discuss.php?d=38986

https://moodle-app2.let.ethz.ch/mod/forum/discuss.php?d=38986

