
||

Fairness via Source Throttling:
A Configurable and High-Performance Fairness Substrate for

Multi-Core Memory Systems

Eiman Ebrahimi | Chang Joo Lee | Onur Mutlu | Yale N. Patt

28.11.2019Felix Tockner 1

ASPLOS 2010 Computer Architecture Laboratory
Carnegie Mellon University

HPS Research Group
The University of Texas at Austin

|| 28.11.2019Felix Tockner 2

Executive Summary
§ Motivation: Cores in a chip-multiprocessor system share multiple hardware

resources in the memory subsystem
§ Interference in the shared resources can lead to unfair slowdown for some applications

§ Problem: Existing fairness mechanisms focus on a single resource
§ Multiple independently implemented mechanisms can make contradictory decisions, leading to

low fairness and loss of performance
§ Goal: provides fairness in the entire shared memory system without degrading

performance
§ Key Contributions: Fairness via Source Throttling(FST) provides two major

mechanisms
§ 1) Runtime fairness evaluation
§ 2) Dynamic request throttling

§ Major Results: improve performance by 25.6%/14.5% and reduce unfairness by
44%/36%

||

§ Background, Problem & Goal
§ Novelty
§ Key Approach & Ideas
§ Mechanism
§ Methodology & Evaluation
§ Conclusion

§ Takeaways
§ Strengths and Weaknesses
§ Thoughts & Ideas
§ Open Discussion

28.11.2019Felix Tockner 3

Outline

||

§ Background, Problem & Goal
§ Novelty
§ Key Approach & Ideas
§ Mechanism
§ Methodology & Evaluation
§ Conclusion

§ Takeaways
§ Strengths and Weaknesses
§ Thoughts & Ideas
§ Open Discussion

28.11.2019Felix Tockner 4

Outline

|| 28.11.2019Felix Tockner 5

System Layout

Core

Core

L1
L1

L2

D
R

AM

MSHR

MSHR

||

System Layout

28.11.2019Felix Tockner 6

Core

Core

L1
L1

L2

D
R

AM

MSHR

MSHR

Origin of inter-core
interference

Large portion of memory subsystem is shared between cores

|| 28.11.2019Felix Tockner 7

Interference and delays lead to slowdown

Goal: all applications of equal priority
experience the same slowdown

||

§ Previous research focused on individual resources

28.11.2019Felix Tockner 8

Previous Approach

|| 28.11.2019Felix Tockner 9

Previous Approach

|| 28.11.2019Felix Tockner 10

Previous Approach

||

§ Previous research focused on individual resources

§ It is challenging to properly coordinate multiple fairness mechanisms
§ Partitioning one resource may change demands on another shared resource

28.11.2019Felix Tockner 11

Previous Approach

||

§ Background, Problem & Goal
§ Novelty
§ Key Approach & Ideas
§ Mechanism
§ Methodology & Evaluation
§ Conclusion

§ Takeaways
§ Strengths and Weaknesses
§ Thoughts & Ideas
§ Open Discussion

28.11.2019Felix Tockner 12

Outline

|| 28.11.2019Felix Tockner 13

System-Wide Fairness

§ Tackle unfairness in the entire shared memory system
§ Eliminate the need for multiple fairness mechanisms

§ Control fairness by orchestrating memory requests
§ Rate of memory request injections
§ Number of memory request injections

||

§ Background, Problem & Goal
§ Novelty
§ Key Approach & Ideas
§ Mechanism
§ Methodology & Evaluation
§ Conclusion

§ Takeaways
§ Strengths and Weaknesses
§ Thoughts & Ideas
§ Open Discussion

28.11.2019Felix Tockner 14

Outline

||

§ FST works on an interval basis

§ FST consists of two major components:
§ 1) Runtime fairness evaluation
§ 2) Dynamic request throttling

§ No throttling in interval 1

§ Throttling for Interval x is determined by the
fairness estimation of interval x-1

28.11.2019Felix Tockner 15

Interval based Estimation and Throttling

||

§ Background, Problem & Goal
§ Novelty
§ Key Approach & Ideas
§ Mechanism
§ Methodology & Evaluation
§ Conclusion

§ Takeaways
§ Strengths and Weaknesses
§ Thoughts & Ideas
§ Open Discussion

28.11.2019Felix Tockner 16

Outline

||

§ Goal: dynamically estimate system unfairness

§ Slowdown: Tshared/Talone
§ Tshared: number of cycles to execute simultaneously with other applications
§ Talone: number of cycles to execute alone

§ Estimating Talone while running multiple applications
§ Texcess: number of excess execution cycles induced by inter-core interference
§ Talone = Tshared - Texcess

28.11.2019Felix Tockner 17

Runtime Fairness Evaluation

||

§ Three sources of inter-core interference:
§ Shared cache
§ DRAM bus and bank
§ DRAM row-buffer

§ InterferencePerCore bit-vector
§ Indicate whether a core is delayed due to inter-core interference

§ Bit-vector for each source
§ Update main copy by taking union of the source bit-vectors

28.11.2019Felix Tockner 18

Tracking Inter-Core Interference

Cache

Bus&Bank
Row-Buffer

||

§ Goal: Estimating inter-core interference on the cache by tracking cache misses
caused by another core

§ Pollution filter for each core
§ Bit-vector is indexed by the lower order bits of the accessed cache line address
§ A set entry in the bit-vector indicates that a cache line belonging to this core was evicted by

another core

§ Three steps in case of cache miss:
§ 1) on cache miss access pollution filter with the missing address and check wether bit is set
§ 2) set the bit in the InterferencePerCore vector and reset the bit in the pollution filter
§ 3) when the interfered-with memory request is serviced reset the InterferencePerCore bit

28.11.2019Felix Tockner 19

Cache Interference

||

§ Goal: Estimate inter-core interference caused by an inability to access DRAM
due to another core using the bus or requesting service from the bank

§ This situation is easily detectable
§ If detected the corresponding InterferencePerCore bit is set

§ The InterferencePerCore bit is reset when no request from this core is being
prevented access to DRAM by another cores requests

28.11.2019Felix Tockner 20

DRAM Bus & Bank Interference

||

§ Goal: Estimate interference caused by the conversion of row-buffer hits to a
miss/conflict due to another cores memory request

§ Shadow Row-Buffer Address Register for each core and for each bank
§ Whenever memory request accesses some row X, the SRAR is updated to X

§ Three Steps in case of Row-Buffer miss:
§ 1) on row-buffer miss consult SRAR
§ 2) if the SRAR bit is set, interference is present, hence InterferencePerCore bit is set
§ 3) once the memory request is serviced the InterferencePerCore bit is reset

28.11.2019Felix Tockner 21

DRAM Row-Buffer Interference

|| 28.11.2019Felix Tockner 22

||

§ Every cycle:
§ Check whether core i experiences interference
§ Increment Texcess by 1

§ Talone = Tshared - Texcess

28.11.2019Felix Tockner 23

Estimation of Texcess for Core i

|| 28.11.2019Felix Tockner 24

||

§ Check whether the estimated unfairness is bigger than a certain unfairness
threshold
§ Throttle down application with the smallest slowdown
§ Throttle up application with the largest slowdown

§ After fairness was achieved for a certain number of successive intervals:
§ Throttle up all applications

28.11.2019Felix Tockner 25

Dynamic Request Throttling

||

§ 1) Adjust MSHR quota
§ MSHR quota determines the max. number of outstanding misses for each core
§ Reduce the pressure by decreasing the number of concurrent request contending for service

§ 2) Adjust the rate of issuing requests to the shared cache
§ Reduce number of memory requests per unit time
§ This allows requests from other applications to be prioritized

28.11.2019Felix Tockner 26

Throttling Mechanisms

||

§ Different Fairness Objectives:
§ The goal to be achieved by FST can be configured by system software (trigger condition)

§ Thread Weights:
§ Adjust priority of different applications by applying weights

§ Thread Migration and Context Switches:
§ On context switch or thread migration the corresponding interference state is cleared
§ On restart of execution, the thread starts with max. throttle and then FST dynamically adapts

28.11.2019Felix Tockner 27

System Software Support

||

§ Each core maintains a set of N-1 counters, with N being the number of cores,
which keep track of the inter-core interference caused by each other core

§ This can be used to identify which core experiences the most slowdown
(Appslow) and who of the other cores is the main contributor (Appinterfering)

§ Once identified, the main contributor will be throttled down and Appslow will be
throttled up

§ Cores other than the Appslow and Appinterfering are throttled up every threshold
intervals to optimize performance

28.11.2019Felix Tockner 28

Scalability to more Cores

||

§ FR-FCFS has the potential to starve application with no row-buffer locality
§ Even if the interfering application gets throttled down the problem can still exist
§ This denial of service can happen continuously

§ Stop prioritizing row-buffer hits

28.11.2019Felix Tockner 29

Preventing Bank Service Denial due to FR-FCFS

||

§ Background, Problem & Goal
§ Novelty
§ Key Approach & Ideas
§ Mechanism
§ Methodology & Evaluation
§ Conclusion

§ Takeaways
§ Strengths and Weaknesses
§ Thoughts & Ideas
§ Open Discussion

28.11.2019Felix Tockner 30

Outline

||

§ In-house cycle-accurate x86 CMP simulator

§ Faithfully model all port contention, queuing
effects, bank conflicts, and other major
DDR3 DRAM system constraints

28.11.2019Felix Tockner 31

System Specification

||

§ 18 two-application workloads from the SPEC CPU 2000/2006 benchmark
§ Two-application workloads were chosen such that at least one of them is highly

memory-intensive

§ 10 four-application workloads from the SPEC CPU 2000/2006 benchmark
§ Four-applications workloads were chosen such that at least one of them has high intensity

and one has at least medium or high intensity

28.11.2019Felix Tockner 32

Workloads

||

§ Weighted Speedup(Wspeedup):
§ IPCalone is the IPC(instructions per cycle) measured when running alone
§ IPCshared is measured while running in tandem with other applications

§ Harmonic mean of Speedups(Hspeedup):
§ Balanced measure between fairness and system throughput

28.11.2019Felix Tockner 33

Metrics

|| 28.11.2019Felix Tockner 34

Methodology
§ NoFairness:

§ Employs no fairness techniques in the shared memory subsystem
§ Uses LRU cache replacement and FR-FCFS

§ FairCache:
§ Uses Virtual private caches technique for fair capacity management

§ NFQ+FairCache:
§ Uses a network fair queuing(NFQ) fair memory scheduler combined with FairCache

§ PAR-BS+FairCache:
§ Use parallelism-aware batch scheduling fair memory scheduler and FairCache

||

§ All Fairness techniques degrade Wspeedup
to some extent

§ Unsophisticated fairness mechanisms can
have a negative effect on system
performance

§ FST provides a significantly better balance
between system fairness and performance

28.11.2019Felix Tockner 35

2-Core System Results

Average performance on the 2 core system

||

§ Previous fairness mechanisms fail to
improve system fairness significantly
§ Prioritize nonintensive applications regardless

of whether or not those experience slowdown

§ FST is the best technique for system fairness
and Hspeedup, while not falling behind in
Wspeedup

28.11.2019Felix Tockner 36

4-Core System Results

Average performance on the 4 core system

||

§ Art and Astar are memory intensive:
§ These are slowed down too much by

NFQ+FairCache and PAR-BS+FairCache, causing
high unfairness

§ Inability to detect when slowdown is caused

28.11.2019Felix Tockner 37

Case Study

|| 28.11.2019Felix Tockner 38

Hardware Cost

||

§ Background, Problem & Goal
§ Novelty
§ Key Approach & Ideas
§ Mechanism
§ Methodology & Evaluation
§ Conclusion

§ Takeaways
§ Strengths and Weaknesses
§ Thoughts & Ideas
§ Open Discussion

28.11.2019Felix Tockner 39

Outline

|| 28.11.2019Felix Tockner 40

Executive Summary & Conclusion
§ Motivation: Cores in a chip-multiprocessor system share multiple hardware

resources in the memory subsystem
§ Interference in the shared resources can lead to unfair slowdown for some applications

§ Problem: Existing fairness mechanisms focus on a single resource
§ Multiple independently implemented mechanisms can make contradictory decisions, leading to

low fairness and loss of performance
§ Goal: provides fairness in the entire shared memory system without degrading

performance
§ Key Contributions: Fairness via Source Throttling(FST) provides two major

mechanisms
§ 1) Runtime fairness evaluation
§ 2) Dynamic request throttling

§ Major Results: improve performance by 25.6%/14.5% and reduce unfairness by
44%/36%

||

§ Background, Problem & Goal
§ Novelty
§ Key Approach & Ideas
§ Mechanism
§ Methodology & Evaluation
§ Conclusion

§ Takeaways
§ Strengths and Weaknesses
§ Thoughts & Ideas
§ Open Discussion

28.11.2019Felix Tockner 41

Outline

||

§ In order to ensure good performance for multiple applications in a shared
system, controlling system-wide fairness is necessary

§ By implementing FST one can decrease system complexity, due to the fact that
no more coordination between multiple fairness techniques is needed

28.11.2019Felix Tockner 42

Takeaways

||

§ Background, Problem & Goal
§ Novelty
§ Key Approach & Ideas
§ Mechanism
§ Methodology & Evaluation
§ Conclusion

§ Takeaways
§ Strengths and Weaknesses
§ Thoughts & Ideas
§ Open Discussion

28.11.2019Felix Tockner 43

Outline

||

§ A new approach to an old problem, which will only get worse with
rising core counts

§ In addition to improving system-wide fairness it also provides comparable or
superior performance compared to prior fairness mechanisms

§ Reduce system complexity by replacing multiple resource-based mechanisms
with FST

§ FST can accomplish multiple different fairness objectives
§ The evaluation provides a good overview, while the case study provides more

insight
§ It is well written

28.11.2019Felix Tockner 44

Strengths

||

§ False positive and negative in the pollution filter
§ Implementation cost of FST may scale poorly since the number of cores directly

determines the cost
§ Diminishing returns on a system with a lot of thread migration and context

switches
§ The optimal unfairness threshold mentioned in the paper might be hard to find

28.11.2019Felix Tockner 45

Weaknesses/Limitations

||

§ Background, Problem & Goal
§ Novelty
§ Key Approach & Ideas
§ Mechanism
§ Methodology & Evaluation
§ Conclusion

§ Takeaways
§ Strengths and Weaknesses
§ Thoughts & Ideas
§ Open Discussion

28.11.2019Felix Tockner 46

Outline

||

§ Interval-based estimation and throttling
§ What impact will an application with rapidly and randomly changing memory intensity have?

§ Aggressiveness levels
§ Would it make sense to have throttle function based on slowdown instead of fixed levels?

§ Security aspects are not evaluated
§ Could a single or a group of bad actors attack FST?

28.11.2019Felix Tockner 47

Thoughts and Ideas

||

§ Background, Problem & Goal
§ Novelty
§ Key Approach & Ideas
§ Mechanism
§ Methodology & Evaluation
§ Conclusion

§ Takeaways
§ Strengths and Weaknesses
§ Thoughts & Ideas
§ Open Discussion

28.11.2019Felix Tockner 48

Outline

||

§ Will the problem become more important over time?

§ Are there situations where FST might not work?

§ Do you think the increase in cost due to higher bank and core counts will be
overshadowed by the increase in performance?

§ Can you think of some disadvantages that I missed or even some way of
improving FST?

28.11.2019Felix Tockner 49

Discussion starters

|| 28.11.2019Felix Tockner 50

Backup Slides

|| 28.11.2019Felix Tockner 51

1: check wether some sort of inter-core
interference is present
2: if increment the ExcessCycles counter

1: whenever a interfered with memory request
is serviced reset InterferencePerCore bit and
set InterferingCoreId of core i to i
2: whenever a memory request is scheduled
and also has no other request waiting on any
bank busy servicing another core

||

§ This is a simplified version for dual cores

§ After a certain number of fair intervals both
cores are allowed to throttle up

28.11.2019Felix Tockner 52

Dynamic request throttling

|| 28.11.2019Felix Tockner 53

1) Responsible for throttling down the most interfering application

2) Solving bank service denial due to FR-FCFS

3) Throttling up all applications that are neither Appslow nor
aa Appinterfering every threshold1 intervals

4) Throttling up ??? application after number of threshold2
intervals

||

§ We use 8 different aggressiveness levels:
§ 2%, 3%, 4%, 5%, 10%, 25%, 50% and 100%

28.11.2019Felix Tockner 54

FST Parameter used in the evaluation

