
Improving GPU Performance via

Large Warps and Two-Level Warp Scheduling

Veynu Narasiman† Michael Shebanow‡ Chang Joo Lee¶
Rustam Miftakhutdinov† Onur Mutlu§ Yale N. Patt†

†The University of Texas at Austin ‡Nvidia Corporation ¶Intel Corporation §Carnegie Mellon University

MICRO 2011

1

Presented by Ondrej Cernin

5.12.2018

Executive Summary

◼ GPU performance suffers performance penalties due to

❑ Branch divergence

❑ Long latency operations

◼ Paper proposes two new mechanisms to improve GPU performance
by better resource utilization

❑ Large warp microarchitecture

❑ Two-level round warp scheduling

2

Background

◼ Graphic Processing Units (GPUs)

❑ SIMD (single instruction, multiple data)

◼ multiple functional units

❑ Exploits Thread-Level Parallelism (TLP) exposed by the
programmer

◼ Warps – batches of threads executing the same code

◼ GPU’s concurrently execute many warps on a single core

❑ Can execute on a different warp when one is stalled

3

4Slide Credit: Onur Mutlu – Design of Digital Circuits – ETH Spring 2017

Warp Instruction Level Parallelism

SIMD
Lane

Problem 1

◼ Underutilization of the computational resources on a GPU core

❑ GPU only efficient if threads remain on the same dynamic execution path

❑ Conditional branch instructions cause threads to diverge

❑ GPU implementation allow only one PC (program counter) at a time for a warp

5Illustration Credit: Onur Mutlu – Design of Digital Circuits – ETH Spring 2017

Problem 2

◼ Long latency operations

❑ Warp instruction fetch policy on a GPU core can affect the total latency

◼ i.e. round-robin scheduling with equal warp priority leads to all warps arriving at the same
long latency at the same time

◼ Allowing warps to progress at very different rates can result in starvation and destroy data
locality

6

All Warps Compute

Warp 0
Warp 1

Warp 2

Warp 15

All Warps Compute
Idle Cycles

Core

Memory
System

Time

Baseline GPU round-robin scheduling with 16 warps

Computational Resource Utilization

Underutilization
of FUs

Idle FUs

7

High branch
divergence %

High long latency operations %

Goals and Key Ideas

Problem 1 – Branch divergence

◼ Improve GPU performance by better utilizing computational resources

◼ Proposal: Large Warp Microarchitecture (LWM)

Problem 2 – long latency instructions

◼ Reduce the number of idle FU cycles

◼ Proposal: two-level round-robin warp instruction fetch scheduling policy

◼ … And combine both to achieve maximum speedup

8

Mechanisms

9

Conditional Branch Handling

◼ A warp can only have a single active PC at any given time

→ Branch divergence

◼ One path must be chosen first and the other is pushed on a divergence stack

◼ Divergence stack

❑ Used to bring warp back together → Control flow merge (CFM) point

10

Reconvergence PC Active Mask Execute PC

Current PC:

Current Active Mask:

A

1111

Conditional Branch Handling

1. When a divergent branch is reached, push a join entry onto the divergence
stack.

• Re-convergence PC and Execute PC are equal to the control flow merge point

• Active mask field is set to the current active mask

• One of the two divergent paths is selected to be executed first, while the other is
added to the divergence stack

11

Reconvergence PC Active Mask Execute PC

D

D

0100

1111

C

D

Current PC:

Current Active Mask:

A

1111

Conditional Branch Handling

2. Warp’s next PC is compared to the re-convergence PC at the top of the stack

❑ If equal – stack is popped, active mask & PC updated

12

Reconvergence PC Active Mask Execute PC

D 1111 D

Current PC:

Current Active Mask:

C

0100

Mechanism 1 - Large Warp Microarchitecture (LWM)

◼ Proposed solution to branch divergence

→ large warp microarchitecture

❑ Fewer, but larger warps

❑ Total number of threads and SIMD width stay the same

❑ Benefit: fully populated sub-warps can be formed
dynamically from active threads

◼ Implemented using an active mask

❑ Each cell = single bit

❑ # of columns = SIMD width

❑ Storage cost stays the same

13

Row 0 1 1 0 0

Row 1 1 0 0 1

Row 2 0 1 1 1

Row 3 0 0 1 0

.

.

.

.

.

.

.

.

.

.

.

.

Row k-1 1 0 1 0

Large warp active mask

L
a

rg
e

 w
a

rp
 d

e
p

th
 =

 K

Large warp width = SIMD width = N

LWM: Sub-warp creation

◼ Goal: pack as many warps as possible into a sub-warp

◼ Implementation: specialized sub-warping logic

❑ Examines the two-dimensional active mask of the large warp

❑ Attempts to pick one active thread from each column

14

Row 0 1 1 0 0

Row 1 1 0 0 1

Row 2 0 1 1 1

Row 3 0 0 1 0

.

.

.

.

.

.

.

.

.

.

.

.

Row k-1 1 0 1 0

Large warp active mask

L
a

rg
e

 w
a

rp
 d

e
p

th
 =

 K

Large warp width = SIMD width = N

LWM: Sub-warp creation

Row 0 1 1 0 0

Row 1 1 0 0 1

Row 2 0 1 1 1

Row 3 0 0 1 0

Row 4 0 0 1 1

Row 5 0 1 0 1

Row 6 1 0 0 0

Row 7 1 0 1 0

15

1 1 0 0

1 0 0 1

0 1 1 1

0 0 1 0

0 0 1 1

0 1 0 1

1 0 0 0

1 0 1 0

Active Mask

1 1 1 1

Row ID

0 0 2 1

0 0 0 0

1 0 0 0

0 1 0 1

0 0 1 0

0 0 1 1

0 1 0 1

1 0 0 0

1 0 1 0

Active Mask

1 1 1 1

Row ID

1 2 3 2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 1

0 1 0 1

1 0 0 0

1 0 1 0

Active Mask

1 1 1 1

Row ID

6 5 4 4

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

1 0 1 0

Active Mask

1 0 1 1

Row ID

7 - 7 5

After Fetch Cycle x+1 Cycle x+2 Cycle x+3 Cycle x+4

How many cycles
for baseline GPU?

8

How many cycles
for GPU with LWM? 4

Subwarp

Large Warp Microarchitecture Adjustments

◼ Divergence stack

❑ Handled at the large warp level

◼ Re-fetch policy

❑ Wait for first sub-warp to finish

❑ Re-fetch policy for conditional branches

◼ Wait for last sub-warp

◼ Unconditional branch instructions

❑ Execute in only one subwarp in a single cycle

16

Mechanism 2 – Two-Level Warp Scheduling

Problem 2 – long latency instructions

◼ Solution: Two-Level Warp Scheduling

17

All Warps Compute

Warp 0
Warp 1

Warp 2

Warp 15

All Warps Compute
Idle Cycles

Core

Memory
System

Time

Baseline GPU round-robin scheduling with 16 warps

Two Level Warp Scheduling

❑ All concurrently executing warps are grouped into fixed-sized fetch groups

◼ For example, 32 warps into 4 fetch groups with 8 warps each and IDs 0-3

❑ Scheduling policy selects a single fetch group to prioritize

❑ Warps within the same fetch group

◼ Have equal priority

◼ Are scheduled in round-robin fashion

❑ Fetch group prioritization switch

◼ Only once all warps in prioritized group are stalled

◼ Also round robin

❑ Row buffer locality remains high due to two levels of round-robin

18

Two Level Warp Scheduling – Comparison

19

All Warps Compute

Warp 0
Warp 1

Warp 2

Warp 15

All Warps Compute
Idle Cycles

Core

Memory
System

Time

Warps
Compute

Warp 0
Warp 1

Warp 7

Idle Cycles
Core

Memory
System

Time

Warps
Compute

Warps
Compute

Warps
Compute

Warp 8
Warp 9

Warp 15

Baseline GPU round-robin scheduling with 16 warps

Two-level warp scheduling with 2 fetch groups of 8 warps each

Saved Cycles

Two-Level Scheduling – Fetch Groups

◼ Ideal fetch group size:

❑ Enough warps to keep pipeline busy in absence of long latency operations

❑ Too small

◼ Uneven progression

◼ Destroys data locality among warps

❑ Too large

◼ Takes longer to reach stalling point, limiting effectiveness of TLS

◼ Large fetch group = greater number of warps stalling = less warps to hide latency

20

LWM & Two-Level Scheduling

◼ Best partitioning

❑ LWS: 4 large warps, 256 threads each

❑ TLS fetch group size: 1 large warp = 256 threads

◼ Applications with few long latency stalls cause issues

❑ Lack of stalls leads to few fetch group changes

❑ Starvation for a single large warp

❑ Bubbles in pipeline due to branch re-fetch policy for large warps

◼ Solution: Fetch group priority change after a timeout

❑ 32k instruction timeout period

❑ Prevents starvation

21

Key Results:

Methodology and Evaluation

22

Methology - GPU

23

Scalar Front End

1-wide fetch, decode

4KB single ported I-Cache

Round-robin scheduling

SIMD Back End In order, 5 stages, 32 parallel SIMD lanes

Register File and
On Chip

Memories

64KB Register File

128KB, 4-way, D-Cache with 128B line size

128KB, 32-banked private memory

Memory System

Open row, first-come first-serve scheduling

8 banks, 4KB row buffer per bank

100-cycle row hit latency, 300-cycle row conflict latency

32 GB/s memory bandwidth

Simulate single GPU core with 1024 thread contexts
divided into 32 warps each with 32 threads

Methodology - Benchmarks

24

Results

◼ TBC – Thread Block Compaction
❑ Groups multiple regular-sized warps into a block and synchronizes them at every branch instruction

25

0

5

10

15

20

25

30

35

b
la

c
k
ja

c
k

 s
o

rt

 v
it
e

rb
i

 k
m

e
a

n
s

 d
e

c
ry

p
t

 b
la

c
k
s
c
h

o
le

s

 n
e

e
d

le
m

a
n

 h
o

ts
p

o
t

 m
a

tr
ix

_
m

u
lt

 r
e

d
u

c
ti
o

n

 h
is

to
g

ra
m

IP
C

Baseline TBC LWM 2Lev LWM+2Lev

0.0

0.1

0.2

0.3

0.4

0.5

0.6

b
fs

0

5

10

15

20

25

30

35

g
m

e
a

n

0

5

10

15

20

25

30

35

b
la

c
k
ja

c
k

 s
o

rt

 v
it
e

rb
i

 k
m

e
a

n
s

 d
e

c
ry

p
t

 b
la

c
k
s
c
h

o
le

s

 n
e

e
d

le
m

a
n

 h
o

ts
p

o
t

 m
a

tr
ix

_
m

u
lt

 r
e

d
u

c
ti
o

n

 h
is

to
g

ra
m

IP
C

Baseline TBC LWM 2Lev LWM+2Lev

0.0

0.1

0.2

0.3

0.4

0.5

0.6

b
fs

0

5

10

15

20

25

30

35

g
m

e
a

n

Results

26

◼ 2Lev alone - 9.9% improvement
❑ Good for long-latency stalls

❑ Hit rate within 1.7% of traditional round robin

◼ LWM alone - 7.9% improvement
❑ Good for branch-intensive applications

~50%

~40%

~10%
~10%

~10%
~10%

Results

27

High branch
divergence %

High long latency operations %

Large Warp Microachitecture Analysis

◼ 256 threads per large warp best

28

◼ Larger warp sizes offer more potential for sub-warping

◼ Too large is inefficient when waiting for few divergent
threads at re-convergence point

Two-Level Scheduling Analysis

29

◼ 8 warps per fetch group optimal ◼ Larger sizes limits effectiveness

Hardware Overhead

◼ Restructuring of the register file for LWM

❑ Instead of a single address decoder per GPU core,
each SIMD lane requires one

❑ Increase of 11% - 18% in register file area

❑ About 2.5% increase of the total GPU area

❑ Additional 224 bytes of storage for logic handling

◼ Two-level warp scheduling does not require any additional storage cost

❑ Only a simple logic block is required for the additional level of round robin

30

Register File Design

31

Summary

32

Summary

◼ Two new mechanisms to improve GPU performance by better resource utilization

◼ Large warp microarchitecture alleviates the branch divergence penalty

❑ Forming of fewer but larger warps

❑ Dynamically created SIMD-width sized sub-warps from the active threads

◼ Two-level round warp scheduling policy to reduce idle execution cycles

❑ Prevents warps from arriving at the same long latency operation at the same time

◼ These two mechanisms have experimentally shown an improvement in
performance by 19.1% on average

33

Strengths of the paper

◼ Simple ideas to maximize available resources

◼ Big GPU performance improvement

◼ Minimal hardware overhead

◼ Pure hardware mechanism requiring no programmer effort

◼ Paper easy to read and understand

◼ Cited 336 times 1

341 according to Google Scholar

Weaknesses

◼ Some hardware overhead still necessary

◼ More data and explanation about how data locality is preserved even with two
levels of round robin would have been welcomed

35

Take-aways

◼ Still plenty of room for improvement even in classic hardware like GPU’s

◼ Even small adjustments can make big impact on overall performance

36

Additional Reading

◼ W. W. L. Fung et al. Dynamic warp formation: Efficient MIMD control flow on
SIMD graphics hardware. ACM TACO, 6(2):1–37, June 2009.

◼ U. Kapasi et al. Efficient conditional operations for data-parallel architectures. In
MICRO-33, 2000.

◼ J. Meng et al. Dynamic warp subdivision for integrated branch and memory
divergence tolerance. In ISCA-37, 2010.

◼ N. B. Lakshminarayana and H. Kim. Effect of instruction fetch and memory
scheduling on gpu performance. In Workshop on Language, Compiler, and
Architecture Support for GPGPU, 2010.

37

Questions

38

Discussion starters

◼ Can you think of any potential issues with the proposed mechanisms?

39

Reference Locality

40Figures from T. Rogers, M. O/Connor, T. Aamodt, “Cache Conscious Wavefront Scheduling,” MICRO 2012

◼ Two level scheduler exploits
inter-wavefront locality

❑ Intra-wavefront accounts for
more misses

◼ Round-robin nature of TLS
technique causes the
destruction of older
wavefront’s intra-wavefront
locality

Discussion starters

◼ Can you think of any potential issues with the proposed mechanisms?

◼ Could you imagine any other alternative fetching policies?

41

Additional Mechanisms

◼ LRR – loose round robin scheduling

❑ Wavefronts are prioritized for scheduling in round-robin order. However, if a wavefront cannot
issue during its turn, the next wavefront in round-robin order is given the chance to issue.

◼ GTO – Greedy-then-oldest scheduler

❑ GTO runs a single wavefront until it stalls then picks the oldest ready wavefront. The age of a
wavefront is determined by the time it is assigned to the core.

◼ 2LVL – GTO

❑ Combines Two Level Scheduling along with GTO

◼ CCWS – Cache-Conscious Wavefront Scheduling

❑ Dynamically determines the number of wavefronts allowed to access the memory system and
which wavefronts those should be

◼ SWL – Static Wavefront Limiting

❑ Limits the number of wavefronts/ warps running at once to make sure it does not exceed L1D cache size

42T. Rogers, M. O/Connor, T. Aamodt, “Cache Conscious Wavefront Scheduling,” MICRO 2012

Additional Mechanisms -Results

43Figures from T. Rogers, M. O/Connor, T. Aamodt, “Cache Conscious Wavefront Scheduling,” MICRO 2012

CCWS

◼ Dynamic tracking of relationship between wavefronts
and working sets in the cache

◼ Modify scheduling decisions to minimize inference in
the cache

44T. Rogers, M. O/Connor, T. Aamodt, “Cache Conscious Wavefront Scheduling,” MICRO 2012

OWL - c(O)operative thread array a(W)are warp schedu(L)ing policy

◼ Takes advantage of characteristics of cooperative thread arrays (CTAs) to
concurrently improve the GPGPU’s

❑ Cache hit rate

❑ Latency hiding capability

❑ DRAM bank parallelism

◼ Achieved by

1) Selecting and prioritizing both L1 cache hit rates and latency tolerance

2) Scheduling CTA groups thereby improving DRAM bank parallelism

3) Employing opportunistic memory-side prefetching to take advantage of already open
DRAM row

◼ OWL outperforms the proposed two-level scheduling policy by 19%

45

A. Jog, O. Kayiran, N. C. Nachiappan, A. K. Mishra, M. T. Kandemir, O. Mutlu, R. Iyer, and C. R. Das. OWL:

Cooperative Thread Array Aware Scheduling Techniques for Improving GPGPU Performance. In ASPLOS, 2013.

Discussion starters

◼ Can you think of any potential issues with the proposed mechanisms?

◼ Could you imagine any other alternative fetching policies?

◼ Is IPC (instructions per cycle) the most important metric to judge GPUs by in
today’s world?
For example, wouldn’t it be better to judge GPUs by performance per Watt?

◼ Could we implement these ideas in other pieces of hardware?
Or combine with other techniques and mechanisms?

46

Additional Slides

47

Memory Model

◼ Data from global memory is cached on chip in the data cache

◼ An entire cache line can be read (or written) in parallel in a single transaction

◼ If data accesses map to the same cache line …

❑ all the threads in a warp access data in a single transaction

◼ If threads within a warp access different cache lines …

❑ accesses will be serialized and pipeline stalls

◼ If a line not in the cache is required for at least one thread …

❑ the warp stalls, is put aside, and other warps are allowed to continue

◼ Each thread has access to small amount of on-private memory

❑ Stores private data of each thread like local variables

❑ Cuts down on expensive global memory accesses

48

GPU Core Pipeline

◼ Fetch stage

❑ scheduler selects a warp using a round-robin policy

◼ Each warp is associated with:

❑ warp ID

❑ active mask

◼ a bit vector indicating whether a thread is active

❑ a single program counter

◼ Instruction cache is accessed at the PC of the warp

◼ Fetched instruction is decoded

◼ Register values for all threads are read in parallel from the
register file

◼ Values fed into SIMD backend and processed in parallel

◼ PC and active mask are updated after the final stage

◼ Warp is again considered for scheduling

49

50Credit: Onur Mutlu – Design of Digital Circuits – ETH Spring 2017

LWM – Barrel Processing

◼ Standard GPU

❑ Once a warp is selected by the scheduler in the fetch stage, it is not considered
again for scheduling until the warp completes execution

◼ LWM Implementation – slight alteration

❑ Once a large warp is selected, it is not reconsidered for scheduling until the first
sub-warp completes execution

❑ Single bit per thread to ensure thread not packed too soon

❑ One exception: conditional branch instructions

◼ Large warp not refetched until all sub-warps are complete

◼ Divergence not known until last sub-warp

51

LWM – Divergence and Reconvergence

◼ Divergence and re-convergence handled similarly to baseline warps.

◼ Except…

❑ The new active mask and the active masks to be pushed on the divergence
stack are buffered in temporary active mask buffers.

❑ Once all subwarps complete execution, the current active mask and PC of the
large warp are updated and divergence stack entries are pushed on the large
warp’s divergence stack (if large warp diverged)

52

LWM – Unconditional Branch Optimization

◼ After an unconditional branch instruction (like a jump) is
executed, only a single PC update is needed in standard GPU’s

◼ Therefore, no multiple sub-warps are created as optimization

◼ Example

❑ Warps with 256 threads with SIMD width of 32 can save 7 cycles with
only one sub-warp (instead of previous 8) since only one cycle is needed

53

Results

◼ IPC – Instructions per Cycle

❑ Warp size is the maximum possible value (ie 32)

54

0

5

10

15

20

25

30

35

b
la

c
k
ja

c
k

 s
o

rt

 v
it
e

rb
i

 k
m

e
a

n
s

 d
e

c
ry

p
t

 b
la

c
k
s
c
h

o
le

s

 n
e

e
d

le
m

a
n

 h
o

ts
p

o
t

 m
a

tr
ix

_
m

u
lt

 r
e

d
u

c
ti
o

n

 h
is

to
g

ra
m

IP
C

Baseline TBC LWM 2Lev LWM+2Lev

0.0

0.1

0.2

0.3

0.4

0.5

0.6

b
fs

0

5

10

15

20

25

30

35

g
m

e
a

n

