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Summary

= Problem:
» DRAM memory scheduler designed for single-core system

= |n multi-core system: unfair when threads with certain access pattern are
present

» Goal: fair memory scheduler
= Key ldeas:
= Approximate unfairness by computing thread slowdown

* Prioritize unfairly slowed-down threads

= Result: FairMem removes denial of service threat
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Denial of Service (DoS)

= Any type of attack where the attacker prevents legitimate users from accessing
some resource
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Multi-Core Systems
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DRAM Bank
= Banks store data -
~ ROWO
= Each bank has row buffer g _ ROWI
§ O A :I)
= Access memory through row buffer Row Address % | E -
5 S G
z f ~
= Row buffer contains at most 1 row 3 T
Z ROWR-2
' i ROWR-1 :
= Request hits or misses row buffer content — —
- Row hit/ row miss I
ROW BUFFER
= Row miss has large latency ) {
Column Address =L Column Decoder j
= Multiple banks !
- Bank-level parallelism Address Data
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DRAM Bank Operations
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Multi-Core DRAM Memory Systems

L2 Cache 0 L2 Cache N-1
To/From Cores  Requests Requests
“ ; . ;
‘:;; L Crossbar )
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1 DRAM Address/Command Bus i
To/From DRAM Banks To DRAM Banks
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DRAM Memory Access Scheduling Mechanism: FR-FCFS

Bank scheduler:
1. Row-hit-first
2. Oldest-within-bank-first

Bus scheduler:

= QOldest-across-banks-first (among all requests proposed by individual bank
scheduler)
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FR-FCFS: Bank Scheduler’s Vulnerability To Denial of Service

Bank scheduler:

= Rowe-hit-first
- Low row-buffer locality threads have low priority

* QOldest-within-bank-first
—> Prioritizes threads that generate requests fast
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FR-FCFS: Bus Scheduler’s Vulnerability To Denial of Service

Bus scheduler:

» QOldest-across-banks-first (among all requests proposed by individual bank
scheduler)

—> First level selects requests in a row hit maximizing way, no regard for time of
arrival of request

—> Aggressive threads serviced more
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What Does An Aggressive, High Row-Buffer Locality Thread Do?

Bank scheduler:
1.  Row-hit-first

——————————————————————————

S| 2. Oldest-within-bank-first
(&)
o B T S S O
T0: Row 0 e Bus scheduler:
T0: Row 6 % = Oldest-across-banks-first
TTOFRow101
MO : ARoyw 10
Request Buffer Row Buffer

It hogs DRAM!
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DoS Threat: Memory Performance Hog (MPH)

Is an aggressive, high row-buffer locality thread...

= Hogs shared resources

= Significantly reduces performance of other threads
= No significant performance reduction itself

“Any attack where the attacker prevents legitimate users from accessing some
resource”
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DoS Threat: Memory Performance Hog (MPH)

An aggressive, high row-buffer locality thread...
= Hogs shared resources

= Significantly reduces performance of other threads
= No significant performance reduction itself

MPH Slow, low row-buffer locality threads

N\

“Any attack where the attacker prevents legitimate users from accessing some

resource™—— DRAM

MPH is DoS threat!
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Memory Performance Hog (MPH) Example

» Intel Pentium D 930, dual-core system
= N>>L2 cache

// initialize arrays a, b // initialize arrays a, b
for (j=0; j<N; j++) for (j=0; Jj<N; j++)

index[j] = J; // streaming index [index[j] = rand()} // random # in [0,N]
for (j=0; Jj<N; j++) for (j=0; J<N; j++)

a[index[j]] = b[index[j]]; [ alindex[J]] = b[index[]]];
for (j=0; j<N; j++) for (J=0; J<N; J++)

b[index[]j]] = scalar * a[index[j]]; [b[index[j]] = scalar * a[index[j]];

(a) STREAM (b) RDARRAY

= High row-buffer locality = Low row-buffer locality
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Memory Performance Hog (MPH) Example: Result

30 3.0
o STREAM o RDARRAY
g E L
= 25 = 25
= =
g 20 g 20 —
3 2
215 %15 B
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%10 ——————— e e —?——————EI.O —————————— ] = = A = L — - -
g =
505 E 0.5 —
Z Z

0.0 [ . . 00 . : ,

stream alone with another stream with rdarray rdarray alone with another rdarray with stream

Figure 4: Normalized execution time of (a) stream and (b) rdarray when run alone/together on a dual-core system
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Key Problem:
Memory Access Scheduler Unfair In Multi-Core Systems

= MPH can destroy other threads’ performance

= Memory system cannot distinguish between erroneous programming, necessary
memory behavior of the application or malicious attack

Multi-core system needs new scheduling policy!
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Fairness

= N applications receive 1/N of system resources, progress at 1/N
- Does not consider bank has “state”

-> Disregards row-buffer locality
- Punishes high row-buffer locality threads

Need new definition of fairness in DRAM sense!
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Fairness in DRAM Memory Sense

= Latency
= Thread inherent latency (depends on row-buffer locality)
= Contention caused latency

= Fairness

= Thread inherent latency unchanged
= Contention caused latency proportionally distributed across all threads
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Fair Memory Scheduling Model

Cumulated latency of thread i: L; shared

= |deal single-core cumulated latency: L; 4ione

. , L
= Ratio of experienced slowdown: s; := --shdred

i_ alone

= DRAM fairness index: F :=

minsi Si

- F=1: every thread experiences the same relative slowdown
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Fair Memory Scheduling Model:
Short-term vs long-term fairness

= Cumulated latency of thread i: L; spqreq iNCreases with thread life
= Short-term unfairness increasingly little effect on s;

- Introduce time interval T
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Fair Memory Scheduling Model Over Interval T

Cumulated latency of thread i over T: L; snareqa(T)
= |deal single-core cumulated latency: L; 4;one(T)

= Ratio of experienced slowdown: s;(T)

DRAM fairness index: F(T)

Good F(T) for large T # good F(T") for small T’
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A Fair Memory Scheduling Algorithm: FairMem

Unfairness threshold

/

IfF(T) = «
then Agqir
Else

AFR—FCFS
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Afqir

Bank scheduler:
1. Highest slowdown-index s;(T) first
2. Highest FR-FCFS first

Bus scheduler:
= Highest slowdown-index s;(T) first
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How Does FairMem Prevent DoS? If F(T) > a
Bank scheduler:
S 1. Highest slowdown-
. index s;(T)
T0: Row 0 2. Highest FR-FCFS
T1: Row 5
BN S S S Bus scheduler:

TO: Row 0 Highest slowdown-index
T1: Row 111 s;(T)
TO: Row 0 | | Else 4

Y EEm FR—FCFS
T0: Row 06

Row 161 Row Buffer

TO Slowdown| 1.08
T1 Slowdown| 1.08 —

Unfairness (’TOO“ l
S~ /‘> Data
o 1.05
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FairMem TR = a

Bank scheduler:

1. Highest slowdown-
index s;(T)

2. Highest FR-FCFS

= Prioritize most slowed-down thread

—> Limits adverse effect of MPH Bus scheduler:
Highest slowdown-index
si(T)

= Throughput maximizing under fairness constraint Else

AFR—FCFS
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Hardware Implementation of FairMem

* L;i snarea(T): count #memory cycles where ready request of thread i buffered, for
each bank

* L; aione(T): simulate thread i running alone on single-core with FR-FCFS
= Maintain what would be in row-buffer
= [gnore all requests by threads J, j#i

- O(#cores x #banks) counters
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Economical Hardware Implementation of FairMem:
Reduce Counters by Sampling

Random sample of subset of requests by thread / to some bank b

- Does i request the same row in its next request to b?
- Approximate row hit rate
- Approximate latency

-> O(#cores) counters
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Economical Hardware Implementation of FairMem

. «— Lishared(T) o HEEIXSL-(T)
SI(T) — ialone( X F = rr;m pyr

l

= Dividers have high energy consumption
-1 divider, reused in round robin to compute in intervals
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FairMem: Set up

= Processor and memory system simulator based on Pin dynamic binary
iInstrumentation tool

= DRAM simulation based on DRAMsim
= Instruction-level performance simulator for simulating applications compiled for x86
- Mimic dual-core, based on Intel Pentium M

Benchmark || Suite Brief description Base performance | L2-misses per 1K inst. | row-buffer hit rate
stream Microbenchmark | Streaming on 32-byte-element arrays 46.30 cycles/inst. 629.65 96%
rdarray Microbenchmark | Random access on arrays 56.29 cycles/inst. 629.18 3%
small-stream || Microbenchmark | Streaming on 4-byte-element arrays 13.86 cycles/inst. 7143 97%
art SPEC 2000 FP | Object recognition in thermal image 7.85 cycles/inst. 70.82 88%
crafty SPEC 2000 INT | Chess game 0.64 cycles/inst. 035 15%
health Olden Columbian health care system simulator | 7.24 cycles/inst. 83.45 27%
mcf SPEC 2000 INT | Single-depot vehicle scheduling 4.73 cycles/inst. 45.95 51%
vpr SPEC 2000 INT | FPGA circuit placement and routing 1.71 cycles/inst. 5.08 14%

Table 2: Evaluated applications and their performance characteristics on the baseline processor
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FairMem: Results Microbenchmarks

2.5
m——— haseline (FR-FCFS)

qé FairMem
= 20
=
g STREAM
215
=
<3
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E
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0.0-

stream alone with another stream

Figure 7: Slowdown of (a) stream and (b) rdarray benchmarks using FR-FCFS and our FairMem algorithm

with rdarray
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rdarray alone with another rdarray

with stream

FairMem is successful in containing the effect of MPH in Microbenchmarks!
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FairMem: Results Real Applications

——— St TCAMN = —— S{TCAIT

s 41t

0.0 - 0.0 0.0- 0.0-
baseline (FR-FCFS) FairMem baseline (FR-FCFS) FairMem baseline (FR-FCFS) FairMem baseline (FR-FCFS) FairMem

Figure 8: Slowdown of different application combinations using FR-FCFS and our FairMem algorithm

FairMem is successful in containing the effect of MPH in real applications!

Computer Architecture Seminar Anlin Yan | 28.11.2019 | 42



FairMem: Results Real Applications

| Benchmark || Suite | Brief description | Base performance | L2-misses per 1K inst. | row-buffer hit rate |
stream Microbenchmark | Streaming on 32-byte-element arrays 46.30 cycles/inst. 629.65 96%

rdarray Microbenchmark | Random access on arrays ) 56.29 cycles/inst. 629.18 3%

art SPEC 2000 FP | Object recognition in thermal image 7.85 cycles/inst. 70.82 88%

crafty SPEC 2000 INT | Chess game 0.64 cycles/inst. 0.35 15%

health Olden Columbian health care system simulator | 7.24 cycles/inst. 83.45 27%

Table 2: Evaluated applications and their performance characteristics on the baseline processor

Combination Baseline (FR-FCFS) FairMem Throughput Fairness
Throughput | Unfairness | Throughput | Unfairness || improvement | improvement
stream-rdarray 24 .8 2.00 22.5 1.06 091X 1.89X
art-vpr 4014 223 5130 1.00 1.28X 2.23X
health-vpr 463.8 1.56 508 4 1.09 1.10X 143X
art-health 179.3 1.62 178.5 1.15 0.99X 141X
larrav-a y 4 9 06 4 / X

Throughput decreases when running applications with high L2-miss rate!
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Effect of Number of Cores

Figure 13: Effect of FR-FCFS and FairMem scheduling on different application mixes in an 8-core system
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Anlin Yan | 28.11.2019 |

IUAU_ N lU.U_ 1u . - Sma]l_stream :
£ 49 [4pMIX1] stream g Spi T4 S—Stream £ Sgi (4p-MIX3 —
= 3 art o 1) m— art = 3 7 art —
g 13 — mcf g 73 mcf 8 I3 4 mcf —
£ 43 - g 43 g 43 —

60 / —fealth 69 vpr 60 ——=ficalth ~. [ —
3 551 » S— 3 S —— g S5 » N

is A = = 33 X Z = a3 4 \

E 40 f E 40 A E 49 /
< 35 . 35 y 4 . 35

33 — g 381 g 39
£ 0 £ £ 0
“ 10 Z 101 Z 101

07 03 07

‘ FR-FCFS FairMem ‘ FR-FCFS FR-FCFS FairMem
Figure 12: Effect of FR-FCFS and FairMem scheduling on different application mixes in a 4-core system
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Effect of Row-Buffer Size

Increase row-buffer size

- Increase row hits for

MPH

- Exacerbate problem

Decrease row-buffer size
- Decrease performance of non-interfering high row-buffer locality threads

- Decrease bandwidth

55
E sol—art | 512-byte 1 KB 2KB 4 KB 8 KB 16 KB 32 KB 6AKB
= 4.5{=—vpr
§40
‘é 35 A

3.0
=25 |
220 *—
% 15
£ 104 ; | ; ; ;
5051 | | |
Z 00" : - : :

FR-FCFS FairMem FR-FCFS  FairMem FR-FCFS  FairMem FR-FCFS  FairMem FR-FCFS  FairMem FR-FCFS  FairMem FR-FCFS  FairMem FR-FCFS  FairMem

Figure 9: Normalized execution time of art and vpr when run together on processors with different row-buffer sizes.
Execution time is independently normalized to each machine with different row-buffer size.
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Effect of Number of Banks

= Parallelism proportional to number of banks
- Less thread conflicts

= Large number of banks expensive

o 1 ba;F 2 banks 4banks |—art | 8 banks 16 banks 32 banks 64 banks
= =—vVypr

g 35 I ] P

€30 F

S F B F R E

FR-FCFS FairMem FR-FCFS FairMem FR-FCFS FairMem FR-FCFS FairMem FR-FCFS FairMem FR-FCFS FairMem FR-FCFS FairMem

Figure 10: Slowdown of art and vpr when run together on processors with various number of DRAM banks. Execution
time is independently normalized to each machine with different number of banks.
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Effect of Memory Latency

Increase row hit/ row conflict latency
- Increases impact of MPH on other threads’ performances

by
=)

@ | S——
5 55 ;,atl')tr 50 cyc 100 cyc 200 cyc 300 cyc 400 cyc 500 cyc 1000 gyc
=
£ 20 P I I
3 1.0
E 05
Z 00" ]
" FR-FCFS FairMem

FR-FCFS  FairMem  FR-FCFS  FairMem  FR-FCFS  FairMem

" FR-FCFS _ FairMem  FR-FCFS  FairMem  FR-FCFS  FairMem

FairMem successful in containing the effects of MPHs for various
number of cores, number of banks, size of banks and memory latencies!
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Summary

= Problem: DRAM memory scheduler denies service to low row-buffer locality
threads when MPH present due to prioritizing row-hit requests

= Goal: fair memory scheduler equalizing relative performance slow-down

= Key ldeas:
= Maintain experienced latency
= Simulate latency of running alone
= Approximate individual threads’ slowdown, system fairness
» Prioritize slowed-down threads according to defined threshold

= Result: FairMem contains effect of MPH, removes DoS threat
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Strengths

Hard guarantee of containing the effect of MPHs

= Forward-looking; Novel in identifying MPH as DoS threat

= Motivation: tested on “real HW”

= Problem is fundamental, relevant

= Gives good foundation to improve upon

= Flexibility: user defines unfairness threshold «

= Comprehensible: well-structured, thorough background, well-explained
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Weaknesses

= Might decrease throughput

= HW modification and complexity
-> Additional power consumption

= Fairness provided only when “sufficiently unfair”

= No hard guarantee of staying below threshold «
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Takeaways

= Maximising one variable often comes at cost of another
= Fairness and throughput

= Novel technology can introduce novel threats
= Multi-core systems with DRAM memory access scheduler designed for single-core system
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Further ldeas

= Other ways of computing L; q1one(T)?
* L; aione(T) == Ideal single-core cumulated latency
= Simulated in FairMem (simulate row-hit rate)
- Approximate interference instead, subtract from latency
- Simulate by giving highest priority to a thread i

= How to give specific threads more importance?
-> Include weights in slowdown index
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Discussion Starters FE(T) =

Bank scheduler:

_ _ 1. Highest slowdown-index
When/ why is fairness relevant? s:(T)

2. Highest FR-FCFS

= |s the problem expected to become worse? Bus scheduler:
Highest slowdown-index s;(T)
= |s per-core DRAM a feasible solution? Else
= Achievable through HW vs SW AfpRr-FcFs

= Could highest-slowdown-index-first in banks and FR-FCFS across banks be enough?
=  What might be the advantage/disadvage of a solution that provides fairness from the start?

= Can you recall/ propose a software solution?
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Follow Up Work

Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors

Computer Architecture Seminar

Onur Mutlu Thomas Moscibroda

Parallelism-Aware Batch Scheduling:

Enhancing both Performance and Fairness of Shared DRAM Systems

Onur Mutlu Thomas Moscibroda
Microsoft Research

Thread Cluster Memory Scheduling:
Exploiting Differences in Memory Access Behavior

Yoongu Kim Michael Papamichael Onur Mutlu Mor Harchol-Balter
yoongukQece.cmu.edu papamix@cs.cmu.edu onur@cmu.edu harchol@cs.cmu.edu

Carnegie Mellon University

MISE: Providing Performance Predictability and Improving Fairness
in Shared Main Memory Systems

Lavanya Subramanian  Vivek Seshadri ~ Yoongu Kim  Ben Jaiyen =~ Onur Mutlu

Carnegie Mellon University

BLISS: Balancing Performance, Fairness
and Complexity in Memory Access Scheduling

Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha Rastogi, and Onur Mutlu
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Further Ideas
Ratio of experienced slowdown: s; := —LL"—_Shm’ed
max s; i_alone
DRAM fairness index: F = —
rrg_n Si

= Better quantification of unfairness?

>IPC, for instance, better characterizes a benchmark’s behavior than the total
execution time
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Further ldeas

= TCM(Thread cluster memory): classify thread into memory-intensive and non-intensive groups
= deprioritized high-memory-intensity applications might be slowed down

= Per group individual scheduling policy

- low-mem-intensity: ranking based on intensity

- high: shuffle ranks to provide fairness
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Further ldeas

ATLAS: observation: low memory service receiving applications experience interference from
high memory service receiving applications -> adaptive per-thread least-attained-service memory
scheduling, multiple memory schedulers controlling different channels of main memory,

schedule: in each time period controllers coordinate to determine a consistent ranking of threads,
least serviced in past have highest ranking -> preserve bank-level parallelism

—> thread’s requests all serviced from start to finish without other threads’ request being serviced?
(gives bank-level parallelism and starvation freedom)
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Further Ideas: Bank Partitioning

= Combine with software bank partitioning (ameliorate low row-buffer hit ratio and delay of re-
ordering due to tasks being mapped to same bank and thus interfering each other): dedicate
specific physical pages and thus also specific DRAM bank to each core

- #DRAM banks grows much slower than #cores
-> across bank, ie bus level contention
(Bounding Memory Interference Delay in COTS-based Multi-core Systems, Kim)

Independent channels -> separate data buses and independent memory controllers (MC)
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Further ldeas

= STFM (very similar to proposed FairMem)

= Maintain T_alone by estimating T interference: T_alone = T_shared — T _interference (heuristics
based! Compute T_alone by computing how much it is interefered)

= T interference

= DRAM bus interference (otherwise scheduled command (any ready command in request buffer)stalled for t_bus
cycles)

= DRAM bank interference: row-buffer locality interference and waiting for another thread to be serviced (cannot
however simply sum up bank interferences, since these are serviced in parallel)
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Further ldeas

= PAR-BS(inter-thread interference destroys bank-level access parallelism, overlapped latencies
become serialized): form a batch of outstanding requests and prioritize all requests within batch,
form ranking within batch based on estimated stall time (finish time), avoid reordering in batch,
highest ranking: lowest number of requests to any bank, lowest ranking: highest number of
requests to any bank (not parallelisable) —> improve thoughput an bank-level-parallelism

->not scalable due to significant coordination between memory controllers

Optimization problem of achieving high bank-level parallelism and high row hit rate is NP-complete,
no efficient algorithmic solutions are expected to exist
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Further ldeas

= MISE: providing performance predicatability and improving fairness in shared main memory
systems

= Request-service-rate as proxy for performance in memory intensive applications

= Alone-request-service-rate (memory controller gives each thread in round robin highest priority,
ie very little interference from other threads)

= MISE for instance much higher accuracy than STFM (when compared to measured worst-case)
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Further ldeas

= BLISS(Blacklisting Memory Scheduler): Balancing Performance, Fairness and Complexity in
Memory Access Scheduling (L.Subramanian)

= Shortcomings of so far Application-aware memory schedulers: have high H/W complexity
(individual total order ranking), total order unfair to low-ranking applications

= Group into vulnerable-to-interference and interference-causing, computed by counting
#consecutive requests served from each application
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Further ldeas

= Fairness via souce throttling

= Estimate application slowdown due to inter-application interference at cache and memory as
ratio of uninterfered to interfered exectuiton itime

= Thread weights to give different thread slowdowns more or less importance, their slowdown
more or less tolerable
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