Seminar in Computer Architecture Meeting 2c: Example Talk I

Prof. Onur Mutlu

ETH Zürich
Fall 2019
26 September 2019

Example Conference Talk

PAR-BS

Onur Mutlu and Thomas Moscibroda,
 "Parallelism-Aware Batch Scheduling: Enhancing both
 Performance and Fairness of Shared DRAM Systems"
 Proceedings of the 35th International Symposium on Computer
 Architecture (ISCA), pages 63-74, Beijing, China, June 2008.
 [Summary] [Slides (ppt)]

Parallelism-Aware Batch Scheduling: Enhancing both Performance and Fairness of Shared DRAM Systems

Onur Mutlu Thomas Moscibroda Microsoft Research {onur,moscitho}@microsoft.com

We Will Do This Differently

- I will give a "conference talk"
- You can ask questions and analyze what I described

Parallelism-Aware Batch Scheduling Enhancing both Performance and Fairness of Shared DRAM Systems

Onur Mutlu and Thomas Moscibroda
Computer Architecture Group
Microsoft Research

Outline

- Background and Goal
- Motivation
 - Destruction of Intra-thread DRAM Bank Parallelism
- Parallelism-Aware Batch Scheduling
 - Batching
 - Within-batch Scheduling
- System Software Support
- Evaluation
- Summary

The DRAM System

Multi-Core Systems

Inter-thread Interference in the DRAM System

- Threads delay each other by causing resource contention:
 - Bank, bus, row-buffer conflicts [MICRO 2007]
- Threads can also destroy each other's DRAM bank parallelism
 - Otherwise parallel requests can become serialized
- Existing DRAM schedulers are unaware of this interference
- They simply aim to maximize DRAM throughput
 - Thread-unaware and thread-unfair
 - No intent to service each thread's requests in parallel
 - FR-FCFS policy: 1) row-hit first, 2) oldest first
 - Unfairly prioritizes threads with high row-buffer locality

Consequences of Inter-Thread Interference in DRAM

- Unfair slowdown of different threads [MICRO 2007]
- System performance loss [MICRO 2007]
- Vulnerability to denial of service [USENIX Security 2007]
- Inability to enforce system-level thread priorities [MICRO 2007]

Our Goal

- Control inter-thread interference in DRAM
- Design a shared DRAM scheduler that
 - provides high system performance
 - preserves each thread's DRAM bank parallelism
 - provides fairness to threads sharing the DRAM system
 - equalizes memory-slowdowns of equal-priority threads
 - is controllable and configurable
 - enables different service levels for threads with different priorities

Outline

- Background and Goal
- Motivation
 - Destruction of Intra-thread DRAM Bank Parallelism
- Parallelism-Aware Batch Scheduling
 - Batching
 - Within-batch Scheduling
- System Software Support
- Evaluation
- Summary

The Problem

- Processors try to tolerate the latency of DRAM requests by generating multiple outstanding requests
 - Memory-Level Parallelism (MLP)
 - Out-of-order execution, non-blocking caches, runahead execution
- Effective only if the DRAM controller actually services the multiple requests in parallel in DRAM banks
- Multiple threads share the DRAM controller
- DRAM controllers are not aware of a thread's MLP
 - Can service each thread's outstanding requests serially, not in parallel

Bank Parallelism of a Thread

Bank access latencies of the two requests overlapped Thread stalls for ~ONE bank access latency

Bank Parallelism Interference in DRAM

Bank access latencies of each thread serialized Each thread stalls for ~TWO bank access latencies

Parallelism-Aware Scheduler

Outline

- Background and Goal
- Motivation
 - Destruction of Intra-thread DRAM Bank Parallelism
- Parallelism-Aware Batch Scheduling (PAR-BS)
 - Request Batching
 - Within-batch Scheduling
- System Software Support
- Evaluation
- Summary

Parallelism-Aware Batch Scheduling (PAR-BS)

- Principle 1: Parallelism-awareness
 - Schedule requests from a thread (to different banks) back to back
 - Preserves each thread's bank parallelism
 - But, this can cause starvation...
- Principle 2: Request Batching
 - Group a fixed number of oldest requests from each thread into a "batch"
 - Service the batch before all other requests
 - Form a new batch when the current one is done
 - Eliminates starvation, provides fairness
 - Allows parallelism-awareness within a batch

PAR-BS Components

Request batching

- Within-batch scheduling
 - Parallelism aware

Request Batching

- Each memory request has a bit (marked) associated with it
- Batch formation:
 - Mark up to Marking-Cap oldest requests per bank for each thread
 - Marked requests constitute the batch
 - Form a new batch when no marked requests are left
- Marked requests are prioritized over unmarked ones
 - No reordering of requests across batches: no starvation, high fairness
- How to prioritize requests within a batch?

Within-Batch Scheduling

- Can use any existing DRAM scheduling policy
 - FR-FCFS (row-hit first, then oldest-first) exploits row-buffer locality
- But, we also want to preserve intra-thread bank parallelism
 - Service each thread's requests back to back

HOW?

- Scheduler computes a ranking of threads when the batch is formed
 - Higher-ranked threads are prioritized over lower-ranked ones
 - Improves the likelihood that requests from a thread are serviced in parallel by different banks
 - Different threads prioritized in the same order across ALL banks

How to Rank Threads within a Batch

- Ranking scheme affects system throughput and fairness
- Maximize system throughput
 - Minimize average stall-time of threads within the batch
- Minimize unfairness (Equalize the slowdown of threads)
 - Service threads with inherently low stall-time early in the batch
 - Insight: delaying memory non-intensive threads results in high slowdown
- Shortest stall-time first (shortest job first) ranking
 - Provides optimal system throughput [Smith, 1956]*
 - Controller estimates each thread's stall-time within the batch
 - Ranks threads with shorter stall-time higher

^{*} W.E. Smith, "Various optimizers for single stage production," Naval Research Logistics Quarterly, 1956.

Shortest Stall-Time First Ranking

- Maximum number of marked requests to any bank (max-bank-load)
 - Rank thread with lower max-bank-load higher (~ low stall-time)
- Total number of marked requests (total-load)
 - Breaks ties: rank thread with lower total-load higher

max-bank-load	total-load		

Ranking: T0 > T1 > T2 > T3

Example Within-Batch Scheduling Order

	TO	T1	T2	T3
Stall times				

AVG: 5 bank access latencies

	TO	T1	T2	T3
Stall times				

AVG: 3.5 bank access latencies

Putting It Together: PAR-BS Scheduling Policy

PAR-BS Scheduling Policy

- (1) Marked requests first
- (2) Row-hit requests first
- (3) Higher-rank thread first (shortest stall-time first)
- (4) Oldest first

Batching

Parallelism-aware within-batch scheduling

- Three properties:
 - Exploits row-buffer locality and intra-thread bank parallelism
 - Work-conserving
 - Services unmarked requests to banks without marked requests
 - Marking-Cap is important
 - Too small cap: destroys row-buffer locality
 - Too large cap: penalizes memory non-intensive threads
- Many more trade-offs analyzed in the paper

Hardware Cost

- <1.5KB storage cost for</p>
 - 8-core system with 128-entry memory request buffer
- No complex operations (e.g., divisions)
- Not on the critical path
 - Scheduler makes a decision only every DRAM cycle

Outline

- Background and Goal
- Motivation
 - Destruction of Intra-thread DRAM Bank Parallelism
- Parallelism-Aware Batch Scheduling
 - Batching
 - Within-batch Scheduling
- System Software Support
- Evaluation
- Summary

System Software Support

- OS conveys each thread's priority level to the controller
 - Levels 1, 2, 3, ... (highest to lowest priority)
- Controller enforces priorities in two ways
 - Mark requests from a thread with priority X only every Xth batch
 - Within a batch, higher-priority threads' requests are scheduled first
- Purely opportunistic service
 - Special very low priority level L
 - Requests from such threads never marked
- Quantitative analysis in paper

Outline

- Background and Goal
- Motivation
 - Destruction of Intra-thread DRAM Bank Parallelism
- Parallelism-Aware Batch Scheduling
 - Batching
 - Within-batch Scheduling
- System Software Support
- Evaluation
- Summary

Evaluation Methodology

- 4-, 8-, 16-core systems
 - x86 processor model based on Intel Pentium M
 - 4 GHz processor, 128-entry instruction window
 - □ 512 Kbyte per core private L2 caches, 32 L2 miss buffers
- Detailed DRAM model based on Micron DDR2-800
 - 128-entry memory request buffer
 - 8 banks, 2Kbyte row buffer
 - 40ns (160 cycles) row-hit round-trip latency
 - 80ns (320 cycles) row-conflict round-trip latency
- Benchmarks
 - Multiprogrammed SPEC CPU2006 and Windows Desktop applications
 - □ 100, 16, 12 program combinations for 4-, 8-, 16-core experiments

Comparison with Other DRAM Controllers

- Baseline FR-FCFS [Zuravleff and Robinson, US Patent 1997; Rixner et al., ISCA 2000]
 - Prioritizes row-hit requests, older requests
 - Unfairly penalizes threads with low row-buffer locality, memory non-intensive threads
- FCFS [Intel Pentium 4 chipsets]
 - Oldest-first; low DRAM throughput
 - Unfairly penalizes memory non-intensive threads
- Network Fair Queueing (NFQ) [Nesbit et al., MICRO 2006]
 - Equally partitions DRAM bandwidth among threads
 - Does not consider inherent (baseline) DRAM performance of each thread
 - Unfairly penalizes threads with high bandwidth utilization [MICRO 2007]
 - Unfairly prioritizes threads with bursty access patterns [MICRO 2007]
- Stall-Time Fair Memory Scheduler (STFM) [Mutlu & Moscibroda, MICRO 2007]
 - Estimates and balances thread slowdowns relative to when run alone
 - Unfairly treats threads with inaccurate slowdown estimates
 - Requires multiple (approximate) arithmetic operations

Unfairness on 4-, 8-, 16-core Systems

Unfairness = MAX Memory Slowdown / MIN Memory Slowdown [MICRO 2007]

System Performance (Hmean-speedup)

Outline

- Background and Goal
- Motivation
 - Destruction of Intra-thread DRAM Bank Parallelism
- Parallelism-Aware Batch Scheduling
 - Batching
 - Within-batch Scheduling
- System Software Support
- Evaluation
- Summary

Summary

- Inter-thread interference can destroy each thread's DRAM bank parallelism
 - □ Serializes a thread's requests → reduces system throughput
 - Makes techniques that exploit memory-level parallelism less effective
 - Existing DRAM controllers unaware of intra-thread bank parallelism
- A new approach to fair and high-performance DRAM scheduling
 - Batching: Eliminates starvation, allows fair sharing of the DRAM system
 - Parallelism-aware thread ranking: Preserves each thread's bank parallelism
 - □ Flexible and configurable: Supports system-level thread priorities → QoS policies
- PAR-BS provides better fairness and system performance than previous DRAM schedulers

Thank you. Questions?

Parallelism-Aware Batch Scheduling Enhancing both Performance and Fairness of Shared DRAM Systems

Onur Mutlu and Thomas Moscibroda
Computer Architecture Group
Microsoft Research

Backup Slides

Multiple Memory Controllers (I)

- Local ranking: Each controller uses PAR-BS independently
 - Computes its own ranking based on its local requests
- Global ranking: Meta controller that computes a global ranking across all controllers based on global information
 - Only needs to track bookkeeping info about each thread's requests to the banks in each controller
- The difference between the ranking computed by each scheme depends on the balance of the distribution of requests to each controller
 - □ Balanced → Local and global rankings are similar

Multiple Memory Controllers (II)

16-core system, 4 memory controllers

Example with Row Hits

	Stall time		Stall time		Stall time
Thread 1	4	Thread 1	5.5	Thread 1	1
Thread 2	4	Thread 2	3	Thread 2	2
Thread 3	5	Thread 3	4.5	Thread 3	4
Thread 4	7	Thread 4	4.5	Thread 4	5.5
AVG	5	AVG	4.375	AVG	3.125

End of Backup Slides

Now Your Turn to Analyze...

- Background, Problem & Goal
- Novelty
- Key Approach and Ideas
- Mechanisms (in some detail)
- Key Results: Methodology and Evaluation
- Summary
- Strengths
- Weaknesses
- Thoughts and Ideas
- Takeaways
- Open Discussion

PAR-BS Pros and Cons

Upsides:

- First scheduler to address bank parallelism destruction across multiple threads
- Simple mechanism (vs. STFM)
- Batching provides fairness
- Ranking enables parallelism awareness

Downsides:

- Does not always prioritize the latency-sensitive applications
- Deadline guarantees?
- Complexity?
- Some ideas implemented in real SoC memory controllers

More on PAR-BS

Onur Mutlu and Thomas Moscibroda,
 "Parallelism-Aware Batch Scheduling: Enhancing both
 Performance and Fairness of Shared DRAM Systems"
 Proceedings of the 35th International Symposium on Computer
 Architecture (ISCA), pages 63-74, Beijing, China, June 2008.
 [Summary] [Slides (ppt)]

Parallelism-Aware Batch Scheduling: Enhancing both Performance and Fairness of Shared DRAM Systems

Onur Mutlu Thomas Moscibroda Microsoft Research {onur,moscitho}@microsoft.com

Seminar in Computer Architecture Meeting 2c: Example Talk I

Prof. Onur Mutlu

ETH Zürich
Fall 2019
26 September 2019