Seminar in
Computer Architecture
Meeting 2¢c: Example Talk I

Prof. Onur Mutlu

ETH Zirich
Fall 2019
26 September 2019

Example Conterence Talk

PAR-BS

= Onur Mutlu and Thomas Moscibroda,
"Parallelism-Aware Batch Scheduling: Enhancing both
Performance and Fairness of Shared DRAM Systems"
Proceedings of the 35th International Symposium on Computer
Architecture (ISCA), pages 63-74, Beijing, China, June 2008.
[Summary] [Slides (ppt)]

Parallelism-Aware Batch Scheduling:
Enhancing both Performance and Fairness of Shared DRAM Systems

Onur Mutlu Thomas Moscibroda
Microsoft Research

{onur,moscitho } @microsoft.com

http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca08_talk.ppt

We Will Do This Ditterently

I will give a “conference talk”

You can ask questions and analyze what I described

Parallelism-Aware Batch Scheduling

Enhancine both Performance and Fairness
g

of Shared DRAM Systems

Onur Mutlu and Thomas Moscibroda
Computer Architecture Group
Microsoft Research

Outline

Background and Goal

Motivation
o Destruction of Intra-thread DRAM Bank Parallelism

Parallelism-Aware Batch Scheduling
o Batching
o Within-batch Scheduling

System Software Support
Evaluation
Summary

The DRAM System

Columns
| BANKO | |3 BANK 1 BANK 2 BANK 3
A S
__________________________ wn

——————————————————————————

| | ! !

Row Buffer
l l l 1DRAM Bus
FR-FCFS policy l
1) Row-hitfirst DRAM CONTROLLER
2) Oldest first

Multi-Core Systems

\ Multi-Core

COREO|] |CORE1l |COREZ2| |CORES3 Chip

threads’ requests
interfere

X/ \ Shared DRAM

K DRAM MEMORY CONTROLLER / Memory System

A

DRAM | IDRAM | | DRAM DRAM
\ Bank O| |Bank 1| |Bank 2 Bank 7 /

Inter-thread Interference in the DRAM System

Threads delay each other by causing resource contention:
o Bank, bus, row-buffer conflicts [MICRO 2007]

Threads can also destroy each other’'s DRAM bank parallelism
o Otherwise parallel requests can become serialized

Existing DRAM schedulers are unaware of this interference

They simply aim to maximize DRAM throughput
o Thread-unaware and thread-unfair
o No intent to service each thread’s requests in parallel
o FR-FCFS policy: 1) row-hit first, 2) oldest first

Unfairly prioritizes threads with high row-buffer locality

Consequences of Inter-Thread Interference in DRAM

DRAM is the only shared resource 7.74

High priority

4.72

— Memc Low priority e hog

Cores make
very slow

libquantum hmmer h264ref omnetpp progress

Unfair slowdown of different threads [MICRO 2007]

System performance loss [MICRO 2007]

Vulnerability to denial of service [USENIX Security 2007]

Inability to enforce system-level thread priorities [MICRO 2007]

Normalized Memory Stall-Time
O, N WDHUIO NN ®

10

Our Goal

Control inter-thread interference in DRAM

Design a shared DRAM scheduler that

o provides high system performance
preserves each thread’s| DRAM bank paraIIeIisml

o provides fairness to threads sharing the DRAM system
equalizes memory-slowdowns of equal-priority threads

a is controllable and configurable
enables different service levels for threads with different priorities

11

Outline

Background and Goal

Motivation
o Destruction of Intra-thread DRAM Bank Parallelism

Parallelism-Aware Batch Scheduling
o Batching
o Within-batch Scheduling

System Software Support
Evaluation
Summary

12

The Problem

Processors try to tolerate the latency of DRAM requests by
generating multiple outstanding requests

o Memory-Level Parallelism (MLP)

o Out-of-order execution, non-blocking caches, runahead execution

Effective only if the DRAM controller actually services the
multiple requests in parallel in DRAM banks

Multiple threads share the DRAM controller

DRAM controllers are not aware of a thread’s MLP
o Can service each thread’s outstanding requests serially, not in parallel

13

Bank Parallelism of a Thread

2 DRAM Requests Bank0 Bank1l

Single Thread:
Thread A :

Bank O =y

Bank 1 Thread A: Bank O, Row 1

Thread A: Bank 1, Row 1

Bank access latencies of the two requests overlapped
Thread stalls for ~ONE bank access latency

14

Bank Parallelism Interference in DRAM

Baseline Scheduler: Bank 0 Bank1l
2 DRAM Requests

2 [Compute NSRS Corove

2 DRAM Requests pankt Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99|

Thread B: Bank 0, Row 99|
Thread A: Bank 1, Row 1

Bank access latencies of each thread serialized
Each thread stalls for ~TWO bank access latencies

15

Parallelism-Aware Scheduler

Baseline Scheduler; Bank 0 Bank1
2 DRAM Requests

Thread A: Bank 0, Row 1
Thread B: Bank 1, Row 99|
Thread B: Bank 0, Row 99|

Parallelism-aware Scheduler: Thread A Bank 1, Row 1
2 DRAM Requests

_

Bank O s

Average stall-time:
Bank 1 _
2 DRAM Requests 1.5 bank access
latencies

Saved Cycles

16

Outline

Background and Goal

Motivation
o Destruction of Intra-thread DRAM Bank Parallelism

Parallelism-Aware Batch Scheduling (PAR-BS)
o Request Batching
o Within-batch Scheduling

System Software Support
Evaluation
Summary

17

Parallelism-Aware Batch Scheduling (PAR-BS)

Principle 1: Parallelism-awareness

Q

a

a

Schedule requests from a thread (to
different banks) back to back
Preserves each thread’s bank parallelism
But, this can cause starvation...

Principle 2: Request Batching

Q

O O O (O

Group a fixed number of oldest requests
from each thread into a “batch”

Service the batch before all other requests
Form a new batch when the current one is done
Eliminates starvation, provides fairness

Allows parallelism-awareness within a batch

o™ - —

Batch

D JES N ————

18

PAR-BS Components

Request batching

Within-batch scheduling

o Parallelism aware

19

Request Batching

Each memory request has a bit (marked) associated with it

Batch formation:

o Mark up to Marking-Cap oldest requests per bank for each thread
o Marked requests constitute the batch

o Form a new batch when no marked requests are left

Marked requests are prioritized over unmarked ones
o No reordering of requests across batches: no starvation, high fairness

How to prioritize requests within a batch?

20

Within-Batch Scheduling

Can use any existing DRAM scheduling policy
o FR-FCFS (row-hit first, then oldest-first) exploits row-buffer locality

But, we also want to preserve intra-thread bank parallelism
a Service each thread’s requests back to back

HOW?
Scheduler{computes a ranking of threads |when the batch is
formed
o Higher-ranked threads are prioritized over lower-ranked ones

o Improves the likelihood that requests from a thread are serviced in
parallel by different banks

Different threads prioritized in the same order across ALL banks

21

How to Rank Threads within a Batch

Ranking scheme affects system throughput and fairness

Maximize system throughput
o Minimize average stall-time of threads within the batch

Minimize unfairness (Equalize the slowdown of threads)
o Service threads with inherently low stall-time early in the batch

o Insight: delaying memory non-intensive threads results in high
slowdown

Shortest stall-time first (shortest job first) ranking

o Provides optimal system throughput [Smith, 1956]*

o Controller estimates each thread’s stall-time within the batch
a Ranks threads with shorter stall-time higher

* W.E. Smith, “Various optimizers for single stage production,” Naval Research Logistics Quarterly, 1956.

22

Shortest Stall-Time First Ranking

Maximum number of marked requests to any bank (max-bank-load)
o Rank thread with lower max-bank-load higher (~ low stall-time)

Total number of marked requests (total-load)

o Breaks ties: rank thread with lower total-load higher

T3
T3
13
- N K
- EE E
13
- T3 T3
BankO| | Bank 1| |Bank 2| | Bank 3

max-bank-load | total-load

Ranking:
TO>T1>T2>T3

23

Example Within-Batch Scheduling Order

Baseline Scheduling T3
Order (Arrival order) -
T

B
E E

T3 T3

E
Bank 0| | Bank1| |Bank 2| | Bank 3

T0 | T1 | T2
Stall times

AVG: 5 bank access latencies

R N W b~ 01O N

,T

Time

PAR-BS Scheduling T3 7
Order = 6
T3 T3)
- T3 4
- T2 3
- 1 2
71 70 1
BankO| | Bank 1| |Bank 2| | Bank 3

Ranking: TO>T1>T2>T3

Stall times

TO

T1 | T2

AVG: 3.5 bank access latencies

24

Time

Putting It Together: PAR-BS Scheduling Policy

PAR-BS Scheduling Policy

‘ (1) Marked requests first \ Batching

(2) Row-hit requests first 5 .
arallelism-aware

(3) Higher-rank thread first (shortest stall-time first) | within-batch
(4) Oldest first scheduling

Three properties:

o Exploits row-buffer locality and intra-thread bank parallelism
o Work-conserving

Services unmarked requests to banks without marked requests
o Marking-Cap is important

Too small cap: destroys row-buffer locality

Too large cap: penalizes memory non-intensive threads

Many more trade-offs analyzed in the paper

25

Hardware Cost

<1.5KB storage cost for
o 8-core system with 128-entry memory request buffer

No complex operations (e.g., divisions)

Not on the critical path
o Scheduler makes a decision only every DRAM cycle

26

Outline

Background and Goal

Motivation
o Destruction of Intra-thread DRAM Bank Parallelism

Parallelism-Aware Batch Scheduling
o Batching
o Within-batch Scheduling

System Software Support
Evaluation
Summary

27

System Software Support

OS conveys each thread’s priority level to the controller
o Levels 1, 2, 3, ... (highest to lowest priority)

Controller enforces priorities in two ways
o Mark requests from a thread with priority X only every Xth batch
o Within a batch, higher-priority threads’ requests are scheduled first

Purely opportunistic service
o Special very low priority level L
o Requests from such threads never marked

Quantitative analysis in paper

28

Outline

Background and Goal

Motivation
o Destruction of Intra-thread DRAM Bank Parallelism

Parallelism-Aware Batch Scheduling
o Batching
o Within-batch Scheduling

System Software Support
Evaluation
Summary

29

Evaluation Methodology

4-, 8-, 16-core systems

o X86 processor model based on Intel Pentium M

o 4 GHz processor, 128-entry instruction window

o 512 Kbyte per core private L2 caches, 32 L2 miss buffers

Detailed DRAM model based on Micron DDR2-800
o 128-entry memory request buffer

a 8 banks, 2Kbyte row buffer

a 40ns (160 cycles) row-hit round-trip latency

a 80ns (320 cycles) row-conflict round-trip latency

Benchmarks
o Multiprogrammed SPEC CPU2006 and Windows Desktop applications
o 100, 16, 12 program combinations for 4-, 8-, 16-core experiments

30

Comparison with Other DRAM Controllers

s Baseline FR-FCFS [zuravieff and Robinson, US Patent 1997; Rixner et al., ISCA 2000]

a

Prioritizes row-hit requests, older requests

o Unfairly penalizes threads with low row-buffer locality, memory non-intensive

threads

= FCFS [Intel Pentium 4 chipsets]
o Oldest-first; low DRAM throughput

a

Unfairly penalizes memory non-intensive threads

= Network Fair Queueing (NFQ) [Nesbit et al., MICRO 2006]

a

a
a
a

Equally partitions DRAM bandwidth among threads

Does not consider inherent (baseline) DRAM performance of each thread
Unfairly penalizes threads with high bandwidth utilization [MICRO 2007]
Unfairly prioritizes threads with bursty access patterns [MICRO 2007]

= Stall-Time Fair Memory Scheduler (STFM) [Mutlu & Moscibroda, MICRO 2007]

Q
Q
Q

Estimates and balances thread slowdowns relative to when run alone
Unfairly treats threads with inaccurate slowdown estimates
Requires multiple (approximate) arithmetic operations

31

Unfairness on 4-, 8-, 16-core Systems

Unfairness = MAX Memory Slowdown / MIN Memory Slowdown [MICRO 2007]

5
B FR-FCFS
4.5 OFCFS
—~ BNFQ
g 4 mSTFM
(D]
o B PAR-BS
»n 35
2
o 37
(7))
@
e 2.5 A
5
5 2
1.11X 1.08X
1.5 - v
\ 4
1 n T
4-core 8-core 16-core

32

System Performance (Hmean-speedup)

B e
N Wb

P
=
=

Normalized Hmean Speedu

o O O O O o o

8.3%

6.1%

5.1%

o o N o © Pk
[N I (N N

w »
| |

4-core

B FR-FCFS

OFCFS

B NFQ

B STFM

B PAR-BS

8-core

16-core

33

Outline

Background and Goal

Motivation
o Destruction of Intra-thread DRAM Bank Parallelism

Parallelism-Aware Batch Scheduling
o Batching
o Within-batch Scheduling

System Software Support
Evaluation
Summary

34

Summary

Inter-thread interference can destroy each thread’s

DRAM bank parallelism

o Serializes a thread’s requests - reduces system throughput

o Makes techniques that exploit memory-level parallelism less effective
o Existing DRAM controllers unaware of intra-thread bank parallelism

A new approach to fair and high-performance DRAM scheduling

o Batching: Eliminates starvation, allows fair sharing of the DRAM system

o Parallelism-aware thread ranking: Preserves each thread’s bank parallelism

o Flexible and configurable: Supports system-level thread priorities = QoS policies

PAR-BS provides better fairness and system performance than
previous DRAM schedulers

35

Thank you. Questions?

Parallelism-Aware Batch Scheduling

Enhancine both Performance and Fairness
g

of Shared DRAM Systems

Onur Mutlu and Thomas Moscibroda
Computer Architecture Group
Microsoft Research

Backup Slides

Multiple Memory Controllers (I)

Local ranking: Each controller uses PAR-BS independently
o Computes its own ranking based on its local requests

Global ranking:

Meta controller that computes a global

ranking across all controllers based on global information
o Only needs to track bookkeeping info about each thread’s requests

to the banks in

The difference
scheme depenc

each controller

between the ranking computed by each
s on the balance of the distribution of

requests to eac

N controller

o Balanced - Local and global rankings are similar

39

Multiple Memory Controllers (11)

4.5 m FR-FCFS 1.6
4 O FCFS - oqg4 7.4% 11.5%
mNFQ Eh
35 m STFM 912
@ 3 mPAR-BSLocal | @
¢ ® PAR-BS Global c 1
c)5 5
ks 20.8 |
52 :
© |
1.5 - 1.18X 1.33X .50.6
T0.4 -
- ;
0.5 - =0.2
0 - -

16-core system, 4 memory controllers

40

Example with Row Hits

Il Thread 1 277 Thread 3
me
Thread2 [| Thread 4 A

Bank 1 Bank2 Bank3 Bank4
(a) Arrival order (and FCFS schedule)

Bank1 Bank2 Bank3 Bank4
(b) FR-FCFS schedule

Bank1 Bank2 Bank3 Bank4
(c) PAR-BS schedule

Thread 1 4 Thread 1 Thread 1

Thread 2 4 Thread 2 3 Thread 2 2
Thread 3 5 Thread 3 4.5 Thread 3 4
Thread 4 7 Thread 4 4.5 Thread 4 5.5
AVG 5 AVG 4.375 AVG 3.125

41

End of Backup Slides

Now Your Turn to Analyze...

= Background, Problem & Goal
= Novelty

= Key Approach and Ideas

= Mechanisms (in some detail)
= Key Results: Methodology and Evaluation
= Summary

= Strengths

= Weaknesses

= Thoughts and Ideas

= Takeaways

= Open Discussion

43

PAR-BS Pros and Cons

Upsides:
o First scheduler to address bank parallelism destruction across
multiple threads

o Simple mechanism (vs. STFM)
o Batching provides fairness
o Ranking enables parallelism awareness

Downsides:

o Does not always prioritize the latency-sensitive applications
o Deadline guarantees?

o Complexity?

Some ideas implemented in real SoC memory controllers

44

More on PAR-BS

= Onur Mutlu and Thomas Moscibroda,
"Parallelism-Aware Batch Scheduling: Enhancing both
Performance and Fairness of Shared DRAM Systems"
Proceedings of the 35th International Symposium on Computer
Architecture (ISCA), pages 63-74, Beijing, China, June 2008.
[Summary] [Slides (ppt)]

Parallelism-Aware Batch Scheduling:
Enhancing both Performance and Fairness of Shared DRAM Systems

Onur Mutlu Thomas Moscibroda
Microsoft Research

{onur,moscitho } @microsoft.com

45

http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca08_talk.ppt

Seminar in
Computer Architecture
Meeting 2¢c: Example Talk I

Prof. Onur Mutlu

ETH Zirich
Fall 2019
26 September 2019

