GraphSSD: Graph Semantics Aware SSD

Kiran Kumar Matam Gunjae Koo Haipeng Zha
kmatam @usc.edu gunjae.koo@hongik.ac.kr hzha@usc.edu
University of Southern California Hongik University University of Southern California

Los Angeles, California

Hung-Wei Tseng
htseng3 @ncsu.edu
North Carolina State University
Raleigh, North Carolina

ABSTRACT

Graph analytics play a key role in a number of applications such
as social networks, drug discovery, and recommendation systems.
Given the large size of graphs that may exceed the capacity of the
main memory, application performance is bounded by storage access
time. Out-of-core graph processing frameworks try to tackle this
storage access bottleneck through techniques such as graph sharding,
and sub-graph partitioning. Even with these techniques, the need
to access data across different graph shards or sub-graphs causes
storage systems to become a significant performance hurdle. In
this paper, we propose a graph semantic aware solid state drive
(SSD) framework, called GraphSSD, which is a full system solution
for storing, accessing, and performing graph analytics on SSDs.
Rather than treating storage as a collection of blocks, GraphSSD
considers graph structure while deciding on graph layout, access, and
update mechanisms. GraphSSD replaces the conventional logical to
physical page mapping mechanism in an SSD with a novel vertex-
to-page mapping scheme and exploits the detailed knowledge of
the flash properties to minimize page accesses. GraphSSD also
supports efficient graph updates (vertex and edge modifications)
by minimizing unnecessary page movement overheads. GraphSSD
provides a simple programming interface that enables application
developers to access graphs as native data in their applications,
thereby simplifying the code development. It also augments the
NVMe (non-volatile memory express) interface with a minimal set
of changes to map the graph access APIs to appropriate storage
access mechanisms.

Our evaluation results show that the GraphSSD framework im-
proves the performance by up to 1.85x for the basic graph data fetch
functions and on average 1.40x, 1.42x, 1.60x, 1.56%, and 1.29x
for the widely used breadth-first search, connected components,
random-walk, maximal independent set, and page rank applications,
respectively.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

ISCA ’19, June 22-26, 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6669-4/19/06. .. $15.00
https://doi.org/10.1145/3307650.3322275

Seoul, South Korea

116

Los Angeles, California

Murali Annavaram
annavara@usc.edu
University of Southern California
Los Angeles, California

CCS CONCEPTS

* Hardware — External storage.

KEYWORDS
SSD, Graphs, Flash storage

ACM Reference Format:

Kiran Kumar Matam, Gunjae Koo, Haipeng Zha, Hung-Wei Tseng, and Mu-
rali Annavaram. 2019. GraphSSD: Graph Semantics Aware SSD. In The
46th Annual International Symposium on Computer Architecture (ISCA '19),
June 22-26, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3307650.3322275

1 INTRODUCTION

Graphs analytics are at the heart of a broad range of applications
such as social network analysis, drug discovery, page ranking, trans-
portation systems, and recommendation systems. The size of the
graphs in many of these domains exceeds the size of main memory
seen in commodity computing systems. There is a need to consider
efficient storage-centric graph processing, at least in a subset of
application scenarios where the size of the graph far exceeds the
size of the main memory. It is well known that data input/output
(I/0) time to access large graphs consumes a significant fraction of
the total execution time compared to the CPU and memory access
time [2, 10, 32].

On the storage front, the cost of solid-state drives (SSDs) has
fallen dramatically. NAND Flash SSDs cost about $100 per 1TB
as of early 2019, and the price is expected to reduce further. With
the advent of non-volatile memory express (NVMe) [13] interface,
SSDs can offer significant improvements in bandwidth and enable
tighter integration of computing with storage. Furthermore, SSDs
are equipped with reasonably capable compute fabric to handle flash
management tasks. The advent of such affordable SSDs provides
new opportunities to improve the performance of graph analytics
by making storage systems semantically aware of the graph data
being stored. In particular, we make a case for treating graphs as
a native format supported on storage, rather than treating graphs
as a collection of pages that are accessed using standard block I/O
interface.

This work presents the design and implementation of a graph
semantic aware SSD (GraphSSD) to manage graphs on an SSD
platform. GraphSSD supports the compressed sparse row (CSR)
format for graph layout and further customizes this format to enable
fast mapping of vertex id to the physical page location that contains

https://doi.org/10.1145/3307650.3322275
https://doi.org/10.1145/3307650.3322275

ISCA 19, June 22-26, 2019, Phoenix, AZ, USA Kiran Kumar Matam, Gunjae Koo, Haipeng Zha, Hung-Wei Tseng, and Murali Annavaram

the adjacency information of that vertex. GraphSSD provides a set of
programming APIs to application developers to access graph vertex
and edge information, similar to recent graph frameworks such as
GraphCHI [21] and Pregel [27]. But the novelty of this work is that
the SSD controller is made aware of the graph data structures stored
on the SSD. Thus the controller can automatically translate the graph
access APIs into a set of low level physical page accesses to fetch the
requested data. These APIs accept basic graph related queries such as
fetching adjacent vertices for a target vertex, fetching edge weights
of connected edges. GraphSSD APIs are generic enough to enable
developers to write complex graph analytics on top of GraphSSD.
GraphSSD provides solutions to the following challenges:

(1) Graph as native objects: GraphSSD allows the embedded

controller in SSDs to treat graphs as native storage objects,

and provides a set of APIs that can be used to access the graph
objects on storage.

NAND flash aware graph layout: NAND flash memory can

only be accessed in fixed-size pages, and pages can be ac-

cessed concurrently only across the parallel units. The widely
varying sizes of the adjacent neighbors across different ver-
tices require a graph storage mechanism that accommodates
this diversity within the constraints of the flash memories.

GraphSSD tackles this challenge by relying on a compressed

sparse row (CSR) representation for a graph, and embedding

metadata in NAND pages to store edges from one or more
vertices.

(3) Efficient indexing mechanism: GraphSSD presents an innova-
tive graph translation layer (GTL), which translates a vertex
id to a physical page address on the flash memory media
directly, thereby reducing unnecessary indirect page accesses
to reach a given vertex.

(4) Indexing compaction: GraphSSD reduces the GTL mapping
overhead by co-locating multiple vertices with few edges in
the same physical page.

(5) Support for graph updates: GraphSSD relies on Delta graphs
and Delta merging mechanisms that allow GraphSSD to mod-
ify only a small subset of pages containing the updated sub-
graph instead of re-shuffling the entire graph.

(6) We implement GraphSSD framework on an industrial strength
SSD development platform to show the performance improve-
ment of GraphSSD over a conventional graph storage ar-
chitecture. Our evaluation results show that the GraphSSD
framework improves the performance by up to 1.85x for
the basic graph data fetch functions and on average 1.40x,
1.42x,1.60x, 1.56%, and 1.29x for the widely used breadth-
first search, connected components, random-walk, maximal
independent set, and page rank applications, respectively.

(@)

The remainder of this paper is organized as follows: Section 2
introduces the operations of an SSD platform, the graph storage
format as a background and motivates the need for a graph seman-
tic aware storage device. The detailed architecture and functions of
GraphSSD are described in Section 3. The implementation methodol-
ogy, evaluation platform and the experimental results are presented
in Sections 4, 5, and 6 respectively. Related work is provided in
Section 7, and we conclude in Section 8.

117

SSD controller SoC

Ij

Embedded
Processor

Page |Page
Page |Page

PCle interface
Flash controller

On-chip bus

DRAM controller

Figure 1: Modern SSD platform architecture
2 BACKGROUND AND CHALLENGES

2.1 Modern SSD platforms

Figure 1 illustrates the architecture of a modern SSD platform. An
SSD equips multiple flash memory channels to support high data
bandwidth. Multiple dies are integrated into a single NAND flash
package by employing die-stacking structure to integrate more stor-
age space on the limited platform board. Data parallelism can be
achieved per die with multi-plane or multi-way composition. Each
plane or way is divided into multiple blocks which have dozens of
physical pages.

A page is a basic physical storage unit that can be read or written
by one flash command. The page size has steadily increased as
more flash memory cells can be integrated within the same area by
using multi-bit or vertical cell technology [18]. Unlike the magnetic
storage devices, flash memory cells need to be initialized before a
write operation. This erasure process can be performed only at a
block granularity since erasing flash memory cells requires higher
electric energy, which can pollute neighboring page cells. In addition,
the erasure process is significantly slower than reading or writing.
Thus SSDs write the updated page contents to a new empty physical
page rather than erase-and-write an entire block. Consequently,
the logical block address (LBA) of a flash page is mapped to new
physical page address (PPA) in the flash memory space whenever
the page data is updated (and the old page is invalidated). The SSD
controller firmware manages this mapping information in the flash
translation layer (FTL) mapping table. The SSD controller does
garbage collection of invalid pages to create empty physical pages. It
erases an entire block, writing any valid physical pages in that block
to another empty physical page in a different block and updating the
FTL.

2.2 Out-of-core graph processing

In many domains, graphs are large requiring out-of-core graph pro-
cessing. Namely, graphs are processed in smaller chunks where each
chunk is read from the storage into the DRAM. Large graphs also
tend to be sparsely connected and hence to reduce the 1/0 bottleneck
large graphs are stored in a compressed format, such as the com-
pressed sparse row (CSR) format. Alternate approaches have also
been proposed to access graphs in smaller chunks such as shards [21].
Irrespective of the choice of the graph storage format, all prior tech-
niques require the storage to be treated as a block device. In this
paper, the storage controller understands the semantics of graphs

GraphSSD: Graph Semantics Aware SSD

vi|v2|va]va|vs|ve . ’4‘8 4‘3 P 1‘
vile 2 6 @ o o ve
v2|e @ 0 0 0 o Edge weight
V3840000‘C°1IdX’2‘1 2‘12345‘
V4|6 0 @ @ 0 0o Adjacent vertices
V5|6 © @ 6 0 o r‘othr"1224449‘
V6|3 5 3 2 1 ©

Matrix format CSR format

Figure 2: CSR format representation for an example graph

and the system provides a set of APIs to program the storage con-
troller to access graph data. In this context we use CSR format in
our implementation. CSR format is widely used for general purpose
large-scale graph processing [30, 41] and is shown to be efficient for
out-of-core graph processing systems [16, 22, 26, 30].

CSR format takes the adjacency matrix representation of a graph
and compresses it using three vectors. The value vector, val, stores
all the non-zero values from each column sequentially. The column
index vector, colldx, stores the column index of each element in
the val vector. The row pointer vector, rowPtr, stores the starting
index of each row in the val vector. CSR format representation for
an example graph is shown in Figure 2.

To access adjacent vertices associated with a vertex in the CSR
graph storage format, we first need to access the rowPtr vector to get
the starting index in the colldx vector. The colldx vector stores the
adjacent vertices associated with the vertex in a contiguous fashion.
To get an edge weight, we need to get the adjacent vertices for the
source vertex and find the index of the destination vertex in the colldx
vector; with that index we can access the corresponding location in
the val vector, where edge weights are stored.

2.3 Graph updates

Many of the existing graph frameworks assume static graphs but
there is a need to support dynamic graphs whose edge and vertex
related information may be updated [30]. GraphSSD supports ef-
ficient graph updates by building on Delta graphs introduced in
LLAMA [26]. GraphSSD maintains graph updates as a series of
snapshots. Initially, all the vertices store their adjacency list as one
contiguous vector. When graph updates are performed, multiple up-
dates are grouped together into a single snapshot. At regular intervals
a snapshot is written back to storage and a new snapshot is created
for the incoming updates. Multiple snapshots are chained together
alongside the initial adjacency list as a linked list of pointers. To
retrieve the entire adjacency list for a vertex, one has to traverse these
chains of pointers starting from newer snapshots to older snapshots.
This pointer chasing may increase the latency for accessing adjacent
vertices. To reduce this inefficiency GraphSSD also merges the snap-
shots at regular intervals to create a single contiguous adjacency list
for each vertex.

When using a CSR based graph representation to merge updates
one has to read the entire graph and merge the updates and write to a

118

ISCA ’19, June 22-26, 2019, Phoenix, AZ, USA

Host SSD
/0 controller GraphSSD
| 1/0 command decoder | Graph
Graph command
applications | Graph command decoder I handling
C d Graph
GraphSSD _ ommand || Graph command L fayout
cache and handler handler
Q
log 8 Translation layer Graph
manager 5 | FTIL_ | 61t | garbage
= collection
@)
o
DRAM % > Interconnection network
S
GraphSSD q ; e e
cache DRAM
o Page NAND
buffer pages

Figure 3: GraphSSD architecture overview

new location [26, 30]. To have a consistent view one can read a ver-
tex’s adjacency list from the new location only after the entire merge
operation has been performed. During the long merging process,
there is a significant performance penalty to access the adjacency
list for a vertex.

3 ARCHITECTURE

Figure 3 provides an overview of the GraphSSD architecture. GraphSSD

has the following components: graph translation layer (GTL) and
graph command decoder on the SSD; and a host side graph caching
layer and a graph update logger.

3.1 Graph command decoder:

The capabilities of GraphSSD are exposed to the application pro-
grammer through a set of graph access APIs. These APIs are im-
plemented within the GraphSSD library that can be linked into any
graph application. Each of these APIs in turn activate the SSD mi-
crocontroller to perform some of the storage access tasks. These
activation commands are transferred as NVMe commands issued
from the host to the SSD. The current NVMe protocol has several
unused bytes in the read/write command encoding which can be eas-
ily adapted to implement the GraphSSD APIs, if deemed necessary
to minimize any protocol changes. All NVMe commands from the
host are first intercepted by the GraphSSD command decoder. The
command decoder routes all GraphSSD APIs to the graph command
processing, while regular NVMe commands (page read and write)
are sent to the default SSD processing sequence. Using this approach
GraphSSD can co-exist with traditional block based storage interface
within a single SSD.

‘ Commands ‘
GetAdjacencyList, GetEdge Weight
AddEdge, AddVertex, DeleteEdge,
DeleteVertex, UpdateEdge, Update V-
ertex

Graphlnitialize

Table 1: GraphSSD APIs

‘ Category

Graph read commands
Graph update commands

Graph initialization

ISCA 19, June 22-26, 2019, Phoenix, AZ, USA Kiran Kumar Matam, Gunjae Koo, Haipeng Zha, Hung-Wei Tseng, and Murali Annavaram

The list of APIs supported by GraphSSD currently is shown in
Table 1. All GraphSSD APIs provide a vertex id to start any type of
graph access. As such the first step in GraphSSD processing is to
access the vertex id and its associated edges in the graph from the
flash storage. To enable fast access to the physical pages consisting
of the vertex related data we propose a novel graph translation layer
as a substitute for traditional FTL used in SSDs.

3.2 Graph translation layer

In order to understand the workflow of GraphSSD it is important to
understand how graphs are laid out in storage by our design. As de-
scribed earlier, we assume that graphs are represented in CSR format
using three vectors, named rowPtr, colldx, and val. Each entry in the
rowPtr vector is essentially the starting index into colldx (and val)
vectors where the neighbors of that vertex are located. GraphSSD
essentially preserves this indexing mechanism while laying out these
vectors in the flash pages. The colldx and val vectors are proportional
to the number of edges in the graph and hence they are significantly
larger than the rowPtr vector. GraphSSD stores only the colldx and
val vectors in the NAND flash pages, and uses the rowPtr vector as
an indexing table. GraphSSD provides a translation layer for this
indexing purpose, called the Graph Translation Layer (GTL). GTL
replaces the more traditional LBA-to-PPN (logical block address
to physical page number) page mapping used in commodity SSDs.
GraphSSD maps a given vertex id (V;) to the physical NAND page
number where the neighbor vertices (colldx values) are stored.

GTL architecture: Figure 5 shows the structure of graph trans-
lation table (GTT) and Figure 4 shows the page layout for the graph.
Each entry in GTT includes the mapping from a vertex id to the
physical page number (PPN), and a tuple of status flags (dirty, exten-
sion, and valid). We will later describe how the GTT status flags are
utilized. While conceptually each vertex maps to the physical pages
storing all its neighbors through GTT, most of the real-world graphs
have sparse connectivity. Hence, lots of vertices have only a few
edges. As such, it is possible to co-locate the neighbors of multiple
vertices in a single physical page. In this scenario, it is wasteful to al-
locate one GTT entry per vertex. To reduce this wastage GTT stores
only one vertex id per physical page. GTT stores just the smallest
vertex id from all the vertices whose neighbors are stored in a given
physical page. Namely for each vertex V;, there is a GTT entry in-
dexed with vertex id V; that is smaller than or equal to V;. The next
entry in GTT has a vertex id V; which is greater than V;. To make this
search process efficient, GTL stores all the vertex ids in sorted order
in GTT. If the graphs are directional, GraphSSD stores the incoming
and outgoing edge information in separate pages, and keeps separate
GTT for each of incoming and outgoing edge information.

Since each physical page may store neighbors of multiple vertices
we need to identify the offset of the neighbor list for each vertex
id. For this purpose, each physical page includes additional fields
to store layout information as shown in Figure 4. We will describe
the fields in the page starting from the last field and moving to
the front. The last field in the physical page stores the number of
vertices whose neighbor lists are stored in that page. Preceding this
count there are N+1 <vertex, offset> tuples, corresponding to the
N vertices stored in that page. Each tuple stores the vertex id and
the starting byte offset within the page where the neighbor list for

119

that vertex is stored in that page. Since the last adjacency list stored
in page may fill a page partially a special tuple is used to indicate
the ending offset for the last neighbor list. This ending offset of the
last neighbor list is necessary to mark where the valid data in a page
ends. The offset information and metadata described above is stored
from the end of the page, and the actual vertex neighbor lists are
stored from the starting of the page. Storing location pointers along
with the adjacent vertices in a page helps us 1) in reducing the size of
the GTT which will enable keeping a large chunk of GTT in DRAM,
and 2) making no extra NAND page accesses to reach the adjacent
vertices associated with a vertex id.

We now discuss different graph layout scenarios in GTT.

1. When neighbor vertices of a vertex V; are stored entirely in a
page: In this case, all neighbors are stored contiguously in the page
and the starting offset of the neighbor list is stored in the location
tuple associated with V;.

2. When neighbor vertices of a vertex V; are stored across multiple
pages: V;’s neighbors span multiple pages for two reasons. First, V;
has many neighbors which will not fit in a single page. In this case,
at least one page stores only the neighbors of V;. That page will
store just a single location pointer tuple and the last field on the page
indicates that only a single vertex’s neighbors are located on that
page. After filling multiple full pages for a long neighbor list, there
may be at most one partial page to store the last remaining neighbors.
That page may also store the neighbors of other vertices. In this case,
the location pointer tuples of all vertices including V; are stored just
as the first case above. GTL handles these dense vertices by storing
the V; to physical page mapping in GTT for each page that stores the
neighbors of V;. Thus V; may have more than one GTT entry.

3. There is a third case where the number of neighbors of V; may
not fit in the existing free space in a page, and hence may span two
different pages, even though the total number of vertices do not
exceed a single page. We explored different options for packing the
page but in the end, for simplicity of design, we decided to avoid
spanning neighbors across two pages. Hence, if the neighbors do not
fit in the leftover space in a page we simply allocate the neighbors
to a new page.

An example of page layout: Figure 6 shows an example of GTT
and the corresponding physical page layout. In this example, the GTL
entry corresponding to V'1 stores P1, indicating that the neighbors
of V1 are stored in physical page P1. Since the next entry of GTL
corresponds to vertex V3 it implies that the previous GTL entry
also stores neighbors of V2. Similarly, second GTL entry shows that
the neighbors of V3, V4 and V5 are stored in the physical page P2.
Finally the neighbors of V6 span two physical pages P3 and P4.

The physical page organization is shown on the right half of
Figure 6. For instance, the physical page P2 stores neighbors of
three vertices and hence the last field (labeled No.V) shows the
count to be 3. To the right of this field are the tuples that shows
each vertex and its starting byte offset in the page. The tuple (V3,1)
in physical page P2 shows that vertex V3’s neighbors are located
starting at byte offset 1 within the page. A custom tuple (End,3)
shows that the last valid byte on this page is byte 2. Hence GraphSSD
can extract the neighbors of each vertex by decoding the graph page
layout as described. The GTL also shows that V6 has two page
entries since it is a dense vertex with many neighbors that span more
than one page.

GraphSSD: Graph Semantics Aware SSD

ISCA ’19, June 22-26, 2019, Phoenix, AZ, USA

No. of edges No. of vertices 1
(Nmtices for V,~ Vi1 MC& forV,~V,y1 | Number of
Vi nvo Vi nk HVHI_le"" Vi i | — = | Vina v Viena nm | | v, 1}, {VM,NM}_"’ {Vi.n..,Ne},{End,Ne} vertices

{vertex id, offset}

Figure 4: Page layout

V, : Nk V, o NI Vi - Nm
neighbors neighbors neighbors
Vertex id PPN Dirty | Extension| Valid
V, PPN, 0 0 1
Vin PPN; 0 0 1
Figure 5: Graph translation table

Vid |PPN| D E vV PPN 1 2 3 4 5 6 No.V
vifpifo]o]1 P1 | V2 (end, 2| tv2,2} [{v1,1}] 2
vi[pPp2[ofo]1 P2 | vi [v2 [End,3){vs,3{va,33[iv3,1}] 3
V6 | P3| O 0 1 P3 V1 V2 V3 V4 KEnd,5){{v6,1} 1
ve|Pafofo]1 P4 | vs end,2)f{ve,1}] 1

Graph translation table Page layout

Figure 6: An example of GTT and page layout

Translation using GTT: Now we will discuss how GTL ac-
cesses the neighbors of a vertex id V; using the GTT. For the sake of
simplicity, assume that the graph is laid out initially on the NAND
page as described in the example above and no updates have been
made. GTL does a binary search on V; column in GTT; recall the
GTT entries are sorted and hence binary search is efficient. For a
vertex V;, GTL identifies indices j and k such that j <=1i <= k. After
that GTL fetches the page pointed by the V;, say PPN;. It then does
a binary search on the location tuples in the page to match V; in a
tuple. If a match is found then the offset associated with V; is then
used to access the neighbor list. If V; is a dense vertex that spans
multiple pages then there will be multiple GTT entries for V;. Hence
GTL will access each of these pages to construct the neighbor list.

An example translation using GTT: Here we will discuss an
example translation considering the example graph shown in Figure
6. We consider process of locating V'3’s neighbors. First, to identify
the pages in which V3’s adjacent vertices are stored, GTL does
a binary search on vertex id’s in GTT. As V3 <=V3 < V6, V3’s
adjacent vertices are stored in the page pointed by the GTT entry
with vertex id V3, i.e. P2. Then P2 page is fetched. The last field in
P2 indicates that there are 3 vertices whose neighbors are stored in
this page. Then GTL searches the neighbor tuples to identify where
V3’s offset is, which is (V3,1). This location pointer indicates that
adjacent vertices for V3 can be found in P2 page at offset starting
from 1. Based on next tuple’s (V4,3) offset, GTL identifies the size
of V3’s neighbors list as 2.

3.3 Supporting graph updates

In this section we briefly discuss GTT support for operations that
modify the graph: namely AddEdge - add an edge between two
vertices and also edge weight for it, AddVertex - which adds a new
vertex and a list of its adjacent vertices edge weights. Here we will

120

[via]een DT ET V]
1] 1

PPN 1 2

3 4 3 Vsid | No.vV

[vaJoxsof o [1] 1] ps | vi | w2 End,3}[{v3,1}] 1
0x59 o~ P6 | V2 end2,2){v5,2}[{v4,1}] 2
vi[psJo o1
Page layout
[valpe] 0 o] 1] ge
Extended GTT

Figure 7: An example for updating GTT with extended bit

Load NAND
Page to DRAM

Add
Vid1->Vid2
edge

Vid1 neighbors
storedina
single Page?

Write to a NAND
Page and update
GTT

Add Vid2 to

Load NAND Page
at highest GTT
index to DRAM

Vidl
neighbors

Can data fit
ina NAND
Page?

Write to two NAND
Pages and update
GTT using an
extended bit

Figure 8: Flow chart of add edge operation

describe how each of these operations updates the graph data on the
NAND pages and the GTT.

AddEdge(V;;1,Viz): Add edge function adds Vj,, vertex to the
neighbor list of Vj4y. It also adds the corresponding edge weight for
the added edge. As V4 neighbors may be stored in a single page
or may span multiple pages, we describe the operation of adding
an edge for these two cases. Figure 8 shows the flowchart for the
AddEdge function.

When neighbors of V;;; are stored in a single page: In this
case, Vj4 is added at the end of V;;; neighbors. The subsequent
neighbors of other vertices that are stored after neighbors of V;;| are
shifted to higher page offsets. Location pointers of these vertices that
are stored at the end of the page are also updated to reflect the new
location of their neighbors. This shifting of neighbors may cause
an overflow in a page. In this case, when all the vertices don’t fit
in the page, we consider another new page and divide the vertices
between the two pages such that both the pages have a roughly
equal amount of empty space while maintaining the page structure
described before. The reason for leaving some gaps within a page
is to allow for future updates of a page without causing additional
overflow.

For the newly added page, we need to index that page using the
GTT entry. But if we add the GTT entry for this page in the sorted

ISCA 19, June 22-26, 2019, Phoenix, AZ, USA Kiran Kumar Matam, Gunjae Koo, Haipeng Zha, Hung-Wei Tseng, and Murali Annavaram

position then we may need to shift other entries in the GTT, and in
the worst case, we may need to shift all the GTT entries. To avoid
this scenario we keep an extended bit in the GTT entry. When the
extended bit is set, the GTT entry doesn’t point to a NAND page
number but instead points to a location where GTT entries are stored
contiguously for the newly added page and the old page that is split.
Figure 7 shows how GTT is updated with the extended bit, when an
adjacent edge is added between V4 and V2 and P2 page overflows
for the example graph shown in Figure 6.

When neighbors of V;;; are stored in multiple pages: Then
there are multiple GTT entries with vertex id V;;;. Among them,
Viaz 1s added to the page pointed by the GTT entry at the highest
index and after that, it is handled similarly to the above case.

An example edge addition: Here we will discuss an example
of adding an edge from V4 to V1 considering the graph shown in
Figure 6. First, the page containing the V4’s neighbor list, P2, is
loaded into the DRAM. Then the starting offset for V4 neighbors is
identified as 3 and V1 is then inserted at word 3. After insertion, as
the neighbors and location pointers cannot fit in a NAND page, they
are stored in two NAND pages, P5 and P6. To have roughly equal
available space in P5 and P6, vertex neighbors of V3 are stored in
PS5, V4 and V5’s neighbors are stored in P6. GTT entry for V3 does
not store the physical page number and instead it stores the location
pointers where the extended GTT information is stored. And also
the extended bit at V3’s GTT entry is set, as shown in Figure 7.

Similar to adding an edge, we also implemented adding a vertex,
which inserts the vertex into GTT, and then adds multiple neighbors
while maintaining the previously described page layout. Due to
the space limitations we omit the description for delete and update
operations on edges and vertices.

3.4 Handling Graph Updates Efficiently With
Caching and Delta Graph

The graph update process described above leads to many unnecessary
page writes. Since SSDs can’t do in place updates, it is not possible
to simply update the NAND page with new data, even if the update
is as simple as just adjusting the edge weight. Each page update
triggers a read-modify-write sequence for the entire page which
leads to significant write amplification, in the worst case, by a factor
of 1000x. For instance, a single edge weight update leads to reading
the full page into a DRAM buffer, modifying the weight in the page
and then writing the new 16KB page (GraphSSD page size) to a
new location. To reduce the write amplification, we implemented
an optimization that relies on a multi-stage update process. First, all
updates are logged on the host side DRAM until sufficient number
of updates have been accumulated (one page worth of updates in
our current implementation) or when a timer event is triggered (a
default value of 100 milliseconds is used in this work). A host side
GraphSSD log manager is implemented for handling the logging
functionality.

Host side logger: Certain updates such as deletions or updating
an edge or vertex weight need to check whether the edge or vertex
that is modified exists in the graph in the first place. Hence, the host
side logger sends a request to the SSD itself to verify the presence
of vertex or an edge. The logger also concurrently launches another
thread to check for the edge/vertex information in the DRAM log

121

itself (by walking the log backwards in time), since the edge/vertex
being updated may still be resident in the DRAM log from a re-
cent update request that is not yet reflected in the SSD. If such an
edge/vertex does not exist either in SSD or in the DRAM the API
returns a FALSE condition back to the application. Note that the
request for presence check on the SSD is simply a read operation
and does not trigger any page updates.

Delta graphs: When the DRAM log is full or when the timer
interrupt expires the host side logger initiates a bulk update sequence.
As described earlier, graph insertions may trigger a page overflow
and in the worst case each insertion may trigger multiple page writes.
While DRAM buffering on the host side helps with this concern,
GraphSSD adopts the concept of a Delta graph [26] to further mini-
mize the write amplification. We implement delta graphs using two
vectors in SSD, namely deltaPointer and deltaUpdates. All updates
for a adjacency list are appended to the deltaUpdates vector. The
newly added updates for a vertex points to the previously added
delta update for that vertex. DeltaPointer for that vertex points to
the index in the deltaUpdates vector that contains the latest delta
updates for that vertex.

Graph accesses with DRAM logs and delta graphs: The graph
access mechanisms must know the presence of delta graph for a
given vertex to properly reconstruct the full graph. To mark the
presence of a delta graph GraphSSD sets a dirty bit in the GTL entry
corresponding to that vertex. Thus when a graph access request is
received, it will first access the GTL entry to identify the physical
page consisting of the original graph and if a dirty bit is set in GTL
entry the access mechanism then uses the DeltaPointer to reach all
subsequent updates to that vertex.

Merging delta graph with the initial graph: While delta graphs
allow graph updates to be gracefully handled in terms of write
amplification issue, it does lead to a slow down in graph access
latency. As such it is preferable to periodically merge delta graphs
into the original graph. For merging the delta graph into the initial
graph, we loop over GTT and identify the GTT entries whose dirty
bit is set. For these vertices, we access the delta modifications and
merge them with existing neighbor list data stored in the original
graph. After all the vertex modifications have been merged into the
graph, all the dirty bits at the GTT entries are cleared.

3.5 Consistency considerations:

Anytime there is a graph update that is logged in DRAM there is a
risk of losing that state during power failures. As is the case with file
buffers in OS that cache file content, during a power loss some of
the data may be lost. But what is important is that a consistent view
is preserved after a reboot. To create a consistent view of the graph,
every update must be atomically performed. For instance, during an
edge weight update, a new page needs to be created with the updated
edge weight. Even in the presence of a delta graph at some point in
future a page update may be initiated when merging delta graphs
with the original graph. In this scenario we first create a redo-log
entry before initiating the update process. The redo-log stores the
GTL entry (physical page number), the deltaPointer and deltaUpdate
info for the vertex that is being updated. The update process then
will write the new page first, then resets the GTL dirty bit, changes
GTL entry to point to the new page, and finally invalidates the old

GraphSSD: Graph Semantics Aware SSD

page and resets the deltaPointer entry. If there is a power failure
either during the new page write process or after the new page is
written but before the GTL dirty bit is reset, on a reboot the redo-log
starts the entire update process by selecting another page to write
(the page that was being written before the power failure will be
garbage collected just like other invalid pages using the default SSD
policies for handling write failures). If the power failure occurs after
the GTL dirty bit is reset but before the GTL entry is updated with a
new page entry the redo-log sets the GTL dirty bit back again and
restarts the update process. If the power failure occurs after the GTL
entry has been updated but before the old page is invalidated, the
redo-log simply invalidates the old page and deltaPointers. Note
that there are several optimizations that can be made to improve the
performance of redo-logging. We currently focus on functionality
and leave optimization for future work.

Garbage collection: We use a single bit for every page in the
storage to indicate if that page is used by GraphSSD or not. If that
page has been used for storing the graph data then while moving that
NAND page during garbage collection, the garbage collector informs
GraphSSD runtime which will in turn update the GTT entry. The
page that is being moved already contains the information regarding

the smallest vertex id whose neighbor lists are stored in that page.

We update the GTT entry for that vertex id with the new NAND
page location where the data is moved.

3.6 GraphSSD cache manager

To improve the performance for graph applications when accessing
storage, graph data is cached at the host side. For algorithms based
on graph data such as page rank and graph filtering, which request
sequential vertex ids, there might be many requests to storage for
nearby vertex data. Handling these requests to the storage adds
considerable overhead and dominates the application time. To reduce
this overhead we implemented a cache manager, which caches GTT
on the host side, does graph command handling. GraphSSD cache
manager issues requests to fetch NAND pages on a cache miss. As
many vertices may reside in a NAND page, single NAND page fetch
to host side cache may serve many requests on the host side itself
thereby filtering requests to storage. The host side GTT is read-only
and all update requests invalidate the cached GTT entry and the
update is handled on the SSD itself.

During garbage collection at the SSD, data in a NAND page may
be written to another NAND page. If a NAND page storing graph
data is moved then new NAND page number should be updated
at the host GTL cache. For updating this NAND page number on
the host side cache the SSD controller automatically initiates a host
cache invalidation request which is handled by the GraphSSD cache
manager.

3.7 Graph command handling examples

We summarize our system implementation using two example graph

access APIs; GetAdjacentVertices, and GetEdgeWeight commands.

For these commands we describe how we retrieve the required data
from the NAND pages.

GetAdjacentVertices(vertexID, EdgeList): Using the requested
vertex id GTT is accessed to get the NAND page numbers storing its
adjacent vertices. If the GTT’s extended bit is set then we may have

122

ISCA ’19, June 22-26, 2019, Phoenix, AZ, USA

Algorithm 1 Code snippet of BFS program using GraphSSD

: /*BFS Request thread code™*/
: Queue.push(root)
while Queue not empty do
top_element = Queue top element
if top element == required element then
Element found
Exit
Wait until empty slot is available in GraphSSD response
queue
9: Wait until empty slot is available in GraphSSD request queue
GraphSSD.GetAdjacentVertices(top_element, Edge-
List)

S A o A

: /*BFS Response thread code*/
: Wait until EdgeList is available in GraphSSD response queue

14: for i=0; i < EdgeList.size(); i++ do
15: if EdgeList[i] not already visited then
16: Add to Queue

to search through the extended GTT entries to find the physical page.
Once a physical page location is identified, and if the dirty bit in the
GTT entry is set then it indicates that some of the neighbor infor-
mation in that page has been modified. Hence, GraphSSD accesses
the original graph page, and the Deltaupdates vector. Concurrently
the host side logger searches the host side DRAM logs to find any
cached or updated edge information for the given vertex. Finally the
information from the original graph page, Deltaupdate page and the
host side DRAM pages is combined to create the EdgeList buffer
which is returned to the application.

GetEdgeWeight(vertexID1, vertexID2, EdgeWeight): Using
Vertexld1 we access the GTT and fetch all the pages containing
the neighbors of VertexId1. Using VertexId1 we access the NAND
page containing the neighbor lists via host cache to find if Vertex/d2
is a neighbor. As briefly mentioned earlier, a separate GTT structure
is used to map a vertex id to the corresponding edge weight informa-
tion using the same graph layout structure as the edge connectivity
information. We use the edge connectivity information to find the
index location of the edge to access the edge weight. Concurrently
the host side logger searches the host side DRAM logs to find any
updated edge weight for the given edge. The information returned
from the original graph pages is again reconciled with any updated
edge weight information found in the DRAM logs to get the most
recent edge weight information which is returned to the application.

4 WORKLOADS AND IMPLEMENTATION
DETAILS

GraphSSD essentially provides semantic awareness to the SSDs.
Instead of accessing SSDs with logical block address, it allows users
to query graph related information. For this purpose, it implements
basic graph access commands listed in Table 1. Users/libraries can
use these basic commands to build higher-level functions. We evalu-
ated several traditional graph applications that stress the following
features 1) accessing adjacent vertices for a requested vertex, 2)

ISCA 19, June 22-26, 2019, Phoenix, AZ, USA Kiran Kumar Matam, Gunjae Koo, Haipeng Zha, Hung-Wei Tseng, and Murali Annavaram

accessing edge weight for a requested edge and 3) updating edge
weights.

4.1 Workloads

The applications evaluated include:

BFS: BFS identifies whether a given target node is reachable
from a given source node. We implemented the BFS application as
shown in code snippet 1. This algorithm fetches adjacent vertices
for a given vertex id repeatedly. For evaluating BFS, we select one
source vertex and then varied the distance at which the destination
vertex may be found at several levels along the the longest path, at 3
equal intervals from the first level to the last level.

Connected components: The number of connected components
are counted in this graph application. The approach uses BFS but it
performs the operations on all vertices.

Random walk: This application performs many random-walks
starting from several source nodes. Starting from each source node,
the application does random-walks for several iterations and in each
iteration, it walks a maximum of steps. We implemented the efficient
parallel random-walk algorithm described in [20]. This algorithm
simulates random-walks in parallel, possibly from a large number
of source vertices, and processes one vertex a time. In a step, at
each vertex, all walks currently visiting that vertex are processed
and moved forward. We evaluated with 100K parallel random walks,
with a maximum of 10 steps from the source and considered several
iteration values, 10, 50, 100, and 1000.

Maximal independent set: We implemented the maximal inde-
pendent set algorithm as described in [35]. It is an iterative algorithm
based on Luby’s classic parallel algorithm[24].

Page rank: [33] The page rank is a classic graph update algorithm
and our implementation sends edge updates if they are greater than
a certain threshold (0.4). We set the maximum number of iterations
to 5.

Graph Update benchmark: Since GraphSSD provides signifi-
cant support for graph updates, we also implemented a graph update
kernel that adds edge and vertex information. The updates are main-
tained as delta graphs and are finally merged into the initial graph.We
intersperse the graph updates with a total of 1000 get adjacent queries
on vertices selected using the latest read model. In the latest read
model, the newly added updates are accessed the most. Latest read
model represents the widely used news feed, social media, where
newly posted data is accessed the most [6]. We consider 95% of
the get adjacent queries on vertices that are being updated or newly
added to the graph.

Non-intrusive NVMe Implementation: All the GraphSSD APIs
are implemented by extending existing NVMe read/write commands.
We used the unused bytes in read and write NVMe commands to
specify the GraphSSD commands. We used these unused bytes to
pass the vertex id, end vertices of an edge and an opcode encoding
to indicate the API operation being requested.

4.2 Baseline system

For the baseline system, we considered normal SSDs where the
graph is stored in CSR format (described in 2.2). The baseline uses
block based access to reach the rowPtr, colldx and val vectors. Each
access to the rowPtr, colldx or Val vector is first translated to a

123

physical page number using traditional FTL. The baseline system
also uses file caching on the host to cache multiple pages; the size
of the host side file cache is 1GB in our implementation. As we
show later in our results section, host side caching is critical for
implementing a robust baseline that can eliminate many NAND page
accesses.

We also compare results with the popular out-of-core GraphChi
framework. While comparing with GraphChi we use the same host
side memory cache size as GraphSSD. For all the applications, when
executing over GraphSSD, Baseline, and GraphChi, application data
other than the graph data, such as visited vector in BFS application,
value vector in page rank application, etc. are allocated in main
memory.

4.3 Caching and Multi-threading

We implemented host side caching using LRU policy for both
GraphSSD and baseline. Doubly linked list and hashmap are used to
efficiently implement the LRU policy. To simulate out-of-core graph
algorithms, we consider host cache size of 1GB as the default size.

To generate I/O request parallelism our baseline and GraphSSD
implementations both provide a non-blocking request interface to
graph application threads. To support non-blocking calls, we imple-
ment a request queue and response queues. In the request queue,
graph data requests are posted from the application. Graph data re-
sponses to those requests are pushed into the response queues. The
cache manager is also parallelized using multi-threading to maximize
the throughput, and locks were sparingly used for synchronizing
between the threads as necessary.

From storage, GraphSSD loads NAND page granularity chunks
into the host cache as location pointers are stored at the end of the
NAND page and vertex data is stored at the start of the NAND page.
In our baseline we also load NAND page granularity chunks into the
file buffer host cache.

S EVALUATION

We evaluated GraphSSD using the open-source SSD (OpenSSD)
development platform [31, 36]. The OpenSSD development plat-
form equips Xilinx Zynq-7000 programmable SoC that embeds a
dual-core ARM Cortex-A9 processor [39]. Hence the FPGA-based
programmable chip works as an SSD controller SoC on the SSD plat-
form. PCle interface and NAND flash channels are implemented as
hardware logic on the programmable gate arrays, and the embedded
ARM core runs the SSD firmware implementing the command han-
dling, page buffer management and FTL functions. We implemented
GraphSSD on the existing SSD firmware modifying the FTL part,
command handling and host side library which manages cache on
the host side. The OpenSSD platform encloses 1| GB DDR DRAM
and 2 TB Hynix H27QI1T8YEB9R NAND flash DIMMs connected
to the programmable SoC. The SSD board communicates with the
host system via the PCle Gen2 x 8 interface, which supports up to 4
GB/s bandwidth. NAND page size in OpenSSD platform is 16KB.
Host system uses a logical sector of size 4KB.

We configured the host system with Intel i7-4790 CPU running
at 4 GHz and 16 GB DDR3 DRAM. In order to extend NVMe
commands for GraphSSD, the NVMe host driver on Linux Kernel
version 3.19 was enhanced.

GraphSSD: Graph Semantics Aware SSD

I GraphSSD GetAdjacentVertices [l CSR GetAdjacentVertices
Graphsgs% GetEdgeWeights [l CSR GetEdgeWeights
: 946

933)
o 15 Berr 342 ?25 2590 2853 2722 18
=

YWS Average YWS Average

Figure 9: Relative performance of basic GraphSSD API

W GraphSsD GetAdjacentVertices [CSR GetAdjacentVertices
GraphSSD GetEdgeWeights [CSR GetEdgeWeights

1,00 847 846 847

750
500
250

0

MB / second

CF
Figure 10: Bandwidth for basic GraphSSD API (MB/second)

YWS CF YWsS

Average Average

Graph dataset: To evaluate the performance of GraphSSD,
we selected two real-world datasets, one from the popular SNAP
dataset [23] called com-friendster graph, and another is a popular
webgraph from Yahoo Webscope dataset [40]. These graphs are all
undirected graphs and for an edge, each of its end vertices appears
in the neighboring list of the other end vertex. The datasets are listed
in Table 2. For updates, we used a real-world YouTube dataset [29].
The graph has 1M vertices, 4.4M edges at the start. During the up-
date process 38K new vertices and 550K new edges are added to
the graph. Based on the timestamps in the dataset we divided these
updates into 10 equal snapshots to test delta graph generation and
merging functionality.

Number of vertices
com-friendster (CF) 124,836,180
YahooWebScope (YWS) 1,413,511,394

Table 2: Graph dataset

Dataset name Number of edges
3,612,134,270

12,869,122,070

6 EXPERIMENTAL RESULTS
6.1 Performance of basic APIs

We first present performance results of the basic graph access APIs
that are provided by GraphSSD, namely GetAdjacentVertices and
GetEdgeWeight APIs, before presenting the application-level per-
formance. We ran each command 1 million times using a random
vertex or edge as the starting point for the query.
GetAdjacentVertices API: The left bars in Figure 9 shows the
relative performance of GraphSSD over baseline for the GetAd-
JjacentVertices APL. GraphSSD outperforms baseline by 1.85x.
There are two potential sources for performance improvement with
GraphSSD. First, the baseline system accesses the rowPtr and colldx
vectors using block interfaces. GraphSSD on the other hand uses
GTL to find the adjacent vertex list for a given vertex. When access-
ing SSD the baseline has to access two different NAND pages for
the rowPtr and colldx vectors but GraphSSD uses semantic knowl-
edge through GTL to reduce NAND page access count. The number
above each bar in the graph shows the number of NAND pages

124

ISCA ’19, June 22-26, 2019, Phoenix, AZ, USA

accessed to the nearest thousand. Even though there were million
queries to random vertices, host side caching helps in reducing the
number of NAND pages accesses. The performance of GraphSSD
when compared to the baseline is not doubled, as rowPtr vector
is compact when compared to colldx vector, and baseline system
caches that vector on the host side effectively to reduce the rowPtr
related NAND page accesses.

We also considered the performance degradation in the baseline
due to the serialization bottleneck. The baseline has to first access
the rowPtr to find the index to access the colldx. Hence, the two
accesses may be sequentialized. Such a serialization will essentially
reduce the SSD request rates which will result in lower data band-
width between SSD and the host. However, the delay due to the
sequential nature of the two accesses can be hidden effectively if
multiple parallel requests can be issued; then the rowPtr access and
colldx vectors of different requests can be interleaved. In fact as we
described earlier, our baseline is highly multithreaded and is able to
issue multiple read requests. Since we tested the GetAdjacentVertices
API with million randomly selected vertex queries these queries can
be issued in massively parallel manner, which in fact reduces the
serialization bottleneck. This fact can be easily verified by looking
at the bandwidth utilization between SSD and the host as shown in
Figure 10. The Y-axis shows the total number of MBs transferred
per second between the SSD and the host for both the baseline and
GraphSSD. Both approaches transfer roughly the same amount of
data per second. Hence, the serialization bottleneck is not a critical
performance limiter.

GetEdgeWeight API: The right side bars in Figure 9 compares
the performance of loading the weight for an edge using the Get-
EdgeWeight API. GraphSSD outperforms the baseline by 1.42x.
Unlike accessing the adjacent vertex lists which may span many
pages for densely connected vertices, accessing an edge weight
requires accessing at most one more NAND page in the baseline
where the weight is stored (that too when there is a host cache miss).
Hence, the performance gap is narrower. Again, the parallelization
of queries reduces any serialization bottleneck as seen from the
bandwidth utilization graphs in Figure 10 (right three sets of bars).

6.2 Application performance

We first use Random-walk application to present detailed results and
analysis followed by the performance results for all applications.

Random-walk: Figure 11a plots the performance (Y-axis) of
Random-walk on GraphSSD normalized over the baseline system.
X-axis shows the number of iterations of random-walks done starting
from each source node. The performance improvement of GraphSSD
on average is about 1.6x better when compared to the baseline
system over a wide range of number of random-walks from a source
node.

In case of the Random-walk application, GraphSSD’s perfor-
mance improvements in fact do come from the two reasons we
discussed earlier: NAND page access counts and bandwidth uti-
lization. In this application as the next vertex in the walk is visited
randomly, baseline is less effective in caching the rowPtr. Using a
compact representation of GTL GraphSSD can reduce the number
of NAND page accesses. This observation is quantified in Figure

ISCA 19, June 22-26, 2019, Phoenix, AZ, USA Kiran Kumar Matam, Gunjae Koo, Haipeng Zha, Hung-Wei Tseng, and Murali Annavaram

0? CF 0.? Yw;.'?& 0.80.8 Wcr B yws
@ 0.8 . 0.7 i
2 0.6 .E 15 1.3 13 1.2 1112
'g 0.6 'g 1.0 1.0 1.0
=% = a 1.0
,E 2 04 2
ki
t.%' _E 02 % 05
g 0.0 2 0.0
10 50 100 1000 10 50 100 1000 10 50 100 1000
(a) GraphSSD Speedup (b) NAND page access counts (¢) SSD bandwidth utilization
Figure 11: Random-walk performance relative to baseline (X-axis is the number of random-walks performed)
15 14
BcF W yws 15 14 20 18 6 15 13 13 13
2.0 15 15 1.6 1.6 14
14
15 12 12 12 N 1.0 a s a 1o
& S = 1.0]
g 0 % o5 E s
& 05 & & 05 &
0.0 0.0 0.0 0.0
0.1 033 066 1 CF Yws Average CF Yws Average CF WS Average
(a) BFS (X-axis is traversal depth) (b) Connected components (c) Maximal independent set (d) Page rank

Figure 12: Application speedup relative to baseline

11b, which shows the NAND page accesses relative to baseline. Per-
formance benefits also come due to the better bandwidth utilization
of GraphSSD relative to the baseline. In the baseline, serialization
problem of accessing the rowPtr first before accessing the colldx
causes underutilization of SSD bandwidth. But GraphSSD is able
to better cache GTL and access the adjacent vertex information in
parallel leading to an improved bandwidth utilization as seen from
Figure 11c.

All other applications: Figure 12 shows the performance im-
provements for the other applications on GraphSSD over the base-
line system. For BFS, we breakdown the performance along the
X-axis based on the fraction of the total number of levels in the
graph that must be traversed to find a connection from the source
node to the destination node. For instance, a value of 0.1 on X-axis
means the destination node was found after traversing one tenth of
the longest path in a graph. We generated queries at four different
depths, 0.1, 0.33, 0.66 and 1 and the results are plotted in the fig-
ure. When compared to the baseline system, GraphSSD improves
performance on average by 1.40x, 1.42x, 1.56x , and 1.29x, for
bfs, connected components, maximal independent set, and page rank
applications, respectively. Just as we discussed earlier, the reason
for the improved GraphSSD performance for these applications is a
combination of the fewer NAND page accesses and more effective
utilization of bandwidth, due to space constraints we omit showing
that data for these applications.

6.3 Comparison with GraphChi

Figure 13 compares the performance of GraphSSD over GraphChi
for two benchmarks BFS and Page Rank. GraphChi is designed for
vertex centric programming model and applications such as BFS and
connected components are ill-suited for this programming model.
GraphChi is a vertex-centric programming framework and in most of
the iterations, all the shards (partitioned graph data) are fetched from
the storage repeatedly and only a few active vertices are actually
used in the computation. Hence, even though we collected results,

10

125

it will be unfair to GraphChi to compare its performs when the
applications are not suited for the programming model it supports.
Hence, the only purpose of us plotting the GraphChi comparison
results for BFS is to demonstrate that GraphSSD is more versatile as
it supports broader set of programming models. The first two graphs
in the Figure 13 show the significant performance degradation with
GraphChi for the two graph datasets that were used in the evaluation.
Clearly, accessing all the vertices in each iteration as required by
vertex centric programming model is not well suited for BFS. As the
fraction of traversed graph increases, the performance of GraphChi
worsens, since many iterations may be necessary for the vertex
centric programming model to converge. And during each iteration
all the graph shards may be read by GraphChi.

On the other hand, applications such as PageRank are better suited
for vertex centric programming models where many vertices may
be traversed repeatedly. Figure 13c, compares PageRank applica-
tion on GraphSSD over the GraphChi. GraphSSD still outperforms
GraphChi by 2.62x even for PageRank. Even though PageRank
updates many vertices, not all vertices are active even in PageRank
in each iteration. The sharding based data structure in GraphChi re-
quires almost all shards to be fetched for each iteration into memory
even though the number of compute operations per shard are quite
small in some shards. The variations seen across different graphs
are simply a function of the graph structure and edge weights which
influence the PageRank convergence process.

6.4 GraphSSD Overheads

With the GraphSSD data layout, GTT size for the Com-Friendster
and YahooWebGraph is 8M and 34MB, respectively. These GTT
structures are quite small compared to the typical DRAM size in
SSDs. The reason for the small size of GTT is the compact layout
we propose for GraphSSD where multiple vertices that fit in a single
page have a single GTT entry. Packing multiple vertices into one
GTT entry is very common in both the graphs we studied; only rarely
a vertex requires multiple GTT entries (=0% in CF and 0.01% in

GraphSSD: Graph Semantics Aware SSD

9889 9
10 300
8 6
s 6 . s 200
a 83
.ﬁ E 100
o o 24
A 2 [
0 0
0.1 0.33 0.66 1 0.1 0.33

(a) BFS relative to GraphChi for CF dataset

(b) BFS relative to GraphChi for YWS dataset

ISCA ’19, June 22-26, 2019, Phoenix, AZ, USA

36
250 40
30 e
167 a 16
% 20
& 10
0.0
0.66 1 CF YWsS Average

(c) Page rank relative to GraphChi

Figure 13: Speedups relative to GraphChi

YWS). Since all these graphs are dominated by sparsely connected
vertices the compact layout of GrahSSD is another key element for
boosting performance. As such the size of the GTT is small. If one
were to use one entry per each vertex the size of the GTT would be
atleast 1GB and 11.2GB, respectively for the two graphs studied in
this work.

Space overhead: While packing the adjacent vertices into a
NAND page, for the simplicity of design, we used new NAND
page if the adjacent vertices doesn’t fit in the existing free space
(described in subsection 3.2). The space overhead due to this design
choice is 4.8% and 4.9% for the CF and YWS graphs, respectively.
This space overhead can be easily avoided with a more complex
design that tracks a vertex neighbors split across pages.

6.5 Graph updates

Figure 14a shows the performance of accessing graphs that are con-
tinually updated as described in the graph update benchmark earlier.
The X-axis shows the number of delta graphs that are chained. The
performance of GetAdjacentVertices degrades slowly with increas-
ing number of updates which are stored as delta graph chains. Recall
that accessing the graph after multiple updates may require travers-
ing the UpdatePointer chains which slows down the performance.

Figure 14b shows the latency of the merge process with varying
degrees of empty slots available in the page to prevent page spills.
With a 10% empty space in each page, the merge process takes
2.4 seconds in our graph benchmark, and the time increases to 2.7
seconds when the empty space per page is limited to 5% which leads
to page splits when a new edge or vertex is being added. The time
increases to 3.9 seconds when the empty slots are just 1% of the
total page size.

Since the merge process itself is slow, any access during the merge
process itself may see variable latency depending on whether the
accessed vertex is already merged in which case it is a normal page
access, or if it is not merged at all in which case the access may need
to go through a chain of pointers. Figure 14c shows the variability
in access latency on X-axis averaged over 1000 random GetAdja-
centVertices queries compared to a graph that has no updates (or has
been fully merged already). The X-axis shows the fraction of the
graph updates that are already merged in 10 equal intervals of 10%
each. The latency penalty decreases steadily as the merge process
progresses. Further, the performance with different levels of empty
space availability in a page is almost the same, even though they
lead to different page splits, as we use random GetAdjacentVertices
queries and there is less caching benefit.

126

During the merge process in GraphSSD, one only needs to merge
NAND pages that have any updates. If any of the updated NAND
pages overflow then empty NAND pages can be used to store these
updates (described in subsection 3.3). For graphs where updates
are in fewer NAND pages, this helps us in faster merging of the
updates when compared to CSR baseline. In CSR baseline the entire
graph structure needs to be written to another place [26]. Reducing
the number of NAND pages written helps in reducing the critical
wear out of NAND pages in SSD, as they can only support a limited
number of writes during their lifetime.

7 RELATED WORK
7.1 Storage system

Exploiting the computation power of the SSD controller SoC can
be an opportunity for offloading the computation burden and cur-
tailing the data traffic in SSD for data-intensive applications. Ac-
tive disk research proposed the possibility of in-storage processing
for data-intensive applications with data processor on the storage
disk platform [1, 34]. A plethora of complex in-storage processing
applications have been proposed as SSD controller embeds more
powerful application processors to handle massive data parallelism
from multi-channel NAND flash memory [3, 5].

Summarizer [19], Active Flash [3, 37, 38], SmartSSD [7, 17],
Active Disks Meets Flash [5] and Biscuit [9] try to utilize the embed-
ded cores in a modern SSD to reduce the redundant data movement
to free-up the host CPUs and main memory. Active Flash [37] for
instance presents an analytic model for evaluating the potential for
in-SSD computation. Summarizer [19] presents a detailed descrip-
tion of the application development environment to enable offloading
work to SSD controller. SmartSSD [7] focuses on how to improve
specific database operations, such as aggregation, using in-SSD com-
putation. Biscuit [9] uses a flow-based programming model to enable
code offloading to SSDs. SSD’s data processing ability has also been
exploited to support key-value interface for SSD. KAML proposed
key-value interface for SSDs instead of the traditional block-based
I/O interface [14]. To efficiently support key-value storage they use
hash-based key-value mapping tables. To the best of our knowledge,
GraphSSD is the first investigation to employ the graph semantic
aware mapping structure in an SSD.

7.2 Graph processing

Researchers have focused on enhancing the performance of graph ap-
plications on the hardware and software front. Hardware approaches
exploit the graph processing acceleration engines near memory since

ISCA 19, June 22-26, 2019, Phoenix, AZ, USA Kiran Kumar Matam, Gunjae Koo, Haipeng Zha, Hung-Wei Tseng, and Murali Annavaram

1.0 4
2
‘508 o
=
Sos =
Eo.a 3 1
Boo 0

a

o 1 2 3 4 5 6 7 8 9 10

(a) Performance with delta snapshots

10%

(b) Latency of merge process

1.00
0.75
0.50
0.25

Performance ratio

0.00
1% 0

5% 01 02 03 04 05 06 07 08 09 1

(c¢) Performance during merge process

Figure 14: Graph update performance

large graph structure requires huge data transfer from main mem-
ory. Ahn et al. proposed Tesseract hardware accelerator that uses
in-memory processing to improve memory bandwidth utilization [2].
Graphicionado is a graph-specific hardware accelerator which uti-
lizes vertex programming model observed in wide range of graph
applications [10]. These works optimize the memory system to guar-
antee data parallelism for vertex traversals. While the prior graph
hardware accelerators focus on graphs that fit in main memory,
GraphSSD tackles the data I/O bottleneck of large graph data struc-
ture on storage devices. ExtraV does hardware graph acceleration in
front of storage to reduce the burden of graph management on the
host processor and also support processing intensive compression
to reduce the storage accesses [22]. However they use the SSD as a
block device and is orthogonal to our work. Such hardware acceler-
ation approaches in the front end of storage can also be employed
with GraphSSD to further improve performance.

On the software front, on a single node system, GraphChi [21]
and PartitionedVC [28] are out-of-memory systems which try to
efficiently support vertex-centric graph programming. GraphChi pro-
poses a sharding based graph format to reduce random I/O accesses
from storage. PartitionedVC improves over GraphChi to access stor-
age based on the number of active vertices/edges in a vertex-centric
superstep. TurboGraph is an external-memory graph engine targeting
graph algorithms expressed in sparse matrix-vector multiplication
[12]. However, it is difficult to implement graph applications such
as triangle counting on such a framework. They use large page sizes
in multiple of MBs making it inefficient to read adjacent vertices
selectively. FlashGraph implements graph engine on top of SSD file
system to maximize parallel execution [41]. In order to hide data
transfer overhead, FlashGraph also overlaps graph computation and
data I/O from SSDs where only edge lists are stored. Mosaic [25]
accelerates out-of-core graph processing on heterogeneous machines.
All the existing out-of-core memory systems only look at flash as
a block device. GraphSSD on the otherhand makes SSD aware
of graph semantics, and proposes a layout scheme that takes SSD
organization in to consideration. By customizing a widely used com-
pressed graph representation we reduce the number of costly NAND
page accesses to access graph data in out-of-core graph process-
ing and support efficient merging of graph updates which hitherto
was a problem while using the compressed graph representation.
CSR format based graph processing works show that it is efficient
for out-of-core graph processing, and performs better when com-
pared to other out-of-core graph formats such as GraphChi format
[15, 16, 22, 26, 30]. In this work, we consider a CSR format based
graph framework and GraphChi as a baseline and show significant
performance improvements.

127

GraFBoost is a vertex-centric programming model for out-of-
memory graph analytics that reduces the overhead of random up-
dates by using a log structure [15]. This work is orthogonal to our
work of reducing the random access to the graph data by a NAND
page organization aware graph layout. GraFBoost can be potentially
incorporated within GraphSSD to further improve the performance.

There have been several works to support dynamically changing
graphs. Kineographs, Chronos, and Stinger are in-memory graph
processing frameworks for handling dynamic graphs [4, 8, 11].
GraphSSD handles dynamic graphs that go beyond in-memory
graphs. LLAMA proposes efficient support for whole-graph anal-
ysis on consistent views of data while supporting streaming graph
updates [26]. It proposes to store the streaming graph updates in
snapshots along side the initial graph and merge a batch of snapshots
to amortize the costly merge operation, limit the space utilization of
snapshots and reduce the performance penalty while accessing from
the snapshots containing the latest graph updates. GraphSSD’s delta
graphs are inspired by the LLAMA approach.

8 CONCLUSION

Graph applications access increasingly large graphs that are hobbled
by storage access latency. In this work, we proposed GraphSSD,
a graph-semantic-aware SSD framework that allows storage con-
trollers to directly access graph data natively on the flash memory.
We presented graph translation layer (GTL), which translates the
vertex ids to physical page address on the flash memory media di-
rectly. In conjunction with GTL, we propose an efficient indexing
format that reduces the overhead of GTL with only a small increase
in the per-page metadata overhead. We also presented multiple op-
timizations to handle graph updates using delta graphs which are
merged to reduce update penalty while at the same time balancing
the write amplification concerns. We implemented GraphSSD frame-
work on an SSD development platform to show the performance
improvements over two different baselines. Our evaluation results
show that the GraphSSD framework improves the performance by
up to 1.85x% for the basic graph data fetch functions and on aver-
age 1.40x, 1.42x, 1.60x, 1.56%, and 1.29x for the widely used
breadth-first search(BFS), connected components, random-walk,
maximal independent set, and page rank applications, respectively.

9 ACKNOWLEDGMENT

This material is based upon work supported by Defense Ad-
vanced Research Projects Agency (DARPA) under Contract No.
HRO01117C0053, NSF grant 1719074, Samsung award 079856.
Tseng is supported by NSF grants 1657039 and 1812987. Koo is
supported by the National Research Foundation (NRF) grant funded

GraphSSD: Graph Semantics Aware SSD

by the Korea government (MSIT) (No. NRF-2018R1C1B5086594)
and Institute of Information & Communication Technology Planning
& Evaluation (IITP) grant funded by the Korea government (MSIT)
(No. 2019-0-00533, Research on CPU vulnerability detection and
validation). The views, opinions, and/or findings expressed are those
of the author(s) and should not be interpreted as representing the
official views or policies of the Department of Defense, the U.S.
Government, or the Korean government.

REFERENCES

[1]

2

[3]

[4

[5

[6

[7

[8

[9

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Anurag Acharya, Mustafa Uysal, and Joel Saltz. Active Disks: Programming
Model, Algorithms and Evaluation. In Proceedings of the 8th International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS *98, pages 81-91, New York, NY, USA, 1998. ACM.
Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. A
Scalable Processing-in-memory Accelerator for Parallel Graph Processing. In Pro-
ceedings of the 42Nd Annual International Symposium on Computer Architecture,
ISCA ’15, pages 105-117, New York, NY, USA, 2015. ACM.

Simona Boboila, Youngjae Kim, Sudharshan S. Vazhkudai, Peter Desnoyers, and
Galen M. Shipman. Active Flash: Out-of-core data analytics on flash storage. In
IEEE 28th Symposium on Mass Storage Systems and Technologies, MSST *12,
pages 1-12, April 2012.

Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng, Ming
Wu, Fan Yang, Lidong Zhou, Feng Zhao, and Enhong Chen. Kineograph: Taking
the Pulse of a Fast-changing and Connected World. In Proceedings of the 7th
ACM European Conference on Computer Systems, EuroSys *12, pages 85-98,
New York, NY, USA, 2012. ACM.

Sangyeun Cho, Chanik Park, Hyunok Oh, Sungchan Kim, Youngmin Yi, and
Gregory R. Ganger. Active Disk Meets Flash: A Case for Intelligent SSDs. In Pro-
ceedings of the 27th International ACM Conference on International Conference
on Supercomputing, ICS *13, pages 91-102, New York, NY, USA, 2013. ACM.
Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. Benchmarking cloud serving systems with YCSB. In Proceedings of the
1st ACM symposium on Cloud computing, pages 143-154. ACM, 2010.
Jaeyoung Do, Yang-Suk Kee, Jignesh M. Patel, Chanik Park, Kwanghyun Park,
and David J. DeWitt. Query Processing on Smart SSDs: Opportunities and
Challenges. In Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’13, pages 1221-1230, New York, NY, USA,
2013. ACM.

D. Ediger, R. McColl, J. Riedy, and D. A. Bader. STINGER: High performance
data structure for streaming graphs. In 2012 IEEE Conference on High Perfor-
mance Extreme Computing, pages 1-5, Sept 2012.

Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo, Jinyoung Lee, Jonghyun
Yoon, Jeong-Uk Kang, Moonsang Kwon, Chanho Yoon, Sangyeun Cho, Jacheon
Jeong, and Duckhyun Chang. Biscuit: A Framework for Near-data Processing
of Big Data Workloads. In Proceedings of the 43rd International Symposium on
Computer Architecture, ISCA ’16, pages 153—165, Piscataway, NJ, USA, 2016.
IEEE Press.

Tae Jun Ham, Lisa Wu, Narayanan Sundaram, Nadathur Satish, and Margaret
Martonosi. Graphicionado: A high-performance and energy-efficient accelerator
for graph analytics. In 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO ’16, pages 1-13, Oct 2016.

Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu, Fan Yang, Lidong Zhou,
Vijayan Prabhakaran, Wenguang Chen, and Enhong Chen. Chronos: A Graph
Engine for Temporal Graph Analysis. In Proceedings of the Ninth European
Conference on Computer Systems, EuroSys ’14, pages 1:1-1:14, New York, NY,
USA, 2014. ACM.

Wook-Shin Han, Sangyeon Lee, Kyungyeol Park, Jeong-Hoon Lee, Min-Soo Kim,
Jinha Kim, and Hwanjo Yu. TurboGraph: A Fast Parallel Graph Engine Handling
Billion-scale Graphs in a Single PC. In Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD *13,
pages 77-85, New York, NY, USA, 2013. ACM.

Amber Huffman. NVM Express, 2013.

Yanqin Jin, Hung-Wei Tseng, Yannis Papakonstantinou, and Steven Swanson.
Kaml: A flexible, high-performance key-value ssd. In HPCA, pages 373-384.
IEEE, 2017.

Sang-Woo Jun, Andy Wright, Sizhuo Zhang, Shuotao Xu, and Arvind. GraFBoost:
Accelerated Flash Storage for External Graph Analytics. ISCA, 2018.
Sang-Woo Jun, Andy Wright, Sizhuo Zhang, Shuotao Xu, et al. BigSparse:
High-performance external graph analytics. arXiv preprint arXiv:1710.07736,
2017.

Yangwook Kang, Yang suk Kee, Ethan L. Miller, and Chanik Park. Enabling
cost-effective data processing with smart SSD. In IEEE 29th Symposium on Mass
Storage Systems and Technologies, MSST ’ 14, pages 1-12, May 2013.

128

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31

[32]

[33]
[34]
[35]
[36]

[37]

[38]

[39]
[40]

[41]

ISCA ’19, June 22-26, 2019, Phoenix, AZ, USA

Jin-Yong Kim, Sang-Hoon Park, Hyeokjun Seo, Ki-Whan Song, Sungroh Yoon,
and Eui-Young Chung. NAND Flash Memory With Multiple Page Sizes for High-
Performance Storage Devices. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 24(2):764-768, Feb 2016.

Gunjae Koo, Kiran Kumar Matam, Te I, H. V. Krishna Giri Narra, Jing Li, Hung-
Wei Tseng, Steven Swanson, and Murali Annavaram. Summarizer: Trading
Communication with Computing Near Storage. In Proceedings of the 50th Annual
1IEEE/ACM International Symposium on Microarchitecture, MICRO-50 ’17, pages
219-231, New York, NY, USA, 2017. ACM.

Aapo Kyrola. Drunkardmob: billions of random walks on just a pc. In Proceedings
of the 7th ACM conference on Recommender systems, pages 257-264. ACM, 2013.
Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. GraphChi: Large-scale Graph
Computation on Just a PC. In Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation, OSDI *12, pages 31-46, Berkeley,
CA, USA, 2012. USENIX Association.

Jinho Lee, Heesu Kim, Sungjoo Yoo, Kiyoung Choi, H Peter Hofstee, Gi-Joon
Nam, Mark R Nutter, and Damir Jamsek. ExtraV: boosting graph processing
near storage with a coherent accelerator. Proceedings of the VLDB Endowment,
10(12):1706-1717, 2017.

Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset
collection.

Michael Luby. A simple parallel algorithm for the maximal independent set
problem. SIAM journal on computing, 15(4):1036-1053, 1986.

Steffen Maass, Changwoo Min, Sanidhya Kashyap, Woonhak Kang, Mohan Ku-
mar, and Taesoo Kim. Mosaic: Processing a trillion-edge graph on a single
machine. In Proceedings of the Twelfth European Conference on Computer
Systems, pages 527-543. ACM, 2017.

Peter Macko, Virendra J Marathe, Daniel W Margo, and Margo I Seltzer. LLAMA:
Efficient graph analytics using large multiversioned arrays. In Data Engineering
(ICDE), 2015 IEEE 31st International Conference on, pages 363-374. IEEE,
2015.

Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph
processing. In Proceedings of the 2010 ACM SIGMOD International Conference
on Management of data, pages 135-146. ACM, 2010.

Kiran Kumar Matam, Hanieh Hashemi, and Murali Annavaram. PartitionedVC:
Partitioned External Memory Graph Analytics Framework for SSDs. arXiv e-
prints, page arXiv:1905.04264, May 2019.

Alan Mislove. Online Social Networks: Measurement, Analysis, and Applications
to Distributed Information Systems. PhD thesis, Rice University, Department of
Computer Science, May 2009.

Lifeng Nai, Yinglong Xia, Ilie G Tanase, Hyesoon Kim, and Ching-Yung Lin.
GraphBIG: understanding graph computing in the context of industrial solutions.
In High Performance Computing, Networking, Storage and Analysis, 2015 SC-
International Conference for, pages 1-12. IEEE, 2015.

OpenSSD. Open-Source Solid-State Drive Project for Research and Education.
http://openssd.io.

Muhammet Mustafa Ozdal, Serif Yesil, Taemin Kim, Andrey Ayupov, John Greth,
Steven Burns, and Ozcan Ozturk. Energy Efficient Architecture for Graph An-
alytics Accelerators. In Proceedings of the 43rd International Symposium on
Computer Architecture, ISCA ’16, pages 166—177, Piscataway, NJ, USA, 2016.
IEEE Press.

Pagerank application,. https://github.com/GraphChi/graphchi-cpp/blob/master/
example_apps/streaming_pagerank.cpp.

Erik Riedel, Christos Faloutsos, Garth A. Gibson, and David Nagle. Active Disks
for Large-Scale Data Processing. Computer, 34(6):68-74, June 2001.

Semih Salihoglu and Jennifer Widom. Optimizing graph algorithms on pregel-like
systems. Proceedings of the VLDB Endowment, 7(7):577-588, 2014.

Yong Ho Song. Cosmos+ OpenSSD: A NVMe-based Open Source SSD Platform.
In Flash Memory Summit 2016, Santa Clara, CA, USA, 2016.

Devesh Tiwari, Simona Boboila, Sudharshan S. Vazhkudai, Youngjae Kim, Xi-
aosong Ma, Peter J. Desnoyers, and Yan Solihin. Active Flash: Towards Energy-
efficient, In-situ Data Analytics on Extreme-scale Machines. In Proceedings of
the 11th USENIX Conference on File and Storage Technologies, FAST’ 13, pages
119-132, Berkeley, CA, USA, 2013. USENIX Association.

Devesh Tiwari, Sudharshan S. Vazhkudai, Youngjae Kim, Xiaosong Ma, Simona
Boboila, and Peter J. Desnoyers. Reducing Data Movement Costs Using Energy
Efficient, Active Computation on SSD. In Proceedings of the 2012 USENIX
Conference on Power-Aware Computing and Systems, HotPower ’12, Berkeley,
CA, USA, 2012. USENIX Association.

Xilinx. Zyng-7000 All Programmable SoC Data Sheet. https://www.xilinx.com/
support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf.

Yahoo WebScope. Yahoo! altavista web page hyperlink connectivity graph, circa
2002. http://webscope.sandbox.yahoo.com/, 2018.

Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogelstein, Carey E. Priebe,
and Alexander S. Szalay. FlashGraph: Processing Billion-Node Graphs on an
Array of Commodity SSDs. In 13th USENIX Conference on File and Storage
Technologies (FAST 15), FAST 15, pages 45-58, Santa Clara, CA, 2015.

http://openssd.io
https://github.com/GraphChi/graphchi-cpp/blob/master/example_apps/streaming_pagerank.cpp
https://github.com/GraphChi/graphchi-cpp/blob/master/example_apps/streaming_pagerank.cpp
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://webscope.sandbox.yahoo.com/

	Abstract
	1 Introduction
	2 Background and Challenges
	2.1 Modern SSD platforms
	2.2 Out-of-core graph processing
	2.3 Graph updates

	3 Architecture
	3.1 Graph command decoder:
	3.2 Graph translation layer
	3.3 Supporting graph updates
	3.4 Handling Graph Updates Efficiently With Caching and Delta Graph
	3.5 Consistency considerations:
	3.6 GraphSSD cache manager
	3.7 Graph command handling examples

	4 Workloads and implementation details
	4.1 Workloads
	4.2 Baseline system
	4.3 Caching and Multi-threading

	5 Evaluation
	6 Experimental results
	6.1 Performance of basic APIs
	6.2 Application performance
	6.3 Comparison with GraphChi
	6.4 GraphSSD Overheads
	6.5 Graph updates

	7 Related work
	7.1 Storage system
	7.2 Graph processing

	8 Conclusion
	9 ACKNOWLEDGMENT
	References

