
||

ISCA 2018

Arash Tavakkol, Mohammad Sadrosadati, Saugata Ghose,

Jeremie S. Kim, Yixin Luo, Yaohua Wang, Nika Mansouri Ghiasi,

Lois Orosa, Juan Gómez-Luna, Onur Mutlu

11/11/2019 1

FLIN: Enabling Fairness and Enhancing Performance

in Modern NVMe Solid State Drives

Guy Lüthi

||

▪ Modern solid-state drives (SSDs) use new storage protocols (e.g., NVMe) that

eliminate the OS software stack

▪ I/O requests are now scheduled inside the SSD

▪ Enables high throughput: millions of IOPS

▪ OS software stack elimination removes existing fairness mechanisms

▪ We experimentally characterize fairness on four real state-of-the-art SSDs

▪ Highly unfair slowdowns: large difference across concurrently-running applications

▪ We find and analyse four sources of inter-application interference

that lead to slowdowns in state-of-the-art SSDs

▪ FLIN: a new I/O request scheduler for modern SSDs designed to provide both

fairness and high performance

▪ Mitigates all four sources of inter-application interference

▪ Implemented fully in the SSD controller firmware, uses < 0.06% of DRAM space
11/11/2019Guy Lüthi 2

Executive Summary

||

▪ Background: Modern SSD design

▪ Sources of unfairness in modern solid state drives

▪ FLIN: Flash Level Interference-aware scheduler

▪ Experimental Evaluation

▪ Strengths and Weaknesses

▪ Related work

▪ Open discussion

11/11/2019Guy Lüthi 3

Table of Contents

||

▪ Background: Modern SSD design

▪ Sources of unfairness in modern solid state drives

▪ FLIN: Flash Level Interference-aware scheduler

▪ Experimental Evaluation

▪ Strengths and Weaknesses

▪ Related work

▪ Open discussion

11/11/2019Guy Lüthi 4

Table of Contents

||

HIL

Device-level
Request Queues

FTL

Flash
Management

Data

WRQ

RDQ

Front end

Chip 0 Chip 1

Back end

GC-WRQ

GC-RDQ

Channel0

Chip 3 Queue

i

DRAM

Chip 0 Queue

Chip 2 Queue

Chip 1 Queue

FCC

Chip 2 Chip 3
Channel1

FCC

Address
Translation

Transaction
Scheduling
Unit (TSU)

D
ie

 0

Plane0
Plane1

D
ie

 1

Plane0
Plane1

M
u

ltip
lexe

d

In
terface

B
u

s In
terface

Microprocessor

Request i,
 Page 1

Request i,
 Page M

11/11/2019Guy Lüthi 5

Internal Components of a Modern SSD

▪ Back end: Storage

▪ Flash chips

▪ Front end: Control

▪ Host Interface Logic (HIL)

▪ Communicates with host

▪ Flash Translation Layer (FTL)

▪ Manages resources

▪ Processes I/O

▪ Flash Channel Controllers (FCC)

▪ Direct access to back end

HIL

Device-level
Request Queues

Front end

Chip 0 Chip 1

Back end

Channel0

i

Chip 2 Chip 3
Channel1

D
ie

 0

Plane0
Plane1

D
ie

 1

Plane0
Plane1

M
u

ltip
lexe

d

In
terface

B
u

s In
terface

Request i,
 Page 1

Request i,
 Page M

Front end

Chip 0 Chip 1

Back end

Channel0

Chip 2 Chip 3
Channel1

D
ie

 0

Plane0
Plane1

D
ie

 1

Plane0
Plane1

M
u

ltip
lexe

d

In
terface

B
u

s In
terface

||

▪ SSDs adopted conventional

host interface protocols

▪ Designed for magnetic

drives

▪ OS Software Stack

handles requests

▪ Limited to thousands

of I/O requests

11/11/2019Guy Lüthi 6

Conventional Host Interface Protocols

Process 1 Process 2 Process 3

OS Software Stack

SSD Device

Hardware dispatch
queue

I/O Scheduler

In-DRAM
I/O
Request
Queue

||

▪ Modern SSDs use high

performance host

interface protocols

▪ Bypasses OS, SSDs

handle requests

directly

▪ Very high throughput

▪ Fairness implemented

through software stack

is lost
11/11/2019Guy Lüthi 7

Host Interface Protocols in Modern SSDs

Process 1 Process 2 Process 3

OS Software Stack

SSD Device

Hardware dispatch
queue

I/O Scheduler

In-DRAM
I/O Request
Queue

||

▪ Background: Modern SSD design

▪ Sources of unfairness in modern solid state drives

▪ FLIN: Flash Level Interference-aware scheduler

▪ Experimental Evaluation

▪ Strengths and Weaknesses

▪ Related work

▪ Open discussion

11/11/2019Guy Lüthi 8

Table of Contents

||

▪ Flow:

▪ A series of I/O requests generated by an application

▪ Slowdown:

▪ 𝑆𝑙𝑜𝑤𝑑𝑜𝑤𝑛 =
𝑆ℎ𝑎𝑟𝑒𝑑 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒

𝑁𝑜𝑛−𝑠ℎ𝑎𝑟𝑒𝑑 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒

▪ Unfairness:

▪ 𝑈𝑛𝑓𝑎𝑖𝑟𝑛𝑒𝑠𝑠 =
𝑀𝑎𝑥 𝑆𝑙𝑜𝑤𝑑𝑜𝑤𝑛

𝑀𝑖𝑛 𝑆𝑙𝑜𝑤𝑑𝑜𝑤𝑛

▪ Fairness

▪ 𝐹𝑎𝑖𝑟𝑛𝑒𝑠𝑠 =
1

𝑈𝑛𝑓𝑎𝑖𝑟𝑛𝑒𝑠𝑠

11/11/2019Guy Lüthi 9

Measuring (Un)fairness

|| 11/11/2019Guy Lüthi 10

Representative Example

||

▪ Interference among concurrently running flows

▪ Detailed study of a simulation with MQSim [1]

▪ Four different sources of interference are uncovered

11/11/2019Guy Lüthi 11

Causes of Unfairness

[1] MQSim is a fast and accurate simulator modeling the performance of

modern multi-queue (MQ) SSDs

https://github.com/CMU-SAFARI/MQSim

||

▪ The I/O intensity of a flow affects the average queue wait time of flash

transactions

11/11/2019Guy Lüthi 12

Source 1: Flows With Different I/O Intensities

The average response time of a low-intensity flow

substantially increases due to

interference from a high-intensity flow

||

▪ Some flows take

advantage of chip

level parallelism in

back end

▪ Leads to low queue

time

Guy Lüthi

Source 2: Different Request Access Patterns

11/11/2019Guy Lüthi 13

||

▪ Other flows have access

patterns that do not

exploit patterns

Source 2: Different Request Access Patterns

Flows with parallelism-friendly access patterns

are susceptible to interference from

flows whose access patterns do not exploit parallelism

11/11/2019Guy Lüthi 14

||

▪ Common schedulers prioritize

Read operations

▪ Write transactions have increased

wait times

11/11/2019Guy Lüthi 15

Source 3: Flows With Different R/W Ratios

When flows have different read/write ratios,

existing schedulers do not effectively provide fairness

||

▪ NAND flash memory performs writes out of place

▪ To be rewritten, memory needs to be erased first

▪ Erases can only happen on an entire flash block (hundreds of flash pages)

▪ Pages marked invalid during write

▪ Garbage collection (GC) selects mostly empty blocks, moves remaining data

and frees block

▪ High-GC flow: flows with a higher write intensity induce

more garbage collection activities

11/11/2019Guy Lüthi 16

Source 4: Different Garbage Collection Demands

The GC activities of a high-GC flow can

unfairly block flash transactions of a low-GC flow

||

▪ Four sources of unfairness

▪ Differing intensities

▪ Differing request access patterns

▪ Differing read/ write ratios

▪ Differing GC demands

11/11/2019Guy Lüthi 17

Summary

The goal is to design a new I/O scheduler that

provides fairness, maximum performance

and throughput

||

▪ Background: Modern SSD design

▪ Sources of unfairness in modern solid state drives

▪ FLIN: Flash Level Interference-aware scheduler

▪ Experimental Evaluation

▪ Strengths and Weaknesses

▪ Related work

▪ Open discussion

11/11/2019Guy Lüthi 18

Table of Contents

||

▪ Improved I/O request

scheduler

▪ Replaces the transaction

scheduling unit

▪ Improves fairness while

keeping throughput

▪ Implemented in the SSD

firmware, no hardware

modification needed

11/11/2019Guy Lüthi 19

FLIN: Flash Level Interference Aware Scheduler

HIL

Device-level
Request Queues

FTL

Flash
Management

Data

WRQ

RDQ

Front end

Chip 0 Chip 1

Back end

GC-WRQ

GC-RDQ

Channel0

Chip 3 Queue

i

DRAM

Chip 0 Queue

Chip 2 Queue

Chip 1 Queue

FCC

Chip 2 Chip 3
Channel1

FCC

Address
Translation

Transaction
Scheduling
Unit (TSU)

D
ie

 0

Plane0
Plane1

D
ie

 1

Plane0
Plane1

M
u

ltip
lexe

d

In
terface

B
u

s In
terface

Microprocessor

Request i,
 Page 1

Request i,
 Page M

HIL

Device-level
Request Queues

FTL

Flash
Management

Data

WRQ

RDQ

Front end

Chip 0 Chip 1

Back end

GC-WRQ

GC-RDQ

Channel0

Chip 3 Queue

i

DRAM

Chip 0 Queue

Chip 2 Queue

Chip 1 Queue

FCC

Chip 2 Chip 3
Channel1

FCC

Address
Translation

Transaction
Scheduling
Unit (TSU)

D
ie

 0

Plane0
Plane1

D
ie

 1

Plane0
Plane1

M
u

ltip
lexe

d

In
terface

B
u

s In
terface

Microprocessor

Request i,
 Page 1

Request i,
 Page M

||

▪ Separate, per chip read and write

queues

▪ Low intensity flows have priority

over high intensity flows

▪ Requests get reordered to

guarantee fairness

11/11/2019Guy Lüthi 20

FLIN: Stage 1

Fairness-aware Queue Insertion

St
ag

e
 1

Fa
ir

n
e

ss
-a

w
ar

e
Q

u
e

u
e

 In
se

rt
io

n

Chip 0
Queue

Chip 1
Queue

Chip 2
Queue

Chip 3
Queue

RDQ WRQ

QP

Q1

Q2

QP

Q1

Q2

DRAMFl
as

h
 T

ra
n

sa
ct

io
n

s

FC
C

A A A A A A B A A B B X X Y Z

B

I/O Requests from high intensity flows I/O Requests from low intensity flows

||

▪ Host can assign priority level

▪ Select one read and one write

transaction and deliver to Stage 3

▪ Weighted round-robin algorithm

▪ Higher priority means more transactions

▪ No starvation

11/11/2019Guy Lüthi 21

FLIN: Stage 2

Priority-aware Queue Arbitration

1 2 1 3 1 2 1 1 2 1 1

1 2 3 4 5

St
ag

e
 1

Fa
ir

n
e

ss
-a

w
ar

e
Q

u
e

u
e

 In
se

rt
io

n

Chip 0
Queue

Chip 1
Queue

Chip 2
Queue

Chip 3
Queue

RDQ WRQ

QP

St
a

ge
 2

P
ri

o
ri

ty
-a

w
ar

e
Q

u
e

u
e

 A
rb

it
ra

ti
o

n Chip 0
Queue

Chip 1
Queue

Chip 2
Queue

Chip 3
Queue

GC-WRQ

Write Slot

Read Slot

GC-RDQ St
ag

e
 3

W
ai

t-
b

al
a

n
ci

n
g

Tr
an

sa
ct

io
n

 S
e

le
ct

io
n

Q1

Q2

QP

Q1

Q2

DRAM DRAMFl
as

h
 T

ra
n

sa
ct

io
n

s

FC
C

St
ag

e
 1

Fa
ir

n
e

ss
-a

w
ar

e
Q

u
e

u
e

 In
se

rt
io

n

Chip 0
Queue

Chip 1
Queue

Chip 2
Queue

Chip 3
Queue

RDQ WRQ

QP

Q1

Q2

QP

Q1

Q2

DRAMFl
as

h
 T

ra
n

sa
ct

io
n

s

FC
C

||

▪ Minimizes interference of differing

read/ write ratios and GC demands

▪ Chooses which transaction to

dispatch to the FCC

▪ Instead of prioritizing reads, it

prioritizes the one with less estimated

proportional wait time (𝑡𝑝𝑤 =
𝑡𝑤𝑎𝑖𝑡

𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠
)

▪ If write is selected, perform GC instead if available free space is smaller than

some pre-defined threshold

11/11/2019Guy Lüthi 22

FLIN: Stage 3

Wait-balancing Transaction Selection

St
ag

e
 1

Fa
ir

n
e

ss
-a

w
ar

e
Q

u
e

u
e

 In
se

rt
io

n

Chip 0
Queue

Chip 1
Queue

Chip 2
Queue

Chip 3
Queue

RDQ WRQ

QP

St
a

ge
 2

P
ri

o
ri

ty
-a

w
ar

e
Q

u
e

u
e

 A
rb

it
ra

ti
o

n Chip 0
Queue

Chip 1
Queue

Chip 2
Queue

Chip 3
Queue

GC-WRQ

Write Slot

Read Slot

GC-RDQ St
ag

e
 3

W
ai

t-
b

al
a

n
ci

n
g

Tr
an

sa
ct

io
n

 S
e

le
ct

io
n

Q1

Q2

QP

Q1

Q2

DRAM DRAMFl
as

h
 T

ra
n

sa
ct

io
n

s

FC
C

||

▪ Background: Modern SSD design

▪ Sources of unfairness in modern solid state drives

▪ FLIN: Flash Level Interference-aware scheduler

▪ Experimental Evaluation

▪ Strengths and Weaknesses

▪ Related work

▪ Open discussion

11/11/2019Guy Lüthi 23

Table of Contents

||

▪ Simulation based on MQSim

▪ Protocol: NVMe 1.2 over PCIe 3.0

▪ Model SSD: 480 GB size

▪ Organization: 8 channels, 2 planes per die, 4096 blocks per plane,

256 pages per block, 8kB page size

▪ 40 Different model workloads

▪ Classified as high or low interference

▪ 4 Metrics

▪ Fairness, maximum slowdown, standard deviation of slowdowns and weighted speedup

11/11/2019Guy Lüthi 24

Evaluation Methodology

||

▪ Sprinkler [Jung et al. HPCA 2014]

▪ State-of-the-art high-performance scheduler

▪ Sprinkler + Fairness [Jung et al. HPCA 2014, Jun et al NVMSA 2015]

▪ Sprinkler scheduling algorithm with improved fairness

▪ Does not mitigate all sources of interference

11/11/2019Guy Lüthi 25

Evaluation Baseline

|| 11/11/2019Guy Lüthi 26

Fairness Results

0.0

0.2

0.4

0.6

0.8

1.0

25% 50% 75% 100%

Fa
ir

n
e

ss

Fraction of High-Intensity Traces in Workload

Sprinkler Sprinkler+Fairness FLIN

FLIN improves fairness by an average of 70%,

by mitigating all four major sources of interference

|| 11/11/2019Guy Lüthi 27

Speedup Results

0.0

1.0

2.0

3.0

4.0

25% 50% 75% 100%

W
e

ig
h

te
d

 S
p

e
e

d
u

p

Fraction of High-Intensity Traces in Workload

Sprinkler Sprinkler+Fairness FLIN

FLIN improves performance by an average of 47%,

by making use of idle resources in the SSD and improving the

performance of low-interference flows

||

▪ Modern solid-state drives (SSDs) use new storage protocols(e.g., NVMe) that

eliminate the OS software stack

▪ I/O requests are now scheduled inside the SSD

▪ Enables high throughput: millions of IOPS

▪ OS software stack elimination removes existing fairness mechanisms

▪ We experimentally characterize fairness on four real state-of-the-art SSDs

▪ Highly unfair slowdowns: large difference across concurrently-running applications

▪ We find and analyse four sources of inter-application interference

that lead to slowdowns in state-of-the-art SSDs

▪ FLIN: a new I/O request scheduler for modern SSDs designed to provide both

fairness and high performance

▪ Mitigates all four sources of inter-application interference

▪ Implemented fully in the SSD controller firmware, uses < 0.06% of DRAM space
11/11/2019Guy Lüthi 28

Conclusions

||

▪ Background: Modern SSD design

▪ Sources of unfairness in modern solid state drives

▪ FLIN: Flash Level Interference-aware scheduler

▪ Experimental Evaluation

▪ Strengths and Weaknesses

▪ Related work

▪ Open discussion

11/11/2019Guy Lüthi 29

Table of Contents

||

▪ Solution is fully firmware based

▪ Only software of one device needs modification

▪ Manufacturers have an incentive to implement FLIN

▪ Very high fairness and some performance improvement

▪ Well written paper

▪ Good background

11/11/2019Guy Lüthi 30

Strengths

||

▪ Only a simulation

▪ No actual implementation measured

▪ Model workloads might not be representative of real world scenarios

▪ Designed for testing HDDs

11/11/2019Guy Lüthi 31

Weaknesses

||

▪ Content Popularity-Based Selective Replication for Read Redirection in SSDs

▪ Elyasi et al., 2018, MASCOTS

▪ Improves performance and fairness by copying stored data

▪ CARS: A Multi-layer Conflict-Aware Request Scheduler for NVMe SSDs

▪ Yang et al., 2019, DATE

▪ Similar approach, but focusses on performance rather than fairness

11/11/2019Guy Lüthi 32

Related Work

||

▪ NCQ-Aware I/O Scheduling for Conventional Solid State Drives

▪ Fan et al., 2019, IPDPS

▪ Native Command Queuing scheduling that is aware of latencies on the host rather than

on the device

▪ An Efficient Hybrid I/O Caching Architecture Using Heterogeneous SSDs

▪ Salkhordeh et al., 2019, TPDS

▪ Improves throughput and energy efficiency by caching requests more efficiently, using three

different layers

11/11/2019Guy Lüthi 33

Related Work

||

▪ Can you think of any further improvements?

▪ Do you think fairness is a good metric?

▪ Do you think the host should take over more responsibility again?

▪ Do you think FLIN will be implemented by hardware manufacturers?

11/11/2019Guy Lüthi 34

Open Discussion

