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▪ Modern solid-state drives (SSDs) use new storage protocols (e.g., NVMe) that 

eliminate the OS software stack 

▪ I/O requests are now scheduled inside the SSD

▪ Enables high throughput: millions of IOPS

▪ OS software stack elimination removes existing fairness mechanisms

▪ We experimentally characterize fairness on four real state-of-the-art SSDs

▪ Highly unfair slowdowns: large difference across concurrently-running applications

▪ We find and analyse four sources of inter-application interference

that lead to slowdowns in state-of-the-art SSDs

▪ FLIN: a new I/O request scheduler for modern SSDs designed to provide both 

fairness and high performance

▪ Mitigates all four sources of inter-application interference

▪ Implemented fully in the SSD controller firmware, uses < 0.06% of DRAM space
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Internal Components of a Modern SSD

▪ Back end: Storage

▪ Flash chips

▪ Front end: Control

▪ Host Interface Logic (HIL)

▪ Communicates with host

▪ Flash Translation Layer (FTL)

▪ Manages resources

▪ Processes I/O

▪ Flash Channel Controllers (FCC)

▪ Direct access to back end
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▪ SSDs adopted conventional

host interface protocols

▪ Designed for magnetic

drives

▪ OS Software Stack 

handles requests

▪ Limited to thousands

of I/O requests
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▪ Modern SSDs use high

performance host

interface protocols

▪ Bypasses OS, SSDs

handle requests 

directly

▪ Very high throughput

▪ Fairness implemented

through software stack

is lost
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Host Interface Protocols in Modern SSDs
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▪ Flow: 

▪ A series of I/O requests generated by an application

▪ Slowdown:

▪ 𝑆𝑙𝑜𝑤𝑑𝑜𝑤𝑛 =
𝑆ℎ𝑎𝑟𝑒𝑑 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒

𝑁𝑜𝑛−𝑠ℎ𝑎𝑟𝑒𝑑 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒

▪ Unfairness:

▪ 𝑈𝑛𝑓𝑎𝑖𝑟𝑛𝑒𝑠𝑠 =
𝑀𝑎𝑥 𝑆𝑙𝑜𝑤𝑑𝑜𝑤𝑛

𝑀𝑖𝑛 𝑆𝑙𝑜𝑤𝑑𝑜𝑤𝑛

▪ Fairness

▪ 𝐹𝑎𝑖𝑟𝑛𝑒𝑠𝑠 =
1

𝑈𝑛𝑓𝑎𝑖𝑟𝑛𝑒𝑠𝑠
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Measuring (Un)fairness
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Representative Example
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▪ Interference among concurrently running flows

▪ Detailed study of a simulation with MQSim [1]

▪ Four different sources of interference are uncovered
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Causes of Unfairness

[1] MQSim is a fast and accurate simulator modeling the performance of  

modern multi-queue (MQ) SSDs

https://github.com/CMU-SAFARI/MQSim
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▪ The I/O intensity of a flow affects the average queue wait time of flash 

transactions
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Source 1: Flows With Different I/O Intensities

The average response time of a low-intensity flow

substantially increases due to 

interference from a high-intensity flow



||

▪ Some flows take 

advantage of chip

level parallelism in

back end

▪ Leads to low queue 

time

Guy Lüthi

Source 2: Different Request Access Patterns
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▪ Other flows have access 

patterns that do not 

exploit patterns

Source 2: Different Request Access Patterns

Flows with parallelism-friendly access patterns

are susceptible to interference from

flows whose access patterns do not exploit parallelism
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▪ Common schedulers prioritize 

Read operations

▪ Write transactions have increased

wait times

11/11/2019Guy Lüthi 15

Source 3: Flows With Different R/W Ratios

When flows have different read/write ratios,

existing schedulers do not effectively provide fairness
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▪ NAND flash memory performs writes out of place

▪ To be rewritten, memory needs to be erased first

▪ Erases can only happen on an entire flash block (hundreds of flash pages)

▪ Pages marked invalid during write

▪ Garbage collection (GC) selects mostly empty blocks, moves remaining data 

and frees block

▪ High-GC flow: flows with a higher write intensity induce

more garbage collection activities

11/11/2019Guy Lüthi 16

Source 4: Different Garbage Collection Demands

The GC activities of a high-GC flow can 

unfairly block flash transactions of a low-GC flow
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▪ Four sources of unfairness

▪ Differing intensities

▪ Differing request access patterns

▪ Differing read/ write ratios

▪ Differing GC demands
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Summary

The goal is to design a new I/O scheduler that

provides fairness, maximum performance 

and throughput
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▪ Improved I/O request

scheduler

▪ Replaces the transaction

scheduling unit

▪ Improves fairness while

keeping throughput

▪ Implemented in the SSD

firmware, no hardware

modification needed
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FLIN: Flash Level Interference Aware Scheduler
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▪ Separate, per chip read and write

queues

▪ Low intensity flows have priority

over high intensity flows

▪ Requests get reordered to 

guarantee fairness
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FLIN: Stage 1

Fairness-aware Queue Insertion
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▪ Host can assign priority level

▪ Select one read and one write

transaction and deliver to Stage 3

▪ Weighted round-robin algorithm

▪ Higher priority means more transactions

▪ No starvation
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FLIN: Stage 2

Priority-aware Queue Arbitration
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▪ Minimizes interference of differing

read/ write ratios and GC demands

▪ Chooses which transaction to 

dispatch to the FCC

▪ Instead of prioritizing reads, it

prioritizes the one with less estimated

proportional wait time (𝑡𝑝𝑤 =
𝑡𝑤𝑎𝑖𝑡

𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠
)

▪ If write is selected, perform GC instead if available free space is smaller than 

some pre-defined threshold
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FLIN: Stage 3

Wait-balancing Transaction Selection
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▪ Simulation based on MQSim

▪ Protocol: NVMe 1.2 over PCIe 3.0

▪ Model SSD: 480 GB size

▪ Organization: 8 channels, 2 planes per die, 4096 blocks per plane,

256 pages per block, 8kB page size

▪ 40 Different model workloads

▪ Classified as high or low interference

▪ 4 Metrics

▪ Fairness, maximum slowdown, standard deviation of slowdowns and weighted speedup

11/11/2019Guy Lüthi 24

Evaluation Methodology
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▪ Sprinkler [Jung et al. HPCA 2014]

▪ State-of-the-art high-performance scheduler

▪ Sprinkler + Fairness [Jung et al. HPCA 2014, Jun et al NVMSA 2015]

▪ Sprinkler scheduling algorithm with improved fairness

▪ Does not mitigate all sources of interference
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Evaluation Baseline
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Fairness Results
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Speedup Results
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▪ Modern solid-state drives (SSDs) use new storage protocols(e.g., NVMe) that 

eliminate the OS software stack 

▪ I/O requests are now scheduled inside the SSD

▪ Enables high throughput: millions of IOPS

▪ OS software stack elimination removes existing fairness mechanisms

▪ We experimentally characterize fairness on four real state-of-the-art SSDs

▪ Highly unfair slowdowns: large difference across concurrently-running applications

▪ We find and analyse four sources of inter-application interference

that lead to slowdowns in state-of-the-art SSDs

▪ FLIN: a new I/O request scheduler for modern SSDs designed to provide both 

fairness and high performance

▪ Mitigates all four sources of inter-application interference

▪ Implemented fully in the SSD controller firmware, uses < 0.06% of DRAM space
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Conclusions
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▪ Solution is fully firmware based

▪ Only software of one device needs modification

▪ Manufacturers have an incentive to implement FLIN

▪ Very high fairness and some performance improvement

▪ Well written paper

▪ Good background
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Strengths
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▪ Only a simulation

▪ No actual implementation measured

▪ Model workloads might not be representative of real world scenarios

▪ Designed for testing HDDs
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Weaknesses
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▪ Content Popularity-Based Selective Replication for Read Redirection in SSDs

▪ Elyasi et al., 2018, MASCOTS

▪ Improves performance and fairness by copying stored data

▪ CARS: A Multi-layer Conflict-Aware Request Scheduler for NVMe SSDs

▪ Yang et al., 2019, DATE

▪ Similar approach, but focusses on performance rather than fairness
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Related Work
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▪ NCQ-Aware I/O Scheduling for Conventional Solid State Drives

▪ Fan et al., 2019, IPDPS

▪ Native Command Queuing scheduling that is aware of latencies on the host rather than

on the device

▪ An Efficient Hybrid I/O Caching Architecture Using Heterogeneous SSDs

▪ Salkhordeh et al., 2019, TPDS

▪ Improves throughput and energy efficiency by caching requests more efficiently, using three

different layers
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Related Work
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▪ Can you think of any further improvements?

▪ Do you think fairness is a good metric?

▪ Do you think the host should take over more responsibility again?

▪ Do you think FLIN will be implemented by hardware manufacturers?
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Open Discussion


