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1. Summary
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▪ Use machine learning (perceptrons)

▪ Improve branch prediction accuracy

▪ Speed up overall program execution
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Overview
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▪ Computer architecture increasingly relies on speculation to improve performance
▪ Examples:

▪ Data Prefetching [12]
▪ (local/temporal consistency)

▪ Value Prediction
▪ Branch Prediction

▪ start fetching/executing instructions before next PC is known

▪ Accuracy has big influence on performance
▪ Small accuracy increase causes big speedup
▪ Less cycles wasted
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The Problem

▪ [12] J. L. Hennessy and D. A. Patterson. Computer Architecture: A 
Quantitative Approach, Second Edition. Morgan Kaufmann Publishers, 
1996.
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▪ Increase program speed
▪ Reduce average CPI
▪ CPI = cost per instruction
▪ CPI = 1 + mis/inst * penalty/mis
▪ Penalty: depends on pipeline (fixed)
▪ Hence: reduce mispredictions/instruction

▪ Increase predictor accuracy
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The Goal

Develop novel approach to increase branch 
prediction accuracy
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▪ Assumptions:
▪ 20% branches
▪ 60% taken

▪ 2 predictors
▪ Always “not taken”

▪ Simply increase PC
▪ Misprediction: 0.2*0.6=0.12

▪ More accurate predictor
▪ Misprediction: 0.01

▪ Small accuracy increase
▪ Big speedup!
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Example: Accuracy Influence on Different Architectures
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▪ Problem:
▪ Which instruction to fetch after 

BEQ?
▪ Branch result still unknown

▪ Options:
▪ Pipeline stall

▪ Lose cycles in all cases
▪ Guess next PC

▪ Flush if incorrect
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Program Example
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▪ Pipelined architecture

▪ Every time branch is encountered
▪ Stall (wait)
▪ Predict

▪ Start executing
▪ If incorrect, flush

▪ long pipelines more costly
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Branch Prediction
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▪ Use ML to increase performance
▪ Put it in HW
▪ Simplest model of NN

▪ Perceptron
▪ Each branch has its own
▪ It predicts whether branch taken/not

▪ Advantages
▪ Better branch prediction accuracy

▪ Existing methods are less accurate
▪ e.g. 2 bit counters

▪ Considers longer branch history
▪ Linear cost (previously exponential)

▪ Performance
▪ 14.7% over other methods (gshare)
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The Main Idea
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Outline

Related Work Method Design Space HW 
ImplementationResults
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2. Related Work
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▪ Store previous outcome per branch
▪ Works well:

▪ Always taken 
▪ T T T T T…

▪ Always not taken
▪ N N N N N …

▪ Taken >> Not taken
▪ T T T T N T T T T …
▪ Two misprediction per anomaly

▪ Not taken >> Taken
▪ Works bad

▪ Taken ≈ Not taken
▪ T N N T N T T T N T N ...  
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1 Bit Counters
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▪ 2 bits
▪ 4 states

▪ Works well:
▪ Always taken 

▪ T T T T T T T T…
▪ Always not taken

▪ N N N N N N N …
▪ Taken >> Not taken

▪ T T T T N T T T T …
▪ One misprediction per anomaly
▪ Improvement over 1-bit counter

▪ Simple to implement, cheap
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2 Bit Saturating Counters
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▪ BTB
▪ Branch Target Buffer
▪ Store next PC for current PC
▪ Expensive: cannot store it for each PC
▪ Aliasing
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BTB and BHT

▪ BHT
▪ Branch History Table
▪ Predict the direction
▪ Lookup address only if taken branch
▪ Reduce aliasing in BTB
▪ 1bit/entry 

063 PC now

BTB

PC new

1024 
entries

BHTPC now

▪ 0 not a taken branch (PC++)
▪ 1 taken branch (use BTB)
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▪ Store last N branch outcomes
▪ Compute function t(x_1, …, x_N)
▪ Can learn any function (up to n bits)

▪ T T N T T N ...
▪ Exponential cost

▪ Space: N + 2*2^N
▪ Most counters unused
▪ Example

▪ 1 bit history with 2-bit counters
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N-Bit History Table

PC
BHT

H 2BC 2BC
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PHT (Pattern History Table)

▪ 2-level schemes
▪ PHT (pattern history table)
▪ 2 bit saturating counters

▪ assumption: behavior similar to past
▪ change counter on outcome

▪ Problems
▪ aliasing (need enough HW budget)
▪ limited history length

▪ correlation between far away branches
▪ use hash to have variable length
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▪ Pshare
▪ Private History
▪ Shared Counters
▪ Good for

▪ even-odd pattern
▪ 8-iteration loops

▪ Gshare
▪ Global History
▪ Shared Counters
▪ Good for

▪ correlated branches
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Pshare and Gshare
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▪ Compute any function
▪ Uses sample input/output to learn
▪ Many applications

▪ pattern recognition, classification, image processing

▪ Static Branch Prediction [4]
▪ Estimate branch direction

▪ Input: control flow and opcode
▪ Use previously trained network
▪ 80% accuracy (over 75%)
▪ Worse than dynamic

▪ Genetic Algorithms [7]
▪ Evolve design parameters
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Neural Networks

▪ [4] B. Calder, D. Grunwald, M. Jones, D. Lindsay, J. Martin, M. Mozer, 
and B. Zorn. Evidence-based static branch prediction using machine 
learning. ACM Transactions on Programming Languages and Systems, 
19(1), 1997

▪ [7] J. Emer and N. Gloy. A language for describing predictors and its 
application to automatic synthesis. In Proceedings of the 24th 
International Conference on Computer Architecture, June 1997.
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3. Branch Prediction with Perceptrons
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▪ Model brain function
▪ Simplest model

▪ 1 layer, 1 neuron
▪ multiple input, 1 output (target)

▪ Idea
▪ Keep track of correlation

▪ Global & local history

▪ Formula
▪ dot product (w.x)
▪ bias (independent probability)
▪ allowed values (-1, +1)
▪ outcome: >=0 (taken), <0 (not taken)
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How Perceptrons Work
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▪ Advantages
▪ Efficient HW implementation
▪ Weights revealing (correlation)

▪ Other possibilities
▪ Too costly

▪ Back propagation
▪ Decision trees

▪ Worse performance
▪ Adaline
▪ Hebb learning

▪ Obscure decision process
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Why Perceptrons
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▪ Parameters
▪ t  (true outcome)
▪ θ (training threshold)

▪ Execution
▪ adjust weight

▪ increase (agree), decrease (disagree)
▪ if consistent, go towards extreme

▪ Weight
▪ big influence on decision
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Training Perceptrons
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▪ Linear Separability
▪ Solution to equation

▪ Hyperplane
▪ Not always exists

▪ Underlying fundamental separability
▪ “How accurate can you be”

▪ However:
▪ Empirically:

▪ Most branches are linearly separable
▪ Dynamic weights

▪ learn non-linear function (over time)
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Limitations of Perceptrons
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▪ Architecture
▪ N perceptrons (param, HW budget)
▪ fast SRAM
▪ Special circuitry

▪ Compute output
▪ Train (update weights, param)

▪ Stages
▪ 1. Hash branch address to index
▪ 2. Fetch perceptron into registers
▪ 3. Compute y (dot product)
▪ 4. Predict branch
▪ 5. Get outcome, train weights
▪ 6. Writeback

▪ Latency
▪ (1-2 cycle)
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Putting it All Together



||Seminar in Computer Architecture 16 May 2019Simone Guggiari 25

4. Design Space
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▪ Constraints
▪ HW budget (B)

▪ Parameters
▪ H (history length) = # weights
▪ p (# bits to store weights, precision)
▪ θ (training threshold)
▪ N (number of perceptrons)

▪ Trade-offs
▪ Big history length H

▪ Reduce N, introduce aliasing
▪ Optimal (in this case): H=12..62

▪ Weights
▪ signed ints
▪ 7..9 bits
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Parameters

B = H*p*N
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5. Experimental Results
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▪ Comparison with other predictors
▪ Gshare/bi-mode

▪ Only use global info
▪ Generate traces for branch instruction

▪ Use benchmarks (SPEC2000, SPEC95)
▪ Feed to simulation

▪ Measure overall performance
▪ Results used to tune parameters

▪ “exhaustive” search
▪ early prune of space with poor performance

▪ Not maximal length
▪ But optimal wrt budget and parameters
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Methodology

B = H*p*N
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▪ Advantages
▪ Consider much longer histories

▪ gshare → 18
▪ perceptrons → 62

▪ Accuracy increase
▪ Also performance

▪ Take into consideration branches far away
▪ Correlation significant
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Impact of History Length on Accuracy
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▪ Small HW (4 KB)
▪ 5.77% (our)
▪ improvement of

▪ 14.7% (gshare)
▪ 10.0%(bimode)

▪ largest performance increase

▪ Large HW (256 KB)
▪ 4.74% (our)
▪ improvement of

▪ 4.7% (gshare)
▪ 5.3%(bimode)
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Performance
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Performance
▪ Small HW (4 KB) ▪ Large HW (256 KB)
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▪ Advantages
▪ consider long history lengths

▪ Experiment
▪ artificially limit it to 18 bits
▪ gshare better (4.83%) vs perceptron (5.35%)
▪ causes

▪ destructive aliasing
▪ larger perceptrons

▪ gshare learns any function
▪ not only linearly separable

▪ Optimal lengths (in this case)
▪ gshare → 18

▪ no further improvements
▪ perceptrons → 62
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Why Does it Do Well?
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▪ Linearly separable functions
▪ Experiment

▪ compute how many are linearly separable
▪ first ten bits
▪ different benchmarks

▪ Directly proportional
▪ Worst case

▪ 099.go
▪ inseparable (82.82%)

▪ perceptron → 12.1% accuracy
▪ gshare → 8.77% accuracy

▪ separable (17.18%)
▪ perceptron → 3.68% accuracy
▪ gshare → 3.80% accuracy
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When Does it Do Well?
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▪ Confidence
▪ Drive HW speculation
▪ y (output)

▪ not binary
▪ encodes certainty

▪ Low confidence
▪ execute both paths

▪ High confidence
▪ execute only chosen one

▪ Analysis
▪ Perceptron finds correlations
▪ Learns which bits are more important
▪ Use to profile and give insights to other methods
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Additional Advantages of Predictor
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▪ Loss of performance [8]
▪ Simulation

▪ Normal loads
▪ perceptron better

▪ High loads
▪ switch every 60’000 branches
▪ extreme condition
▪ perceptron similar

▪ Use hybrid approach
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Effects of Context Switching

▪ [8] M. Evers, P.-Y. Chang, and Y. N. Patt. Using hybrid branch 
predictors to improve branch prediction accuracy in the presence of 
context switches. In Proceedings of the 23rd International Conference 
on Computer Architecture, May 1996.
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6. Implementation
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▪ Input x is (-1, +1)
▪ No dot product
▪ Add/subtract
▪ Similar to multiplication circuit

▪ Sum of partial results (number*bit)
▪ Iterative computation

▪ only need sign bit
▪ precision computed later
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Computing the Perceptron Output
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▪ 54x54 multiplier
▪ 2.7 ns

▪ 2 cycles @ 700MHz
▪ Training

▪ efficient implementation
▪ parallel each bit

▪ (no dependency)
▪ fast (9 bits)
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Delay and Training
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Pipelined Operation

▪ Avoid delay
▪ Pipeline computation
▪ Use previous cached value
▪ Compute outcome later

▪ Operations
▪ 1. on request, return cached result of previous computation
▪ 2. when result known, use it to train
▪ 3. update global history compute hash for next index
▪ 4. read perceptron
▪ 5. compute prediction for next time
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7. Conclusion
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▪ Novel approach to improve branch prediction accuracy

▪ Implement ML in hardware

▪ More complex than existing methods

▪ More accurate

▪ Can be combined (hybrid)

▪ Efficient/low latency hardware implementation

▪ Relatively simple function

▪ Provides insights into program behavior and correlation

▪ Good potential for further research
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Key Takeaways
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▪ Advantages
▪ Consider long history lengths

▪ 62, previously (18, 23)
▪ Best performance overall
▪ Interesting characteristics

▪ Provide insights into program behavior
▪ Correlation

▪ Hybrid schemes for robustness
▪ Disadvantages

▪ Increased complexity
▪ Hardware budget

▪ Linear inseparability (not learnable)
▪ Only global history

▪ Room for future work
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Personal Thoughts
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Thank you!
Questions?
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Discussion Starters
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▪ Thoughts on the previous ideas? 

▪ How practical is this?
▪ It was only simulated, not implemented

▪ Will the accuracy become bigger and more important over time?
▪ Pipeline size

▪ Will the solution become more important over time?

▪ Are other solutions better?

▪ Is this solution clearly advantageous in some cases?
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Discussion Starters


