
||
Seminar in Computer-Architecture

Professor Onur Mutlu

1st presented at PACT’12

Gennady Pekhimenko* Vivek Seshadri* Onur Mutlu*

Michael A. Kozuch° Phillip B. Gibbons° Todd C. Mowry*

*Carnegie Mellon University °Intel Labs Pittsburgh

Cliff Hodel

5.12.2019 1

Base-Delta-Immediate Compression:

Practical Data Compression for On-Chip Caches

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Executive Summary

▪ Background & Problem

▪ Base + Delta Compression (Base+∆)

▪ Base-Delta-Immediate Compression (B∆I)

▪ Results & Analysis

▪ Strengths / Weaknesses

▪ Discussion

▪ Related Work

5.12.2019Cliff Hodel 2

Outline

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Executive Summary

▪ Background & Problem

▪ Base + Delta Compression (Base+∆)

▪ Base-Delta-Immediate Compression (B∆I)

▪ Results & Analysis

▪ Strengths / Weaknesses

▪ Discussion

▪ Related Work

5.12.2019Cliff Hodel 3

Outline

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Problem: Off-chip memory latency is HIGH

▪ Increasing cache size has significant drawbacks

▪ Apply compression to increase cache capacity

▪ Challenge: Decompression is on critical path

▪ Goal: New compression mechanism

▪ 1. low decompression latency, 2. low HW complexity, 3. high compression ratio

▪ Key-insight: 4 data patterns can be combined in one general notion

▪ Base-Delta-Immediate (B∆I) Compression:

▪ Key-Idea: Encode cache lines as one base + array of differences to base

▪ B∆I outperforms three prior mechanisms in compression ratio and decompression latency

5.12.2019Cliff Hodel 4

Executive Summary

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Executive Summary

▪ Background & Problem

▪ Base + Delta Compression (Base+∆)

▪ Base-Delta-Immediate Compression (B∆I)

▪ Results & Analysis

▪ Strengths / Weaknesses

▪ Discussion

▪ Related Work

5.12.2019Cliff Hodel 5

Outline

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Why compression?

▪ Patterns to make use of

▪ 3 prior mechanisms

5.12.2019Cliff Hodel 6

Background & Problem:

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Bigger Cache:

▪ More capacity → Fewer cache misses

▪ Longer access latency

▪ Increased area

▪ Higher power consumption

5.12.2019Cliff Hodel 7

Why compression?

Cache

Increasing cache size has too many drawbacks!

||
Seminar in Computer-Architecture

Professor Onur Mutlu
5.12.2019Cliff Hodel 8

Why compression?

Compressed

Cache

▪ Compressed Cache:

▪ More capacity → Fewer cache misses

▪ Longer access latency

▪ Increased area

▪ Higher power consumption
but much less

than before

(if we keep access latency low)

Compressed cache increases capacity without

major drawbacks!

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Why compression?

▪ Patterns to make use of

▪ 3 prior mechanisms

5.12.2019Cliff Hodel 9

Background & Problem:

||
Seminar in Computer-Architecture

Professor Onur Mutlu

1. Zeros: by far the most seen value in real-world applications:

- initializing data,

- representing NULL-pointers,

- false Booleans,

- representing sparse matrices (in dense form especially).

5.12.2019Cliff Hodel 10

Data Patterns we can make use of

2. Repeated values: a single value repeated many times: e.g:

- common initial value for large arrays

- in multimedia apps: large number of pixels with same colour

0x00000000 0x00000000 0x00000000 … 0x00000000

0x00C61FF 0x00C61FF 0x00C61FF … 0x00C61FF

||
Seminar in Computer-Architecture

Professor Onur Mutlu

3. Narrow values: a small value stored using large datatype:

- appear commonly because programmers over-provision data

type sizes

5.12.2019Cliff Hodel 11

Data Patterns we can make use of

4. Low range: - table of pointers that point to different locations in the same

memory region,

- image with low colour gradient

0x00000003 0x00000000 0x00000005 … 0x00000002

0xC0403E10 0xC0403E18 0xC0403E20 … 0xC0403EE0

||
Seminar in Computer-Architecture

Professor Onur Mutlu
5.12.2019Cliff Hodel 12

Observation

0%

20%

40%

60%

80%

100%

C
a
c
h

e
 C

o
v
e
ra

g
e
 (

%
)

Zero

Repeated Values

Other Patterns 43%

Patterns highly present in many applications!

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Why compression?

▪ Patterns to make use of

▪ 3 prior mechanisms

5.12.2019Cliff Hodel 13

Background & Problem:

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Zero-Content Augmented (ZCA) cache

▪ Frequent Value Cache (FVC)

▪ Frequent Pattern Compression (FPC)

5.12.2019Cliff Hodel 14

3 prior mechanisms

||
Seminar in Computer-Architecture

Professor Onur Mutlu

Zeros Rep. Values Narrow Values Low Range

ZCA
✓   

5.12.2019Cliff Hodel 15

Zero-Content Augmented (ZCA) cache: 2009

Low compression ratio

||
Seminar in Computer-Architecture

Professor Onur Mutlu

Zeros Rep. Values Narrow Values Low Range

FVC
✓ ✓/  

5.12.2019Cliff Hodel 16

Frequent Value Cache (FVC): 2000

Too high latency and complexity

for modest compression ratio

||
Seminar in Computer-Architecture

Professor Onur Mutlu

Zeros Rep. Values Narrow Values Low Range

FPC
✓ ✓ ✓ 

5.12.2019Cliff Hodel 17

Frequent Pattern Compression (FPC): 2004

Too high decompression latency

||
Seminar in Computer-Architecture

Professor Onur Mutlu

Zeros Rep. Values Narrow Values Low Range

ZCA
✓   

FVC
✓ ✓/  

FPC
✓ ✓ ✓ 

5.12.2019Cliff Hodel 18

3 prior Mechanisms: Summary

||
Seminar in Computer-Architecture

Professor Onur Mutlu

Zeros Rep. Values Narrow Values Low Range

ZCA
✓   

FVC
✓ ✓/  

FPC
✓ ✓ ✓ 

B∆I
✓ ✓ ✓ ✓

5.12.2019Cliff Hodel 19

3 prior Mechanisms: Summary

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Executive Summary

▪ Background & Problem

▪ Base + Delta Compression (Base+∆)

▪ Base-Delta-Immediate Compression (B∆I)

▪ Results & Analysis

▪ Strengths / Weaknesses

▪ Discussion

▪ Related Work

5.12.2019Cliff Hodel 20

Outline

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Basic Idea

▪ Compression

▪ Decompression

▪ Changes to Cache

5.12.2019Cliff Hodel 21

Base + Delta Compression (Base+∆)

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ 1. Zeros

▪ 2. Repeated Values

▪ 3. Narrow Values

▪ 4. Other Patterns

5.12.2019Cliff Hodel 22

Key-Observation of B∆I-Paper

Low Dynamic Range

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Compression at cache line granularity

▪ Compress whole cache line or store complete uncompressed line

▪ Compress line as: Base + array of differences

5.12.2019Cliff Hodel 23

Base + Delta compression: Basic Idea

||
Seminar in Computer-Architecture

Professor Onur Mutlu
5.12.2019Cliff Hodel 24

Two basic examples (32-byte cache lines)

Saved Space drawn to scale

20 bytes

▪ Narrow values stored in 4-byte ints (from application h264ref):

||
Seminar in Computer-Architecture

Professor Onur Mutlu
5.12.2019Cliff Hodel 25

Two basic examples (32-byte cache lines)

Saved Space drawn to scale

20 bytes

▪ Nearby pointers stored in same cache line (from application perlbench):

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Basic Idea

▪ Compression

▪ Decompression

▪ Changes to Cache

5.12.2019Cliff Hodel 26

Base + Delta (Base + ∆) Compression

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Input: Uncompressed Cache line

5.12.2019Cliff Hodel 27

Compression Algorithm

C bytes

…

k bytes k bytes k bytes

v1 v2 vn

…

k bytes less than

k bytes

Base ∆1 ∆n

less than

k bytes

Less than C bytes
▪ Output: Compressed Line as Base + Array of deltas

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ 1) cache line compressible  ∀i size(∆i) < k

▪ 2) optimal values for Base:
▪ Minimum or maximum of all values in cache line

▪ Or exactly in between

5.12.2019Cliff Hodel 28

Two observations

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ k:

▪ We consider k ∈ {2, 4, 8}

▪ We choose the k which provides the most compression

▪ Base:

▪ We simply choose Base as the 1st value in line

▪ Choosing first value as Base instead of optimal Base decreases average compression ratio

only by 0.4%

5.12.2019Cliff Hodel 29

Determining k and the Base

2 bytes

v1 . . .

4 bytes

v1 . . .

8 bytes

v1
. . .

v2 v32

v2 v16

v2 v8

||
Seminar in Computer-Architecture

Professor Onur Mutlu
5.12.2019Cliff Hodel 30

B∆I Compression: Overview

NO! NO! NO!NO! NO!NO!NO!YES!YES!

||
Seminar in Computer-Architecture

Professor Onur Mutlu
5.12.2019Cliff Hodel 31

B∆I Compression: Compressor Unit

B

B B B

V0

V1 V2 V3

YES! YES! YES! YES!NO!

||
Seminar in Computer-Architecture

Professor Onur Mutlu
5.12.2019Cliff Hodel 32

B∆I Compression: Overview

||
Seminar in Computer-Architecture

Professor Onur Mutlu
5.12.2019Cliff Hodel 33

B∆I Compression: Compression Selection

▪ Sizes are statically known!

||
Seminar in Computer-Architecture

Professor Onur Mutlu
5.12.2019Cliff Hodel 34

B∆I Compression: Overview

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Basic Idea

▪ Compression

▪ Decompression

▪ Changes to Cache

5.12.2019Cliff Hodel 35

Base + Delta (Base + ∆) Compression

||
Seminar in Computer-Architecture

Professor Onur Mutlu
5.12.2019Cliff Hodel 36

B∆I Decompression Logic

We can decompress in

1 cycle with a SIMD

style vector addition

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Basic Idea

▪ Compression

▪ Decompression

▪ Changes to Cache

5.12.2019Cliff Hodel 37

Base + Delta (Base + ∆) Compression

||
Seminar in Computer-Architecture

Professor Onur Mutlu
5.12.2019Cliff Hodel 38

Cache Organization: Encoding bits

||
Seminar in Computer-Architecture

Professor Onur Mutlu

Data 2Data 0 Data 1

▪ Conventional: 2-way cache, 32-byte cache lines

5.12.2019Cliff Hodel 39

B∆I Cache Organization

… …

… …

Tag 0 Tag 1 Data 0 Data 1

… …

……

▪ B+∆: 4-way cache

… …

… …

Tag 0 Tag 1

… …

… …

Tag 2 Tag 3

New Tag: Tag Enc

Data

3

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Executive Summary

▪ Background & Problem

▪ Base + Delta Compression (Base+∆)

▪ Base-Delta-Immediate Compression (B∆I)

▪ Results & Analysis

▪ Strengths / Weaknesses

▪ Discussion

▪ Related Work

5.12.2019Cliff Hodel 40

Outline

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Base+∆ Limitations

▪ Multiple Bases

▪ From Base+∆ to B∆I

▪ B∆I Storage Costs

▪ Eviction Policy

5.12.2019Cliff Hodel 41

Base-Delta-Immediate Compression (B∆I)

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Example cache line from mcf:

5.12.2019Cliff Hodel 42

Base+∆ Limitations

Saved Space drawn to scale

13 bytes

▪ Not compressible with current mechanism

▪ Compressible with two bases

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Base+∆ Limitations

▪ Multiple Bases

▪ From Base+∆ to B∆I

▪ B∆I Storage Costs

▪ Eviction Policy

5.12.2019Cliff Hodel 43

Base-Delta-Immediate Compression (B∆I)

||
Seminar in Computer-Architecture

Professor Onur Mutlu
5.12.2019Cliff Hodel 44

Even more bases?
0 bases = only compress simple

patterns like zeros and repeated values

1.51 (2 bases)

vs

1.40 (1 base)

2 bases best on average

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Idea: Choose 2nd base to be implicitly 0

▪ Why could this work?

▪ Aggregate data types, e.g. structs in C

▪ E.g. pointers mixed with small integers

▪ Deltas to 0 can be seen as immediate values

→ Base-Delta-Immediate compression

5.12.2019Cliff Hodel 45

Problem: Finding 2nd base

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ B∆I:

▪ Implicit 2nd base → less storage overhead

→ potentially higher compression ratio

▪ Base+∆ with two arbitrary bases:

▪ More storage to store arbitrary 2nd base value

▪ Can compress more cache lines

→ potentially higher compression ratio

5.12.2019Cliff Hodel 46

B∆I vs Base+∆ with 2 arbitrary bases

?
→ Compare them on the benchmarks

||
Seminar in Computer-Architecture

Professor Onur Mutlu
5.12.2019Cliff Hodel 47

Compression ratio comparison of different algorithms

B∆I : 1.53

B+∆: 1.51

B∆I and Base+∆ (2 bases) work well.

B∆I simpler!

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Base+∆ Limitations

▪ Multiple Bases

▪ From Base+∆ to B∆I

▪ B∆I Storage Costs

▪ Eviction Policy

5.12.2019Cliff Hodel 48

Base-Delta-Immediate (B∆I) Compression

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Compression in 2 steps:

▪ Step 1: Try to compress all elements using implicit base of 0

▪ Step 2: Compress elements which weren’t compressed in step 1 with arbitrary base

▪ Base: First element, which wasn’t compressed in step 1

▪ Stores a bit mask, 1-bit per element:

▪ Decompression:

▪ Masked addition of the base to the array of differences, using bit mask

5.12.2019Cliff Hodel 49

From B+∆ to B∆I

immediate value

difference to base

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ At cache levels higher than L1

▪ Latency at level 1 too important, but in principle would be possible

5.12.2019Cliff Hodel 50

B∆I Operation

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Base+∆ Limitations

▪ Multiple Bases

▪ From Base+∆ to B∆I

▪ B∆I Storage Costs

▪ Eviction Policy

5.12.2019Cliff Hodel 51

Base-Delta-Immediate Compression (B∆I)

||
Seminar in Computer-Architecture

Professor Onur Mutlu
5.12.2019Cliff Hodel 52

B∆I Storage Cost: Changes

Adding 11 bits

Doubling number of tag-store

entries

Increase by a factor of ~3

Overall: Modest increase

(1.07x)

▪ 2MB 16-way L2 cache, assuming 64-byte cache lines:

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Base+∆ Limitations

▪ Multiple Bases

▪ From Base+∆ to B∆I

▪ B∆I Storage Costs

▪ Eviction Policy

5.12.2019Cliff Hodel 53

Base-Delta-Immediate Compression (B∆I)

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Problem: Evicting one cache line may not create enough space for incoming

cache line

▪ 5.2% of all insertions/writebacks result in evicting multiple lines on average

▪ Paper uses policy that evicts multiple LRU cache lines

▪ But paper leaves it open for future work to get better eviction policy

5.12.2019Cliff Hodel 54

Eviction Policy

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Executive Summary

▪ Background & Problem

▪ Base + Delta Compression (Base+∆)

▪ Base-Delta-Immediate Compression (B∆I)

▪ Results & Analysis

▪ Strengths / Weaknesses

▪ Discussion

▪ Related Work

5.12.2019Cliff Hodel 55

Outline

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Evaluation Methodology

▪ Single-Core results

▪ Multi-Core results

5.12.2019Cliff Hodel 56

Results and Analysis

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ On a simulator:

▪ 2 or 3 level hierarchy

▪ 64-byte cache lines

▪ B∆I caches have:

▪ +1 / +2 cycles latency on hit/miss (larger tag store)

▪ +1 cycle latency due to decompression

▪ Therefore +2 / +3 cycles added latency

▪ Assumption: No internal fragmentation

5.12.2019Cliff Hodel 57

Evaluation Methodology

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Evaluation Methodology

▪ Single-Core results

▪ Multi-Core results

5.12.2019Cliff Hodel 58

Results and Analysis

||
Seminar in Computer-Architecture

Professor Onur Mutlu
5.12.2019Cliff Hodel 59

Single-Core results

||
Seminar in Computer-Architecture

Professor Onur Mutlu
5.12.2019Cliff Hodel 60

Single-Core results

Degrades performance,

but B∆I the least

On avg,

performance

improves

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Evaluation Methodology

▪ Single-Core results

▪ Multi-Core results

5.12.2019Cliff Hodel 61

Results and Analysis

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Interesting: Shared L2, L3

▪ B∆I gives perfomance improvement over all prior mechanisms:

5.12.2019Cliff Hodel 62

Multi-Core results

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Executive Summary

▪ Background & Problem

▪ Base + Delta Compression (Base+∆)

▪ Base-Delta-Immediate Compression (B∆I)

▪ Results & Analysis

▪ Strengths / Weaknesses

▪ Discussion

▪ Related Work

5.12.2019Cliff Hodel 63

Outline

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Elegant and intuitive idea: One model fits all

▪ Evaluation quite thorough:

▪ Many things tested:

▪ # of bases

▪ # of tags

▪ Fair comparison to prior mechanisms

▪ Especially Multi-core analysis

▪ Individual parts well-explained

5.12.2019Cliff Hodel 64

Strengths

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Paper leaves out some things:

▪ Replacement policy

▪ Internal Fragmentation

▪ Transition from Base+∆ to B∆I really short

▪ Paper jumps around a lot

5.12.2019Cliff Hodel 65

Weaknesses

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Executive Summary

▪ Background & Problem

▪ Base + Delta Compression (Base+∆)

▪ Base-Delta-Immediate Compression (B∆I)

▪ Results & Analysis

▪ Strengths / Weaknesses

▪ Discussion

▪ Related Work

5.12.2019Cliff Hodel 66

Outline

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Any ideas for improvements to B∆I?

▪ Ideas for other cache compression mechanisms?

5.12.2019Cliff Hodel 67

Discussion

||
Seminar in Computer-Architecture

Professor Onur Mutlu
5.12.2019Cliff Hodel 68

Related Work

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Any ideas for improvements to B∆I?

▪ Ideas for other cache compression mechanisms?

▪ Is cache compression actually used in today’s processors?

▪ Why not?

▪ Frame Buffer Compression: reduce memory bandwidth due to display traffic

▪ Does B∆I bring any security risks with it?

▪ Will cache compression get more important in the future?

5.12.2019Cliff Hodel 69

Discussion

||
Seminar in Computer-Architecture

Professor Onur Mutlu
5.12.2019Cliff Hodel 70

Slides not shown at presentation:

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Idea: Compress zero memory blocks using a specialized cache

▪ called “ZC cache”

▪ One zero cache line represented solely by its address tag and a single valid bit

▪ Optimization: ZC cache entry consists of shortened address tag and N valid bits

→ single entry in ZC cache can map up to N null lines

▪ “Compression”: OR-ing whole line to check if all zero

5.12.2019Cliff Hodel 71

Zero-Content Augmented (ZCA) cache: 2009

||
Seminar in Computer-Architecture

Professor Onur Mutlu
5.12.2019Cliff Hodel 72

ZCA cache: conventional chache + ZC cache

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Observation: Frequent value locality: 10 distinct values occupy over 50% of all

memory locations and account on average nearly 50% of all memory accesses

▪ Idea: Use a Frequent Value Cache (FVC) along with a traditional cache

▪ FVC stores lines via 3-bit encoding

→ 7 most frequent values, plus last code for “infrequent value”

5.12.2019Cliff Hodel 73

Frequent Value Cache (FVC): 2000

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Compression logic consists of 8 distinct compressor units:

▪ 6 for different base sizes and ∆ sizes

▪ 2 for zeros and repeated value compression

▪ Uncompressed cache line

▪ In the end, choose output from compressor unit, which compresses the most

5.12.2019Cliff Hodel 74

B∆I Compression

Compressor

unit

“Not compressible”

“Compressible”

+ compressed cache line

||
Seminar in Computer-Architecture

Professor Onur Mutlu

▪ Basic Idea: One zero cache line represented solely by its address tag and a

single valid bit

▪ Can compress:

5.12.2019Cliff Hodel 75

Zero-Content Augmented (ZCA) cache: 2009

Zeros

||
Seminar in Computer-Architecture

Professor Onur Mutlu
5.12.2019Cliff Hodel 76

Frequent Value Cache (FVC): 2000

Zeros Repeated Values (sometimes)▪ Can compress:

||
Seminar in Computer-Architecture

Professor Onur Mutlu
5.12.2019Cliff Hodel 77

Frequent Pattern Compression (FPC): 2004

Zeros Narrow ValuesRepeated Values▪ Can compress:

