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BACKGROUND,	PROBLEM	&	GOAL	
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Background	
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Problem	
•  Amdal’s	law	shows	limitations	for	parallelizability	

•  Physical	limitations	for	transistor	count	scalability	

•  Transient	Hardware	errors	/	Soft	Errors	/	Bit	flips	due	to	
smaller	Hardware	

•  No	error	detection	
•  This	can	slow	down	program	execution,	due	to	re-computation	

•  Limitations	of	branch	prediction	with	compilers	
	
•  Today	the	problem	is	even	worse	than	in	2000	 4	
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Goal	
	
•  Improve	performance	
•  Use	multiple	hardware	context	to	speed	up	single	thread	
execution	by	prefetching	a	perfect	program	prediction	

•  Improve	fault	tolerance	
•  Comparison	of	different	hardware	context	to	detect	and	adjust	
incorrect	executions		
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KEY	IDEA	
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Slipstream	-	NASCAR	
•  At	speed	in	excess	of	190	m.p.h,	high	air	pressure	forms	at	the	
front	and	a	partial	vacuum	at	the	rear	of	the	car	

•  Second	car	can	position	itself	behind	a	leading	car	
•  Leading	car	has	less	drag,	since	vacuum	is	filled	up		by	a	car	
•  Car	in	the	back	has	less	air	resistance	

•  Both	cars	together	drive	faster	than	either	can	alone	
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Key	Idea	
Deploy	program	into	two	threads:	
	
A-Stream	
•  Advanced	thread	executes	a	highly	
reduced	instruction	stream	

R-Stream	
•  Redundant	thread	uses	results,	prefetches	
predictions	generated	by	advanced	thread	
and	ensures	correctness	

8	

Full	Program	

A-Stream	

R-Stream	
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Improve	Performance	
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A-Stream	runs	highly	reduced	

R-stream	executes	highly	optimized	

Information	
about	control	
and	dataflow	

R-stream	
finishes	close	
behind	

Full	Program	

Performance	gain	



Improve	Fault	Tolerance	
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10	

Shortened	A-Stream	with	
reduced	instruction	set	

R-stream	with	full	instruction	set	

Information	about	
computations	and	
results	

If	R-Stream	detects	a	mismatch	between	results	we	can	recover			

recover	the	corrupted	architectural	
state	of	the	A-stream	



MECHANISMS	
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Hardware	
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K.	Sundaramoorthy,	Z.	Purser,	and	E.	Rotenberg.	Slipstream	Processors:	Improving	both	Performance	and	Fault	Tolerance.	ACM	SIGPLAN	Notices	Nov.	2000.	

A-Stream R-Stream 



Removable	Instructions	
Distinguish	three	categories	of	ineffectual	computation		
1.  Unreferenced	writes	are	values	overwritten	before	use	
	
	
2.  Writes	that	do	not	modify	the	state	of	location	
	

3.  Dynamic	branches	whose	outcomes	are	consistently	predicted	
correctly.		
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write	x	=	2	 write	x	=	4	 read	x		

write	x	=	2	 write	x	=	2	 read	x		

origin	
branch	1	

branch	3	

branch	4	
branch	2	



Instruction	Removal	Detector	
•  Receives	retired	instructions	from	R-stream	

•  Detects	and	removes	removable	instructions	
	
•  Generates	
•  trace	id 	[Start	PC,	{branch	outcomes}]	
•  intermediate	PC	(Program	counter)	
•  ir-vec	(instruction	removal	vector)	

•  Send	information	to	IR-predictor	
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Detect	Removable	Instructions	
•  Get	the	most	recent	producer	of	the	value		
•  If	new	instruction	is	write	
•  VALID	BIT	of	producer	is	set	and	the	new	value	is	equal	to	its	value	
we	have	a	non	modifying	write	

•  VALID	BIT	of	producer	is	set	and	the	new	value	does	not	match,	we	
check	the	REF	BIT,	if	it	is	not	set	we	have	an	unreferenced	write	

•  In	both	cases	we	select	the	instruction	for	removal	by	adding	it	to	
the	ir-vec	
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New	instruction	

Producer	instruction	



Detect	Removable	Branches		
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•  Backpropagates	selection	status	to	predecessor	instruction	
•  Predecessor	is	selected	for	removal	if	all	dependent	
instructions	are	selected	

Predecessor	

Dependence	

Predecessor	 Predecessor	
Dependence	

Dependence	
Dependence	



Instruction	Removal	Predictor	
•  Modified	conventional	trace	predictor	
•  Trace	consist	of	32	dynamic	instructions		

•  Receives	extended	traces-ids	
•  Trace-id	consists	of	Start	PC	and	its	branch	
outcomes	

•  Extended	by	an	ir-vec	and	intermediate	PC	

•  Confidence	mechanism	builds	up	confidence	for	
removal	
•  Counter	

•  Generates	the	Program	Counter	(PC)	of	next	
instructions	to	be	fetched	by	A-stream	
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Delay	Buffer	
•  Simple	FIFO	queue	
•  A-stream	pushes	operand	outcomes	and	information	about	skipped	
instructions	and	branch	outcomes	

•  R-stream	pops	everything	from	the	buffer	
•  Branch	outcomes	are	loaded	into	the	instruction	cache	for	prefetching	
•  Operand	outcomes	are	merged	with	their	respective	instructions	
before	they	enter	the	execution	engine	
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Error	Detection	
Instructions	IR-Predictor	could	remove	by	
mistake	
•  Mispredicted	branch	
•  Removal	of	effectual	writes	
	
IR-detector	can	detect	this	early	by	comparing	
computed	instructions	from	R-stream	against	
predicted	instructions	used	in	A-stream	
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Recovery	
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•  Flush	R-stream	reorder	buffer	
•  Flush	delay	buffer	
•  Backup	IR-predictor	to	exact	PC	
•  Flush	A-stream	reorder	buffer	
•  Copy	entire	register	file	of	R-stream	to	register	file	of	A-stream	via	delay	
buffer	

•  The	recovery	controller	correctly	maps	R-stream	register	to	A-stream	
register	

K.	Sundaramoorthy,	Z.	Purser,	and	E.	Rotenberg.	Slipstream	Processors:	Improving	both	Performance	and	Fault	Tolerance.	ACM	SIGPLAN	Notices	Nov.	2000.	



KEY	RESULTS	
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Simulation	Environment	
•  Execution	driven	simulation	
•  A	Simplescalar,	gcc-based	compiler	and	MIPS-based	ISA	are	used	
•  SPEC95	Benchmarks	to	compare	compute-intensive	integer	
performance	
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K.	Sundaramoorthy,	Z.	Purser,	and	E.	Rotenberg.	Slipstream	Processors:	Improving	both	Performance	and	Fault	Tolerance.	ACM	SIGPLAN	Notices	Nov.	2000.	



Reference	Models	
Performance	of	three	models	are	compared	
•  SS(64x4)	-	A	single	copy	of	the	program	is	run	on	one	
conventional	4-way	superscalar	processor	with	64	ROB	entries	

•  SS(128x8)	-	A	single	copy	of	the	program	is	run	on	one	
conventional	8-way	superscalar	processor	with	128	ROB	
entries	

•  CMP(2x64x4)	-	Slipstream	processor	using	a	CMP	composed	of	
two	SS(64x4)	cores	

•  Same	trace	predictor	is	used	
•  Performance	measured	in	retired	R-stream	instructions	
divided	by	the	number	of	cycles	for	both	the	A-stream	and	R-
stream	
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Performance	
•  Results	in	comparison	to	SS(64x4)	-	4-way	superscalar	processor	
•  Slipstream	improves	performance	by	7%	on	average	
•  SS(128x8)	-	8-way	superscalar	processor	improves	performance	by	
28%	on	average	 26
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Performance	
Even	without	surpassing	the	8-way	superscalar	it	has	
competitive	potential	
1.  With	much	less	complexity	we	achieved	¼	of	the	

performance	increase	

2.  More	functionality	and	flexibility	than	a	single	super	scalar	
processor	

3.  More	potential	if	extended	to	an	implementation	on	a	8-
wide	SMT,	left	for	further	work	

	

26
.1
1.
18
	

M
ic
ha
el
	K
el
le
r	

25	



Mispredictions	
•  Number	of	removed	instructions	correlates	closely	with	
performance	improvement	

•  The	confidence	threshold	of	32	results	in	less	than		
0.05	IR-mispredictions	/	1000	instr.	

•  Average	misprediction	penalty	is	at	most	26	with	a	minimum	
of	21	cycles	
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Strengths	
•  The	paper	is	ahead	of	its	time,	because	it	addresses	multiple	
very	fundamental	problems		
•  limits	of	parallelism		
•  physical	limits	in	processor	design	
Ø Today,	these	problems	are	even	more	important,	as	they	were	in	
2000	

	
•  Idea	is	different	and	innovative	with	the	attempt	of	utilizing	
idle	processors	for	improving	single	thread	performance	

	
•  Looking	for	simplicity	by	not	redesigning	whole	systems,	
instead	it	attempts	to	make	minor	changes	to	improve	
performance	
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Weaknesses	
•  Only	touches	surface	of	the	underlying	problem	
•  Error	detection	is	not	solved	with	two	redundant	executions	
•  Only	little	evaluation	about	performance	

•  No	insight	about	power	consumption	

•  Many	informal	speculations	and	conclusions	
•  The	whole	evaluation	of	fault	tolerance	is	informal	
•  Speculations	about	other	predictors	and	implementations	with	
very	little	reasoning	

•  Hard	to	read	and	understand,	of	course	also	because	it	is	
outdated	
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Takeaways	
•  Idea	deserves	attention	and	might	be	a	nice	base	for	further	
improvements	

•  “Two	programs	combined	finish	sooner	than	either	would	
alone”	

•  Problem	of	transient	hardware	faults	not	properly	addressed	
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DISCUSSION	
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Discussion	Starters	
•  What	changes	do	you	think	have	the	most	potential	for	
additional	performance	increase?	

	
•  How	can	we	really	address	the	fault	tolerance	improvement?	

•  What	happens	if	the	A-stream	is	too	fast?	
	
•  Can	you	think	about	improvements	in	todays	heavily	
parallelized	architectures	with	the	slipstream	paradigm	
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BACKUP	SLIDES	
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Compiler	/	Slipstream	Example	
function	func(a,	b)	{		

	var	x;	
	var	i	=	3000;		
	while	(i--)	{		
	 	//	dead	store		
	 	x	=	a	+	b;		
	}		

}	
Compiler	can	optimize	

26
.1
1.
18
	

M
ic
ha
el
	K
el
le
r	

36	

function	func(a,	b)	{		
	var	y	=	random();	
	var	x;	
	var	i	=	3000;		
	while	(i--)	{			
	 	x	=	a	+	b;	
	 	if(	i	==	y)	
	 	 	read	x;	
	}		

}	
Slipstream	can	predict	



IR	Predictor	
Instruction	Removal	Predictor	
•  They	present	a	modified	trace	
predictor	

•  IR-detector	suggests	instruction	to	
remove		

•  Confidence	mechanism	(counter)	
builds	up	confidence	for	removal	

•  Generates	the	PC	of	next	instructions	
to	be	fetched	by	A-stream	
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IR	Predictor	-	Trace	Predictor	
•  Set	of	dynamic	instruction	is	a	trace	
•  Start	PC	and	branch	outcome	form	a	trace	id	
{A,	N,	T,	T,	T,	N,	T}		-	trace	id	
PC’s	B,	C,	D	are	produced	using	Branch	Target	Buffer	(BTB)	
	
	
Modification:	
•  Add	instruction	removal	bit	vector	ir-vec,	from	IR	detector	
•  Add	intermediate	PC	values,	from	IR	detector	
•  Add	confidence	mechanism	
X,	Y,	intermediate	PC’s	
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A	 N	 T	 D	 N	 T	B	 T	 C	 T	

A	 N	 T	 N	 Y	 T	X	 T	 T	

0	 1	 0	 0	 1	 1	 0	 0	1	 0	 0	 0	 1	 1	 1	 1	



IR	Detector	
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•  Operand	rename	table	performs	
dependence	checking	and	detects	
removable	instructions	

•  Construct	a	Reverse	Data	Flow	Graph		
R-DFG	

A	R-DFG	are	32	instructions	as	a	single	trace	
Stores	R-DFG	for	multiple	traces	

K.	Sundaramoorthy,	Z.	Purser,	and	E.	Rotenberg.	Slipstream	Processors:	Improving	both	Performance	and	Fault	Tolerance.	ACM	SIGPLAN	Notices	Nov.	2000.	



IR	Detector	
•  All	branches	are	candidates	for	removal	
For	the	oldest	trace		
•  Instruction	removal	bit	vector	ir-vec	is	formed	
•  Intermediate	PCs	are	computed	
	
Trace	Id,	ir-vec	and	intermediate	PCs	are	loaded	into	the	IR-
predictor	and	the	R-DFG	circuitry	is	reclaimed	for	a	new	trace	
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Recovery	Controller	
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In	normal	mode,	the	recovery		
controller	receiver	control	
signals	and	addresses	of	store	
instructions	from	A-stream,	R-
stream	and	IR-detector	

•  After	a	misprediction,	the	recovery	controller	correctly	maps		
R-stream	register	to	A-stream	register	

•  Instructions	must	be	undone	or	done	in	A-stream	
•  Every	instruction	A-stream	is	ahead	of	R-stream	are	undone	
•  Every	predicted	and	unverified	stores	are	done	by	copy	data	from	
R-stream	

•  With	the	comparison	of	ir-vec’s	by	the	IR	detector,	we	can	
determine	a	bounding	for	the	tracked	addresses	

K.	Sundaramoorthy,	Z.	Purser,	and	E.	Rotenberg.	Slipstream	Processors:	Improving	both	Performance	and	Fault	Tolerance.	ACM	SIGPLAN	Notices	Nov.	2000.	


