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Executive Summary
 Problem

 Speculative execution can leak secret information
 Growing focus on performance while neglecting system security

 Goal
 Exploit speculative execution to gain access to confidential 

information
 Novelty

 First showcase of exploiting speculative execution
 Key Approach

 Exploiting conditional branches

 Exploiting indirect branches
 Results

 Attacks using native code and JavaScript

 Unpatchable user space privilege attacks on correct code
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Background

 Out-of-order Execution

 Speculative Execution

 Branch Prediciton

 Memory Hierarchy

 Side-Channel Attacks

 Return-Oriented-Programming
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Out-of-order Execution
 In order dispatch + precise exceptions:

 Out-of-order dispatch + precise exceptions:

 16 vs. 12 cycles
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Speculative Execution
 Processor does not know future instruction stream 

of program

 Idea: Predict and speculatively execute likely 
execution path

– Preserve current register state as checkpoint

 Abandon or commit changes made, based on if 
prediction turns out to be right 

– Revert to checkpoint if condition false

 Same worst case performance as non speculative 
execution, but reduced idling in all other cases
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Speculative Execution
 Example:

loop: CMP R1, 10 // compare contents of 
R1 to 10

JLE done // if [R1] <= 10 then 
end exectuion

SUB R1, 1 // decrement R1
JMP loop // check condition again

done:
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Speculative Execution
 Example:
loop: CMP R1, 10 →  Branch takes long to resolve

JLE done →  Speculatively execute loop 

SUB R1, 1 →  

JMP loop

done:
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Speculative Execution
 Example:
loop: CMP R1, 10 →  Branch takes long to resolve

JLE done →  Speculatively execute loop 

SUB R1, 1 →  

JMP loop

done:
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Speculative Execution
 Example:
loop: CMP R1, 10 →  Branch takes long to resolve

JLE done →  Speculatively execute loop 

SUB R1, 1 →  

JMP loop

done:
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Speculative Execution

 Reverting changes can still leave traces
– Transient instructions are instructions that were 

performed erroneously, but may leave 
microarchitectural traces

 Nominal cache state unmodified, but cache might 
have new additional entries 
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Branch Prediction
 Speculative execution requires us to guess the likely 

execution path on branch instructions

 Branch prediction helps us make better guesses
– More commited speculative executions

→ Increased perfomance

 Indirect branches can jump to arbitrary target 
addresses computed at runtime

 Conditional branches for which the execution path 
depends on a chosen condition
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Branch Prediction
 Indirect branches

– Jumping to an address stored in a register, 
memory location or stack, e.g., jmp [eax] in x86

– Predictions rely on recent program behaviour

 Branch Target Buffer (BTB) is used to map addresses 
of recently excecuted instructions to dest. addresses

– Predict future before decoding branch instruction
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  Example indirect branch:
– Assume our branch instruction has address 0x8
– Assume that the address in eax is uncached

 

First Run:

jmp [eax]

Branch Prediction

16
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  Example Indirect Branch:
– Assume our branch instruction has address 0x8
– Assume that the address in eax is uncached

 

First Run:

jmp [eax]

Branch Prediction
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  Example Indirect Branch:
– Assume our branch instruction has address 0x8
– Assume that the address in eax is uncached

 

Second Run:

jmp [eax]

Branch Prediction
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Branch Prediction
 Conditional branches

– Branch instructions like if-statements

if(a) then dest1 else dest2
– Recording target address is not required, since 

the destination is encoded in the instruction
– Condition is determined at runtime

 Processor maintains a record of recent branch 
outcomes for indirect and direct branches, called 
the branch predictor
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Branch Prediction
 Example conditional branch:

– Assume uncached_cond is a uncached boolean 
variable

if (uncached_cond){
expression1;

}else{

expression2;

}

20
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Memory Hierarchy
 Most modern Intel processors have three cache levels

– Each core has dedicated L1 and L2 caches

– All cores share the L3 cache 
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Memory Hierarchy
 Example cache hit:
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Memory Hierarchy
 Processor must ensure cache coherence per core

– Cache coherence protocol like MESI

 → Write on one core leads to invalidation of data 
in other cores, for L1 and L2

 → cache line bouncing if this happens repeatedly 
to one specific memory location 

 False sharing when two cores bounce the same 
cache line by accessing nearby memory addresses

 We will later abuse these properties for our 
Evict+Reload approach of recovering leaked data
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Microarchitectural Side-Channel Attacks
 Changes in the microarchitectural state caused by 

one program may affect other programs
– Can leak information from program to program

 We focus on Flush+Reload and Evict+Reload
– Techniques for recovering the leaked information

 Idea: Evict/Flush victim shared cache lines, let 
victim execute, and probe the shared lines 

– Probe by measuring access times
 → fast access = victim used cache line
 → slow access = cache line not used
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Microarchitectural Side-Channel Attacks
 Example Flush+Reload:
 We use a dedicated machine instruction, like clflush 

in x86, to evict the line
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Microarchitectural Side-Channel Attacks
 Example Flush+Reload:
 We use a dedicated machine instruction, like clflush 

in x86, to evict the line
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Microarchitectural Side-Channel Attacks
 Example Flush+Reload:
 We use a dedicated machine instruction, like clflush 

in x86, to evict the line
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Microarchitectural Side-Channel Attacks
 Example Flush+Reload:
 We use a dedicated machine instruction, like clflush 

in x86, to evict the line
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Return-Oriented Programming
 Idea: Hijack control flow of a vulnerable victim 

    program 

 Gadgets are machine code snippets found in the 
victims code

– Perform some computation and then return
– Search binary for useful gadgets

 If attacker has control of stack pointer, he can chain 
execute gadgets by changing the return address

– Achieved using e.g. buffer overflow exploits
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Spectre Attack Overview
 Setup Phase

– Mistrain processor for erroneous speculative execution

– Manipulate cache state

– Setup side channel

 Second Phase
– Invoke speculative execution of victim program

– Transfer confidential information into side channel

 Third Phase
– Use Flush+Reload or Evict+Reload to recover leaked 

information

 → time access on cache line for memory addresses

31
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Mechanisms (in some detail)
 Spectre attacks come in many variants

– Speculative execution used in different contexts

 We will focus on two conepts:
– Poisoning indirect branches
– Exploiting conditional branch misprediction

 Furthermore we will also see how mistraining works
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Mistraining Branch Prediction
 Methods vary among CPUs

 Attacker mimics the pattern of branches leading up 
to the branch to be mispredicted

– Place jumps at the same virtual address as in 
victim proccess

– Has to be done on same CPU core

 Predictors also learn from illegal operations
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Indirect Branch Poisoning
 Similiar to return oriented programming
 Assume attacker has control over registers R1, R2
 Assume we have located two gadgets in the victims 

code
– G1 = adds address of R1 onto R2
– G2 = access memory at R2

  Attacker controls attack via:
– R1  which address to leak→
– R2  map memory to address to read in G2→

 Gagdet must reside in memory executable by victim 
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Cache

Tag Value Tag Value

Set 0 03 0x12 07 0x06

   jmp [eax];

 Setup Phase

 

Spectre Attack: Poisoning Indirect Branches
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Cache

Tag Value Tag Value

Set 0 03 0x12 07 0x06

   jmp [eax];

 Setup Phase
– Mistrain BTB 

 → Attacker calls jmp [eax] 

    with address to G1 in eax 

 

Spectre Attack: Poisoning Indirect Branches
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Cache

   jmp [eax];

 Setup Phase
– Make sure eax is not in cache

 → evict/flush

 

Spectre Attack: Poisoning Indirect Branches
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Cache

Tag Value Tag Value

Set 0 03 0x12 07 0x06

   jmp [eax];

 Setup Phase
– Make sure eax is not in cache

 → evict/flush

– flush/evict shared cache line

 

Spectre Attack: Poisoning Indirect Branches
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Cache

Tag Value Tag Value

Set 0 03 0x12 07 0x06

   jmp [eax];

 Second Phase
– Victim is invoked and 

starts executing

 

Spectre Attack: Poisoning Indirect Branches
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   jmp [eax];

 Second Phase
– Victim is invoked and 

starts executing

 

Cache

Tag Value Tag Value

Set 0 03 0x12 07 0x06

Spectre Attack: Poisoning Indirect Branches
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   jmp [eax];

 Second Phase
– Victim is invoked and 

starts executing

 

Cache

Tag Value Tag Value

Set 0 03 0x12 07 0x06

Spectre Attack: Poisoning Indirect Branches
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   jmp [eax];

 Second Phase
– During speculative execution:

● G1 adds R1 to R2
● G1 returns to address of G2

 

Cache

Tag Value Tag Value

Set 0 03 0x12 07 0x06

Spectre Attack: Poisoning Indirect Branches
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   jmp [eax];

 Second Phase
– During speculative execution:

 → G2 accesses memory address

     stored in R2  leaks it into cache→
 

Cache

Tag Value Tag Value

Set 0 03 0x12 07 0x06

Spectre Attack: Poisoning Indirect Branches
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   jmp [eax];

 Third Phase
– Use Flush+Reload or Evict+Reload

to recover data from shared cache 

 → recover value 6 from second block

 

Cache

Tag Value Tag Value

Set 0 03 0x12 07 0x06

Spectre Attack: Poisoning Indirect Branches
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Exploiting Conditional Branch Mispredicition

46

 Consider the following code:

if(x < array1_size)
y = array2[array1[x] * 4096];

 Assume x is an input from an untrusted source
 array1 is of size array1_size and array2 is of size 

1MB
 The bounds check keeps program from accessing 

potentially sensitive memory, supplying 

x = (addr. of secret byte to read) – (addr. of array1)



Exploiting Conditional Branch Mispredicition

47

 Consider the following code:

if(x < array1_size)
y = array2[array1[x] * 4096];

 Now assume x was maliciously chosen
– k = array1[x] resolves to secret byte in victim memory

 Assume array1_size and array2 are uncached
 Assume previous values of x were valid 

→ if k is cached then speculative execution              
    loads array2[k * 4096] into cache



 Setup Phase
– Train branch predictor with valid x values

victim(0), victim(1)

– Manipulate cache by evicting array1_size and array2
– Setup side channel by flushing the monitored cache line

– Get kernel to cache secret byte k in legit operation 

Spectre Attack: Conditional Branching
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if(x < array1_size)
y = array2[array1[x]];

Branch Predictor

Cache

Shared Cache Line

Tag Value Tag Value

Set 0



Cache

Shared Cache Line

 Second Phase
– Invoke malicious execution

victim(3)

 

Memory

Spectre Attack: Conditional Branching
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Cache

Shared Cache Line

 Second Phase
– Invoke malicious execution

victim(3)

 

Memory

Spectre Attack: Conditional Branching
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if(x < array1_size)
y = array2[array1[x]];
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Cache

Shared Cache Line

 Second Phase
– Invoke malicious execution

victim(3)

 

Memory

Spectre Attack: Conditional Branching
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if(x < array1_size)
y = array2[array1[x]];

Branch Predictor
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                           ret 
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     HIT



Cache

Shared Cache Line

 Second Phase
– Invoke malicious execution

victim(3)

 

Memory

Spectre Attack: Conditional Branching
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if(x < array1_size)
y = array2[array1[x]];

Branch Predictor

Address Value
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0x32 4
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Tag Value Tag Value

Set 0

                           ret 
Return array1_size

     MISS



Cache

Shared Cache Line

 Second Phase
– Invoke malicious execution

victim(3)

 

Memory

Spectre Attack: Conditional Branching
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if(x < array1_size)
y = array2[array1[x]];

Branch Predictor

Address Value

0x00 1

0x08 2

0x16 6

0x24 3

0x32 4

array1

k

array2

Tag Value Tag Value

Set 0

                           
Load array2[k]

array1_size



Cache

Shared Cache Line

 Third Phase
– Recover leaked information

 → probe for array2[k]

Memory

Spectre Attack: Conditional Branching
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if(x < array1_size)
y = array2[array1[x]];

Branch Predictor
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Methodology
 Test for conditional branching attacks were 

performed on multiple x86 processors
– Intel Ivy Bridge, Haswell, Skylake
– AMD Ryzen
– 64- and 32-bit modes
– Windows and Linux

 ARM processors that support speculative execution
 Implementations in C and JavaScript tested
 Most tests performed on i7 Surface Pro 3 (i7-4650U)
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Methodology

 Tests for indirect branch poisoning attacks primarily 
perfomed on Haswell-based Surface Pro 3

– 32-bit Windows applications were tested
– Windows 8 was used as the only OS

 Skylake was also tested for BTB manipulation
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Key Results

59

 Attacks using user space privileges that do not 
require any code vulnerabilities

– Not patchable through microcode or software

→ Stop gap measures
 No way to tell whether particular code is safe or not
 Performance implications are harsh

– Need to disable hyperthreading and flushes 
during context switches

– Speculative execution has to be halted on 
potentially sensitive execution paths

 Updates to ISA and CPU implementations required 
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Strengths

63

 Good introduction
– Gives refresher on almost all important concepts
– Easy to read due to abstraction

 First paper to exploit speculative execution in this 
context

 Explores further ideas to abuse this problem
– Two main variations thoroughly explained
– Several others mentioned
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Weaknesses

65

 Very poorly written
– Reiterates on introduction a lot
– Structure seems arbitrary
– Not proofread

 Fails to maintain consistent level of abstraction
– Jumps between high level concepts and low level 

implementations
 Inital testing very limited

– Most tests performed on Surface Pro 3
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Thoughts and Ideas

67

 Read the revised version of the paper 
https://spectreattack.com/spectre.pdf

 Or watch the talk given at the 40th IEEE Symposium 
on Security and Privacy
https://youtu.be/zOvBHxMjNls

 Meltdown is different from spectre, since it abuses 
special privileges given to out-of-order executed 
instructions on Intel processors

– Fix applied with KAISER patch

https://spectreattack.com/spectre.pdf
https://youtu.be/zOvBHxMjNls
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Takeaways

69

 Possibly one of the biggest media impacts of any 
system vulnerability of the decade

 Hunt for better performance has lead to negligence 
concerning system security

The Guardian, Jan. 2018



Takeaways
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 Possibly one of the biggest media impacts of any 
system vulnerability of the decade

 Hunt for better performance has lead to negligence 
concerning system security

 “A Systematic Evaluation of Transient Execution Attacks and 
Defenses” - Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, 
Benjamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, Daniel 
Gruss, pub. Nov 2018, last rev. May 2019, https://arxiv.org/pdf/1811.05441.pdf 

 “A New Memory Type against Speculative Side Channel 
Attacks” - Ke Sun, Rodrigo Branco, Kekai Hu, Intel - STrategic Offensive 
Research & Mitigations (STORM), pub. September 2019, www.scribd.com

https://arxiv.org/pdf/1811.05441.pdf
https://www.scribd.com/document/428333001/2019-A-New-Memory-Type-Against-Speculative-Side-Channel-Attacks-v1-42
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Open Discussion
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Discussion Starters

 How useful is this in reality?

 How important is it to address this?

 Where do we go from here?
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