
Spectre Attacks:
Exploiting Speculative

Execution
Paul Kocher¹, Daniel Genkin², Daniel Gruss³,
Werner Haas , Mike Hamburg , Moritz Lipp³, ⁴ ⁵
Stefan Mangard³, Thomas Prescher , Michael ⁴

Schwarz³, Yuval Yarom⁶
¹Independent, ²University of Pennsylvania and University of

Maryland, ³Graz University of Technology, Cyberus ⁴
Technology, Rambus Cryptography Research Division, ⁵

University of Adelaide and Data61⁶
https://arxiv.org/pdf/1801.01203.pdf

Maximilian Mosler
Seminar Computer Architecture 2019

ETH Zurich

https://arxiv.org/pdf/1801.01203.pdf

Outline
 Executive Summary
 Background
 Overview
 Mechanisms in Detail
 Key Results
 Methodolgy
 Strengths
 Weaknesses
 Thoughts and Ideas
 Takeaways
 Open Discussion

2

Outline
 Executive SummaryExecutive Summary
 Background
 Overview
 Mechanisms in Detail
 Key Results
 Methodolgy
 Strengths
 Weaknesses
 Thoughts and Ideas
 Takeaways
 Open Discussion

3

Executive Summary
 Problem

 Speculative execution can leak secret information
 Growing focus on performance while neglecting system security

 Goal
 Exploit speculative execution to gain access to confidential

information
 Novelty

 First showcase of exploiting speculative execution
 Key Approach

 Exploiting conditional branches

 Exploiting indirect branches
 Results

 Attacks using native code and JavaScript

 Unpatchable user space privilege attacks on correct code

4

Outline
 Executive Summary

 BackgroundBackground
 Overview
 Mechanisms in Detail
 Key Results
 Methodolgy
 Strengths
 Weaknesses
 Thoughts and Ideas
 Takeaways
 Open Discussion

5

Background

 Out-of-order Execution

 Speculative Execution

 Branch Prediciton

 Memory Hierarchy

 Side-Channel Attacks

 Return-Oriented-Programming

6

Out-of-order Execution
 In order dispatch + precise exceptions:

 Out-of-order dispatch + precise exceptions:

 16 vs. 12 cycles

7

F D WE E E E R

F D E R W

F

IMUL R3 R1, R2
ADD R3 R3, R1
ADD R1 R6, R7
IMUL R5 R6, R8
ADD R7 R3, R5

D E R W

F D E R W

F D E R W

F D WE E E E R

F D

STALL

STALL

E R W

F D

E E E E

STALL

E R

F D E E E E R W

F D E R W

WAIT

WAIT

W

Prof. Onur Mutlu, Design of Digital Circuits, Lecture 18: Out-of-Order Execution

https://ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/system-security-group-dam/education/Digitaltechnik_17/lecture/onur-DigitalDesign-2017-lecture18-out-of-order-execution-afterlecture.pdf

Speculative Execution
 Processor does not know future instruction stream

of program

 Idea: Predict and speculatively execute likely
execution path

– Preserve current register state as checkpoint

 Abandon or commit changes made, based on if
prediction turns out to be right

– Revert to checkpoint if condition false

 Same worst case performance as non speculative
execution, but reduced idling in all other cases

8

Speculative Execution
 Example:

loop: CMP R1, 10 // compare contents of
R1 to 10

JLE done // if [R1] <= 10 then
end exectuion

SUB R1, 1 // decrement R1
JMP loop // check condition again

done:

9

Speculative Execution
 Example:
loop: CMP R1, 10 → Branch takes long to resolve

JLE done → Speculatively execute loop

SUB R1, 1 →

JMP loop

done:

10

Value

R1 10

Value

R1 9

Checkpoint

Value

R1 10

Speculative Execution
 Example:
loop: CMP R1, 10 → Branch takes long to resolve

JLE done → Speculatively execute loop

SUB R1, 1 →

JMP loop

done:

11

Value

R1 10

Value

R1 9

Checkpoint

Value

R1 10

Value

R1 10 Restore
checkpoint

Speculative Execution
 Example:
loop: CMP R1, 10 → Branch takes long to resolve

JLE done → Speculatively execute loop

SUB R1, 1 →

JMP loop

done:

12

Value

R1 10

Value

R1 10

Checkpoint

Value

R1 11

Value

R1 10

commit

Speculative Execution

 Reverting changes can still leave traces
– Transient instructions are instructions that were

performed erroneously, but may leave
microarchitectural traces

 Nominal cache state unmodified, but cache might
have new additional entries

13

Branch Prediction
 Speculative execution requires us to guess the likely

execution path on branch instructions

 Branch prediction helps us make better guesses
– More commited speculative executions

→ Increased perfomance

 Indirect branches can jump to arbitrary target
addresses computed at runtime

 Conditional branches for which the execution path
depends on a chosen condition

14

Branch Prediction
 Indirect branches

– Jumping to an address stored in a register,
memory location or stack, e.g., jmp [eax] in x86

– Predictions rely on recent program behaviour

 Branch Target Buffer (BTB) is used to map addresses
of recently excecuted instructions to dest. addresses

– Predict future before decoding branch instruction

15

 Example indirect branch:
– Assume our branch instruction has address 0x8
– Assume that the address in eax is uncached

First Run:

jmp [eax]

Branch Prediction

16

Instr. Addr. Target Addr.

- -

- -

Branch Target Buffer

 Example Indirect Branch:
– Assume our branch instruction has address 0x8
– Assume that the address in eax is uncached

First Run:

jmp [eax]

Branch Prediction

17

Instr. Addr. Target Addr.

- -

- -

Branch Target Buffer

Evaluates to 0x32

 Example Indirect Branch:
– Assume our branch instruction has address 0x8
– Assume that the address in eax is uncached

Second Run:

jmp [eax]

Branch Prediction

18

Instr. Addr. Target Addr.

0x8 0x32

- -

Branch Target Buffer

0x32

Predict jump
to 0x32

...

Branch Prediction
 Conditional branches

– Branch instructions like if-statements

if(a) then dest1 else dest2
– Recording target address is not required, since

the destination is encoded in the instruction
– Condition is determined at runtime

 Processor maintains a record of recent branch
outcomes for indirect and direct branches, called
the branch predictor

19

Branch Prediction
 Example conditional branch:

– Assume uncached_cond is a uncached boolean
variable

if (uncached_cond){
expression1;

}else{

expression2;

}

20

Branch Predictor

Branch not ta
ken

Memory Hierarchy
 Most modern Intel processors have three cache levels

– Each core has dedicated L1 and L2 caches

– All cores share the L3 cache

21

L2L1
L3

Core 0

Main
Memory

Request R1

Miss Miss Miss Request
R1

Store and
Return R1

 Store and
forward R1

 Store and
forward R1

Load R1

Core 1 L1 L2 ……………………….........

Memory Hierarchy
 Example cache hit:

22

L3Core 0

Main
Memory

Hit

Request R1

Return R1

Request R1

L1 L2

Memory Hierarchy
 Processor must ensure cache coherence per core

– Cache coherence protocol like MESI

 → Write on one core leads to invalidation of data
in other cores, for L1 and L2

 → cache line bouncing if this happens repeatedly
to one specific memory location

 False sharing when two cores bounce the same
cache line by accessing nearby memory addresses

 We will later abuse these properties for our
Evict+Reload approach of recovering leaked data

23

Microarchitectural Side-Channel Attacks
 Changes in the microarchitectural state caused by

one program may affect other programs
– Can leak information from program to program

 We focus on Flush+Reload and Evict+Reload
– Techniques for recovering the leaked information

 Idea: Evict/Flush victim shared cache lines, let
victim execute, and probe the shared lines

– Probe by measuring access times
 → fast access = victim used cache line
 → slow access = cache line not used

24

Microarchitectural Side-Channel Attacks
 Example Flush+Reload:
 We use a dedicated machine instruction, like clflush

in x86, to evict the line

25

Shared cache line

CPUVictim Attacker

5

clflush

Microarchitectural Side-Channel Attacks
 Example Flush+Reload:
 We use a dedicated machine instruction, like clflush

in x86, to evict the line

26

Shared cache line

CPUVictim Attacker

Some memory
operations

Microarchitectural Side-Channel Attacks
 Example Flush+Reload:
 We use a dedicated machine instruction, like clflush

in x86, to evict the line

27

Shared cache line

CPUVictim Attacker

7

access

Microarchitectural Side-Channel Attacks
 Example Flush+Reload:
 We use a dedicated machine instruction, like clflush

in x86, to evict the line

28

Shared cache line

CPUVictim Attacker

7

Fast
response

Attacker knows
that shared
cache line was
used by victim

Return-Oriented Programming
 Idea: Hijack control flow of a vulnerable victim

 program

 Gadgets are machine code snippets found in the
victims code

– Perform some computation and then return
– Search binary for useful gadgets

 If attacker has control of stack pointer, he can chain
execute gadgets by changing the return address

– Achieved using e.g. buffer overflow exploits

29

Outline
 Executive Summary
 Background

 OverviewOverview
 Mechanisms in Detail
 Key Results
 Methodolgy
 Strengths
 Weaknesses
 Thoughts and Ideas
 Takeaways
 Open Discussion

30

Spectre Attack Overview
 Setup Phase

– Mistrain processor for erroneous speculative execution

– Manipulate cache state

– Setup side channel

 Second Phase
– Invoke speculative execution of victim program

– Transfer confidential information into side channel

 Third Phase
– Use Flush+Reload or Evict+Reload to recover leaked

information

 → time access on cache line for memory addresses

31

Outline
 Executive Summary
 Background
 Overview

 Mechanisms in DetailMechanisms in Detail
 Key Results
 Methodolgy
 Strengths
 Weaknesses
 Thoughts and Ideas
 Takeaways
 Open Discussion

32

Mechanisms (in some detail)
 Spectre attacks come in many variants

– Speculative execution used in different contexts

 We will focus on two conepts:
– Poisoning indirect branches
– Exploiting conditional branch misprediction

 Furthermore we will also see how mistraining works

33

Mistraining Branch Prediction
 Methods vary among CPUs

 Attacker mimics the pattern of branches leading up
to the branch to be mispredicted

– Place jumps at the same virtual address as in
victim proccess

– Has to be done on same CPU core

 Predictors also learn from illegal operations

34

Indirect Branch Poisoning
 Similiar to return oriented programming
 Assume attacker has control over registers R1, R2
 Assume we have located two gadgets in the victims

code
– G1 = adds address of R1 onto R2
– G2 = access memory at R2

 Attacker controls attack via:
– R1 which address to leak→
– R2 map memory to address to read in G2→

 Gagdet must reside in memory executable by victim

35

Cache

Tag Value Tag Value

Set 0 03 0x12 07 0x06

 jmp [eax];

 Setup Phase

Spectre Attack: Poisoning Indirect Branches

36

Shared Cache Line

Tag Value Tag Value

Set 0 03 0x12 07 0x06

Branch Target Buffer
Instr. Addr. Target

Addr.

- -

0x24 0x16

Cache

Tag Value Tag Value

Set 0 03 0x12 07 0x06

 jmp [eax];

 Setup Phase
– Mistrain BTB

 → Attacker calls jmp [eax]

 with address to G1 in eax

Spectre Attack: Poisoning Indirect Branches

37

Shared Cache Line

Tag Value Tag Value

Set 0 03 0x12 07 0x06

Branch Target Buffer
Instr. Addr. Target

Addr.

jmp [eax] G1

0x24 0x16

Cache

 jmp [eax];

 Setup Phase
– Make sure eax is not in cache

 → evict/flush

Spectre Attack: Poisoning Indirect Branches

38

Shared Cache Line

Tag Value Tag Value

Set 0

Branch Target Buffer

Instr. Addr. Target
Addr.

0x8 -

0x24 0x16

Tag Value Tag Value

Set 0 03 0x12 07 0x06

Branch Target Buffer
Instr. Addr. Target

Addr.

jmp [eax] G1

0x24 0x16

Cache

Tag Value Tag Value

Set 0 03 0x12 07 0x06

 jmp [eax];

 Setup Phase
– Make sure eax is not in cache

 → evict/flush

– flush/evict shared cache line

Spectre Attack: Poisoning Indirect Branches

39

Shared Cache Line

Tag Value Tag Value

Set 0

Branch Target Buffer

Instr. Addr. Target
Addr.

0x8 -

0x24 0x16

Branch Target Buffer
Instr. Addr. Target

Addr.

jmp [eax] G1

0x24 0x16

Cache

Tag Value Tag Value

Set 0 03 0x12 07 0x06

 jmp [eax];

 Second Phase
– Victim is invoked and

starts executing

Spectre Attack: Poisoning Indirect Branches

40

Shared Cache Line

Tag Value Tag Value

Set 0

Branch Target Buffer

Instr. Addr. Target
Addr.

0x8 -

0x24 0x16

Branch Target Buffer
Instr. Addr. Target

Addr.

jmp [eax] G1

0x24 0x16

 jmp [eax];

 Second Phase
– Victim is invoked and

starts executing

Cache

Tag Value Tag Value

Set 0 03 0x12 07 0x06

Spectre Attack: Poisoning Indirect Branches

41

Shared Cache Line

Tag Value Tag Value

Set 0

Branch Target Buffer

Instr. Addr. Target
Addr.

0x8 -

0x24 0x16

Branch Target Buffer
Instr. Addr. Target

Addr.

jmp [eax] G1

0x24 0x16

MISS

 jmp [eax];

 Second Phase
– Victim is invoked and

starts executing

Cache

Tag Value Tag Value

Set 0 03 0x12 07 0x06

Spectre Attack: Poisoning Indirect Branches

42

Shared Cache Line

Tag Value Tag Value

Set 0

Branch Target Buffer

Instr. Addr. Target
Addr.

0x8 -

0x24 0x16

Branch Target Buffer
Instr. Addr. Target

Addr.

jmp [eax] G1

0x24 0x16

Execute G1

Memory

Address Value

0x00 1

0x08 2

0x16 6

0x24 3

0x32 4

Load eax

 jmp [eax];

 Second Phase
– During speculative execution:

● G1 adds R1 to R2
● G1 returns to address of G2

Cache

Tag Value Tag Value

Set 0 03 0x12 07 0x06

Spectre Attack: Poisoning Indirect Branches

43

Shared Cache Line

Tag Value Tag Value

Set 0

Branch Target Buffer

Instr. Addr. Target
Addr.

0x8 -

0x24 0x16

Branch Target Buffer
Instr. Addr. Target

Addr.

jmp [eax] G1

0x24 0x16

Memory

Address Value

0x00 1

0x08 2

0x16 6

0x24 3

0x32 4

Return eax

 jmp [eax];

 Second Phase
– During speculative execution:

 → G2 accesses memory address

 stored in R2 leaks it into cache→

Cache

Tag Value Tag Value

Set 0 03 0x12 07 0x06

Spectre Attack: Poisoning Indirect Branches

44

Shared Cache Line

Tag Value Tag Value

Set 0

Branch Target Buffer

Instr. Addr. Target
Addr.

0x8 -

0x24 0x16

Branch Target Buffer
Instr. Addr. Target

Addr.

jmp [eax] G1

0x24 0x16

Memory

Address Value

0x00 1

0x08 2

0x16 6

0x24 3

0x32 4

Return eax
Load [R2]

 jmp [eax];

 Third Phase
– Use Flush+Reload or Evict+Reload

to recover data from shared cache

 → recover value 6 from second block

Cache

Tag Value Tag Value

Set 0 03 0x12 07 0x06

Spectre Attack: Poisoning Indirect Branches

45

Shared Cache Line

Tag Value Tag Value

Set 0 03 6

Branch Target Buffer

Instr. Addr. Target
Addr.

0x8 -

0x24 0x16

Branch Target Buffer
Instr. Addr. Target

Addr.

jmp [eax] G1

0x24 0x16

Memory

Address Value

0x00 1

0x08 2

0x16 6

0x24 3

0x32 4

Exploiting Conditional Branch Mispredicition

46

 Consider the following code:

if(x < array1_size)
y = array2[array1[x] * 4096];

 Assume x is an input from an untrusted source
 array1 is of size array1_size and array2 is of size

1MB
 The bounds check keeps program from accessing

potentially sensitive memory, supplying

x = (addr. of secret byte to read) – (addr. of array1)

Exploiting Conditional Branch Mispredicition

47

 Consider the following code:

if(x < array1_size)
y = array2[array1[x] * 4096];

 Now assume x was maliciously chosen
– k = array1[x] resolves to secret byte in victim memory

 Assume array1_size and array2 are uncached
 Assume previous values of x were valid

→ if k is cached then speculative execution
 loads array2[k * 4096] into cache

 Setup Phase
– Train branch predictor with valid x values

victim(0), victim(1)

– Manipulate cache by evicting array1_size and array2
– Setup side channel by flushing the monitored cache line

– Get kernel to cache secret byte k in legit operation

Spectre Attack: Conditional Branching

48

if(x < array1_size)
y = array2[array1[x]];

Branch Predictor

Cache

Shared Cache Line

Tag Value Tag Value

Set 0

Cache

Shared Cache Line

 Second Phase
– Invoke malicious execution

victim(3)

Memory

Spectre Attack: Conditional Branching

49

if(x < array1_size)
y = array2[array1[x]];

Branch Predictor

Address Value

0x00 1

0x08 2

0x16 6

0x24 3

0x32 4

array1

k

array2

Tag Value Tag Value

Set 0 MISS

Cache

Shared Cache Line

 Second Phase
– Invoke malicious execution

victim(3)

Memory

Spectre Attack: Conditional Branching

50

if(x < array1_size)
y = array2[array1[x]];

Branch Predictor

Address Value

0x00 1

0x08 2

0x16 6

0x24 3

0x32 4

array1

k

array2

Tag Value Tag Value

Set 0

Load array1_size

 TAKEN

Cache

Shared Cache Line

 Second Phase
– Invoke malicious execution

victim(3)

Memory

Spectre Attack: Conditional Branching

51

if(x < array1_size)
y = array2[array1[x]];

Branch Predictor

Address Value

0x00 1

0x08 2

0x16 6

0x24 3

0x32 4

array1

k

array2

Tag Value Tag Value

Set 0

 ret
Return array1_size

 HIT

Cache

Shared Cache Line

 Second Phase
– Invoke malicious execution

victim(3)

Memory

Spectre Attack: Conditional Branching

52

if(x < array1_size)
y = array2[array1[x]];

Branch Predictor

Address Value

0x00 1

0x08 2

0x16 6

0x24 3

0x32 4

array1

k

array2

Tag Value Tag Value

Set 0

 ret
Return array1_size

 MISS

Cache

Shared Cache Line

 Second Phase
– Invoke malicious execution

victim(3)

Memory

Spectre Attack: Conditional Branching

53

if(x < array1_size)
y = array2[array1[x]];

Branch Predictor

Address Value

0x00 1

0x08 2

0x16 6

0x24 3

0x32 4

array1

k

array2

Tag Value Tag Value

Set 0

Load array2[k]

array1_size

Cache

Shared Cache Line

 Third Phase
– Recover leaked information

 → probe for array2[k]

Memory

Spectre Attack: Conditional Branching

54

if(x < array1_size)
y = array2[array1[x]];

Branch Predictor

Address Value

0x00 1

0x08 2

0x16 6

0x24 3

0x32 4

array1

k

array2

Tag Value Tag Value

Set 0 01 3

Outline
 Executive Summary
 Background
 Overview
 Mechanisms (in some detail)

 MethodologyMethodology
 Key Results
 Strengths
 Weaknesses
 Thoughts and Ideas
 Takeaways
 Open Discussion

55

Methodology
 Test for conditional branching attacks were

performed on multiple x86 processors
– Intel Ivy Bridge, Haswell, Skylake
– AMD Ryzen
– 64- and 32-bit modes
– Windows and Linux

 ARM processors that support speculative execution
 Implementations in C and JavaScript tested
 Most tests performed on i7 Surface Pro 3 (i7-4650U)

56

Methodology

 Tests for indirect branch poisoning attacks primarily
perfomed on Haswell-based Surface Pro 3

– 32-bit Windows applications were tested
– Windows 8 was used as the only OS

 Skylake was also tested for BTB manipulation

57

Outline
 Executive Summary
 Background
 Overview
 Mechanisms (in some detail)
 Methodolgy

 Key ResultsKey Results
 Strengths
 Weaknesses
 Thoughts and Ideas
 Takeaways
 Open Discussion

58

Key Results

59

 Attacks using user space privileges that do not
require any code vulnerabilities

– Not patchable through microcode or software

→ Stop gap measures
 No way to tell whether particular code is safe or not
 Performance implications are harsh

– Need to disable hyperthreading and flushes
during context switches

– Speculative execution has to be halted on
potentially sensitive execution paths

 Updates to ISA and CPU implementations required

Outline
 Executive Summary
 Background
 Overview
 Mechanisms (in some detail)
 Methodolgy
 Key Results

 SummarySummary
 Strengths
 Weaknesses
 Thoughts and Ideas
 Takeaways
 Open Discussion

60

Executive Summary
 Problem

 Speculative Execution can leak secret information
 Growing focus on Performance while neglecting system security

 Goal
 Exploit speculative execution to gain access to confidential

information
 Novelty

 First showcase of exploiting speculative execution
 Key Approach

 Exploiting conditional branches

 Exploiting indirect branches
 Results

 Attacks using Native Code and JavaScript

 Unpatchable user space privilege attacks on correct code

61

Outline
 Executive Summary
 Background
 Overview
 Mechanisms (in some detail)
 Methodolgy
 Key Results
 Summary

 StrengthsStrengths
 Weaknesses
 Thoughts and Ideas
 Takeaways
 Open Discussion

62

Strengths

63

 Good introduction
– Gives refresher on almost all important concepts
– Easy to read due to abstraction

 First paper to exploit speculative execution in this
context

 Explores further ideas to abuse this problem
– Two main variations thoroughly explained
– Several others mentioned

Outline
 Executive Summary
 Background
 Overview
 Mechanisms (in some detail)
 Methodolgy
 Key Results
 Summary
 Strengths

 WeaknessesWeaknesses
 Thoughts and Ideas
 Takeaways
 Open Discussion

64

Weaknesses

65

 Very poorly written
– Reiterates on introduction a lot
– Structure seems arbitrary
– Not proofread

 Fails to maintain consistent level of abstraction
– Jumps between high level concepts and low level

implementations
 Inital testing very limited

– Most tests performed on Surface Pro 3

Outline
 Executive Summary
 Background
 Overview
 Mechanisms (in some detail)
 Methodolgy
 Key Results
 Summary
 Strengths
 Weaknesses

 Thoughts and IdeasThoughts and Ideas
 Takeaways
 Open Discussion

66

Thoughts and Ideas

67

 Read the revised version of the paper
https://spectreattack.com/spectre.pdf

 Or watch the talk given at the 40th IEEE Symposium
on Security and Privacy
https://youtu.be/zOvBHxMjNls

 Meltdown is different from spectre, since it abuses
special privileges given to out-of-order executed
instructions on Intel processors

– Fix applied with KAISER patch

https://spectreattack.com/spectre.pdf
https://youtu.be/zOvBHxMjNls

Outline
 Executive Summary
 Background
 Overview
 Mechanisms (in some detail)
 Methodolgy
 Key Results
 Summary
 Strengths
 Weaknesses
 Thoughts and Ideas

 TakeawaysTakeaways
 Open Discussion

68

Takeaways

69

 Possibly one of the biggest media impacts of any
system vulnerability of the decade

 Hunt for better performance has lead to negligence
concerning system security

The Guardian, Jan. 2018

Takeaways

70

 Possibly one of the biggest media impacts of any
system vulnerability of the decade

 Hunt for better performance has lead to negligence
concerning system security

 “A Systematic Evaluation of Transient Execution Attacks and
Defenses” - Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp,
Benjamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, Daniel
Gruss, pub. Nov 2018, last rev. May 2019, https://arxiv.org/pdf/1811.05441.pdf

 “A New Memory Type against Speculative Side Channel
Attacks” - Ke Sun, Rodrigo Branco, Kekai Hu, Intel - STrategic Offensive
Research & Mitigations (STORM), pub. September 2019, www.scribd.com

https://arxiv.org/pdf/1811.05441.pdf
https://www.scribd.com/document/428333001/2019-A-New-Memory-Type-Against-Speculative-Side-Channel-Attacks-v1-42

Outline
 Executive Summary
 Background
 Overview
 Mechanisms (in some detail)
 Methodolgy
 Key Results
 Summary
 Strengths
 Weaknesses
 Thoughts and Ideas
 Takeaways

 Open DiscussionOpen Discussion

71

Open Discussion

72

Discussion Starters

 How useful is this in reality?

 How important is it to address this?

 Where do we go from here?

73

	Slide 1
	Algorithm for Presentation Preparation
	Slide 3
	Presentation Schedule
	Slide 5
	Learning by Example
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73

