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Executive Summary

 Problem: Performance of graph processing on conventional systems does not scale in 
proportion to graph size

 Key Idea: Make use of Processing-In-Memory to provide high bandwidth, and design 
specially architected cores to utilize that bandwidth

 Goal: Design an infrastructure with scalable performance for graph processing 

 Results: up to 13.8x performance improvement and 87% energy reduction
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 Observation: High memory bandwidth can sustain scalability in graph processing 



Graph Processing



Graphs
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Abstractions used to represent objects and their relations

Vertices are used to represent objects

Edges are used to represent the relation  
between the objects

These representations can sometimes become very huge in real world applications

Graphs used in this paper can reach up 
to 200 million edges, 7 million vertices, 
and 3-5 GB of memory footprint

Image obtained from: Grandjean, Martin (2015), "Introduction à la visualisation de données, l'analyse de réseau en histoire", Geschichte und Informatik 18/19 (PDF), pp. 109–128



Graph Processing Workloads

Large amount of data is processed in parallel and almost independent of each other
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Example: Page Rank 
Originally designed to sort 

webpages based on number of 
views for Google, so as to do 
better webpage suggestions
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for (v: graph.vertices):

for (u: v.successors): 

u.new_rank = v.rank * weight

for (v: graph.vertices):

v.rank = v.new_rank

 v.new_rank = alpha
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u.new_rank = v.rank * weight

for (v: graph.vertices):
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Parallel computation almost independent for each vertex



Graph Processing Workloads Characteristics
Characteristics of this parallel, vertex 
independent computation:
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1. Frequent random memory accesses 2. Small amount of computation per vertex
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for (u: v.successors): 

u.new_rank = v.rank * weight

2
1

Each successor might lead you 
to a whole new subgraph Simple multiplication computation
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Page Rank performance on conventional graph processing infrastructures:

2. Conventional systems do 
   not utilize bandwidth

1. More bandwidth helps!

Graph Processing on Conventional Systems
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128 Cores 
HMC Internal BW 

(8TB/s)

5.3x

Ideally!
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IDEA:  
1. Let’s use HMC based Processing-In-Memory to provide high bandwidth 

2. And design specially architected cores to exploit this bandwidth  
(Tesseract Cores)

INSIGHT:  
High bandwidth can mitigate the performance bottleneck!



Tesseract System



Tesseract System
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-A network of HMC cubes 
-Memory mapped accelerator 
interface, non-cacheable, and 
no support for virtualization 

- Each HMC cube contains 32 vaults, each armed 
with a simple in-order core in their logic layer, so 
that the cores can use HMC’s internal BW 
- Vaults communicating over a crossbar network 
for remote function calls 

- Specialized cores, armed with latency 
tolerant programming model and graph 
processing based prefetching mechanisms 
- Message passing interface, prefetching 
mechanisms



Processing-In-Memory with 3D stacked DRAM

Large amount of bandwidth available for the cores to utilize

Specialized cores, armed with latency tolerant programming model 
and graph processing based prefetching mechanisms
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In-Order Core DRAM
 Controller

List 
Prefetcher

NIMessage Queue

Message-Triggered 
Prefetcher

Prefetch 
Buffer

Communications in Tesseract

In-Order Core DRAM
 Controller

List 
Prefetcher

NIMessage Queue

Message-Triggered 
Prefetcher

Prefetch 
Buffer

NIMessage Queue

Data needed by a Tesseract core might be present in 
another vaults memory region
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Communications in Tesseract
Data needed by a tesseract core might be present in another vaults memory region
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for (u: v.successors): 

u.new_rank = v.rank * weight

Vault #x

TC #x

Vault #y

TC #y

u

v

for (u: v.successors): 
put(w.id, function() { w.next_rank += weight * v.rank; })

barrier()

Vault #x

TC #x

Vault #y

TC #y

u

v

Non-blocking remote function call, 
increases latency toleration in the 

source core and guarantees atomicity
Send function address and 

arguments to the remote core
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Prefetching in Tesseract

In-Order Core DRAM
 Controller

List 
Prefetcher

NIMessage Queue

Message-Triggered 
Prefetcher

Prefetch 
Buffer

Message-Triggered 
Prefetcher

Prefetch 
Buffer

Prefetching the data being referenced in the message queue 
(Later noted as MTP in the evaluation section)

When message enters the message 
queue, a prefetch request is issued 
And the message is ready to be 
serviced when data is present
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Tesseract Core
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List 
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Prefetch 
Buffer
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Novelties of Tesseract 
- Usage of PIM (logic layer integration) to increase the BW available to the cores 
- Message passing employed, to increase latency tolerance and guarantee atomicity 
- Specially crafted prefetching mechanisms are used to utilize the abundant BW 

available for graph processing

2. Programming API 
3. Blocking remote function calls

Other Constructs of Tesseract: 
1. List Prefetching: Prefetching based on the next elements in the list of 
traversal, with a constant stride (later noted as LP in the evaluation section) 



Evaluation



Evaluation Methodology
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Workloads Simulated Systems
3 real world graphs:  
• ljournal-2008 (social network) 
• enwiki-2003 (Wikipedia) 
• indochina-0024 (web graph)

5 graph processing algorithms:  
• Average teenage follower 
• Conductance 
• PageRank 
• Single-source shortest path 
• Vertex cover
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- DDR3 + OoO cores 
- HMC + OoO cores, higher bandwidth 
- HMC + more number of simpler, less powerful cores 
- Tesseract, logic layer integration of the HMC with Tesseract cores



Evaluation Results
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Evaluation Results
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Average Bandwidth Utilization
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Evaluation Results

19

Average Memory Energy Consumption

0.2

0.4

0.6

0.8

1

1.2

No
rm

al
ize

d 
En

er
gy

-87%

HMC-OoO Tesseract
LP + MTP

Memory Layers Logic Layers Cores



Executive Summary

 Problem: Performance of graph processing on conventional systems does not scale in 
proportion to graph size

 Key Idea: Make use of Processing-In-Memory to provide high bandwidth, and design 
specially architected cores to utilize that bandwidth

 Goal: Design an infrastructure with scalable performance for graph processing 

 Results: 10x performance improvement and 87% energy reduction
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 Observation: High memory bandwidth can sustain scalability in graph processing 



Analysis



Strengths
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1. First work to introduce Processing-In-Memory to graph computations

4. The paper is written in a way that is easy to follow 

3. Non-blocking remote function call is an effective way to increase latency 
tolerance

2. Employing specially designed prefetching mechanisms to better utilize BW



Weaknesses
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2. The paper has not discussed why it is limited to graph applications

3. Introducing barriers raises the concern of load balancing

1. Data placement is not taken as a serious concern in this work (GraphP [1], 
Reduce communication in Tesseract with efficient data placement)

4. No comparison against prevalent graph processing platforms like GPUs is 
included in the paper 
5. Adapting common applications to the programming model is not easy



Takeaways
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2. If designed effectively, PIM might be a promising approach to provide high 
bandwidth for large scale data processing

1. Optimizing a narrow set of factors might lead to underutilization of 
resources



Discussions
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1. There is the other construct called Blocking Remote Function Calls

The difference is that in that one you have return values that you want to wait 
for them to come back to the source core

Can you think of ways to optimize remote blocking function calls?



Discussions
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2. How hard will it be to expand Tesseract to other applications?



Discussions

3. How bad will Tesseract suffer from unbalanced workloads?
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Discussions
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4. What if we switch Tesseract cores with GPU Streaming Multiprocessors?

TOM[2]: Transparent Offloading and Mapping

1. What to offload to the GPU-PIM accelerator: Bandwidth gain
2. How to map the data and schedule the computation to benefit the most: 
Subsequent accesses have a certain offset, thus we can map them together

30% average performance gain over a baseline with a GPU 
without offloading
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Discussions

4. What if we switch Tesseract cores with GPU Streaming Multiprocessors?

But still, TOM does not employ specially designed mechanisms to mitigate 
communication between vaults and we will have this problem.

New question: if we have a PIM cube which has GPU cores in its logic layer, 
how can we reduce the data movement?
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Discussions
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SM Access Breakdown over Vaults (BFS)

1. Remapping?
2. CTA Migration? 

CTA is the set of threads 
running on a GPU SM at a 

given time



Discussions
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Discussions

29

5. What about data movement between cubes?
GraphP[1]: Reduce communication between the cubes in Tesseract with efficient 
data placement
3 key techniques:

1. “Source-cut” Partitioning: an algorithm to ensure a vertex and all its 
incoming edges are in the same cube
2. “Two-phase Vertex Program”: a programming model designed for the 
“source-cut” partitioning

3. “Hierarchical Communication and Overlapping”



Discussions
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6. Other mechanisms for the same problem:

GraphR[3]: Accelerating Graph Processing Using ReRAM

Using dense ReRAM crossbars, they do graph 
computations

With ReRAMs you can do analog computation 

Results: Up to 4.12x speedup and 10.96% energy saving over Tesseract
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Backup Slides



35

Backup Slides
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Backup Slides
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Backup Slides
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Backup Slides

get(id, A func, A arg, S arg_size, A ret, S ret_size) 

put(id, A func, A arg, S arg_size, A prefetch_addr) 

disable_interrupt(), enable_interrupt()  

copy(id, A local, A remote, S size)  

list_begin(A address, S size, S stride) 

list_end(A address, S size, S stride) 

barrier() 


