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Background
● ISAs traditionally only convey program functionality
● High-level program semantics never reach hardware
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Background - Cache tiling

Image from video “Matrix multiplication: tiled implementation” https://www.youtube.com/watch?v=aMvCEEBIBto 3

https://www.youtube.com/watch?v=aMvCEEBIBto


Background - DRAM system structure
● DRAM systems have a very hierarchical structure
● Distributing load well throughout this structure can have performance benefits

Diagram: Computer Architecture Lecture - Onur Mutlu, Yoongu Kim - Carnegie Mellon University 4



Background - Implications
● OS and hardware try to predict program behavior
● Compilers and programmers may try to optimize for architecture
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Previous work
● Fine-grained hints as ISA instructions
● Program annotations to convey semantics
● Hardware-software co-designs
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Problem
● Optimizing program execution is difficult without hints
● Fine-grained hints require large changes for each optimization
● Platform-specific directives are not portable
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Create a
general cross-layer interface

to
communicate higher-level program semantics

 to various system components

8

Goal



Novelty of XMem
● Can pass information used for multiple optimizations
● Describes properties of data, rather than directive for hardware
● Is highly extensible
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Key approach - Example
A = malloc(size);
Atom1 = CreateAtom(“INT’, “Regular”, …);
MapAtom(Atom1, A, size);
ActivateAtom(Atom1);
…
Atom2 = CreateAtom(“INT”, “Irregular”, …);
UnMapAtom(Atom1, A, size);
MapAtom(Atom2, A, size);
ActivateAtom(Atom2);

10Example code from slides by Nandita Vijaykumar presenting this paper



Key approach - Atoms
● Atoms describe data which is semantically similar
● Programs explicitly specify atoms
● Atoms are immutable
● Atoms can be mapped to memory or deactivated
● Each virtual address maps to at most one atom
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Key approach - Attributes of an atom
● Paper defines a specific set of attributes, but this can be extended
● Data value properties (eg. float32, sparse)
● Access properties (eg. accessed with specific stride, read only)
● Data locality properties (working set size and reuse for caching)
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Mechanisms - Overview
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Key approach - Design choices
● Minimize runtime overhead of tracking and retrieving semantics
● Summarize atoms in software, track in hardware
● Centralized tracking: Atoms have an ID that the entire system recognizes
● Attribute translation: OS simplifies attributes for each hardware component
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Mechanisms - XMemLib
● CreateAtom

○ Compiler populates the atom segment with passed attributes
○ OS loads the atom segment

● MapAtom and UnMapAtom
○ Translated to dedicated ISA instructions
○ AMU modifies the Atom Address Map

● ActivateAtom and DeactivateAtom
○ Translated to dedicated ISA instructions
○ AMU modifies the Atom Status Table

15



Mechanisms - malloc
● Optimizations may require data placed at specific location in physical memory
● OS must know about atoms when allocating memory
● Atom ID is passed by compiler to malloc, and by malloc to the OS
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A = malloc(size);
AtomMap(atomID, A, size)

A = malloc(size, atomID); 
AtomMap(atomID, A, size)



Mechanisms - Atom Address Map (AAM)

● Uses PA instead of VA to simplify table design
● 512 byte granularity be default (~0.2% storage overhead)
● Continuous list of atom IDs indexed by physical address 

17



Mechanisms - Atom Management Unit (AMU)
● Hardware unit which manages the AAM and AST
● Handles ATOM_(UN)MAP and ATOM_(DE)ACTIVATE
● Handles ATOM_LOOKUP and has a lookaside buffer
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Key results - Methodology
● XMem modelled in zsim and evaluated with DRAMSim2
● Two separate use cases evaluated
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Key results - Case 1 - Cache management
● Tests run against the Polybench suite
● Cache tiling optimization performed by PLUTO (polyhedral locality optimizer)
● XMem provides information on

○ Access pattern and intensity
○ Data reuse and working set size

● The hardware cache will
○ Prioritize keeping high-reuse data in the cache
○ Pin part of the working set if it doesn't fully fit in cache

● The prefetcher will
○ Prefetch data based on the provided access patterns
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Key results - Case 1 - Cache management

● Choosing too small tile size causes ~30% slowdown on average
● Choosing too large tile size causes thrashing (~65% slowdown)
● XMem reduces thrashing for ~25% slowdown
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Key results - Case 1 - Cache management

● Both prefetching and pinning improvements contribute to performance
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Key results - Case 2 - Data placement in DRAM
● Different set of workloads than in case 1
● XMem provides information on access pattern and intensity
● System provides information on DRAM configuration
● Goal is to improve RBL and MLP
● The OS will

○ Isolate high RBL data structures in their own banks
○ Spread out other data structures evenly

● Baseline system uses randomized virtual-to-physical address mapping
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Key results - Case 2 - Data placement in DRAM

● XMem based DRAM placement improves runtime by ~8.5% on average
● Reduces read latency by ~12% on average
● Works by improving row buffer locality and memory level parallelism
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Summary - XMem
● Problem

○ Optimizing program execution is difficult without hints
○ Fine-grained hints require large changes for each optimization
○ Platform-specific directives are not portable

● Goal
○ Create a general cross-layer interface to communicate higher-level program semantics

● Result - XMem
○ Enables performant memory optimizations using high-level information
○ Uses the atom abstraction to describe semantics of data
○ More general and versatile than past work
○ Low overhead by pre-processing in software and tracking in hardware
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Strengths
● Simple and well explained concept
● Low overhead implementation with significant benefits
● Adopting XMem in future systems seems realistic
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Weaknesses
● Unclear why both MAP and ACTIVATE are necessary
● Unclear which cache setup was used in tests
● XMem tightly couples guest and host in virtualized environments
● Effects of remapping atoms on malloc-integration not explored
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Questions and discussion
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Thoughts and discussion
● Could a similarly general and declarative approach be used for 

non-memory-related optimizations?
● Could the ACTIVATE/DEACTIVATE concept be removed entirely?
● Which XMem attributes could be inferred by a compiler? How effective would 

that be compared to a programmer specifying attributes?
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